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Abstract

Establishing and maintaining mutual cooperation in agent-to-agent interactions can be

viewed as a question of direct reciprocity and readily applied to the Iterated Prisoner’s

Dilemma. Agents cooperate, at a small cost to themselves, in the hope of obtaining a

future benefit. Zero-determinant strategies, introduced in 2012, have a subclass of strate-

gies that are provably extortionate. In the established literature, most of the studies of the

effectiveness or lack thereof, of zero-determinant strategies is done by placing some zero-

determinant strategy in a specific scenario (collection of agents) and evaluating its perfor-

mance either numerically or theoretically. Extortionate strategies are algebraically rigid

and memory-one by definition, and requires complete knowledge of a strategy (the mem-

ory-one cooperation probabilities). The contribution of this work is a method to detect

extortionate behaviour from the history of play of an arbitrary strategy. This inverts the

paradigm of most studies: instead of observing the effectiveness of some theoretically

extortionate strategies, the largest known collection of strategies will be observed and

their intensity of extortion quantified empirically. Moreover, we show that the lack of adapt-

ability of extortionate strategies extends via this broader definition.

Introduction

The Iterated Prisoner’s Dilemma (IPD) is a model for rational and evolutionary interactive

behaviour, having applications in biology, the study of human social behaviour, and many

other domains. A standard representation of the game is given in Eq 1, where the constraints

ensure a non-cooperative equilibrium.

R S

T P

 !

T > R > P > S and 2R > T þ S ð1Þ

The parameters of (1) correspond to:
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• R: The reward for both players cooperating.

• T: The temptation value of defecting.

• S: The sucker value of cooperating against a defection.

• P: The punishment value when both players defect.

Early work in the field [1, 2] showed that cooperative behaviour could be successful in

repeated interactions: Tit For Tat performed strongly in a tournament of strategies with vari-

ous degrees of non-cooperation. The simplicity of Tit For Tat, which only requires knowledge

of the opponent’s previous play, led to much research concentrating on these so called mem-

ory-one strategies. A bibliometric study of the literature on the IPD is available at [3].

A subclass of memory-one strategies known as zero-determinant (ZD) strategies were

introduced in [4]. Of these, extortionate strategies have received considerable interest in the

literature [5]. These strategies “enforce” a difference in stationary payouts between themselves

and their opponents. The definition requires a precise algebraic relationship between the prob-

abilities of cooperation given the outcome of the previous round of play. Slight alterations to

these probabilities can cause a strategy to no longer satisfy the necessary relations to be consid-

ered extortionate.

In [5–11] the effectiveness of these strategies in an evolutionary setting was discussed. For

example [6] showed that ZD strategies were not evolutionarily stable. Furthermore, in that work

it was also postulated that ‘evolutionarily successful ZD strategies could be designed that use lon-

ger memory to distinguish self from non-self’. In [12] long memory strategies are designed that

are able to self recognise and in [11] evolutionary processes showed the emergence of similar

abilities. In [7] two sets of strategies are identified: partners and rivals and some discussion about

the environments necessary for either to be evolutionary stable are given. In a non-evolutionary

context, the work of [13] uses social experiments to suggest that higher rewards promote extor-

tionate behaviour, where statistical techniques are used to identify such behaviour.

The algebraic relationships of extortion, discussed in the Methods section, define a subspace

of p 2 R4 which can be used to broaden the definition of an extortionate strategy by requiring

only that the defining four cooperation probabilities of a memory-one strategy are close to an

algebraically extortionate strategy, by the usual technique of orthogonal projection. Moreover,

given the history of play of a strategy in an actual matchup, we can empirically observe its four

cooperation probabilities, measure the distance to the subspace of extortionate strategies, and

use this distance as a measure of the extortionality of a strategy. This method can be applied to

any strategy regardless of the memory depth and avoids the algebraic rigidity and instability

issues.

