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A B S T R A C T

Smart manufacturing (SM) confronts several challenges inherently suited to knowledge graphs (KGs) capabilities.
The first key challenge lies in the synthesis of complex and varied data surrounding the manufacturing context,
which demands advanced semantic analysis and inference capabilities. The second main limitation is the con-
textualization of manufacturing systems and the exploitation of manufacturing domain knowledge, which re-
quires a dynamic and holistic representation of knowledge. The last major obstacle arises from the facilitation of
intricate decision-making processes towards correlated manufacturing ecosystems, which benefit from inter-
connected data structures that KGs excel at organizing. However, the existing survey studies concentrated on
distinct facets of SM and offered isolated insights into KG applications while overlooking the interconnections
between various KG technologies and their application across multiple domains. What specific role KGs should
play in SM towards the aforementioned challenges, how to effectively harness KGs for these challenges, and the
essential topics and methodologies required to make KGs functional remain underexplored. To explore the po-
tential of KGs in SM, this study adopts a systematic approach to investigate, evaluate, and analyse current
research on KGs, identifying core advancements and their implications for future manufacturing practices.
Firstly, cutting-edge developments in the challenge-driven roles of KGs and KG techniques are identified, from
knowledge extraction and mining to techniques for KG construction and updates, further extending to KG
embedding, fusion, and reasoning—central to driving SM ecosystems. Specifically, the KG technologies for SM
are depicted holistically, emphasizing the interplay of diverse KG techniques with a comprehensive framework.
Subsequently, this foundation outlines and discusses key application scenarios of KGs from engineering design to
predictive maintenance, covering the main representative stages of the manufacturing life cycle. Lastly, this
study explores the intricate interplay of the practical challenges and advantages of KGs in manufacturing sys-
tems, pointing to emerging research avenues.
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1. Introduction

Smart manufacturing (SM) signifies a major shift in the evolution of
manufacturing systems. SM optimises, digitises and automates
manufacturing systems with greater productivity, efficiency, flexibility,
and autonomy by leveraging advanced technologies such as the Internet
of things (IoT), advanced data analytics, and artificial intelligence (AI)
[1]. However, its capabilities remain untouched unless the challenges it
poses are addressed. Challenges include but are not limited to, data
explosion, the rising demand for mass personalization, the necessity for
stronger collaborative interactions between humans and machines, the
incorporation of cognitive intelligence, and the need for comprehensive
semantic networks and efficient data integration. Knowledge graph (KG)
has been identified as a useful tool to deal with these challenges, which
can be opportunities for advancement of SM.

Specifically, the data explosion in SM refers to the vast amounts of
data generated from various sources. When properly used, this data can
provide invaluable insights regarding manufacturing systems. KG offers
a way to manage and interpret this data, ensuring that the potential
insights are not lost [2,3]. SM faces another challenge called mass
personalization, where manufacturing systemsmust bemodified to meet
individual customer preferences. This high level of customization can be
achieved with KG by integrating and synthesising diverse data sources
[4]. Enhancing collaborative interactions between humans and ma-
chines is crucial for the success of SM. KG provides a platform where
machines can understand and respond to human behaviours and in-
structions more effectively [5]. The demand for cognitive intelligence in
SM is increasing, involving self-learning and self-adapting systems. KG,
which provides a structured and holistic knowledge representation, is
suitable for the cognitive aspect of manufacturing [6]. Furthermore,
constructing comprehensive semantic networks ensures that all parts of

the manufacturing systems are interconnected and communicating
effectively. KG assists in building these networks, ensuring a cohesive
view of the manufacturing systems [7,8]. Briefly, SM presents numerous
problems that can be addressed by adopting KG approaches. To under-
stand the potential of KG in mitigating the aforementioned challenges
presented by SM, it is essential to understand the core principles of KG
and its capabilities.

Given the ability to represent, integrate, and reason across varied
knowledge domains, KGs offer promising solutions to the complicated
challenges posed by SM. Rather than merely organizing vast and het-
erogeneous concepts, KGs weave these concepts into a cohesive fabric
for interlinking nodes and defining intricate relations through an
ontology-based schema [9]. This interconnected representation of
complex data streamlines data structures and deepens understanding,
organization, and knowledge retrieval [10]. The current rise of KGs can
be attributed to their capabilities in organizing, integrating, and
extracting meaningful insights from intricate data sets, thereby
addressing challenges in data management, semantic comprehension,
and advanced analytics across diverse domains [8,11].

A KG transcends a mere graphical data structure, embedding infor-
mation in a specialized ontology with high semantic expressiveness
suitable for complex scenarios [12]. It captures the essence of entities,
interrelations and properties binding them. Rooted in knowledge engi-
neering, data management, and AI, the evolution of KGmerges historical
milestones and cutting-edge developments in Fig. 1. Beginning with
basic semantic networks in the 1960s [13], knowledge representation
progressed to the semantic Web and ontologies in the early 2000s [14].
The advent of the Google KG was introduced as a watershed moment in
2012 [12], showcasing the potential of KGs in structuring and linking
huge data repositories and spurring further advancements in the field.
Presently, KGs have gained attraction beyond academia, with

Fig. 1. The brief overview of key milestones and recent development of KG.
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organizations adopting them for their proven real-world applicability
and performance enhancement. The increasing influence and applica-
tions of KGs have been observed in SM. KGs are important tools for
handling vast interlinked data supporting data-intensive manufacturing
systems. Researchers and organizations deploy KGs to address issues on
various SM facets for highlighting the role of KGs in enhancing industrial
practices, such as design [15], scheduling, quality control and man-
agement (QCM) [16], supply chain management (SCM) [17], and pre-
dictive maintenance (PdM) [18].

Table 1 lists a range of review papers that explore different KG
techniques in various aspects of SM, such as KG embedding (KGE), KG
reasoning (KGR), SCM, and PdM. However, these publications focused
on specific segments of SM, providing a piece-by-piece view of KG ap-
plications and ignoring the relationships among different KG technolo-
gies and diverse domains. In this study, a methodical review of KGs is
conducted in the context of SM. This study covers several key aspects of
KGs in SM for a comprehensive perspective, including current research,
practical applications, and future directions. It focuses on how different
KG techniques interrelate and contribute collectively to the advance-
ment of SM, offering a detailed and broad understanding of the field.

The main contributions of this study are summarized. (i) A system-
atic approach is utilized to investigate the current studies on KGs in SM,
with keyword co-occurrence and cluster analysis being applied for
clarity. (ii) The core KG techniques are analysed and summarised based
on the selected publications from KG creation to KG applications. From
this foundation, the KG technologies for SM are depicted holistically
with a comprehensive framework, emphasizing the interplay of diverse
KG techniques and the multidisciplinary collaboration in addressing SM
challenges by KGs. (iii) Grounded on the technological overview,
application scenarios of KGs are categorised and discussed by addressing
practical problems in SM, including the main representative aspects of
SM from engineering design to PdM. (iv) Moving beyond the analysis of
publications, the prospects of KGs in SM operations, processes, and
systems are highlighted through the complicated interplay between the
practical challenges and advantages, such as prompt engineering and
large language models (LLMs).

Section 2 describes a methodical approach to examine publications
through the keyword co-occurrence and clustering. Diverse technique
topics of KGs in SM are investigated, reviewed and summarised cohe-
sively based on the selected articles in Section 3. In Section 4, the main
application scenarios for KGs in SM are clustered, classified, and elab-
orated, demonstrating the potential of KGs to improve performances and
address real-world challenges in SM. Following this, the potential
challenges, emerging trends, and future opportunities are identified and
analysed in Section 5. Section 6 offers a conclusion.

2. Methodology

2.1. Search strategy

To fill the investigative gap of KG for SM, a literature survey and
extensive text mining are conducted to search, evaluate, compare and
summarise the publications between 2000 and 2024 (up to 29/02/
2024). This review traces back to 2000, preceding the formal advent of
KG in 2012, to highlight the significant correlation between the se-
mantic Web and KG, despite their distinct characteristics. Based on the
research challenges and motivations mentioned earlier, research ques-
tions (RQs) are proposed to guide this review in Table 2.

Given the exploring directions in RQs, the selected keywords and
terms are identified and displaced by the synonyms. A comprehensive
search string is combined using the Boolean operators in Fig. 2. The term
"sustainable manufacturing" is included alongside "smart
manufacturing" and related concepts in the search string, which is based
on the evolving relationship between sustainability goals and the ad-
vancements in manufacturing technologies. Sustainable manufacturing
focuses on minimizing environmental impacts and promoting efficient
resource use [37], which is increasingly seen as compatible with the
objectives of SM [38,39]. Characterized by the integration of digital
technologies, SM offers the tools and capabilities to achieve sustain-
ability goals through optimized processes, energy efficiency, and waste
reduction [40]. Meanwhile, "digital twin" (DT) and "Industry 4.0"
emphasize the technological advancements driving SM forward. By

Table 1
The KG techniques and application scenarios of the existing review articles.

References KG techniques Application scenarios

Knowledge extraction
and mining

KG construction and
storage

KG
update

KGE KG
fusion

KGR Engineering
design

Production &
QCM

Scheduling &
SCM

PdM

Mao et al. [19] √ √ √
Abu-Salih [20] √ √ √
Buchgeher et al.
[21]

√ √

Han et al. [22] √ √ √
Kamm et al.
[23]

√

Li et al. [24] √ √ √ √ √ √ √
Siqueira et al.
[25]

√ √

Wang et al. [26] √ √ √ √ √
Yahya et al.
[27]

√ √ √

Chen et al. [28] √ √ √ √
Min et al. [29] √ √ √ √
Song et al. [30] √ √ √ √ √ √
Thelen et al.
[31]

√ √

Wu et al.[32] √ √ √ √ √
Xia et al. [18] √ √ √
Chen et al. [33] √
Peng et al. [34] √
Xiao et al. [15] √ √ √ √ √ √ √
Zhang et al.
[35]

√ √

Wang et al. [36] √
This study √ √ √ √ √ √ √ √ √ √
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examining the intersection of these fields, this study aims to provide a
holistic understanding of SM as a multifaceted concept, which surpasses
a technological adoption alone and covers a broader aspirations of
modern manufacturing paradigms.

Because of the search term limitations, some databases modify the
search terms by reducing synonyms. The process of identifying relevant
publications was carried out by utilizing search terms in five databases,
namely the IEEE Xplore Digital Library (https://ieeexplore.ieee.org),
ACM Digital Library (https://dl.acm.org), Scopus (https://www.scopus.
com), Elsevier ScienceDirect (http://www.sciencedirect.com), and
SpringerLink (https://link.springer.com). These databases have been
selected for the extensive coverage of scientific research closely related
to this review, such as journal articles, conference proceedings, and
books. Moreover, the exclusion, inclusion, and retention criteria are
outlined in the selection process of publications in Table 3. Specifically,
exclusion criteria are applied to the title, abstract, and keyword list of
publications, whereas inclusion and retention criteria are applied to the
full text of publications.

2.2. Article selection process

The framework of the selection process for academic articles is pre-
sented in Fig. 3. The selection process of relevant literature commences
with identifying publications from predefined databases, utilizing a
predetermined search string forged from a set of established keywords
amalgamated via Boolean operators. This search yielded an initial pool
of 10800 publications up to the date of 29th February 2024. Subse-
quently, these publications underwent an initial filtration process based
on predetermined exclusion and inclusion criteria, resulting in 267
remaining articles. Next, a snowball and manual search strategy was
employed to unearth additional resources pertinent to the review topic,
whereby the exclusion and inclusion parameters were reapplied. This
manual exploration culminated in the selection of 59 distinct publica-
tions. Ultimately, the following specific retention criteria were
employed for this narrowed-down set by evaluating the quality of the

selected literature, resulting in the final selection of 210 publications.
Fig. 4 presents publication trends related to KGs in SM over the last

five years, which are sourced from major digital databases including
IEEE Xplore Digital Library, ACM Digital Library, Scopus, Elsevier Sci-
enceDirect, and SpringerLink. Overall, the number of articles has
consistently risen across these platforms each year, highlighting an
increasing interest and expanding research activity in the intersection of
KGs and SM. Each database has contributed to this increase, especially in
Elsevier ScienceDirect and SpringerLink, indicating a broadening
recognition of the importance and applicability of KGs within SM.

2.3. Overview of the selected articles

In this section, a dual-pronged analysis involving keyword co-
occurrence and clustering is undertaken on the final selection of 210
publications. The keyword co-occurrence analysis examines keyword
distribution to illuminate prevalent research topics, application sce-
narios, and trends from the selected publications [41]. Specifically,
keywords cover individual words or phrases extracted from a publica-
tion’s title, abstract, or keyword list, representing a study’s core content.
A co-occurrence is registered when two such keywords simultaneously
appear within the same publication [42]. Subsequently, these
co-occurrence instances are computed to generate a co-occurrence ma-
trix [42,43]. The clustering procedure operates on this matrix to sys-
tematically group keywords [44]. Given a bibliometric network
comprising n nodes, this clustering method’s underlying principle in-
volves allocating keywords to n nodes and assorting these n nodes into k

Table 2
Research questions and motivations for conducting the systematic literature
review.

