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Supplementary Methods
Sample Characterisation

Transmission electron microscopy

Supplementary Figure 1. Representative STEM-HAADF image of the Rh/AI203 catalyst in

(a) the unused state and (b) the used state.
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Supplementary Figure 2. Particle size distribution for Rh/Al;O; in (a) the unused state
and (b) the used state



Combined operando EDE/DRIFTS measurement

Detector

da Vinci arm for DRIFTS measurements

Flattop window of CaF, |

Gasinlet

Square cross-section reactor with thinned
(250 pum) out Al for X-ray transmission

Supplementary Figure 3. (left panel) schematic of the cell used for the operando experiment, the area
highlighted in red indicates the CaF, window, whereas the area highlighted in purple indicates the portion
the aluminium reactor machined to 250um. (right panel) front face photograph of the aluminium
EDE/DRIFTS reaction cell.



Supplementary Discussion
Radiation damage evaluation

In order to check for any radiation damage, we dosed the sample for a total of 30 min and
checked the intensity of the first XANES peak (the “white-line”). The first test shows a
gradual increase in the white line of the oxidised Rh (S4-S5). Upon removal of water, through
the use of a water trap positioned before the gas inlet, it is possible to see a drop to ~50%
less radiation damage (S6-7). In order to further remove water, the sample was subject to
the regeneration process required for the experiment, and subsequently cooled down and
another radiation damage test was performed (S8-9), where a similar extent to radiation
damage is observed, albeit in a different direction, reducing rather than oxidising. In order to
reduce this effect, we have reduced the flux, at 23000 eV, to a cumulative transmission of
5.29 % (versus 18 mm gap and no extra attenuators in the beam). This was obtained by
opening the gap to 27 mm + 25um Mo and + 10 um Pb. (the carbon attenuator, Be windows
and Pt mirror are always in the beam at this energy). This reduced the beam damage to an
extent which was deemed acceptable (A~0.07 a.u.) (S10-11). A new sample was put in the

reactor and a similar behaviour could be observed, as shown in figure (S1215).
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Supplementary Figure 4. Rh-K edge XANES trace as function of time under Ar at room

temperature before radiative damage prevention.
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Supplementary Figure 5. Rh-K edge XANES spectra under Ar at 0 and 30 min before

radiative damage prevention on a fresh sample.
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Supplementary Figure 6. Rh-K edge XANES trace as function of time under Ar at room

temperature upon removal of water contribution.
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Supplementary Figure 7. Rh-K edge XANES spectra under Ar at 0 and 30 min upon removal

of water contribution.
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Supplementary Figure 8. Rh-K edge XANES trace as function of time under Ar at room

temperature after reduction.
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Supplementary Figure 9. Rh-K edge XANES spectra under Ar at 0 and 30 min after
reduction.
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Supplementary Figure 10. Rh-K edge XANES trace as function of time under Ar at room

temperature after flux reduction to 5.29%.
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Supplementary Figure 11. Rh-K edge XANES spectra under Ar at 0 and 30 min after flux
reduction to 5.29%.
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Supplementary Figure 12. Rh-K edge XANES trace as function of time under Ar at room

temperature after radiative damage prevention on a fresh sample.
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Supplementary Figure 13. Rh-K edge XANES spectra under Ar at 0 and 30 min after

radiative damage prevention on a fresh sample
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Supplementary Figure 14. Rh-K edge XANES trace as function of time during under Ar at

room temperature after reduction.
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Supplementary Figure 15. Rh-K edge XANES spectra under Ar at 0 and 30 min on a

fresh sample after reduction and flux reduction.



X-ray absorption spectroscopy results

The regeneration procedure employed in the experiment involves flowing H» at 180 °C and,
after 15 minutes, the gas was switched to Ar for 5 min, followed by O, for 15 min, Ar for 15 min,
Hz for 15 min and then Ar until the sample was cooled down. In figure S8 are shown the
spectra of the sample within the reactor, collected after different regeneration cycles, at

different points. As shown from the XANES, no evident changes can be observed.
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Supplementary Figure 16. XANES of different position after cleaning cycle
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Supplementary Figure 17 From left to right: a) DRIFTS signature for CO (left) and CO; (right) evolution; b) XANES evolution; c)