We apply this method to the largest known corpus of strategies for the iterated prisoner’s

dilemma (the Axelrod Python library [14, 15]) and validate empirically that the method in fact

detects extortionate strategies. A large tournament with 204 strategies demonstrates that

sophisticated strategies can in fact recognise extortionate behaviour and adapt to their oppo-

nents. Further, statistical analysis of these strategies in the context of evolutionary dynamics

demonstrates the importance of adaptability to achieve evolutionary stability. All of the code

and data discussed in Results section is open sourced, archived, and written according to best

scientific principles [16]. The data archive can be found at [17] and the source code was devel-

oped at https://github.com/drvinceknight/testing_for_ZD/ and has been archived at [18]. This

large tournament is complemented with evolutionary dynamics that offer some insight into

the effectiveness of extortionate strategies.

Several theoretical insights emerge from this work. Infamously, extortionate strategies do

not play well with themselves. In [4], Press and Dyson claim that a player with a “theory of

PLOS ONE Recognising zero determinant strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0304641 July 26, 2024 2 / 17

the source code was developed at https://github.

com/drvinceknight/testing_for_ZD/ and has been

archived at https://doi.org/10.5281/zenodo.

2598534.

Funding: The author(s) received no specific

funding for this work.

Competing interests: NO authors have competing

interests.

https://github.com/drvinceknight/testing_for_ZD/
https://doi.org/10.1371/journal.pone.0304641
https://github.com/drvinceknight/testing_for_ZD/
https://github.com/drvinceknight/testing_for_ZD/
https://doi.org/10.5281/zenodo.2598534
https://doi.org/10.5281/zenodo.2598534


mind” would rationally chose to cooperate against an opponent that also has knowledge of

zero-determinant strategies to avoid sustained mutual defection. While not possible for mem-

ory-one strategies, we show that this behavior is exhibited by relatively simple longer memory

strategies which previously emerged from an evolutionary selection process. Similarly, in [6],

Adami and Hintze suggest that there may exist strategies that are able to selectively behave

extortionately to some opponents and cooperatively to others. We show that this is indeed the

case for the same evolved strategies. It seems that humans have trouble explicitly creating such

strategies but evolution is able to do so by optimizing for total payoff in IPD interactions.

Accordingly, while resistance to extortionate behavior appears critical to the evolution of coop-

eration, there is no prohibition on selectively extorting weaker opponents, even in population

dynamics, and this behavior is evolutionarily advantageous.

Materials and methods

Recognising extortion

This section reviews the definition of ZD strategies from the literature, present the vector

space in which such strategies exist and finally present a novel measure that allows for a mea-

sure of how far any memory-one strategy is from the space of ZD strategies. Note that in this

section no claims about the evolutionarily effectiveness of such strategies are made.

ZD strategies are a special case of memory-one strategies, which are defined by elements of

R4
, mapping a state of {C, D}2, corresponding to the prior round of play, to a probability of

cooperating in the next round. A match between two such strategies creates a Markov chain

with transient states {C, D}2. The main result of [4] is that given two memory-one players

p; q 2 R4
, a linear relationship between the players’ scores can, in some cases, be forced by one

of the players for specific choices of these probabilities.

Using the notation of [4], the utilities for player X (playing the strategy p) are given by Sx =

(R, S, T, P) and for player Y (playing the strategy q by Sy = (R, T, S, P) and the stationary scores

of each player are given by SX and SY respectively. The main result of [4] is that if

~p ¼ aSx þ bSy þ g ð2Þ

or

~q ¼ aSx þ bSy þ g ð3Þ

where ~p ¼ ðp1 � 1; p2 � 1; p3; p4Þ and ~q ¼ ðq1 � 1; q3; q2 � 1; q4Þ then:

aSX þ bSY þ g ¼ 0 ð4Þ

Extortionate strategies are defined as follows. If this relationship is satisfied

g ¼ � Pðaþ bÞ ð5Þ

then the player can ensure (SX − P) = χ(SY − P) where:

w ¼
� b

a
ð6Þ

Thus, if Eq (5) holds and χ> 1 then a player is said to extort their opponent. Next, the reverse

problem is considered: given a p 2 R4
can one determine if the associated strategy is attempt-

ing to act in an extortionate way?
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Subspace of extortionate strategies

Constraints (2) and (5) correspond to:

~p1 ¼ aRþ bR � Pðaþ bÞ ð7Þ

~p2 ¼ aSþ bT � Pðaþ bÞ ð8Þ

~p3 ¼ aT þ bS � Pðaþ bÞ ð9Þ

~p4 ¼ aP þ bP � Pðaþ bÞ ¼ 0 ð10Þ

Eq (10) ensures that p4 ¼ ~p4 ¼ 0. Eqs (7)–(9) can be used to eliminate α, β, giving:

~p1 ¼
ðR � PÞð~p2 þ ~p3Þ

Sþ T � 2P
ð11Þ

with:

w ¼
~p2ðP � TÞ þ ~p3ðS � PÞ
~p2ðP � SÞ þ ~p3ðT � PÞ

ð12Þ

Given a strategy p 2 R4 Eqs (10)–(12) can be used to check if a strategy is extortionate. The

conditions correspond to:

p1 ¼
ðR � PÞðp2 þ p3Þ � Rþ T þ S � P

Sþ T � 2P
ð13Þ

p4 ¼ 0 ð14Þ

p2 þ p3 < 1 ð15Þ

The algebraic steps necessary to prove these results are available in the supporting materials,

and note that an equivalent formulation was obtained in [6].

Based on Eqs (13)–(15), it is evident that all extortionate strategies reside on a triangular

plane within a three-dimensional space. Using this formulation it can be seen that a necessary

(but not sufficient) condition for an extortionate strategy is that it cooperates on average less

than 50% of the time when in a state of disagreement with the opponent (15).

As an example, consider the known extortionate strategy p = (8/9, 1/2, 1/3, 0) from [19],

which is referred to as Extort-2. In this case, for the standard values of (R, S, T, P) = (3, 0, 5, 1)

constraint (13) corresponds to:

p1 ¼
2ðp2 þ p3Þ þ 1

3
¼

2ð1=2þ 1=3Þ þ 1

3
¼

8

9
ð16Þ

It is clear that in this case all constraints hold. As a counterexample, consider the strategy

that cooperates 25% of the time: p = (1/4, 1/4, 1/4, 1/4) satisfies (15) but is not extortionate as:

p1 6¼
2ðp2 þ p3Þ þ 1

3
¼

2ð1=4þ 1=4Þ þ 1

3
¼

2

3
ð17Þ
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Measuring extortion from the history of play

Not all strategies are memory-one strategies but it is possible to measure a given p from any

set of interactions between two strategies. This approach can then be used to confirm that a

given strategy is acting in an extortionate manner even if it is not a memory-one strategy.

However, in practice, if an exact form for p is not known but measured from observed plays of

the game then measurement and/or numerical error might lead to an extortionate strategy not

being confirmed as such. Comparing theoretic and actual plays of the IPD is not novel, see for

example [20].

As an example consider Table 1, which shows some actual plays of Extort-2 (p = (8/9, 1/2,

1/3, 0)) against an alternating strategy (p = (0, 0, 1, 1)). In this particular instance the measured

value of p for the known extortionate strategy would be: (2/2, 1/5, 3/8, 0/4) which does not fit

the definition of a ZD strategy.

Note that measurement of behaviour might in some cases lead to missing values. For exam-

ple the strategy p = (8/9, 1/2, 1/3, 0) when playing against an opponent that always cooperates

will in fact never visit any state which would allow measurement of p3 and p4. To overcome

this, it is proposed that if s is a state that is not visited then ps is approximated using a sensible

prior or imputation. In the Results Section the overall cooperation rate is used. Another

approach to overcoming this measurement error would be to measure strategies in a suffi-

ciently noisy environment.

We can measure how close a strategy is to being zero determinant using standard linear

algebraic approaches. Essentially we attempt to find x = (α, β) such that:

Cx ¼ ~p ð18Þ

where C corresponds to Eqs (7)–(9) and is given by:

C ¼

R � P R � P

S � P T � P

T � P S � P

0 0

2

6
6
6
6
4

3

7
7
7
7
5

ð19Þ

Note that in general, Eq (18) will not necessarily have a solution. From the Rouché-Capelli

theorem if there is a solution it is unique since rank(C) = 2 which is the dimension of the vari-

able x. The best fitting x* is defined by:

x∗ ¼ argminx2R2kCx � ~pk2

2
ð20Þ

Known results [21–23] yield x*, corresponding to the nearest extortionate strategy to the

measured ~p. It is in fact an orthogonal projection of ~p on to the plane defined by (13).

x∗ ¼ ðCTCÞ� 1CT~p ð21Þ

Table 1. A seeded play of 20 turns of two strategies.