ID Research questions Motivations

RQ1 What are the key research topics and
advancements in KGs applied to
SM?

To identify current key research
areas and advancements in KGs
within SM, establishing a foundation
for the following research.

RQ2 How are KGs applied in different SM
scenarios?

To analyse the implementation and
impact of KGs in SM, emphasizing
their role in enhancing
manufacturing processes and
systems.

RQ3 What challenges arise with KG
implementation in SM, and what
solutions have been proposed?

To identify the primary obstacles
encountered in deploying KGs in SM
and examine existing strategies for
overcoming these challenges.

RQ4 What innovative methods and
algorithms have been developed to
enhance KGs in SM?

To explore cutting-edge techniques
to improve the performance,
scalability, and robustness of KGs in
SM, contributing to the
advancement in this field.

RQ5 What are the emerging trends for
KGs in SM?

To explore the emerging trends in
KGs within SM.

Fig. 2. The search query for searching publications.

Table 3
Exclusion, inclusion, and retention criteria for selecting publications.

Category Purpose Criteria

Exclusion Sources that met the exclusion
constraints were excluded from
this study.

a) Articles that focused on other
technologies rather than KGs for
addressing issues in SM.
b) Articles that focused on other
scenarios rather than SM by using
KG technologies.
c) Articles that are published in
some formats, including books,
technical reports, dissertations, and
thesis.
d) Non-English articles.

Inclusion Sources that met the inclusion
constraints were included in
the initial selection.

a) All articles, written in English,
report KG technologies for tackling
SM issues.
b) Articles that introduce new
techniques to improve the
performance of existing KG
technologies used for SM.
c) Articles that are published for a
specific period from 2000 to 2024
(up to 29/02/2024).

Retention Sources that met the retention
constraints were included in
the final selection.

a) It must be unequivocal in its focus
on specific issues pertaining to SM.
b) The rationale behind employing
KG technologies as a solution to
these issues must be explicated.
c) The proposed methodology must
be accompanied by a clear
demonstration of its evaluation or
validation.

Y. Wan et al.
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distinct clusters. Specifically, upon establishing the co-occurrence ma-
trix, the association strength between keywords i and j (is represented by
the similarity mij) is calculated as Eq. (1).

mij =
nij
kikj

(1)

where nij represents the number of co-occurrences between key-
words i and j, ki as well as kj denotes the total number of occurrences of
keywords i and j, respectively.

The goal of the clustering algorithm is to minimize the value in Eq.
(2).

M(wa,…,wn) =
∑

i<j
mijw2

ij −
∑

i<j
wij (2)

where wi denotes a positive integer that indicates a cluster to which
nodes i belongs, and dij denotes the distance between node i and j, which
can be calculated by Eq. (3). The minimization of the value in Eq. (2)
dictates that higher association strength values between two nodes
signify a stronger interrelationship.

wij =
⃦
⃦di − dj

⃦
⃦ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(di − dj)2
√

(3)

Utilizing a specialized tool for bibliometric analysis, namely VOS-
viewer [42], the clustering results are attained and visualised based on

Fig. 3. The framework of the selection process for academic publications.
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the keyword co-occurrence in the selected publications. Fig. 5 depicts six
research clusters, each distinguished by a distinct colour (i.e., red, green,
purple, etc.). The proximity of keywords means a strong correlation
between them. A link between two keywords signifies their concurrent
appearance in publications. The dimensionality of nodes indicates the
cumulative linkage strength of respective keywords. To correlate the
clustered keywords more accurately with their associated research do-
mains, manually selecting the keywords in each cluster is undertaken
based on a solid understanding of the domains. Specifically, the general
terminologies, which commonly appear across all clusters, such as
’knowledge graph’, ’data analysis’, and ‘intelligent manufacturing sys-
tem’, have been removed from each cluster, as displayed in Table 4. This
exclusion allows for a more focused representation of the unique the-
matic elements within each research domain. Moreover, the number of

papers that are contained in each cluster is demonstrated in Table 4.
The purple cluster contains keywords such as ’product lifecycle

management’, ’maintenance’, and ‘DT’, indicating an association with
PdM. The occurrence of terms such as ’graph convolutional network
(GCN)’ and ’knowledge fusion’ indicates a research trend in PdM using
KG. KG is important in PdM for its ability to interlink diverse data
sources, enhance communication and synergy across models, and
improve the fidelity of DTs in maintenance scenarios. Furthermore, KG
enhances the interpretability of the underlying mechanisms to relieve
the challenge of ’black boxes’ accompanied by deep learning, contrib-
uting to more transparent and understandable PdM strategies. The
keywords clustered in red, comprising of ’conceptual design’ and
’interoperability’, demonstrate a correlation with engineering design.
The concurrent emergence of ’semantic data processing’ illustrates the

Fig. 4. The number of papers published per year in the last five years.

Fig. 5. The clustering results are based on the keyword co-occurrence for the selected publications.
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utility of KGs in engineering design. Design professionals frequently
exploit relevant information from vast unstructured texts for decision-
making, facing challenges in extracting embedded, semantically im-
plicit knowledge. KG naturally has a graph-based structure suitable for
mapping complex relationships. It streamlines information access,
clarifies connections among diverse data, and supports decision-making.
In the green cluster, a series of keywords, ’root cause analysis’, ’injection
moulding’, and ’production’, are associated with QCM. Emerging terms,
’relation extraction’ and ’attention mechanism’, reflect research prog-
ress in semantically unifying diverse datasets by KGs and enhancing
graph learning. KG can predict potential deficiencies and enhance
product quality by modelling intricate interconnections between com-
ponents or procedures. The blue cluster includes keywords related to the
production failure, such as ’fault diagnosis’. Terms such as ’KG’,
’knowledge extraction’, and ’ cognitive system ’ show a trend towards
using KGs in this field. KG organizes diverse, complex knowledge in
production failures, such as failure types, process parameters, and
equipment names, revealing interconnections and tackling data het-
erogeneity and fragmentation. The reasoning and updating learning of
KGs can unearth hidden insights from the existing knowledge. For the
yellow cluster, the relevant keywords, such as ‘demand forecasting’, and
‘SCM’, relate to SCM and scheduling. Keywords ‘cognitive DT’ and
‘explainable AI’ show the intersection with KGs. KG improves SCM by
providing a unified view of data from various sources, such as supplier,
inventory, and shipment data. In scheduling, KG structures complex
relationships between tasks, resources, and time to facilitate optimal
scheduling. Its dynamic nature allows adaptation to real-time changes,
improving scheduling efficiency. In the lake-blue cluster, keywords such
as ‘context awareness’, ‘Industrial IoT (IIoT)’, and ‘cognitive
manufacturing’, belong to the manufacturing field. The remaining
keywords, ‘ontology’, ‘graph embedding’, and ‘graph neural network
(GNN)’, indicate KG-based methods and applications. KG can handle
large, diverse, and heterogeneous data, offering semantic data inter-
pretation to enhance interoperability. It optimises manufacturing sys-
tems by providing semantic context for complex analysis and predictive
model development. The graph-based structure naturally facilitates data
exchange and uncovers latent insights.

Table 5 presents the occurrences and total link strength information
associated with the top ten recurring keywords, following the exclusion
of general terminologies. Occurrences denote the number of keywords
appearing in the selected publications. For a given keyword, the total
link strength is the cumulative sum of its association strengths, which
measure its relatedness to other keywords. Thus, a higher total link
strength suggests a greater degree of relatedness. In Table 5, the primary
attention of most researchers is the construction issues (keywords:

ontology) of KGs. Further analysis reveals that the most extensively
studied research topic is entity recognition in constructing KGs. More-
over, many studies are concentrated on process modelling employing
graph embedding technologies (keywords: ML, graph embedding,
attention mechanism, etc.).

Inspired by a foundational overview of SM processes and systems in
[45], diverse SM scenarios are classified and discussed, such as product
quality and scheduling. Following a keyword co-occurrence and clus-
tering analysis, the selected publications are refined and manually
re-categorized to ensure a more coherent grouping that aligns with key
research topics and application scenarios in SM. By delving into the
specifics of engineering design, scheduling, QCM, SCM, and PdM, a
comprehensive view of how KGs enhance various stages of the
manufacturing lifecycle is presented. The refined categorization forms
the basis for review and discussion in the following sections, which
highlight the broad field of KG applications and provide a synthesized
overview of KG utility across diverse SM scenarios.

3. KG and KG techniques tackling SM challenges

This section explores the interplay between KG techniques and fo-
cuses on how KGs address specific challenges in SM. In Fig. 6, the KG
technologies for SM are depicted from the holistic perspective, where
specific professionals who play roles are observed in each phase. It starts
with the "Data sources and knowledge repositories for KG" section,
where data (ranging from structured to unstructured) and knowledge
organization systems (KOS) are first transformed, which prepares the
data for subsequent KG integration and processing. Data engineers and
domain experts are essential in the initial phase for ensuring the struc-
tured transformation of diverse data types. The next section "KG
development and maintenance" is a core phase, which contains various
aspects, including KG construction, update, fusion, and storage.
Knowledge, natural language processing (NLP), and LLM experts ensure
the consistent evolution and maintenance of KGs with specific contexts
in SM for their reliability and effectiveness. The final section "Applica-
tions in SM" shows practical applications and advancements of KGs in
SM, involving KGE, mapping to feature space, and further divisions into
graph representation learning and KGR. These elements correlate with
different applications in SM for enhancing various aspects, including
decision-making, defect detection, supply chain demand forecasting,
etc. Application developers and machine learning (ML) engineers ensure
the integrations and applications of KGs in diverse SM scenarios.

The publications of KG in representative domains of SM are
reviewed, identifying the challenges addressed in these articles, along
with the proposed KG-based solutions and the KG capabilities involved
in these solutions [17, 46–72]. Fig. 7 visually maps SM challenges to
KG-based research topics and further KG capabilities, which provides a
foundation for thoroughly examining how KG techniques contribute to
and enhance SM. The discussion structure is methodically organized: it
begins by identifying distinct challenges within SM and then examines
the relevant KG techniques that provide solutions. The leftmost items of
the diagram represent the SM challenges, which then fan out into

Table 4
Clustering results for selected publications.

ID Clusters Clustered keywords Research
domains

Number of
paper

C1 Red
cluster

Conceptual design, digital
manufacturing,
interoperability, semantic data
processing

Engineering
design

49

C2 Green
cluster

Root cause analysis,
production, injection moulding,
manufacturing cost estimation

QCM 28

C3 Blue
cluster

Cognitive system, perception
system, smart grid, textile, fault
diagnosis

Production
failure

34

C4 Yellow
cluster

cognitive digital twin, demand
forecasting, supply chain
management

SCM,
Scheduling

47

C5 Purple
cluster

Maintenance, product lifecycle
management, digital twin,
cyber-physical system, IoT

PdM 57

C6 Lake-blue
cluster

Context awareness, data fusion,
IIoT, cognitive manufacturing

IIoT 143

Table 5
The occurrences and total link strength of the top 10 occurrence keywords.

Keywords Cluster number Occurrences Total link strength

Ontology C2 14 33
Machine learning C2 10 22
Knowledge management C2 5 14
Graph embedding C6 5 11
Knowledge base C1 5 10
Attention mechanism C2 3 9
NLP C1 3 9
Entity recognition C1 5 8
standards C1 2 8
BERT C2 2 6
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intermediating research topics, each broadening or narrowing in cor-
respondence to the scope and impact on subsequent KG capabilities. The
final set of items captures the diversity of KG capabilities, illustrated by
the inflow from various research branches. The one-to-many and
many-to-one relationships are illustrated by the divergence and
convergence of flows, wherein a single SM challenge may relate to
multiple research topics, with each topic, in turn, utilising multiple KG
capabilities. Each instance employing a KG technique to address a

specific SM challenge represents a research activity, which reveals the
multifaceted and collaborative nature of addressing SM challenges using
KG approaches.

As outlined in Fig. 6 and Fig. 7, KGs have shown significant potential
in SM due to their well-organized and semantic data integration and
contextualization capabilities in knowledge flow and global manage-
ment of manufacturing knowledge. KGs provide a holistic, enriched, and
actionable view of manufacturing data, aiding in efficient decision-

Fig. 6. The KG technologies from data acquisition to decision-making in SM.

Fig. 7. Mapping SM challenges to KG-based solutions with relevant research topics.
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making and process optimization. Firstly, KGs facilitate the integration
of data and knowledge across multiple organizational, functional, and
temporal levels of granularity. Secondly, KGs transform raw sensor data
into high-level insights. Raw sensor data may initially seem unintelli-
gible but can be transformed into actionable and interpretable insights
for enhancing manufacturing productions, processes, and systems.
Thirdly, KGs can link and align decisions and goals on the production
and operational levels with higher-level organisation goals, fostering
coherence and synergy in achieving all different objectives. Moreover,
KGs combined with DT provide richer, real-time data for better decision-
making in SM. Lastly, merging LLMs and KGs enhances the reasoning
capabilities of LLMs with actual knowledge of KGs, which paves the way
for automated decision-making in SM. From this foundation, KG and KG
techniques tackling SM challenges are discussed below.