evolution of CO,, CO, and O; concentration as function of time for the position 1.
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Supplementary Figure 18 From left to right: a) DRIFTS signature for CO (left) and CO: (right) evolution; b) XANES evolution; c)
evolution of CO,, CO, and O concentration as function of time for the position 2.
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Supplementary Figure 19 From left to right: a) DRIFTS signature for CO (left) and CO; (right) evolution; b) XANES evolution; c)
evolution of CO,, CO, and O concentration as function of time for the position 3.
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Supplementary Figure 20 From left to right: a) DRIFTS signature for CO (left) and CO: (right) evolution; b) XANES evolution; c)
evolution of CO,, CO, and O; concentration as function of time for the position 4.
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Supplementary Figure 21 From left to right: a) DRIFTS signature for CO (left) and CO; (right) evolution; b) XANES evolution; c)

evolution of CO,, CO, and O; concentration as function of time for the position 5.
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Supplementary Figure 22. a) CO, produced/O, consumed (top), CO- produced
(middle), CO concentration (bottom); b) DRIFTS signal for CO2(g) and XANES trace as

function of time for the position 1 during temperature ramp.
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Supplementary Figure 23. a) CO; produced/O, consumed (top), CO- produced
(middle), CO concentration (bottom); b) DRIFTS signal for CO2(g) and XANES trace as

function of
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Supplementary Figure 24. a) CO, produced/O, consumed (top), CO. produced
(middle), CO concentration (bottom); b) DRIFTS signal for CO2(g) and XANES trace as
function of time for the position 3 during temperature ramp.
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Supplementary Figure 25. a) CO, produced/O, consumed (top), CO. produced
(middle), CO concentration (bottom); b) DRIFTS signal for CO2(g) and XANES trace as

function of



9 Whiteline Intensity
8
37 ——C€0,/0, consumed —CO,
s
° Jo0.20
T 0.94 4
©
3
1.62 L
z -
1354 % 3
9 s
< 108 2 c
@ E 4015 2
3 o0g14 ° 15
= o 5
- w
E o
054 E o093 <
0.27 —CO, S
0.81
2 054
H J0.10
[}
= 0.274
0.00 - —¢o
0.92

2600 2800 3000 3200 3400 3600 3800 4000
Time (s)

T T T T T T T
2760 2880 3000 3120 3240 3360 3480
Time (s)

Supplementary Figure 26. a) CO, produced/O, consumed (top), CO: produced (middle),
CO concentration (bottom); b) DRIFTS signal for CO2(g) and XANES trace as function

of time for the position 5 during temperature ramp.

IR data processing:

The data, collected in the range 4000 to 1000 cm is first cropped to the region of interest,
2500-1500 cm™'. The data is then imported on Origin software (Origin 2022b) and the
background removal function is used to minimise the baseline changes which occur due to
temperature change. Subsequently, the intensity of the IR peak at specific position

(Rh° 2060 (linear) and 1889 (bridging), Rh'(CO)2, 2092 (symmetrical) and 2020
(asymmetrical) cm™, Rh(CO) associated with Rh oxidation >1 at 2132 cm™, and gas phase
CO2, 2340 cm™).
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Supplementary Figure 27: DRIFTS signal for CO adsorbed on Rh at spatial position 6.

X-ray photoelectron spectroscopy (XPS) data
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Supplementary Figure 28. XPS spectra at C energy of Rh/Al.O3; before and after
reaction.
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Supplementary Figure 29. Carbon speciation obtained through XPS of Rh/Al.O: before

and after reaction.
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Supplementary Figure 30. Rh/Al.O3; during CO oxidation reaction and Rh.C XANES

data. The data shows a completely different structure in the sample
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Supplementary Figure 31. Percentage mass concentration for CO and CO. (m/z 28 and
44 respectively) obtained through mass spectrometry during CO reaction on Rh/Al.O3

in absence of oxygen, as function of temperature.

Computational calculations

The computed o for each surface are reported in Table S1. Consistent with previous studies,!
our calculated surface energies confirm the {001} surfaces to be the most stable for all the

systems investigated.

Supplementary Table 1. Calculated properties of the (001), (011) and (111) surfaces of Rh.
Surface area (a?) is given in A2, whilst both unrelaxed (Gunre) and relaxed (orel) surface
energies are given in J/m?.

PBE a2 Gunrel Orrel
(001) 57.4754 3.85 2.80
(011) 81.2825 3.57 3.23
(111) 99.5504 2.93 2.92
Scan

(001) 57.4754 3.66 3.64
(011) 79.3530 3.76 3.70

(111) 97.1872 3.40 3.40




Carbon adsorption of carbon was calculated with reference to: bulk graphite, gas phase CO
and carbon formed by the oxidation of CO to C + O (see table 1). The values calculated are
consistent throughout the two functional benchmarked with the obvious exception of the
results with reference to graphite. This is explained by the higher formation energy of the

elemental carbon seen using PBE.