Turn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(8/9, 1/2, 1/3, 0) C C D D D C D D D D D C C C D D D C D D

Alternator C D C D C D C D C D C D C D C D C D C D

https://doi.org/10.1371/journal.pone.0304641.t001
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The squared norm of the remaining error is referred to as sum of squared errors of predic-

tion (SSE):

SSE ¼ kCx∗ � ~pk2

2
ð22Þ

This gives expressions for α, β as a ¼ x∗
1

and b ¼ x∗
2

thus the conditions for a strategy to be

acting extortionately becomes:

� x∗
2

x∗
1

¼ w > 1 and x∗
1
6¼ 0 ð23Þ

A further known result [21–23] gives an expression for SSE:

SSE ¼ ~pT~p~pCðCTCÞ� 1CT~p ð24Þ

SSE ¼ ~pT~p � ~pCx∗ ð25Þ

Using this approach, the memory-one representation p 2 R4
of any strategy against any

other can can be measured and if (23) holds then (24) can be used to identify if a strategy is act-

ing extortionately. While the specific memory-one representation might not be one that acts

extortionately or is even feasible (as noted in [4]), a high SSE does imply that a strategy is not

extortionate. For a measured p, SSE corresponds to the best fitting α, β. Suspicion of extortion

then corresponds to a threshold on SSE and a comparison of the measured w ¼ � b

a
.

Results

This section validates the approach of the previous section and present a number of numerical

experiments to identify if strategies that perform strongly in evolutionary settings are close or

not to the space of ZD strategies.

Validation

To validate the method described, we use [19] which presents results from a tournament with

19 strategies with specific consideration given to ZD strategies. This tournament is reproduced

here using the Axelrod-Python library [14]. To obtain a good measure of the corresponding

transition rates for each strategy all matches have been run for 2000 turns and every match has

been repeated 60 times. All of this interaction data is available at [17]. Note that in the interest

of open scientific practice [17], also contains interaction data for noisy and probabilistic end-

ing interactions which are not investigated here.

Fig 1 shows the SSE values for all the strategies in the tournament, as reported in [19] the

extortionate strategy Extort-2 gains a large number of wins. Notice that the mean SSE for

Extort-2 is approximately zero, while for the always cooperating strategy Cooperator the SSE is

far from zero. It is also clear that ZD-GTFT2 defined as a ZD strategy does not act extortion-

ately. This is evident by the fact that it does not rank highly according to wins which is due to

its value of χ being less than 1. ZD-GTFT2 is referred to as a “generous” ZD strategy, other

examples of this include ZDGen2 and ZDSet2 defined in [24]. The general performance of

these will be discussed in the Results section.

Next, the results of a much larger tournament are presented. As a final validation of the pro-

posed methodology here, Table 2 shows the theoretic values of χ versus the measured values

for all ZD strategies in the tournament. The method accurately recovers χ from the observed

play of the strategies. Furthermore, the SSE value is low for all of these. The values of SSE
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above 1 indicate that whilst these strategies are designed to act extortionately they do not do so

in all cases. This will be discussed in more detail in the next section.

Numerical experiments

Next we investigate a tournament with 204 strategies. The results of this analysis are shown in

Fig 2. The top ranking strategies by number of wins act in an extortionate way (but not against

Fig 1. SSE and best fitting χ for [19], ordered (in descending order) both by number of wins and overall score. A win is when a strategy obtains a

higher score than the player it is interacting with. The strategies with a positive skew SSE and high χ win the most matches, although even the theoretic

extortionate strategy does not act in a perfectly extortionate manner in all matches. The strategies with a high score have a negatively skewed SSE.

https://doi.org/10.1371/journal.pone.0304641.g001
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all opponents) and it can be seen that a small subgroup of strategies achieve mutual defection.

All the top ranking strategies according to score do not extort each other, however they do

exhibit extortionate behaviour towards a number of the lower ranking strategies.