3.1. Knowledge extraction and mining

3.1.1. Knowledge extraction
Knowledge extraction turns raw data into structured information

crucial for KGs, with its precision affecting KG quality. Commonly,
manufacturing knowledge comes from sensors and expert experiences
stored in physical records, electronic databases, or expert memories.
This knowledge is typically classified into structured (e.g., databases),
semi-structured (e.g., encyclopedia), and unstructured (e.g., texts and
videos) data. Among these, structured and unstructured data are the
primary sources influencing SM systems [47].

Knowledge extraction follows established standards and uses mature
tools. Structured data is unified using a common schema, often directly
mapping relational databases into resource description framework
(RDF) data—a quintessential format for KG [48]. Moreover, the trans-
formation of structured data into RDF format is achieved by various
technologies, such as D2R [49], principal component analysis (PCA)
[73], RDFmapping language (RML) and R2RML [74]. Unstructured data
generated throughout SM, from design to service, needs quantification
for KG integration. Extracting knowledge from such data often involves
NLP and text mining [24], enhancing understanding of the
manufacturing systems and boosting performance such as production
efficiency and product quality.

3.1.2. Entity recognition
Entity recognition identifies and classifies entities in unstructured

data, such as device names. Initial methods relied on rule and
dictionary-based techniques, which are interpretable and accurate by
utilizing crafted rules and dictionaries [50,75]. However, as data scales,
these methods face challenges, requiring significant manual effort to
create patterns and lexicons and sometimes encountering in-
consistencies from conflicting rules established by different experts.
Statistical learning methods, using models such as the Hidden Markov
model (HMM) [75], conditional random field (CRF) [76], long
short-term memory (LSTM) [77], convolution neural network (CNN)
[52], classification and regression tree [53], emerged to process large
datasets, understand the context and avoid manual rule creation, but
they require vast labelled data and can lack transparency. Inspired by
these advantages and limitations, hybrid approaches merge both
methods, balancing interpretability with adaptability [78,79]. The
hybrid approach combines statistical and rule-based methods, offering
enhanced versatility and adaptability across various data and scenarios
in SM while maintaining a degree of interpretability. However, this
approach can be complex and resource-heavy due to the need for
labelled training data, potential conflicts between methodological
components, and increased computational demands from statistical and
rule-based elements.

3.1.3. Relation extraction
Relation extraction discerns semantic connections between entities

from unstructured data collected in SM, such as "part-of". Various

supervised and unsupervised learning models are employed to extract
these relations. Supervised learning models, such as CNN [54], LSTM
[80], recurrent neural network (RNN) [81], GCN [82], Markov logic
network [83], use labelled data to identify these relationships, offering
accuracy but requiring extensive annotated data and incurring time and
cost. Meanwhile, the generalizability is limited in handling unexpected
relation types or text variations. Combining pre-trained models, such as
bidirectional encoder representations from transformers (BERT) [47],
mitigates limitations by leveraging pre-trained data and enhances the
ability to identify complex relation patterns in dynamic SM scenarios,
but the complexity and computational demand pose additional chal-
lenges. In contrast, unsupervised models, such as TF-IDF scores [84],
latent Dirichlet allocation (LDA)[85], conditional probability[86], and
association rules [87] infer relationships from the intrinsic structure of
the data or some form of prior knowledge. While not reliant on labelled
data, unsupervised models often yield lower precision and recall than
supervised models and can be impacted by the quality of input data.
Moreover, noisy or irrelevant features pose challenges to extracting
meaningful relationships in complex manufacturing fields. Conventional
methods separate entity recognition and relation extraction, but joint
extraction models handle both tasks simultaneously, recognizing their
interplay [88–90].

Moreover, less common in manufacturing scenarios seeks to identify
predefined event types, usually concentrating on failure or fault events.
For instance, a fault event ontology was developed by extracting control
rod drivemechanism fault events and labelling entities and relationships
[50]. A hybrid model based on LSTM and CRF extracted machining
quality causality events from textual documents [89]. Diamantini et al.
[91] focused on "start" and "complete" life-cycle transitions for activities
in event logs, linking observations to executed events via timestamp
comparisons. Moreover, event extraction, aligned from manufacturing
data like sequential event logs, was performed in Ref. [92].

3.1.4. Knowledge mining

3.1.4.1. Knowledge content mining. Knowledge content mining aims
to match entities with relevant manufacturing knowledge base entries,
requiring syntax normalization and data alignment. It entails entity
disambiguation (selecting the right entity from similar choices) and
entity linking (connecting the chosen entity to a knowledge base). A
common method is using cosine similarity of entity embeddings in in-
jection modelling [51], aerospace enterprise [48], and Industry 4.0
standards [93]. Besides direct similarity, diverse embedding technolo-
gies have been discussed and employed to derive similarities of entities,
such as word2vec [55]. Zhou et al. [89] enhanced the GCN model to
align entities across text-based and tabular KGs by optimizing node
embeddings, ensuring precise alignment, minimising computational
load, and mitigating noise. Zhang et al. [94] addressed concept drift or
changes in statistical properties over time. Coreference resolution is
used to unify entities or attributes with identical meanings, demon-
strated in applications to conceptual design [56] and power grids [95].

3.1.4.2. Knowledge structure mining. Knowledge structure mining, or
link prediction, enhances the accuracy and completeness of KGs by
predicting missing or upcoming graph associations. Initially, experts
manually identified missing relations, as seen in applications like the
floatation process [57] and the delayed coking process [77]. Many
technologies have been developed to uncover hidden relationships
within KGs. Ringsquandl et al. [96] utilized event logs to forecast
missing links in evolving factories. Another study [92] identified likely
relations introduced from changes in physical environments and un-
aligned event semantics. Riva et al. [93] depicted the homophily pre-
diction principle applied over each of the communities to discover
unknown relations. Grangel-González et al. [97] proposed a
translation-based approach, emphasizing the proximity between
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embeddings of head and tail entities to predict potential relations. Zheng
et al. [98] applied KGR to enable querying and predicting missing links
to generate mutual cognitive support, which helps dynamically update
the KG for online task planning.

Several studies have innovated in embedding techniques. Zhou et al.
[4] and Xia et al. [99,100] enhanced KG embedding techniques to reveal
hidden relationships and predict unseen connections, utilizing semantic
weight vectors and the attention-based compressed relational GCN
model, respectively. Similarly, another attention-centric model [47]
utilized an attention mechanism and biased random walk to capture
intricate embeddings, enabling the discovery and supplementation of
implicit KG relationships. Moreover, subgraph reasoning was applied to
predict missing KG edges [52]. Moreover, in the quest for optimizing
relation-discover, Wang et al. [101] utilized GNN to infer ambiguous
links under fault-tolerant conditions in power grid topology. Deng et al.
[90] devised a model using stacked bi-directional long short-term
memory (BiLSTM) and self-attention, enhancing relation prediction by
merging entity label embeddings and context features. Liu et al. [102]
improved link prediction by employing “unif-bern” negative sampling in
the UBTransH model, enhancing the learning of relation characteristics.

3.2. Construction, storage, and update of KG

3.2.1. Top-down and bottom-up construction approaches
Constructing a KG for SM involves forming a network of entities and

relationships enriched with semantic context using primary top-down
and bottom-up approaches. The top-down approach to KG construc-
tion establishes a conceptual schema, then populates the KG with en-
tities following predefined patterns and relationships using virtual
mapping processes. Various studies [50, 58, 103] demonstrate this
method ensures consistency and interoperability by adhering to a pre-
defined structure. Conversely, the bottom-up KG construction approach
begins by extracting entities from open link data and then integrates
only high-confidence entities into the knowledge base. Entities with
similar attributes are abstracted into concepts and hierarchically
aggregated to build the final KG. This method is advantageous for its
adaptability to diverse and evolving data sets [78]. While the top-down
methodology may exhibit inflexibility with unanticipated data [104],
the bottom-up approach can encounter inconsistency and redundancy
due to its lack of a rigid schema. Hybrid methodologies, aiming to bal-
ance structure and flexibility, begin with a basic schema (top-down) and
refine it by incorporating data (bottom-up) in diverse studies [48, 77,
88]. Additionally, it is noted that the synergy between DT and KG
construction is increasingly recognized for its capability to represent
complex manufacturing activities [46, 59, 60]. The combination of DT
and KG construction provides numerous well-documented advantages,
such as facilitating the integration of multidimensional information el-
ements [31] and enabling interaction and integration between the
physical and virtual worlds [105].

3.2.2. Knowledge graph storage
KG, utilizing a graph-based structure, stores manufacturing domain

knowledge, including product design, resource allocation, and opera-
tional environments. The selection of an appropriate database for KG
storage, considering application context and data scale, is crucial for
efficient data management and computation. Commonly, the triples in
KG are expressed in the form of<head entity, relation, tail entity> , such
as <Subject, Predicate, Object> [47] and <Subject, Verb, Object>
[106]. Moreover, multi-nary relations between more than two entities
were represented as hyperedges [107]. For the predefined model, the
ontologies are usually represented by the Ontology Web Language
(OWL) [108,109], and the KG is widely represented by RDF [110,111].
Moreover, to fit the construction requirements in a given domain, the
property graph model is deployed to represent the KGs [112]. Unlike the
RDF model, the property graph model consists of four key structures:
nodes, relationships, properties, and labels, forming the basis for various

graph algorithms. Capitalizing on the inherent graph-like nature of the
data, the property graph model enables efficient knowledge reasoning
and intricate deep traversal [113].

Within the scope of the research reviewed, Protégé emerged as a
particularly favoured open-source tool for ontology storage, as evi-
denced by multiple studies [46]. Moreover, alternatives are employed in
certain instances, such as OntoGraf [114]. Regarding the storage of KGs,
Neo4j is prominently featured across a majority of the surveyed studies
[58, 60, 61], yet other open-source tools are adopted in some research,
such as Gephi [84], OrientDB [62], MongoDB [63], TigerGraph [115],
GraphQL [116], GraphDB [117], Graphviz [118].

3.2.3. The incremental update of KG
Most KG studies for SM deploy existing knowledge, often neglecting

the ever-evolving SM knowledge base. Incremental update methods for
KG have been introduced, collecting data from various SM sources, such
as workers and production lines. Before adding to the KG, the reliability
of the incremental data is checked, ensuring up-to-date insights and
ongoing manufacturing system enhancements. While KG is often
manually adjusted [119], modern strategies include using GNNs to
predict missing links [17,101], Bayesian methods for adaptive concept
drift [94], and extracting new triplets from customer reviews [120].

The advent of advanced technologies, such as DTs and more effective
NLP algorithms, enables real-time updates of KGs in SM, ensuring they
accurately mirror immediate changes in corresponding systems. For
example, DTs dynamically capture and convey changes in real-world
systems to their respective KGs for a timely reflection of system alter-
ations. Consequently, recent research has turned towards exploring
intricate methodologies for real-time KG updates influenced by DT
technology integration. Liu et al. [114] developed a DT framework that
generates and updates a fault KG for CNC machine tool fault diagnosis
and rescheduling. A feedback loop updated the KG with data from
manufacturing execution systems (MES) and enterprise resource plan-
ning (ERP) systems for improving planning outcomes [73]. Another
approach utilized an industrial KG (IKG) enhancement system through
crowdsourced user query analysis and verification of knowledge
labelled ’To-be confirmed’ [64]. Teen et al. [116] introduced a
five-stage model for continuous KG construction, ensuring consistent
reflection of industrial changes by integrating new data and refining
updates through user interactions. Liu et al. [65] dynamically updated
the IKG with IIoT data using shallow and deep cognition agents. Dong
et al. [121] used a smart PSS configuration with three KGs, using
sentiment analysis of user reviews to trigger KG updates. Li et al. [52]
applied KGR to exploit subgraph topology and temporal dynamics for
KG updates. Real-time updates of KGs can enhance applications in SM by
reflecting current states and optimizing operations. Despite challenges
such as ensuring update quality and managing computational demands
and data volumes, the real-time KG update technology is an advanta-
geous and increasing research topic.

The user interface (UI) plays an interesting role in enabling practi-
tioners to interact with KG-based systems to facilitate the timely and
accurate incorporation of updates. Considering the significance of UI
and user experience (UX) in the implementation and application of KG
updates in SM, a user-friendly interface can enhance the quality of KG
updates by simplifying the process of integrating new data, thereby
ensuring that KGs remain reflective of the current operational reality.
Moreover, a positive UX, from both data scientists and domain experts,
is important to the practical application of KGs in SM.

3.3. Knowledge graph embedding

3.3.1. Fact-based approach
Fact-based KGE methodologies use the intrinsic entities and re-

lationships of KGs, mapping the intrinsic structure into a vector space to
simplify complex relationships. Recent research has explored various
techniques for fact-based KGEs in SM. Translational distance models,
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like TransE, TransD, and TransH, interpret relations as translations in a
shared vector space for entities and relations in enhancing KGE [93].
Other studies have enhanced and adapted translational models, such as
Zhang et al. [87], which used TransH and TransR for diverse entity
connections, and Liu et al. [102] enhanced TransH with the “unif-bern”
negative sampling technique to optimize negative sample generation.
Using a margin-based ranking loss, Ringsquandl et al. [92] trained
vectors to minimize and maximize the distance for correct and incorrect
entity triples. Translational distance models provide a geometric inter-
pretation by representing relationships as translations in the embedding
space, facilitating understanding of entity associations. However, they
struggle to represent complex, especially non-translational, relation-
ships and manage diverse one-to-many and many-to-many relations.