Supplementary Table 2. Carbon adsorption. Values shown in eV with reference to: bulk
graphite (AEgraphite), atomic carbon (AEc surf) or CO — 2 O (AEco-0).

Rh(001) aAE Graphite aAEcatom  2AEco-o PAEGraphite  PAEc,atom  PAEco-o
1C -0.56 -8.60 0.00 -2.30 -8.31 0.00
2C -0.36 -8.40 0.20 2.1 -8.13 0.18
3C -0.27 -8.31 0.29 -1.94 -7.95 0.36
4C -0.09 -8.13 0.47 -1.69 -7.70 0.61
Rh(011)

1C 2.04 -6.00 2.59 0.49 -5.53 2.78
2C 0.76 -7.28 1.32 0.49 -5.52 2.79
3C 0.79 -7.25 1.35 0.50 -5.51 2.80
4C 1.12 -6.92 1.67 0.51 -5.50 2.81
Rh(111)

1C 0.45 -7.59 1.00 -1.24 -7.26 1.05
2C 0.65 -7.39 1.21 -1.21 -7.22 1.09
3C 0.77 -7.27 1.32 -1.15 -7.17 1.14
4C 0.75 -7.29 1.30 -1.03 -7.04 1.27

apPBE functional. PScan functional.

Both functional also compute consistent carbon monoxide adsorption energies arose each
surface studied with the exception of the values given in reference to the carbonated
(011)surface. This is explained by the low adsorption energy of carbon on this surface as

calculated by the PBE functional.



Supplementary Table 3. Carbon monoxide adsorption. Values shown in eV with
reference to either gas phase CO (AEco,mo) or the carbon loaded surface (AEc surf)-

Rh(001 ) aAECO,moI aAEC,surf bAECO,moI IDAEC,surf
1CO -2.36 -2.36 -2.50 -2.50
2CO -2.35 -2.55 -2.46 -2.64
3CO -2.29 -2.58 -2.39 -2.75
4CO -2.28 -2.75 -2.41 -3.02
Rh(011)

1CO -2.28 -3.60 -2.37 -5.16
2CO -2.29 -3.61 -2.38 -5.17
3CO -2.28 -3.63 -2.37 -5.16
4CO -2.27 -3.94 -2.36 -5.17
Rh(111)

1CO -2.22 -3.22 -2.24 -3.30
2CO -2.17 -3.38 -2.26 -3.35
3CO -2.13 -3.46 -2.25 -3.39
4CO -2.14 -3.44 -2.22 -3.49

apPBE functional. PScan functional.

Owing to the consistent performance of both functionals with regards to their predicted
adsorption values, it was decided to calculate the reaction mechanisms of each facet with the
PBE functional only. Supplementary equation 1-3 show the calculated reaction mechanisms

depicted in figures 5 (see manuscript), respectively.

C+0,-CO0+0 (Supplementary equation 1)

20-COz:+C (Supplementary equation 2)

CO+0,-CO,+ 0 (Supplementary equation 3)
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Supplementary Figure 32. Reaction landscape surface mediated: (left) Boudouard
reaction, (right) carbon oxidation. Reaction landscapes for: (black solid line) Rh(001)
surface, (red dotted line) Rh(011) surface and (blue dashed line) Rh(111) surface. All
energies are given in eV with important transition state bond distances shown in A.
The negative frequency corresponding to the reaction coordinate for each transition
state is given in cm™.
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Supplementary Figure 33. IR spectrum between 4000 and 1000 cm™ at different time

position for at the catalyst bed outlet during temperature ramp (axial position 6).
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Supplementary Figure 34. IR spectrum of the region between 1500 and 1340 cm"!

showing the negative peak attributed to carbonates.



EXAFS analysis

Table S4 shows the extracted EXAFS fitting parameters, notably the primary Rh-Rh
coordination numbers, at different axial positions. Within the associated error, we are unable
to identify any systematic changes in Rh-Rh coordination number, and by extension, particle
size as a function of the axial position. To reduce the associated error in the coordination
number, both the amplitude reduction factor and mean-squared disorder parameter have

been used as a fixed input parameter.

The spectra were analysed using Athena and Artemis from the Demeter IFEFFIT package?®>.
The FEFF6 code was used to construct theoretical EXAFS signals that included
singlescattering contributions from atomic shells through the nearest neighbours, using Rh as
scatterer. The fit was performed using a k-range between 3 and 11.5 A" and an R range
between 2.2 and 3 A. The amplitude reduction factor (S¢?) was fixed at 0.69, and the thermal

disorder factor (0?) was fixed at 0.003 as obtained from fitting the bulk Rh foil reference.