Note that while a strategy may attempt to act extortionately, not all opponents can be effec-

tively extorted. For example, a strategy that always defects never receives a lower score than its

opponent. As defined by [4], an extortionate ZD strategy will mutually defect with such an

opponent which corresponds to the high values of P(DD) seen in Fig 2 the top left quadrant.

A detailed look at selected strategies is given in Table 3. The high scoring strategies pre-

sented have a negatively skewed SSE whilst the ZD strategies have a low score but high proba-

bility of winning and higher probability of mutual defection. The skew of SSE of all strategies

is shown in Fig 3 and supports the same conclusion. This evidences an idea proposed in [6]:

sophisticated strategies are able to recognise their opponent and defend themselves against

extortion. The high ranking strategies were in fact trained to maximise score [25] which seems

to have created strategies able to extort weaker strategies whilst cooperating with stronger

ones. Indeed unconditional extortion is self defeating.

Evolutionary dynamics

In the original work introducing ZD strategies [4], effectiveness in evolutionary settings was

already considered. Since then, most work surrounding these strategies considers their perfor-

mance in evolutionary settings. Examples include [5–11]. The main motivation for this consid-

eration is to gain insights on to how behaviours might arise but also whether or not they are

stable in various settings such as social and biological interactions. Most of such work consid-

ers the space of memory-one strategies alone. In contrast, this paper considers a wider strategy

space and two models of evolution are investigated: the continuous replicator dynamics and

the discrete Moran process.

Replicator dynamics. From the large number of interactions a payoff matrix S can be

measured where Sij denotes the score (using standard values of (R, S, T, P) = (3, 0, 5, 1)) of the

Table 2. Validating the approach by comparing the measured values of χ and the theoretic values of χ for all ZD strategies in the larger tournament. The value of χ is

effectively recovered from observed play and the SSE indicates that not all strategies are able to play as expected all the time.

Name Measured chi Theoretic chi SSE

Firm But Fair 1.0000 1.0000 0.4446

GTFT 0.6999 0.7000 0.1373

Joss 1.2428 1.2431 0.0006

Soft Joss 0.9110 0.9112 0.0123

Stochastic Cooperator 3.0248 3.0276 0.2158

Stochastic WSLS 12.6105 12.6000 1.0627

Win-Shift Lose-Stay 1.8333 1.8333 1.4706

Win-Stay Lose-Shift 16.0000 16.0000 1.2353

ZD-Extortion 10.0067 10.0000 0.0000

ZD-Extort-2 1.9978 2.0000 0.0000

ZD-Extort3 3.0022 3.0000 0.0000

ZD-Extort-2 v2 2.0020 2.0000 0.0000

ZD-Extort-4 3.9998 4.0000 0.0000

ZD-GTFT-2 0.8887 0.8889 0.0662

ZD-GEN-2 0.8892 0.8889 0.0165

ZD-SET-2 2.4022 2.4000 0.0661

https://doi.org/10.1371/journal.pone.0304641.t002
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ith strategy against the jth strategy. Given a population of strategies represented by γ where γi
denotes the proportion of the population occupied by the ith strategy, the fitness landscape

under evolution can be considered. This is traditionally done using the replicator equation,

describing the evolution of the population under selection:

dgi
dt
¼ giððSγÞi � xTSγÞ ð26Þ

Fig 2. SSE and probability of mutual defection (P(DD)) for the strategies for the full tournament. The strategies with high number of wins have a low

SSE however are often locked in mutual defection as evidenced by a high P(DD). The strategies with a high score have a high SSE against the other high

scoring strategies indicating that fixed linear relationship is being enforced. However against the low scoring strategies they have a lower SSE and against

the very lowest scoring strategies a high P(DD).

https://doi.org/10.1371/journal.pone.0304641.g002
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Table 3. Summary of results for a selected list of strategies. Similarly to Fig 1, the high scoring strategies have a negatively skewed SSE. The strategies with a large

number of wins have a low SSE and positively skewed SSE. Note that a value of χ = 0.063 and SSE = 1.235 corresponds to a vector p = (1, 1, 1, 1) which highlights that the

high scoring strategies, adapt and in fact cooperate often.