Semantic matching models evaluate fact plausibility by comparing
the similarity between the embeddings of entities and relations, thereby
measuring the compatibility of entity-relation pairs. As one of the most
representative semantic models, GNNs were developed to extract KGs’
embedding [17,83]. Entities start initialized and get enriched by
absorbing features from neighbouring nodes using the GNN, and trans-
formation matrices mapped relationships into the same vector space as
entities similarly. On the one hand, GCNs and their variants have
emerged as a prevalent model among GNNs for graph structure opera-
tion [6, 49, 122]. GCNs aggregate node features across layers, capturing
local and global graph information, making them tasks like node clas-
sification [66], link prediction [67], and graph classification [68].
Moreover, Park et al. [69] developed a hybrid GNNwith the RL model to
obtain KGEs for learning scheduled job shop problems. Li et al. [123]
developed the Bagging-graph attention network (Bagging-GAT) to esti-
mate machining surface roughness, enhancing learning with a KG,
particularly in data-scarce situations. On the other hand,
DeepWalk-based KGEmodels, a variant of GNNs, leverage randomwalks
and the SkipGram model to generate node embeddings, reflecting se-
mantic similarities in a reduced-dimensional space. Widely used for link
prediction [124] and node classification [64], these models and their
enhancements, such as Node2Vec [125], have undergone substantial
research and development. Additionally, diverse semantic matching
approaches are utilized for KGEs. Zhou et al. [4] innovated a refined
distributed representation learning algorithm to assign distinct semantic
weight vectors to entities for enhancing semantic precision in KGEs.
Another study [126] employed the ComplEx method to embed a
context-rich KG created from time-series sensor data, and these em-
beddings were clustered using k-means to classify environmental con-
ditions. Semantic matching models capture semantic similarity between
entities and relations, making them more valuable in tasks like link
prediction than translational models. However, mapping entities and
relationships into the same vector space might reduce embedding
interpretability.

Various KGE models introduce alternative or hybrid entity and
relation representation methods. For instance, Ren et al. [47] introduced
an attention-based graph embedding model to capture global and local
KG features in the application scenario from the aerospace enterprise
production process. While hybrid models blend translational and se-
mantic matching benefits for improved representations, they increase
complexity, implementation difficulty, and computational resource
needs.

3.3.2. Incorporating additional information-based approach
Additional information augments fact-based methods by integrating

extra data into the learning process, such as textual descriptions, entity
classifications, and other external sources. Researchers have explored
additional information-enhanced KGE approaches across diverse
studies. Ringsquandl et al. [127] refined multi-label graph classification
by incorporating domain constraints, such as Must-Link and
Cannot-Link constraints, focusing on consistent subgraphs aligned with
manufacturing knowledge and pruning inconsistent patterns. They
further incorporated event log data into KGEs generated for jointly

learning embeddings with two objectives: KGE loss and event sequence
embedding loss [96]. Liang et al. [128] employed additional related
data to quantify relations and perform clustering for KGEs in power fault
analysis, including embedding entity attributes, user details (e.g.,
identity documents (ID)), and search history. Deng et al. [90] merged
context features with entity label embeddings to enhance KG represen-
tations using a BiGCN layer for integrated entity recognition and rela-
tion extraction. Zhang et al. [87] mapped entities and relationships into
compact vectors to capture dense inter-entity connections (e.g.,
one-to-many and many-to-many), enriching embeddings with addi-
tional information such as names and functions to identify key graph
nodes and generate detailed lists of failure modes. Li et al. [52] deployed
temporal reasoning to integrate historical execution records for
capturing temporal dynamics and enriching the embeddings with tem-
poral nuances. Preserving the complex and logical relations of KGs is
important in KGE processes. However, challenges arise in maintaining
global and local structures of graphs, especially considering the sparsity
of manufacturing KGs and limited observable connections [47], such as
extracting the sufficient structural features from sparse data sources.

3.4. Knowledge graph fusion

3.4.1. KG fusion for conceptual layer
The KG fusion at the conceptual layer involves merging disparate

ontologies and schemas from different KGs. Scholars have investigated
ontology integration within the same domain in SM. For instance, Kwon
et al. [108] enhanced semantic querying by integrating KGs from
product model data and quality information, using manual mapping and
SWRL rules with additional rules to eliminate structural differences and
ensure consistency and decision-making in the unified knowledge base.
Shen et al. [59] employed a facet model to divide each custom order into
subgraphs and further fused multi-dimensional KGs across ontologies,
encompassing process, resource, and product-feature ontologies for
custom apparel production. In Ref. [129], a unified ontology was
created to detail failure modes and causes by combining the failure
mode and effect analysis ontology with process adjustment protocols
ontology, linking failure modes to potential causes and adjustment ac-
tions. Diamantini et al. [91] developed a comprehensive ontology
combining multiple pre-existing ones (e.g., SSN, SOSA, and DogOnt),
using a bridged ontology encompassing key classes, such as IoTResource
and Task, to link the process viewpoint with sensor perspective.

Moreover, diverse studies explore cross-domain ontology fusion. For
example, Yang et al. [130] integrated ontology models across fields to
formulate a multi-cloud KG for power equipment defects, addressing
multi-source heterogeneous problems and ensuring integrated defect
management. This cohesive KG incorporates specifications and concepts
of standards across multiple clouds. Devanand et al. [70] developed the
OntoTwin ontology for the J-Park Simulator, facilitating interopera-
bility between chemical and electrical systems by bridging respective
domain concepts, such as linking an electrical motor to a chemical
pump. Ansari et al. [73] merged generic and domain-specific ontologies
into a single KG through common concepts, aiding competence-based
maintenance planning, which enabled comprehensive reasoning for
planning and task allocation. In summary, ontology fusion, both intra-
and inter-domain, amplifies knowledge representation and management
in SM. Intra-domain fusion enhances semantic querying and reasoning
within specific SM areas, while cross-domain fusion enables interoper-
ability and the generation of unified KG.

3.4.2. KG fusion for instance layer
KG fusion at the instance layer signifies incorporating distinctive

entities and relationships derived from multiple KGs within SM. Starting
with Yang et al. [130] employed technologies, such as D2R conversion
and graph mapping, to fuse instances from varied ontology sources into
unified models. Ref. [131] created mappings between data sources and
domain ontologies, linking them to a KG for mitigating semantic
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conflicts. Shen et al. [59] segmented the KG into subgraphs, capturing
dynamic data per custom order and facilitating instance-layer KG fusion
through graph embedding and entity alignment for node relevance and
similarity calculations.

Transitioning to Eibeck et al. [71] introduced an ontology-based
platform, the J-Park simulator (JPS), which integrates real-time data,
knowledge, models, and tools from the process industry by assembling
reusable vocabularies from modular domain ontologies into a compre-
hensive KG. Modular ontologies are incorporated into JPS, instantiated
with domain instances for cross-domain scenarios, and unified using
uniform resource identifiers (URIs) to ensure global uniqueness and
facilitate distributed storage and linkage across web nodes. The con-
version of relational data to the RDF model and resolution of over-
lapping entities from various sources are managed using cross-linking
ontologies [132], such as the inverse object property in networking
ontology, which restricts inbound relationships and utilizes owl:sameAs
for additional links, emphasizing the criticality of URIs. In summary,
integrating diverse ontological sources through entity merging or
mapping creation yields a unified KG that augments semantic querying,
reasoning, and data management across single and multi-domain SM
scenarios. This fusion mitigates data heterogeneity and fosters interop-
erability and holistic knowledge representation by connecting various
ontologies and data sources.

3.5. Knowledge graph reasoning

3.5.1. Logic-based reasoning
Logic-based reasoning, grounded in formal logic and semantic web

methods, embodies graph structural elements in a logical framework
and uses axioms to infer new facts. In the digital filed, KGs have emerged
as crucial tools for data structuring and reasoning, providing a more
accurate method for formatting contextual data than traditional docu-
ments in manufacturing. Utilizing semantic query techniques, such as
SPARQL queries [71,72], KGQL [133], GraphQL queries [134], Mon-
goDB queries [63,135], and Cypher [63], and SQWRL[53], KGs enable
retrieval and reasoning of data by traversing semantic relationships [56,
136]. For example, KGR bolsters situational awareness by semantically
modelling sensor data to aid decision-making in autonomous vehicles
[137]. Huet et al. [61] arranged design rules into four interconnected
sub-contexts, such as semantic and engineering, using KGs for design
rule recommendations by traversing relations based on user profiles and
CAD models. Ref. [138] identified and retrieved relevant subgraphs
using graph algorithms, such as the shortest path, to recommend perti-
nent information. He et al. [139] expanded a manufacturing KG from
engineering case documents, using logical rules within manufacturing
subgraphs to facilitate reasoning connections. Yang et al. [130] achieved
KG inference in a multi-cloud architecture to optimise rule quality and
reasoning accuracy, albeit necessitating more data and optimization
research. Based on that, it is noted that integrating structured ontologies
with KGs enhances deductive reasoning, making implicit connections
explicit and generating new insights to augment the existing knowledge
base in SM, such as a unified semantic representation for the CAMmodel
[140], fault diagnosis [141,142], root cause analysis [143,144], pro-
duction line inference [58], HRC in disassembly [145], and suggestion
recommendation for design and manufacturing [129].

This capability is extended to semantic parsing, enabling KGs to
transform natural language queries into graphical representations for
enriching the semantic depth of responses [81]. Tang et al. [115]
demonstrated a graph database in power equipment management
through optimal query performance. Yang et al. [146] developed a QA
system with multi-modal KG for industrial equipment operation and
maintenance, achieving over 90 % accuracy in aligning user queries
with graph content via a bespoke semantic matching technology. Dai
et al. [147], Shi et al. [148], andWang et al. [149] improved QA systems
to identify relevant knowledge in manufacturing scenarios, such as
cupping equipment concepts and relations. Another system [150]

automates similar design queries, utilizing a manufacturing cost esti-
mation KG to predict new design costs and cycle times. Xia et al. [100]
implemented a QA system identifying maintenance causes and solutions
through predicting relationships. While logic-based reasoning provides
a framework for data structuring and semantic analysis, the success of
KGs extends beyond technical capabilities to how they can be interacted
with by users. Effective UIs and positive UX s are essential for simpli-
fying complex KG operations, such as query formulation using SPARQL
or GraphQL, and making the KG accessible to non-expert users. For
instance, intuitive UI can transform the way users navigate KGs for fault
diagnosis, design rule recommendations, and dynamic route planning,
ensuring that the insights gained are accurate and actionable. By
focusing on user-centric design principles, KG technologies can be made
more adaptable to diverse manufacturing scenarios, thereby enhancing
their applications andmaximizing their impact on operational efficiency
and decision-making processes.

In more SM applications, the real-time data integration capabilities
of KGs combined with domain-specific ontologies highlight their utility
for inferring machine states and potential anomalies. Li et al. [151]
employed ontology reasoning in the constructed KG to build the
necessary state machine for dynamic route planning of automated
guided vehicles, translating user specifications into system parameters
and executable code modules. Meckler et al. [152] utilised Notation3
rules to infer new knowledge of machine states and detect issues.
Banerjee et al. [153] built a DT and KG hybrid model to fuse datasets and
implemented a graph-based query language system enriched with
inference rules to deduce manufacturing performance in the production
line.

3.5.2. Embedding-based reasoning
Embedding-based reasoning employs ML algorithms to map entities

and relationships into a low-dimensional vector space, learning the
embeddings from inherent graph structures to infer previously unknown
facts. In various studies, embedding-based KGR techniques employ
neural networks for reasoning in manufacturing contexts, such as cor-
recting uncertain links and inferring new knowledge. For example,
Zhang et al. [62] merged KG and deep learning to enable context-aware
reasoning in generating macro-process planning and ensuring optimal
schemes. Kosasih et al. [17] used GNNs to learn entity representations to
enhance risk queries. Zhou et al. [4] utilised distributed representation
learning to identify implicit device relationships in machining work-
shops, as demonstrated in similar studies [68, 101, 154]. A neuro-fuzzy
system was developed to infer fault conditions using expert-defined
rules [152], translating raw data into diagnostic insights for operators
and facilitating tailored notifications and recommendations. Diverse
models, such as LSTM units and parallel processing via GPUs and Spark,
were enhanced to facilitate efficient reasoning and inference in
manufacturing applications from automotive [146] to semiconductor
manufacturing [155].