Supplementary Table 4. EXAFS Fit results for Rh/AlO3 at room temperature upon
CO/O; breakthrough as a function of axial position

Axial Position CNRh-rh Reh-rn (A) AE Reactor
1 7+0.4 2.681 + 0.006 2+£1 0.007
2 7+0.6 2.689 +0.008 1£2 0.02
3 6.2£0.7 2.68+0.01 -21£2 0.03
4 7.7+1 2.68 £0.01 -3£3 0.03
5 6.7+1 2.68+0.01 1£3 0.04
6 6.7+1 2.68+0.01 -4+£3 0.04

Fitting parameters: Sy? = 0.69 and o?= 0.003 as determined by the use of a Rh foil standard; Fitrange 3 <k < 11.5 A-", 2.2 <
R < 3 A; number of independent points = 4.1.



20 - 18 -
20 16
14 4
- —Position 2 121
——Position 1 — Fit 10 Position 3
——Fit e ] ——Fit
< 3.
s
s-
44
2 J
0
T 1 T 1 -2 T 1
0 2 4 0 2 4 0 2 4
R (A) R (A) R (A)
20 -
18 -
20 - 18 4
16 4
16 4
14 -
14 4
15 4
5 ' 12- g
Position 4 —— Position 5 124 —— Position 6
G ——Fit 7104 ——Fit 910 —Fit
<104 . <
£ s 27
6 - 6
54 4 - 44
2 4 24
0 - 0 0-
T 1 -2 T 1 -2 T 1
0 2 4 0 2 4 0 2 4
R (A) R(A) R (A)

Supplementary Figure 35 Fourier Transform of EXAFS of Rh/Al;O; at various position across the bed under CO/O; at T=0s
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Supplementary Figure 36. k3-weighted EXAFS fit of Rh/Al.Os at various position across the bed under CO/O; at T=0s
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Supplementary Figure 37. a) XANES data; b) Fourier Transform of EXAFS. The time
refer to the catalyst before the first burst of CO, and at the peak of the burst. Refer to
figure 3b for an accurate comparison of timing.

Supplementary Table 5 EXAFS Fit results for Rh/Al,O; for position 6 before and the peak of an
oscillatory phenomena. Refer to figure 3b for an accurate comparison of timing

Time (s) CNRh-Rh Rrh-rh (A) ORh-Rh AE Rtactor
2910 6.5+0.75 2.68 + 0.005 0.005 £ 0.003 -4.3+0.8 0.016
2936 6.3+0.99 2.676 £ 0.007 | 0.0054 +0.001 -4.79+1.2 | 0.0299

Fitting parameters: Sy? = 0.69 and o®= 0.003 as determined by the use of a Rh foil standard; Fitrange 3 <k < 11.5A™", 2.2 <
R < 3 A; number of independent points = 4.1.

MCR Analysis

The multivariate curve resolution (MCR) analysis was performed using pyMCR, employing
constraints for unity concentration sum and non-negativity in spectral components and
concentrations®*. The MCR refinements were completed until convergence with percentage
lack of fit as the loss function. Initialization of the spectral components was performed using
the SIMPLISMA algorithm?®.
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Supplementary Figure 38. Spectral component obtained from MCR analysis of the

system indicating a defective Rh oxide and a metallic Rh phase.
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Supplementary Figure 39. Component concentrations as a function of time obtained

from MCR analysis using the component in fig S37.
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Supplementary Figure 40. Contour plot of XAFS Fourier Transform for Rh/Al,O; as
function of time.



= e =
(=7] =~ (=}
1 1 1

o
(3]
1
O
N

Gas Concentration (%)
(=]
i =S

——co,
—CO
0.3 -
0.2 -
0.1 -
0.0 T ¥ 1 » 1 = ||
100 120 140 160

Temperature (°C)

Supplementary Figure 41. Percentage mass concentration for CO, O, and CO; (m/z 28,
32 and 44 respectively) obtained through mass spectrometry during CO reaction on
Rh/Al2O;, diluted 1:10 in SiC, as function of temperature.
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Supplementary Figure 42. Percentage mass concentration for CO, O, and CO; (m/z 28,
32 and 44 respectively) obtained through mass spectrometry during CO reaction on
Rh/AIl2O;, diluted 1:20 in SiC, as function of temperature.
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