Rank Name Score per turn P(Win) P(DD) Median χ Mean SSE Skew SSE Var SSE

1 EvolvedLookerUp2_2_2 2.944 0.230 0.092 0.062 1.057 -0.857 0.160

2 Evolved HMM 5 2.944 0.205 0.110 0.062 0.796 -0.448 0.294

3 PSO Gambler 2_2_2 2.913 0.204 0.128 0.062 0.899 -0.508 0.255

4 PSO Gambler Mem1 2.908 0.211 0.128 0.062 0.705 -0.186 0.333

5 PSO Gambler 1_1_1 2.906 0.221 0.145 0.062 0.737 -0.209 0.296

7 Evolved ANN 5 2.893 0.225 0.185 0.062 0.804 -0.608 0.334

31 ZD-GTFT-2 2.721 0.000 0.081 0.062 0.786 -0.502 0.289

45 ZD-GEN-2 2.689 0.016 0.096 0.062 0.694 -0.227 0.358

69 Tit For Tat 2.638 0.000 0.157 0.062 0.773 -0.507 0.301

75 Grumpy 2.630 0.075 0.100 0.062 0.978 -1.438 0.245

88 Win-Stay Lose-Shift 2.616 0.099 0.122 0.062 1.172 -4.501 0.027

103 Eventual Cycle Hunter 2.565 0.067 0.052 0.062 0.728 -0.338 0.357

127 Adaptive 2.272 0.500 0.314 -1.000 0.084 2.171 0.010

168 ZD-SET-2 1.975 0.451 0.418 2.407 0.081 5.244 0.006

169 Bully 1.970 0.381 0.141 -1.000 1.373 -2.221 0.140

179 Alternator 1.945 0.392 0.259 3.857 1.332 -1.021 0.120

181 Negation 1.941 0.356 0.141 -1.000 1.470 -3.204 0.083

182 CollectiveStrategy 1.931 0.915 0.762 -2.888 0.085 6.082 0.028

183 Cycler DC 1.931 0.324 0.256 3.857 1.279 -0.900 0.140

188 Hopeless 1.908 0.352 0.048 1.833 2.247 -1.694 0.139

194 Gradual Killer 1.892 0.354 0.367 0.062 0.254 1.669 0.106

196 Aggravater 1.879 0.930 0.739 -2.889 0.163 2.951 0.066

200 ZD-Extort-2 1.821 0.851 0.652 2.005 0.019 5.435 0.009

201 ZD-Extort-4 1.820 0.865 0.697 4.003 0.021 3.677 0.005

202 ZD-Extort3 1.810 0.862 0.687 3.028 0.015 5.066 0.005

203 Defector 1.808 0.929 0.800 -2.889 0.059 0.000 0.000

204 Handshake 1.806 0.870 0.737 -2.888 0.126 3.825 0.083

https://doi.org/10.1371/journal.pone.0304641.t003

Fig 3. Skew of SSE for all strategies considered over all opponents. A similar conclusion to that of Fig 1 can be made: the strategies that score highly have

a negatively skewed SSE highlighting their ability to adapt to their opponent. The auxiliary materials include a version of this graphic with strategy names.

https://doi.org/10.1371/journal.pone.0304641.g003
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Eq (26) is solved numerically for an initial population with a uniform distribution of the strate-

gies. This is done using an integration technique described in [26] until a stationary vector

γ = s is found. Fig 4 shows the stationary probabilities for each strategy ranked by score. It is

clear to see that only the high ranking strategies survive the evolutionary process (in fact, only

39 have a stationary probability value greater than 10−2).

Fig 5 plots the mean and skew (a standard statistical measure on a distribution) of SSE

against the stationary probabilities s of (26). Strategies that perform strongly according to Eq

(26) seem to be strategies that have a negative skew of SSE: indicating that they often have a

high value of SSE (i.e. do not act extortionately) but have a long left tail allowing them to adapt

when necessary. A general linear model obtained using recursive feature elimination is shown

in Table 4 with stronger predictive power and confirming these conclusions.