Embedding-based reasoning is widely used for enhancing querying
and providing recommendations in SM. Zhou et al. [49] designed a
GCN-based graph embedding model to enable querying and generate
mutual cognitive support by capturing the dynamic manufacturing tasks
and human-robot interactions. Another study [64] applied multi-hop
reasoning over industrial KG to provide context-aware knowledge rec-
ommendations by encoding topological information via graph embed-
ding techniques. Zhao et al. [59] employed the Dijkstra algorithm for
optimal resource allocation in production logistics, using spatial KGs
and backpropagation and considering cost relationships influenced by
distance and time. Ref. [67] designed a GCN-based model to enrich an
initial graph by identifying analogous subgraphs in assembly processes,
subsequently formulating and evaluating multiple process plans based
on interference analysis and quality metrics. Embedding-based KGR
further embraces a temporal aspect in its application. Liu et al. [65]
devised a KG-based dual system for cognitive manufacturing in the IIoT,
segregating dynamic device data analysis and profound decision-making
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reasoning and utilizing GNNs for in-depth reasoning in resource allo-
cation and PdM. Another study [52] employed subgraph reasoning and a
temporal subgraph attention layer to refine node embeddings in the KG,
retaining high-scoring edges after pruning to optimize embeddings in
reasoning. Additionally, a KG-based fault diagnosis system for nuclear
reactor control rod mechanisms was developed [50], integrating
equipment and fault data and diagnosing real-time faults through nat-
ural language queries and KG-based reasoning.

Utilizing nodes and relationships in KG of SM, logic-based reasoning
provides semantically relevant responses to queries by exploiting the
graph contexts, such as providing recommendations through related
entity traversal. Although it offers interpretability and precision, it
struggles with noisy and incomplete real-world data. Conversely,
embedding-based reasoning enhances scalability and robustness in SM
applications by allowing vectorized similarity computations to identify
related knowledge, albeit with potential interpretability challenges. The
choice between these methods relies on task specifics, the nature of the
graph, and resource availability, with hybrid methods potentially of-
fering an applicable solution.

4. Applications of KG in SM

This section analyses the integration of KG technologies with SM to
highlight the practical applications across specific scenarios. Inspired by
Ref. [45], a foundational overview of SM process and system automation
is provided, which systematically categorizes and discusses various ways
in SM process automation, SM system automation, and SM automation
scenarios, such as product quality and scheduling. Moreover, derived
from the qualitative analysis in Section 2, an extensive literature review
was conducted to summarize and identify five representative SM sce-
narios: engineering design, scheduling, QCM, SCM, and PdM. These
scenarios demonstrate the broad applicability of KGs in SM and the
synthetic role of KGs in advancing SM. In the following subsections, five
practical scenarios are analysed and summarized to reveal how KG
technologies address specific challenges in SM, such as enhancing HRC
interactions, improving QCM, and supporting intricate decision-making.

4.1. KG for engineering design

In engineering design, decision-making usually relies on experience.
While valuable, this approach is limited in addressing themanufacturing
complexities and rapidly evolving design. Experience-based knowledge
is hard to transfer and scale, potentially creating knowledge gaps. As
product lifecycles quicken and design iterations increase, reliance on
experiential knowledge struggles to meet the complexities of modern
design processes. Thus, there is a growing need for a more systematic
and analytical approach to engineering design decisions. KGs have
emerged as a powerful tool for enhancing decision-making in the design
field, structuring domain-specific knowledge into networks for design
search, reuse, and advisory processes. This structured approach enables
the explicit mappings of relationships, allowing engineers to predict the
broader impacts of design decisions and promoting informed decision-
making. Moreover, KGs facilitate effective knowledge transfer through
graphical representations, supporting knowledge sharing in the evolving
manufacturing landscape.

4.1.1. Product design support and optimization
At the design phase, KG aids in extracting and utilizing technical data

to manage formulas and standards, elicit requirements, enhance the
design process’s efficiency, and ensure adherence to design rules and
standards. Huet et al. [61] and Illescas et al. [156] developed
graph-based design assistants to structure design rules, components, and
requirements within KGs, supporting design rule recommendations.
Luttmer et al. [157] extracted and graphed mathematical formulas and
their metadata from the standards, making the standard’s content
machine-actionable. Each formula was converted into a graph, centring

on its mathematical expression with added nodes for metadata.
Combining ML with KG, especially neural networks, is prevalently

used for creating embeddings, classifying shapes, and predicting func-
tional couplings in product design. Bharadwaj et al. [158] created KGs
for product designs using CAD data and developed a neural network to
convert CAD file information into embeddings. They used hierarchical
relationships from CAD files to build a hierarchy subgraph. This was
paired with multi-view CNNs to convert models into vector embeddings
that reveal shape similarities. A part similarity subgraph was formed,
connecting similar parts and refined using weight thresholds. Commu-
nity detection in this subgraph identified clusters of similar parts,
making searches more accurate and faster, such as component retrieval,
part recommendations, and consistency assessment. As shown in Fig. 8,
the proposed framework comprises three main modules: (1) node and
relation type classification, (2) 3D shape classification and feature
extraction, and (3) KG construction in Neo4j, enabling a versatile
schema for CAD parts. This study combines KG and 3D geometrical
representation with hierarchical, similarity, and ancillary data for CAD
model design, enhancing intelligent design reuse search and recom-
mendations. Similarly, several studies have contributed to advancing
product design in manufacturing with the use of KGs and ML, such as
smart home product design [154], design parameter optimization and
materials selection for injection moulding [51], and design search and
reasoning for manufacturing system [68,138].

Closing the gap between design and operations/maintenance (O&M)
allows for the sharing and optimization of knowledge based on real
operational data. This process not only guides O&M services but also
enhances design through feedback loops. KG plays a crucial role in
facilitating knowledge reuse, especially in failure analysis and mainte-
nance. They link design models with failure modes, effects, and main-
tenance recommendations, enabling automated utilization of new
designs and operational optimizations. Integrating KG throughout the
product lifecycle, from design to operation and maintenance, ensures
data consistency and reusability, offering insights into failure modes and
aiding in design improvements [108]. Lim et al. [46] illustrated how
KGs dynamically interact with real-time data to optimize operational
decisions, merging static design knowledge with dynamic operational
data for adaptable and resilient design frameworks. Zhang et al. [87]
reused failure knowledge and identified design-operation mismatches in
electromechanical-actuator systems of aircraft.

Furthermore, KGs extend their utility beyond aiding design engi-
neers and actively engage users, operators, and various stakeholders
within the manufacturing ecosystem through interactive platforms. The
interactive platforms facilitate dialogue, gather feedback, and support
collaborative decision-making processes, where engineering solutions
are grounded in user-centric perspectives and align with practical
operational requirements. The user-centric approach democratizes the
design process and makes it more accessible and relevant to all partic-
ipants involved in the product lifecycle. For instance, Wang et al.
demonstrated how the integration of customer feedback into KGs reveals
hidden user needs. For instance, Wang et al. [124] demonstrated how
integrating customer feedback directly into KGs can reveal previously
unnoticed user needs and preferences. The proposed model created a
dynamic feedback loop in bridging the gap between design, production,
and market expectations. By continuously updating the KG with new
insights from user interactions, manufacturers could adapt more quickly
to changing customer demands and emerging market trends for
enhancing the alignment of products and user requirements and pro-
moting a more agile and responsive manufacturing operation. Mean-
while, the UI and UX in the application of KGs are gaining more
attention, which highlights the importance of intuitive and user-friendly
systems that simplify complex data exploration and analysis for diverse
user groups. By prioritizing UI/UX in the development and deployment
of KG technologies, the efficiency of knowledge utilization is improved
in the manufacturing systems, such as fostering more meaningful user
engagement and deriving innovation in product development and
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operational processes. The integration of user feedback mechanisms
within KGs provides a proactive approach to capture and address the
evolving needs of users, further highlighting the important role of UI/UX
in maximizing the effectiveness of KGs in SM.

4.1.2. Assembly design assistance and refinement
Assembly design involves processes and resources to merge compo-

nents into final products, which usually relies on engineer expertise.
Moreover, professionals often face challenges in accessing and reusing
dispersed knowledge from various systems and past projects. This
fragmentation can lead to inefficient design processes (e.g., repetitive
searches) and suboptimal decisions. KG emerges as a solution to this
problem by unifying explicit knowledge from manuals and implicit in-
sights from historical data and expert experiences into a comprehensive
knowledge base [88]. By encapsulating product structures, functional-
ities, and assembly processes in KGs, professionals can efficiently
retrieve and apply this knowledge in practical assembly scenarios,
streamlining the design process and enhancing decision-making [118].
Shi et al. [159] linked functional subdivisions to structural components
in assembling an aircraft fuel tank sealing for selecting resources based
on specific criteria. Liu et al. [160] proposed a KG-based approach to
optimize wind turbine assembly sequences using multimodal data and
multi-objective reasoning.

In assembly planning, KG contributes significantly to the automation
and optimization of assembly sequences [104]. Combining KGs with DTs
forms the foundation of knowledge-driven automation in assembly
design and execution. These systems dynamically merge real-time data
with historical information and expert knowledge, enabling assembly

processes to adapt to changes, optimize workflows, and address
real-time challenges [161]. This synergy ensures robust and adaptive
assembly in various scenarios. Additionally, graph embedding tech-
niques are employed to parameterize assembly constraints [67],
bolstering predictive analytics and enhancing efficiency and accuracy in
assembly planning and execution. Customized manufacturing demands
enhanced assembly optimization and refined semantic modelling of
assembly processes. Key challenges in this domain include inconsistent
modeling of assembly constraints, particularly when handling both
geometric and non-geometric data, the underutilization of historical
data, variability in processes across different products, and the absence
of a unified framework to integrate geometric constraints and elements.
To meet the requirements of customized manufacturing environments,
Bao et al. [125] addressed the challenges of inconsistent assembly
constraint modelling and underused historical data. They introduced a
node2vec graph embedding method to standardize vector representa-
tions of assembly constraints in an assembly topology network. This
approach enabled better prediction of assembly work step durations,
integrating these predictions into a unified framework that effectively
combines geometric and non-geometric data, as shown in Fig. 9.

There is a growing trend in utilizing KGs to optimize workflows and
enhance human-robot collaboration (HRC) in assembly design and
execution. KG is being increasingly integrated into HRC environments to
create more dynamic, safe, and efficient collaborative systems. These
systems consider various human factors such as ergonomics, expertise,
and physiological state. Research studies demonstrated the application
of KGs in improving human-machine interactions, enhancing assembly
quality, and reducing defects in large-scale projects [162,163]. Various

Fig. 8. The proposed schema of product-design KG. This framework consists of three main modules, including classifying node types and defining relation types,
achieving 3D shape classification and global feature extraction, and storing product-design KG [158].
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studies underscored the shift towards a more human-centric approach in
collaborative robotics within assembly design and execution, such as
mutual cognitive HRC [98], proactive HRC [164], and self-organizing
multi-agent HRC [52]. Similarly, product disassembly, an essential
aspect of maintenance and recycling, benefits from the integration of
human skills and robotic automation. KGs provide a structured approach
to managing knowledge and relationships, enhancing HRC in disas-
sembly processes. The applications of KGs in collaborative disassembly
illustrated improvements in efficiency by providing knowledge-based
recommendations for HRC disassembly tasks [145], suggesting a shift
towards more adaptive, dynamic, and human-centred disassembly pro-
cesses [165].

4.1.3. Other design guidance and enhancement
KG is employed in manufacturing to structure and extract knowledge

from academic resources, enabling computational solutions for domain-
specific problems. It converts mathematical expressions into solvable
equations, enhancing problem-solving in manufacturing, such as
computing solutions for material removal rate and surface roughness
[166]. In design information retrieval, KG offers systematic and
comprehensive search methods, reducing the likelihood of missing
critical information and cutting down the time spent on manual
searches. It provides potential solutions and alternatives, such as auto-
mated patent searches [56,167], facilitating efficient and informed
decision-making in manufacturing design processes.

Merging ML models with KG significantly improves decision-making
in manufacturing processes by integrating historical data for a richer

knowledge base. This combination allows for predictingmachining rules
[53], forecasting assembly work step durations [48], and automating
the generation of process plans [62], enhancing the predictive accuracy
of ML models and leading to more precise and informed decisions [62].
Moreover, incorporating KG into manufacturing analysis [168] and cost
estimation [150] leads to the automatic and semantic alignment of
product features with line capabilities, providing a framework for
early-stage manufacturability assessments and cost estimations. The
KG-enabled automation, in areas such as cycle time calculations [168],
reduces the need for manual intervention, thereby streamlining the
estimation process and improving the accuracy and traceability of data.

KGs stand at the forefront of revolutionizing engineering design
within SM, addressing a arrange of applications from product concep-
tualization to assembly optimization. KGs enhance engineering design in
SM by structuring domain-specific knowledge, thereby enhancing
decision-making and optimizing manufacturing operations. Concisely,
KGs integrate scattered knowledge sources with real-time data in
fostering an adaptive, efficient, and innovative design landscape,
enabling manufacturers to navigate the complexities of modern pro-
duction with greater precision and foresight. Aided by ML and DTs, KGs
merge historical insights, current data, and expert understanding to
form a cohesive knowledge base for predictive analytics. Moreover, by
empowering advanced analytics, KGs equip manufacturers to predict
potential inefficiencies, optimize resource utilization, and ensure
manufacturing processes are both efficient and adaptable to changing
demands. For example, KGs are instrumental in bridging the gap be-
tween human expertise and robotic precision and ensuring dynamic

Fig. 9. The structure and result of the third work step in hierarchical assembly process modelling. It accentuates the merging of parameterized constraints, derived
via node2vec, with the essential work steps details like resources and fastening elements [125].

Y. Wan et al.



Journal of Manufacturing Systems 76 (2024) 103–132

118

collaborations that enhance operational flexibility. Through the syner-
gistic interaction of KGs with advanced analytics, the precision and
foresight in engineering design processes mark an advanced step to-
wards a more integrated, intelligent, and responsive manufacturing

ecosystem.

Fig. 10. The flowchart of the proposed IKG-based MARL approach. This framework consists of two main modules, including constructing an IKG-based self-con-
figurable manufacturing network and a MARL-enabled self-optimized manufacturing process [6].

Y. Wan et al.



Journal of Manufacturing Systems 76 (2024) 103–132

119

4.2. Scheduling in manufacturing using KG

KG improves manufacturing scheduling by mapping intricate con-
nections between machines, tasks, and materials. This helps manage
dependencies and optimizes resource use. Setting up a KG for scheduling
involves identifying important elements and their interrelations, gath-
ering necessary data, designing an appropriate framework for sched-
uling, enhancing resource use, adjusting schedules as needed, and
maintaining track of processes in manufacturing.

4.2.1. Resource configuration and allocation
In manufacturing, effectively setting up and assigning resources,

such as machines, robots, and materials, is crucial for production goals.
Resource configuration involves choosing the right components and
defining their abilities, while allocation optimizes these resources for
tasks. Conventional methods, relying on mathematical models and
heuristics, overlook the complex interplay between resources. KG offers
solutions to structure detailed data and reveal hidden connections for
resource configuration and allocation, as exemplified in aerospace
machining workshops [4] and crane configurations [46]. Moreover, KG
facilitates optimal allocation and utilization of resources, ensuring
components are used to their fullest potential, enhancing operational
cost-effectiveness, and ensuring balanced operational loads [65].

KGs enhance manufacturing systems to autonomously optimize and
adapt by offering resilience and flexibility in the face of unpredictable
challenges. The capabilities are important in environments where
operational conditions can undesirably change, necessitating timely and
informed responses. For instance, studies have demonstrated the
application of KGs in scenarios ranging from navigating sudden demand
fluctuations [111], to addressing unforeseen equipment failures [169]
and mitigating supply chain disruptions [170]. In autonomous opera-
tions, KGs facilitate advanced interactions between humans and ma-
chines [171], as well as among robots themselves [136], ensuring
efficient collaboration and process optimization even under uncertain
conditions [126]. Zheng et al. [6] advanced towards a self-configurable
and self-optimized manufacturing system by integrating IKG and
multi-agent reinforcement learning (MARL). The proposed framework
was conducted with four UR5 robots in a compact workspace using the

PyBullet simulator. The system comprises an IKG-based network for
semantic exploration of manufacturing knowledge and a MARL
component for refining agent trajectories and policy sharing in Fig. 10.
Three key parts were involved in Fig. 11: constructing and querying the
IKG, optimizing trajectories with IKG-driven MARL, and updating the
IKG with learned solutions. In the experimental studies, the robots
navigated and coordinated tasks while avoiding collisions, demon-
strating the potential of KGs in enhancing autonomous manufacturing
operations.

Integrating KG with DT provides real-time reflections from physical
operations for a comprehensive view of manufacturing systems,
enhancing autonomous decision-making and strategic human interac-
tion [170]. Mo et al. [60] developed a reconfiguration framework that
synergizes DTs, KGs, and modular AI to enhance manufacturing systems.
Applied to a cell with multiple robots, this framework involves three
stages: capability matching, layout optimization, and configuration
updates. This method achieved a 10 % reduction in process time and
allowed for the updating of robot programming to the newly optimized
configuration, demonstrating the effectiveness of KGs in streamlining
manufacturing operations.

4.2.2. Job scheduling
Job shop scheduling, a complex task of allocating diverse jobs across

machines while adhering to operation sequences and machine capac-
ities, faces challenges in finding optimal schedules due to the expo-
nential growth of solution domains with added jobs and machines.
However, traditional heuristic methods often fall short in precision. KG
is effective in capturing the intricacies of scheduling entities and their
interrelationships, laying the groundwork for learning models to un-
cover optimization paths, as demonstrated by scheduling accuracy and
efficiency in Bosh manufacturing data [153]. In KG with ML for job shop
scheduling, efforts have focused on supervised learning and reinforce-
ment learning (RL) for policy development. However, generalizing these
approaches to unfamiliar scenarios remains challenging, often requiring
retraining for new problem sets. Park et al. [69] developed a framework
combining GNNs and RL, treating scheduling problems as sequential
decision-making tasks. Their model minimized unfinished jobs and
makespan and showed superior performance compared to traditional

Fig. 11. The core procedure of an illustrative example. The core procedure consists of four main steps, including IKG foundation, IKG query, MARL optimization, and
IKG refinement [6].
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and previous RL methods. Seito et al. [172] combined deep RL with
GCNs to optimize scheduling involving 50 jobs and 10 machines. The
model found optimal solutions by training iteratively on 128 problems,
highlighting the integration of KGs and ML in structured problem
optimization.

Adaptability and resilience in manufacturing scheduling are essen-
tial, especially when dealing with unforeseen events such as machine
faults, to minimize disruptions and maintain an optimal production
flow. Liu et al. [114] developed a fault KG combined with a Monte Carlo
search to create resilient production schedules incorporating machine
fault and maintenance information from DTs, improving real-time
adaptability and reducing downtime. Rožaneca et al. [58] employed
KGs in cognitive twins to augment DTs in automotive plants, enabling
them to forecast production, provide decision alternatives, and contin-
ually refine recommendations based on user feedback, facilitating a
closed-loop learning process.

4.2.3. Other tasks in scheduling
Intralogistics systems, which manage complex internal material

flows in manufacturing, require feasibility feedback to avoid costly
design changes. This feedback depends on aligning product needs with
logistics resources and connectivity. KG is key in evaluating
manufacturing systems feasibility and offering recommendations
considering cost, quality, and resource availability. Ocker et al. [173]
demonstrated the KG in automatedly assessing feasibility for
manufacturing. They employed geometric reasoning, mapping re-
sources, conveyors, and zones to evaluate production feasibility against
mass and resource availability constraints. Zhao et al. [174] imple-
mented a KG platform to combine different ontologies for a machining
request. This approach enabled them to match features, verify feasi-
bility, and match functions through task decomposition, leading to
equipment recommendations based on cost and quality of service.
Moreover, combining KG and DT enhances data interoperability and
operational optimization by real-time monitoring and predictive
modelling [140]. Jia et al. [105] developed a KG-based DT model for
real-time monitoring and production optimization, linking machining
indicators to tool wear. Moreover, KG manages responses to events in
power dispatching, maintaining logical flow and offering solutions by
integrating multi-source data and protocols [175].

KGs enhance manufacturing scheduling by mapping the complicated
webs of relationships among key entities, such as machines, tasks, and
materials. The structured representation of KGs adeptly manages in-
terdependencies and optimizes the allocation of resources for simpli-
fying the entire scheduling process. By integrating with ML algorithms,
KGs have shown remarkable effectiveness in not just simplifying job
scheduling amidst growing task complexities but also extending beyond
traditional scheduling to intralogistics and power dispatching. The
adaptability of KGs to diverse manufacturing scenarios fosters intelli-
gent, data-driven decision-making across the manufacturing spectrum.
Furthermore, KGs combined with DTs are instrumental in predictive
scheduling to forecast and adapt to changes for minimizing downtime
and enhancing operational flexibility. The multifaceted capabilities of
KGs ensure that manufacturing scheduling is not only more efficient and
informed but also adaptable, which makes a cornerstone for achieving
agility and efficiency in the scheduling environments of SM.

4.3. KG on quality control and management

In Industry 4.0, a surge in machine data has emerged by
manufacturing digitization, often stored in isolated, heterogeneous silos,
making integration a major challenge. For example, Bosch plants report
that 70–80 % of effort is spent on data integration, overshadowing the
20–30 % for analysis, primarily due to manual and non-standardized
methods [176]. This fragmented data landscape hinders a unified
view of manufacturing systems, affecting product analysis. KG offers a
solution by enabling semantic integration for quality characterization,

demonstrated in diverse manufacturing contexts, such as surface
mounting [176], aerospace [47,89], welding quality [129,177], plastic
injection moulding [178–182], and custom apparel production [111].
Moreover, KG improves QCM by consolidating data, identifying pat-
terns, aiding decision-making, predicting quality issues, facilitating root
cause analysis, and ensuring traceability, thanks to its ability to repre-
sent complex connections across various environments.

4.3.1. Defect detection and quality prediction
KG, in conjunction with ML models, enhances manufacturing by

modelling the complex links between product features, process settings,
and defects. This integration aids in the early detection of potential
problems, allowing for accurate defect classification [183] and real-time
predictions [105], enabling proactive QCM measures and enhancing
product quality and resource efficiency [134,178]. ML techniques
combined with KG also provide sophisticated parameter adjustment in
manufacturing [123]. This collaboration ensures continuous process
optimization and prompts the correction of any deviations from the
desired quality standards [184]. Liu et al. [185] utilized DT and KG for
real-time QCM during aerospace component machining, monitoring
quality across diverse scales (such as macro, meso, and micro scales in
Fig. 12) to ensure that quality is maintained at every manufacturing
level. Xia et al. [155] developed a hyper GNN that uses GCNs and RNNs
to predict material removal rates in semiconductor manufacturing,
specifically in the chemical mechanical planarization process, by ana-
lysing temporal dynamics and component relationships with a
14-feature dataset. KG establishes a solid basis for models that conduct
complex reasoning, improving defect detection and prevention strate-
gies. For example, KGs can use historical data (e.g., process data and
inspection data) and unstructured text linked to defects to infer potential
quality issues under similar conditions [49].

KGR, empowered by providing traceability, and knowledge reuse
through accumulated experiences, has the ability to recognise the de-
fects and predict product qualities [186]. In manufacturing, where new
defect types continuously emerge, zero-shot surface defect recognition is
increasingly important. KG, when applied to zero-shot learning, signif-
icantly improves the ability to recognize and respond to previously
unseen defects. Li et al. [122] developed a KG to detect unseen defects
for zero-shot surface defect recognition. Their method demonstrated on
a real-world printed circuit board defect dataset, incorporates an image
encoder, a class encoder, and a classifier in Fig. 13. The class encoder
effectively bridges the gap between known and new defect classes using
the KG, ensuring classification of new defects during training and
testing. This approach, validated through experiments with different
training and testing sets, showed accuracy improvements. The key
advantage of this method is its scalability and adaptability to new de-
fects in manufacturing systems, reducing the need for continuous
re-training of the models.

4.3.2. Root cause analysis
KG is increasingly utilized in root cause analysis for QCM within

manufacturing. It integrates various data types by identifying connec-
tions between products, quality issues, and potential causes throughout
the production line, such as experience knowledge and real-time ma-
chine data [120]. This integration enhances query efficiency across
multiple domains [177], optimizing processes and improving quality
management [129]. Zhou et al. [135] illustrated using KGs for complex
queries in quality management, such as defect rate assessments and
providing insights into defects, their causes, and solutions. Another
application, demonstrated by Meyers et al. [187] in CNC machining,
explored an adaptive strategy that reduces measurement expenses by
correlating temperature (among other process parameters) with resul-
tant quality. This strategy underscores the value of understanding latent
correlations in predicting quality issues and refining manufacturing
systems.

Incorporating UX and ensuring ongoing system refinement are
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important for maintaining the accuracy and efficacy of quality man-
agement systems within SM. By prioritizing user-centric design princi-
ples, the QCM systems become not only more accessible but also more
effective at knowledge extraction and application, which meets the re-
quirements of both technical and non-technical users. Zhai et al. [144]
improved quality management in auto parts manufacturing by devel-
oping a four-layer KG, and used the existing MES data to cut investi-
gation time by 30 % in two months. Continuous system refinement,
driven by UX, emphasizes the importance of iterative development and
user engagement in successful quality management. Qiu et al. [133]

enhanced the KG utility by incorporating NLP, using BERT to extract
entities and relationships from queries. The proposed approach simpli-
fied the information retrieval in KGs and demonstrated NLP in
improving user interaction with complex systems for refining quality
optimization processes. The user-supported KGs not only improve the
UX but also contribute to the overall operational processes, where
quality management evolves with technological advancements and user
needs.

KGs play an important role in QCM by systematizing fragmented
data to depict intricate relationships between product features,

Fig. 12. Three scales in assessing product quality, including (1) macro scale (size error >1 mm), (2) meso scale (0.01 ≤ size error ≤1 mm) and (3) micro-scale (size
error <0.01 mm) [185].

Fig. 13. The framework of the proposed model contains three modules: (1) an image encoder, (2) a class encoder, and (3) a classifier to forecast the defect
label [122].
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manufacturing processes, and potential defects. Unifying and struc-
turing the fragmented data provides a holistic view of quality manage-
ment processes for comprehensive monitoring and analysis. Through the
incorporation of ML techniques, KG-based models are employed in the
early detection of defects, which facilitates thorough root cause analysis
and the formulation of precise corrective measures. Moreover, the syn-
ergy of KGs with advanced technologies such as NLP and DTs signifi-
cantly improves the accessibility and applicability of KGs in cutting-edge
quality management systems, which transforms QCM from a tradition-
ally reactive to a proactive one.