Fig 6 shows the distribution of the SSE for three selected strategies. It is evident that Extort-

2 almost always has the same low value of SSE against all opponents (which gives a positively

Fig 4. Stationary distribution of the replicator dynamics (26): Strategies are ordered by score (as given in Table 3). The 2 strategies with the highest

stationary probability are: EvolvedLookerUp2_2_2 and Evolved HMM 5. Note that strategies that make use of the knowledge of the length of the game are

removed from this analysis as they have an evolutionary advantage.

https://doi.org/10.1371/journal.pone.0304641.g004

Fig 5. Mean, variance and skew of SSE versus the stationary probabilities of (26). The plot of the skew clearly shows that all high probabilities have a

negative skew.

https://doi.org/10.1371/journal.pone.0304641.g005
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skewed distribution), whereas EvolvedLookerUp2_2_2 and Tit For Tat have a wider distribu-

tion of values depending on the opponent (which gives a negatively skewed distribution).

Finite population dynamics: Moran process. The Moran Process is an evolutionary

model of evolutionary in a finite population. Of specific interest is the probability of a single

individual entrant to a population taking over the population. This is referred to as the fixation

probability denoted by κ1. In [11] a large data set of pairwise fixation probabilities in the

Moran process is made available at [27]. Fig 7 shows linear models fitted to three summary

measures of SSE and the mean (over population size N and opponents) value of κ1 � N. This

specific measure of fixation is chosen as κ1 is usually compared to the neutral fixation probabil-

ity of 1/N. As was noted in [11], the specific case of N = 2 differs from all other population

sizes which is why it is presented in isolation. We note that there is a significant relationship

between the skew of SSE and the ability for a strategy to become fixed. A general linear model

obtained through recursive feature elimination is shown in Table 5 which confirms the

conclusions.

Table 4. General linear model predicting the stationary probability as a function of the mean, median and variance of the SSE. This shows that strategies with a low

mean and high median are more likely to survive the evolutionary dynamics. This corresponds to negatively skewed distributions of SSE which again highlights the impor-

tance of adaptability.

Dep. Variable: si R-squared: 0.648

Model: OLS Adj. R-squared: 0.642

Method: Least Squares F-statistic: 117.0

Prob (F-statistic): 5.00e-43

Log-Likelihood: 851.41

No. Observations: 195 AIC: -1695.

Df Residuals: 191 BIC: -1682.

Df Model: 3

Covariance Type: nonrobust

coef std err t P > |t| [0.025 0.975]

const 0.0007 0.001 1.137 0.257 -0.000 0.002

(‘SSE’, ‘mean’) -0.0134 0.002 -8.369 0.000 -0.017 -0.010

(‘SSE’, ‘median’) 0.0139 0.001 10.433 0.000 0.011 0.017

(‘SSE’, ‘var’) 0.0069 0.003 2.402 0.017 0.001 0.013

Omnibus: 17.190 Durbin-Watson: 1.664

Prob(Omnibus): 0.000 Jarque-Bera (JB): 25.453

Skew: 0.530 Prob(JB): 2.97e-06

Kurtosis: 4.418 Cond. No. 23.7

https://doi.org/10.1371/journal.pone.0304641.t004

Fig 6. Distribution of SSE values for 3 selected strategies. The first two distributions are negatively skewed and the third has a positive skew.

https://doi.org/10.1371/journal.pone.0304641.g006
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These findings confirm the work of [11] in which sophisticated strategies resist evolutionary

invasion of shorter memory strategies. This also confirms the work of [5, 6] which proved that

ZD strategies where not evolutionarily stable due to the fact that they score poorly against

themselves.

The work also provides strong evidence to the importance of adaptability: strategies that

offer a variety of behaviours corresponding to a higher standard deviation of SSE are

Fig 7. The mean, variance and skew of SSE against the normalised pairwise fixation probabilities from [11] (for a given strategy averaged over all

opponents and population sizes). The clustering either side of a value of skew equal to 0 show that strategies with above neutra fixation (N � x1 > 1)

negative skew.

https://doi.org/10.1371/journal.pone.0304641.g007

Table 5. General linear model predicting the mean fixation probability as a function of the mean, median and variance of the SSE. This shows that strategies with a

high mean and low median are likely to be evolutionarily stable. This corresponds to negatively skewed distributions of SSE which again highlights the importance of

adaptability.