4.4. KG for supply chain management

KG boosts SCM by mapping intricate entity links, offering compre-
hensive increased visibility, and spotlighting supply chain vulnerabil-
ities. They aid inventory optimization and demand forecasting with
multi-source data for ML, centralize key supplier and customer data,
and enhance collaboration through shared understanding.

4.4.1. Supply chain visibility and risk surveillance
Supply chain visibility is essential for informed decision-making and

proactive operations management by integrating data across the supply
chain for clearer insights. It helps identify potential bottlenecks, monitor
material flow, and understand disruptions, improving efficiency and risk
management. Deng et al. [188] created a diverse SCM corpus for an
event logic KG. The generative adversarial network (GAN) model with
active learning boosted entity recognition in SCM, achieved high accu-
racy even with limited labelled data, and aided decisions through KG
visualizations.

Risk management in supply chains is important for minimizing dis-
ruptions and costs. It involves proactively identifying and managing
risks like supplier reliability and material shortages. However, tradi-
tional risk management often overlooks the complex interdependencies
in supply chains. For example, existing techniques for supply chains
focus only on predicting supplier-buyer links, ignoring multiple risk
factors beyond this single relationship. Using KG to represent supply
chain data allows for complex, multi-dimensional queries beyond basic
supplier-buyer relationships. Moreover, existing supply chain data often
relies on voluntary supplier sharing, which can be inaccurate or
incomplete. Research focuses on automated statistical methods to
deduce hidden supply chain knowledge without depending on data
sharing. Elson et al. [17] addressed this by using GNN models in KGR to
reveal hidden supply chain risks and predict obscured links. Their
approach, tested in automotive and energy sectors, improved supply
chain insights and worked effectively even with imbalanced links.

4.4.2. Demand forecasting and other applications
Demand forecasting in SCM predicts future demands by analysing

data from sales, market trends, etc., to inform inventory and production
planning, optimizing resource use, cost-efficiency, and customer satis-
faction. Integrating KG with AI models like neural networks and active
learning enhances decision-making and forecasting accuracy by
ensuring depth and transparency in explanation [189–191]. Some ap-
proaches also incorporate user-interactive systems and feedback loops to
continually refine KGs and adapt decision strategies based on user input
[58,192]. Through the integration of KGs, decision-making in SCM is not
isolated but rather holistic [193,194], considering various influential
factors, external data, and real-world scenarios, which is vital for
maintaining an agile and resilient supply chain. Liu et al. [195] and Rolf
et al. [196] demonstrated how integrating data from diverse domains
via KGs can optimize production aspects and enhance collaborative
decision-making in SCM. They emphasized the importance of
graph-based AI for dynamic adaptation and advocated for incorporating
external data sources to broaden the decision-making perspective.

In manufacturing, production logistics (PL), which accounts for most
production time, faces issues like spatial disorganization and timing

mismatches among resources like staff and vehicles, leading to delays
and inefficiencies, especially in large industrial settings. Using KG and
DTs in PL allows for flexible adaptation and reconfiguration of supply
chains, offering a detailed perspective for making decisions in evolving
situations. Zhao et al. [59] introduced a dynamic spatial-temporal KG
(DSTKG), which leverages data from IoT sensors and deep neural net-
works to enhance resource allocation in manufacturing logistics. The
DSTKG-based framework comprised IoT data generation, processing for
DT mapping, KG construction, and optimization in Fig. 14(a), which
frames resource allocation as a graph algorithm challenge to identify the
most efficient strategies within given constraints. They tested this
approach in a large industrial park covering various manufacturing
plants in Fig. 14(b). The DSTKG led to significant improvements,
including quicker data collection, higher vehicle utilization (87 %), and
reduced waiting times and travel distances by 25 % and 20 %,
respectively.

KGs describe the intricacies of supply chains to bolster the resilience
and operational efficacy within the SCM of SM. KGs markedly enhance
the transparency of SCM, facilitate more informed decision-making, and
improve risk management strategies. Combining KGs with ML technol-
ogies improves the accuracy and efficiency of demand forecasting in
SCM. The synergy of KGs and ML optimizes resource allocation and
utilization in SCM processes to better meet market demands and mini-
mize wastage. Additionally, by harmonizing diverse data sources, KGs
reveal potential bottlenecks and provide predictive insights into likely
supply chain disruptions in fostering a proactive rather than reactive
management approach. Informed by IoT data, the application of KGs
introduces a dynamic nature to resource allocation for enhancing
logistical operations and overall production efficiencies. Incorporating
DTs and IIoT with KGs and ML deepens the level of integration and
interconnectivity within SCM systems, which becomes more agile and
robust, and capable of predicting and mitigating potential disruptions
before they impact the manufacturing workflow. The versatility of the
multifaceted and integrated systems facilitates a seamless, real-time
flow of information and decisions across the supply chain network and
enables manufacturers to adapt quickly to changing market conditions
and operational challenges.

4.5. Applications of KG for PdM

Manufacturing companies use advanced maintenance systems to
reduce downtime and improve asset availability. However, managing
large volumes of structured and unstructured reports poses challenges.
While NLP and ML can extract textual patterns, human expert validation
limits full automation. KG advances PdM by mapping system parts and
faults, integrating various data types, enabling diagnostic logic, auto-
mating fault detection, and ensuring traceability. This process involves
identifying crucial elements, gathering data, creating schemas, and
developing algorithms for effective PdM.

4.5.1. KG in diagnosis
KGs are constructed in PdM to integrate data across domains,

providing a comprehensive view of PdM in various settings. Examples
include thesaurus-guided maintenance in SM [197], power equipment
[75,141] and intelligent power-plant management [86, 142, 198], wind
turbine management [199], process safety in the chemical industry
[77], flotation processes [57], robot transmission system fault diagnosis
[90], and semiconductor manufacturing maintenance [73]. KG in PdM
maps complex system relationships and states to enhance diagnostics by
incorporating real-time and historical data. For example, rule-based
reasoning is used to quickly pinpoint probable causes of anomalies
[130], improving fault diagnosis speed and accuracy. Recent advance-
ments have optimized KG construction for maintenance, adding se-
mantic queries to refine the diagnostic process [54]. Martinez-Gil et al.
[143] and Cui [200] demonstrated, KGs have transitioned from infor-
mation repositories to tools capable of dynamic linking and complex
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Fig. 14. (a) The four-layer architecture of the proposed DSTKG-based approach. These layers involve PL resources in an IoT-enabled environment, DT spatial-
temporal mapping, DSTKG modelling, and graph algorithm-based allocation; (b) The on-site scenario used for the case study. The park, a large-scale
manufacturing environment with complex indoor-outdoor spaces, has multiple plants for components, outdoor areas, and indoor production facilities [59].
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reasoning for providing in-depth insights.
Recent studies have integrated ML with KG to improve diagnostic

accuracy in PdM, particularly in detecting faults in direct-drive perma-
nent magnet synchronous motors [201] and rolling bearings [202]. ML
algorithms effectively process large data sets, yielding insights that
enhance traditional diagnostic methods, significantly boosting fault
detection and diagnosis accuracy [203]. Lv et al. [201] and Emma-
nouilidis et al. [204] emphasize the need for customized fault diagnosis
solutions tailored to specific equipment types and failure modes. This
approach ensures more targeted management of faults. Emmanouilidis
et al. [204] also underline the growing trend of collaborative
human-machine diagnostic systems, where the continuous enrichment
of KGs with ML insights and human expertise improves the accuracy and
reliability of fault identification and resolution.

Moreover, an increasing number of studies, including those by
Martinez-Gil et al. [143] and Liu et al. [202], emphasize enhancing the
explainability and transparency of diagnostic systems. They utilize
SPARQL queries and detailed visualizations to provide clear diagnostic
insights, moving away from the opaque nature of traditional ML models.
A holistic approach to fault management, integrating data acquisition,
analysis, visualization, and alerting into a cohesive system, is also
evident in the works of Jilg et al. [205], Liang et al. [128] and
Martinez-Gil et al. [143], ensuring efficient and seamless fault detection,
diagnosis, and resolution.

4.5.2. KG in prognosis
Combined with time-series sensor data and ML algorithms, KG en-

ables predictive analysis to forecast future failures in manufacturing.
This approach uses structured knowledge from KGs to predict compo-
nent time-to-failure and understand potential failure consequences,
aiding proactive maintenance planning. The emphasis on real-time and
adaptive monitoring is highlighted in the works of Cui [200], Siaterlis
et al. [206], and Weckx et al. [184]. Integrating KG, DT, and advanced
ML marks a significant advancement in PdM and real-time monitoring.
This blend creates an interconnected ecosystem for accurate fault
diagnosis and operational efficiency. Jia et al. [105] used KG in DT
modelling for shop floor operations, focusing on machine tool temper-
ature and wear predictions. The system combined simulation and
data-driven methods for real-time temperature monitoring and predic-
tion. Another system comprising data acquisition, processing, and
output components was developed, employing sensor signals and a
ResNet-based algorithm for tool wear prediction.

Integrating KG with complex neural networks achieves unprece-
dented fault prediction and diagnosis efficiency [80], real-time imme-
diate response to emerging issues [128], and transitions from reactive to
proactive fault management [206]. The proactive maintenance
approach highlighted in these studies represents a shift in maintenance
operations, evolving from traditional time-based to intelligent,
condition-based maintenance. This shift, aimed at minimizing unex-
pected failures and maximizing operational efficiency, is exemplified by
Weckx et al. [184] through continuous monitoring and proactive fault
management in drilling processes. The adaptability and versatility of
KG-based models demonstrated in these studies are crucial in diverse
manufacturing contexts. Wan et al. [207] employed KGs to predict strip
breakage in an imbalance dataset.

4.5.3. PdM decision-making
Maintenance planning is common in PdM and benefits from KG

organizing relevant data. KG aids decision-making in PdM by structuring
system data for machine interpretation, allowing assessment of various
maintenance actions based on current and forecasted component states.
However, KG usually has missing links. Xia et al. [100] addressed this
with their ACRGCNmodel, predicting these missing links and enhancing
maintenance recommendations. This model, integrated with a
question-answering system, efficiently handles queries and provides
practical recommendations. Advanced algorithms like GNNs combined

with KGs boost PdM, especially in complex maintenance scenarios [99].
KG also updates in real-time with new data and maintenance updates
within DT, offering dynamic support for PdM [114]. KG also integrate
business rules, constraints, and objectives, facilitating automated or
semi-automated PdM decisions. Jiang et al. [50] implemented advanced
text processing and Bayesian reasoning for rapid, accurate fault diag-
nosis in sensitive environments like nuclear power plants. The strategic
combination of various technologies creates a harmonious and inter-
connected operational ecosystem, such as Bayesian reasoning networks
[87], Monte Carlo tree search algorithm [114] and CNN [114], signifi-
cantly boosting operational efficiency in industrial settings. Addition-
ally, a shift to competency-based maintenance planning highlights the
importance of strategic human resource allocation in boosting mainte-
nance efficiency [73], underscoring the need for focused and tailored
human resource management in industrial maintenance. Wang et al.
[208] proposed a KG-driven PdM framework for industrial robots for
production stability in intelligent manufacturing. In Fig. 15, the pro-
posed approach focused on extracting PdM-relevant knowledge to
construct KGs from historical industrial robot operation, fault, mainte-
nance and bill of material data, and employ KG-driven PdM scheme to
support PdM planning and decision-making. In the constructed KG,
multimodal industrial robot data and domain knowledge are encoded to
enable data driven PdM.

PdM in SM has been significantly affected by KGs: improving diag-
nosis, prognosis, and strategic decision-making processes. KGs facilitate
automated fault diagnosis and foster predictive analytics by revealing
complex relationships among system components, operational states,
and potential failure modes. The capabilities of KGs are particularly
important in modern manufacturing, where the minimization of
downtime and prevention of unplanned outages directly correlate with
productivity and profitability. Integrating KGs with ML and time-series
data analysis, predictive models forecast potential equipment failures
with remarkable accuracy. This integration not only predicts the wear
and tear of machinery but also prescribes proactive maintenance
schedules for effectively minimizing the risk of unexpected breakdowns.
Moreover, the symbiosis of KGs with DTs enhances the dynamism and
responsiveness of maintenance strategies. By reflecting on real-time
changes and simulating various operational scenarios, DTs informed
by KGs enable the execution of optimal maintenance decisions aligned
with current conditions, constraints, and future projections. The stra-
tegic use of KGs in PdM offers an opportunity to transform traditional
reactive maintenance practices into a proactive, intelligence-driven
approach. KG-supported PdM maximizes operational efficiency, ex-
tends equipment lifespan, and sustains manufacturing throughput,
marking a significant leap forward to a more adaptive, resilient, and
efficient manufacturing landscape.

5. Prospects: challenges and opportunities

Incorporating insights from Section 4, KGs play an important role in
enhancing various aspects of SM. By offering structured and inter-
connected data representation, KGs significantly improve decision-
making, resilience, and innovative approaches in engineering design,
scheduling, QCM, and SCM, extending into PdM. However, the tech-
nological evolution within SM introduces ongoing challenges and new
opportunities for the application of KGs.

Fig. 16 shows a strategic vision for advancing SM through the
convergence of KGs with cutting-edge methodologies. It builds on the
fundamental phases outlined in Fig. 6, highlighting a symbiotic pro-
gression from knowledge extraction and KG construction to dynamic
applications within intelligent manufacturing ecosystems. Specifically,
it depicts seven key prospects for KG-aided systems in SM, each linked to
its underlying motivation, cohesively presenting the rationale for ex-
plorations. In the current landscape of SM, technology advancements
such as LLMs, multi-modal KG (MMKG) and explainable AI (XAI) are
gaining attention. Especially the LLMs, underpinned by deep learning
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architectures, have demonstrated their capabilities in NLP, knowledge
extraction, and decision support. Despite the broad applicability of
LLMs, incorporating LLMs into manufacturing presents unique chal-
lenges due to the complex data and the need for prompt decision-making
in SM. However, the synergy between LLMs and KGs presents a prom-
ising way to significantly boost the accuracy, efficiency, and adapt-
ability of manufacturing systems by combining the extensive data
processing abilities of LLMs with the structured knowledge representa-
tion of KGs. The potential of KGs is magnified when synergized with
other innovative technologies in SM, especially LLMs. The expected
integration aims to address the practical challenges of applying KGs in
SM, such as scalability issues, integration with existing infrastructures,
and the need for user-centric interfaces and experiences. Strategies for
overcoming these challenges include adopting distributed graph data-
bases for scalability, employing middleware for integration with legacy
systems, and enhancing user interfaces for greater accessibility and
utility in SM applications. The advancements of KGs combined with
other technologies pave the way for a more intelligent, efficient, and

adaptable manufacturing future, which emphasizes the necessity for
continuous exploration and adaptation to the evolving industrial
landscape.

5.1. KG-Enhanced LLM: Elevating prompt engineering as knowledge
engineering in SM

In SM, the collaboration between KGs and LLMs revolutionises effi-
ciency and innovation. Specifically, this synergy significantly impacts
the automated prompt engineering (APE) field [209]. Integrating LLMs
with the structured knowledge from KGs brings a transformative
change. This combination enhances the accuracy and reliability of
LLM-generated content, serving as a vital check and balance and
improving interpretability and functionality [210]. LLMs in conjunction
with KGs for intelligent manufacturing match traditional knowledge
expressions, where KG acts as a structured representation without LLMs.
This collaboration predominantly enhances the training data, address-
ing the black-box nature of LLMs, which often lack in capturing factual

Fig. 15. A knowledge-based PdM framework: 1) data acquisition: real-time data acquisition, 2) data preprocessing to address the problem of missing values,
abnormal values, and data inconsistency, 3) fault prediction based on KNN-LSTM, 4a) KG construction and KG-based strategy for reasoning failure cause and
maintenance decision, 5) PdM system [208].
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knowledge. The KG serves as a "knowledge base in the loop," signifi-
cantly contributing to APE, or prompt engineering as knowledge engi-
neering [211]. This includes designing algorithms and architectures and
providing process blueprints and guidance for knowledge engineers to
use generative AI tools productively. The integration holds substantial
promise as the main approaches still require human intervention for
writing prompts. KG maintains its importance in auto prompt technol-
ogies by continually refining knowledge for LLM integration. This syn-
ergy between KG and LLMs fosters efficient, reliable and human-centric
SM solutions, enabling nuanced knowledge engineering and aiding the
effective use of generative AI in manufacturing.

This synergy of KGs and LLMs not only mitigates the challenges
associated with the inherent hallucination of LLMs but also paves the
way for more intuitive, user-friendly interfaces that can interpret and
respond to natural language queries with precision by leveraging the
structured, rich knowledge embedded within KGs, such as transforming
texts into Cypher query language. Moreover, the continuous refinement
of KGs plays an important role in sustaining the integration efficacy of
KGs and LLMs, ensuring that LLMs remain aligned with the evolving
knowledge of SM. The continuous enhancement of LLMs highlights their
critical role in supporting and advancing the capabilities of KGs within
SM. The result is a robust, adaptable framework that supports efficient
decision-making, innovative problem-solving, and simplified opera-
tions, all while remaining grounded in a user-centric approach that
emphasizes accessibility and practical utility.

5.2. LLM-Aided KG: Automating and fortifying KG construction,
development, and maintenance

LLMs and KG interplay is vital in automating and reinforcing KG
construction, development, and maintenance. LLMs address the
complexity of KG construction by effortlessly extracting and matching
entities from multiple sources, including structured, semi-structured,
and unstructured data [210]. Using LLMs facilitates efficient knowl-
edge mining, such as entity resolution and linking prediction, elimi-
nating the need for various task-specific modules and mitigating the
challenges of traditional methods [211].

LLM-aided KG technology lies in its ability to extract knowledge from
tables and texts, streamlining the processes of named entity recognition,
relation extraction, event extraction, and semantic role labelling [210].
Despite challenges such as effective information extraction from lengthy
texts and ensuring high coverage, the power of LLMs ensures
commendable performance even with small samples. Moreover, LLMs
bolster the ontology alignment and refinement process. LLMs assist in
extracting contextual information from input texts, inductive reasoning
for generating new rules, and understanding lexical information to co-
ordinate synonyms and polysemy [210]. This synergy between LLMs
and KG offers a more automated, accurate, and comprehensive approach
to overcome the limitations of traditional KG construction [209]. The
assistance also enhances the quality of KGs, making them more robust
and reliable for various applications in SM [209]. Briefly, this cooper-
ation not only automates the traditionally labour-intensive tasks but also
infuses a higher degree of accuracy and reliability in KGs, ensuring
enhanced functionality in the dynamic field of smart manufacturing.

Fig. 16. A roadmap of prospects for enhancing SM by KGs with emerging technologies.
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Despite the existing challenges in utilizing LLMs for KG enhancement,
the collaboration between these two technologies is revolutionizing the
landscape.

5.3. KG-assisted multisensory data fusion for complex manufacturing
systems

In complex manufacturing, KG effectively integrates multisensory
data, surpassing methods like ontologies in computational efficiency
and accessibility for non-experts [212]. This underscores the ability of
KG to tackle the challenges of data comprehensiveness and under-
standability in the manufacturing sector. KG plays a crucial role in
manufacturing by organizing resources and improving interactions be-
tween humans and machines, as well as between machines themselves.
This approach boosts cognitive intelligence in manufacturing systems,
leading to more efficient and synergistic operations. The effectiveness of
KG in integrating multisensory data is confirmed by industry feedback,
demonstrating their practicality and relevance in blending advanced
technology with real-world applications.

While KG in multisensory data fusion has shown significant promise,
challenges such as the subjective nature of knowledge-based compo-
nents and the complexity of experimentation are present. However, the
ongoing efforts to develop innovative, accurate methodologies are
making headway in addressing real-world manufacturing problems.
This progress, despite its challenges, lays a solid foundation for future
advancements in SM.

5.4. Establishing multimodal KGs and MMKG applications under
manufacturing context

Compared to KG-assisted multisensory data fusion which primarily
integrates various sensor data, MMKGs further focus on a wider array of
data types, such as text, images, and sensor data. Establishing MMKGs
signifies a significant advancement in enhancing manufacturing by
combining various data types, such as text, images, and sensor data
[213]. This approach unifies fragmented information, offers a more
comprehensive and coherent knowledge representation, promotes
interdisciplinary work, and drives innovation in manufacturing [213,
214].

Despite their potential, the deployment of MMKGs faces challenges
in acquiring high-quality multimodal data and extracting contextual and
implicit knowledge. Moreover, fusing diverse knowledge into a unified
graph and integrating it with existing manufacturing systems remains
complex, such as multi-modality entity alignment. The evolution of
MMKGs in manufacturing will largely depend on enhancing automated
construction and bolstering human-machine collaboration. Using LLMs
for automated MMKG construction is a promising way [211]. This
strategy is poised to simplify the integration process, address prevailing
challenges, and propel the manufacturing sector towards heightened
innovation and integration.

5.5. KG for hybrid physics-based and data-driven models in SM

In SM, blending physics-based mechanisms with data-driven models
is a transformative approach to enhance the credibility and interpret-
ability of intelligent decision-making systems. Traditional intelligent
decision-making systems often neglect the practical physics mechanisms
[215], resulting in a comprehensive understanding and application gap
in SM scenarios.

Utilizing KG in this landscape can be a promising approach in this
context. KG offers a structured framework to analyse production data
from physical workshops and simulation data from digital workshops
[216]. By incorporating KG, the interplay between real-time informa-
tion from physical workshops and simulation models of DTs becomes
seamless. It facilitates the mapping and interlinking of various data
points, providing a holistic view crucial for making informed real-time

decisions. Moreover, KG streamlines the integration of physics-based
and data-driven models in SM [216]. It expedites the construction of
surrogate models for high-fidelity simulations, enhancing system speed
and reducing computation time. This integration fosters a more inter-
connected and efficient SM ecosystem, supporting improved response
rates and real-time decision-making.

5.6. KG quality evaluation directed by manufacturing performance

Refining the quality of KG, guided by manufacturing performance in
SM, marks an expedition of challenges and opportunities. The evalua-
tion of KG quality, influenced by manufacturing performance metrics, is
not just an academic endeavour but a practical stride toward bolstering
the robustness and reliability of KGs in real-world manufacturing envi-
ronments. Improving the structure and relevance of KG in
manufacturing is crucial for their effectiveness in supporting key tasks
[217]. There is a dynamic interplay where KG quality is identified and
refined by manufacturing performance metrics; refined KG then aug-
ments the accuracy and efficiency of manufacturing tasks. A feedback
loop of continual enhancement is created [65]. Creating a tailored
evaluation framework for KG in manufacturing is challenging but
crucial. This process, though demanding, aims to evolve KGs into more
effective tools, enhancing manufacturing performance and fostering
smarter, more efficient processes.

5.7. Higher interpretability enhanced by symbolic knowledge
representation

Enhancing AI systems with symbolic knowledge representation in
the form of KGs is a leap towards a more transparent and understandable
AI landscape. This infusion aligns AI systems more closely with human
conceptualization, making their operations and decisions more trans-
parent and accountable [218]. Embracing KG for structured and sym-
bolic representation of knowledge comes with its challenges in keeping
the right balance between the depth and breadth of explanations. While
ABox facts from KG offer extensive and detailed explanations, they
might overwhelm information. Conversely, TBox facts ensure clarity and
conciseness but may lack in providing a comprehensive view. Moreover,
merging symbolic knowledge into AI systems enhances their reactive
reasoning and causal explanation capabilities, fostering more
context-aware insights [218]. Despite challenges with scalability and
manual knowledge extraction, the trend towards automation in this area
is clear. Unifying symbolic knowledge with AI systems promises to
enhance their transparency, understandability, and accountability,
leading to more ethical and effective AI applications that are
human-centric and inclusive.

6. Conclusions

This review systematically explored the potential of KGs in SM to
offer a comprehensive analysis from theoretical foundations to practical
applications and future prospects. Initially, the critical role of KGs in
addressing the multifaceted challenges of SM was highlighted by illus-
trating the intricate connections between certain challenges in SM and
the capabilities of KGs through a Sankey analysis. Given a survey of
diverse KG technologies from KG construction, updates, and embedding
to fusion and reasoning, the capabilities of KGs were analysed and
summarized to reveal how KGs can be effectively harnessed to address
certain SM challenges, emphasizing the essential research topics and
methodologies needed to make KGs functional in SM. Subsequently, in
examining practical applications, it was discovered that KGs are
important in enhancing the resilience, efficiency, and intelligence of
manufacturing systems in diverse SM scenarios, including engineering
design, scheduling, QCM, SCM, and PdM. However, challenges such as
the integration of multi-modal data sources, incorporating KGs into
existing manufacturing information systems, and developing suitable
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graph-based methodologies still limit the implementation of KGs effec-
tively in SM. Lastly, the key challenges and future directions were dis-
cussed to fully explore the potential of KGs in addressing the
manufacturing-specific issues in SM. The synergy opportunities be-
tween KG technologies and the current advanced technologies were
exploited and discussed to provide potential prospects, including KG-
enhanced LLM, LLM-aided KG, KG-assisted multisensory data fusion,
MMKG, KG for hybrid physics-based and data-driven models, KG quality
evaluation, and KG-based interpretability.

Notably, the advent of LLMs introduces novel potential for KGs by
offering opportunities to enhance the interpretability and efficiency of
APE and paves the way for more nuanced knowledge engineering.
However, the black-box nature of LLMs, combined with the complexities
of KG construction, necessitates advanced methods for the reliability
and accuracy of generated content. The role of KGs in continually
refining the knowledge input to LLMs is crucial, especially as auto-
prompt technologies evolve. It is imperative for future research to
focus on creating tailored KG-supported solutions that address these
challenges, promoting the development of smarter, more adaptable, and
intelligent manufacturing systems. In conclusion, this study demon-
strates the significant promise of KGs in advancing SM. By delving into
the capabilities, practical applications, and emerging challenges of KGs,
this paper paves the way for future investigations to harness the vast
potential of KGs in advancing next-generation SM. The insights achieved
in this study highlight the necessity for continued exploration and the
critical role of KGs in the evolution of SM systems.
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