Dep. Variable: mean R-squared: 0.319

Model: OLS Adj. R-squared: 0.310

Method: Least Squares F-statistic: 36.53

Prob (F-statistic): 9.74e-14

Log-Likelihood: -42.272

No. Observations: 159 AIC: 90.54

Df Residuals: 156 BIC: 99.75

Df Model: 2

Covariance Type: nonrobust

coef std err t P > |t| [0.025 0.975]

const 1.2815 0.056 22.993 0.000 1.171 1.392

(‘SSE’, ‘mean’) -1.0620 0.145 -7.323 0.000 -1.348 -0.776

(‘SSE’, ‘median’) 0.9037 0.106 8.535 0.000 0.695 1.113

Omnibus: 2.302 Durbin-Watson: 1.716

Prob(Omnibus): 0.316 Jarque-Bera (JB): 1.850

Skew: -0.199 Prob(JB): 0.397

Kurtosis: 3.348 Cond. No. 11.2

https://doi.org/10.1371/journal.pone.0304641.t005
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significantly more likely to survive the evolutionary process. This corresponds to the following

quote of [28]:

“It is not the most intellectual of the species that survives; it is not the strongest that survives;
but the species that survives is the one that is able to adapt to and to adjust best to the chang-
ing environment in which it finds itself.”

Discussion

This work defines an approach to measure whether or not a player is using an extortionate

strategy as defined in [4], or a strategy that behaves similarly, broadening the definition of

extortionate behavior. All extortionate strategies have been classified as lying on a triangular

plane. This rigorous classification fails to be robust to small measurement error, thus a statisti-

cal approach is proposed approximating the solution of a linear system. This method was

applied to a large number of pairwise interactions.

The work of [4], while showing that a clever approach to taking advantage of another mem-

ory-one strategy exists, is not the full story. Though the elegance of this result is very attractive,

just as the simplicity of the victory of Tit For Tat in Axelrod’s original tournaments was, it is

incomplete and in the author’s opinions, has been oversimplified and overgeneralized in sub-

sequent work. Extortionate strategies achieve a high number of wins but they do generally not

achieve a high score and fail to be evolutionarily stable.

Rather, more sophisticated strategies are able to adapt to a variety of opponents and act

extortionately only against weaker strategies while cooperating with like-minded strategies

that are not susceptible to extortion. This adaptability may be key to maintaining sustained

cooperation, as some of these strategies emerged naturally from evolutionary processes trained

to maximize payoff in IPD tournaments and fixation in population dynamics.

Following Axelrod’s seminal work [1, 2], it was commonly thought that evolutionary

cooperation required strategies that followed a simple set of rules. The discovery/definition

of extortionate strategies [4] seemingly showed that complex strategies could be taken

advantage of. In this manuscript it has been shown that not only is it possible to detect and

prevent extortionate behaviour but that more complex strategies can be evolutionary stable.

The complex strategies in question were obtained through reinforcement learning

approaches [11, 25]. Thus, this demonstrates that it is possible to recognise extortion, both

theoretically using SSE but also that this ability can develop through reinforcement learning.

It seems human difficulty in directly developing effective complex strategies has been incor-

rectly generalized to a weakness in complex strategies themselves, which is demonstrable

not the case. In fact, complex strategies can be the most effective against a diverse set of

opponents.

A possible future research direction would be applying and or extending the methodology

proposed here to consider other theoretic models of control of opponent utility such as [29–

31]. There are however, various potential immediate applications for SSE, one of which could

be to devise an agent that learns during the interactions with another agent. Fig 8 shows the

average SSE value over a number of iterations over a number of repetitions. More investigation

would be required but in some cases it seems that a large number of interactions would be

required to gain certainly about the play of an agent. This approach seems to be in opposition

of some of the trained strategies of [25] which are known to learn from early interactions and

adapt their play.
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In closing, the authors wish to emphasize the role of comprehensive simulations to temper

theoretical results from overgeneralization, and perhaps more importantly, the ability of simu-

lations to provide insights that are difficult to obtain from theory.
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(PDF)

S2 Appendix. Skew of SSe for all strategies. The skew for all the strategies in the larger tour-
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(PDF)
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