
Automation in Construction 166 (2024) 105634

Available online 25 July 2024
0926-5805/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Exploring bridge maintenance knowledge graph by leveraging GrapshSAGE
and text encoding

Yan Gao a, Guanyu Xiong a, Haijiang Li a,*, Jarrod Richards b

a BIM for Smart Engineering Centre, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
b Centregreat Rail Limited, Bridgend CF31 2AD, UK

A R T I C L E I N F O

Keywords:
Bridge maintenance knowledge graph
Text encoding
Graph neural networks
Node classification
Link prediction

A B S T R A C T

Knowledge graphs (KGs) are crucial in documenting bridge maintenance expertise. However, existing KG
schemas lack integration of bridge design and practical inspection insights. Meanwhile, traditional methods for
node feature initialization, relying on meticulous manual encoding or word embeddings, are inadequate for real-
world maintenance textual data. To address these challenges, this paper introduces a bridge maintenance-
oriented KG (BMKG) schema and approaches for graph data mining, including node-layer classification and
link prediction. These methods leverage large language model (LLM)-based text encoding combined with
GraphSAGE, demonstrating excellent performance in semantic enrichment and KG completion on deficient
BMKGs. Additionally, ablation studies reveal the superiority of the pre-trained BERT text encoder and the L2
distance pairwise scoring calculator. Furthermore, a practical implementation framework integrating these ap-
proaches is developed for routine bridge maintenance, which can facilitate various practical applications, such as
maintenance planning, and has the potential to enhance the efficiency of engineers' documentation work.

1. Introduction

In recent years, the use of knowledge graphs (KGs) has emerged as a
highly effective tool in capturing the specialized knowledge related to
bridge maintenance. Efforts have been concentrated on automatically
creating bridge ontologies and KGs using natural language processing
(NLP) techniques like named entity recognition [1,2] and relationship
extraction [3,4], but few studies focused on graph data mining after that.
Moreover, there is rarely a KG schema that incorporates both the bridge
design diagram and the practical inspection insights. Additionally,
traditional methods for node feature representations in bridge KGs, such
as manual one-hot encoding or word embeddings like word2vec, have
limitations. The former requires meticulous design for differentiation,
which can be labour-intensive, while the latter is ill-suited to capturing
sentence-level context. Therefore, it is advantageous to develop a bridge
KG schema rooted in practical maintenance, and knowledge mining
approaches by leveraging graph neural networks (GNNs) and advanced
text encoding techniques.

To address these challenges, this study introduces a bridge
maintenance-oriented KG (BMKG) schema by incorporating structural
designs and real-world maintenance reports. It also proposes methods

for node-layer classification and link prediction through inductive
learning and contrastive learning, respectively, in which the text em-
beddings derived from the pre-trained text encoders or large language
modes (LLMs) are innovatively combined with GraphSAGE neural net-
works for data mining on BMKGs.

Using the proposed schema, a BMKG with 188 nodes and 263 re-
lationships was constructed from practical semi-structured bridge in-
spection reports. The above methods were then tested on incomplete
BMKGs, which are generated by randomly removing a certain propor-
tion of links from the original intact one. The experiments demonstrate
that the proposed methodologies can achieve promising performance
and generalizability for node-layer classification and link prediction,
reaching an average test accuracy of 96.51% and an average test AUC of
0.8577, respectively, through cross-validation on the target dataset.
Furthermore, the ablation studies reveal the superiority of the pre-
trained BERT encoder and the L2 distance-based score calculator for
downstream graph data mining tasks on the target dataset.

Finally, a practical implementation framework that incorporates the
above approaches is developed for effective bridge maintenance. This
framework cannot only mitigate the impact of pseudo-negative exam-
ples (generated by simple random repairing) on contrastive learning in a

* Corresponding author at: BIM for Smart Engineering Centre, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK.
E-mail address: LiH@cardiff.ac.uk (H. Li).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2024.105634
Received 13 August 2023; Received in revised form 15 July 2024; Accepted 15 July 2024

mailto:LiH@cardiff.ac.uk
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2024.105634
https://doi.org/10.1016/j.autcon.2024.105634
https://doi.org/10.1016/j.autcon.2024.105634
http://creativecommons.org/licenses/by/4.0/

Automation in Construction 166 (2024) 105634

2

closed-loop system but can also facilitate various practical applications
such as semantic enrichment, compliance checks, dependency analysis,
and generating repair recommendations. Furthermore, it also has the
potential to enhance the efficiency of engineers' documentation pro-
cesses through the plugs for text prompting or automatic maintenance
planning.

The contribution of this study is four-fold as below:

1) This paper introduces a hierarchical KG schema tailored for bridge
maintenance based on real-world textual reports. The schema is
organized into 5 layers, including main structure, components, ele-
ments, defects, and repair actions, with node connections limited in
adjacent layers.

2) A node-layer classification approach by employing GraphSAGE and
LLM-based text encoding is proposed for semantic enrichment in a
deficient BMKG.

3) Moreover, a link prediction approach by leveraging GraphSAGE and
contrastive learning is proposed for graph completion in a deficient
BMKG, which can achieve excellent performance.

4) An implementation framework that integrates the above schema and
approaches is designed for routine bridge maintenance, which can
not only facilitate practical applications but also mitigate the influ-
ence of pseudo-negative examples on contrastive learning.

2. Literature review

2.1. Bridge maintenance knowledge engineering

Knowledge engineering (KE) is a field of artificial intelligence (AI)
that creates rules by applying data to imitate the thought process of a
human expert. It looks at the structure of a task or a decision to identify
how a conclusion is reached [5]. In the AEC industry, KE refers to
knowledge representation, acquisition, reasoning, decision-making, and
application in building, operation, and maintenance. Currently, a
knowledge graph (KG) has become one of the most effective tools for
knowledge management and integration. For most studies in the con-
struction fields, KGs are usually termed ontological semantic networks
based on graphics with domain entities as nodes, and the defined entities
relationships as edges [6].

To represent the intricate knowledge of bridge maintenance, Ren
et al. [7] developed an ontology for bridge maintenance (BrMontology)
based on web ontology language (OWL), which covers bridge structure,
damage (and causes), solutions, and big events. It can enable automatic
rule-based maintenance planning and holistic decision-making. Liu and
ElGohary [8] proposed a bridge ontology (BridgeOnto) based on routine
inspection reports and maintenance manuals in the US, in which the
bridge elements, types of bridge elements, and bridge defects are elab-
orately decomposed. Zhang et al. [9] proposed a comprehensive bridge
maintenance knowledge graph (BMKG) by involving expenses, which
used semantic triples for knowledge organization and a Neo4j graph
database for data storage. Similarly, Lee et al. [10] established a graph
database to organize data from bridge management systems (BMS) and
employed graph clustering for maintenance cost estimation. Wu et al.
[11] developed an ontology for project management of bridge rehabil-
itation, which covers restoration tasks and constraints.

Additionally, several studies focused on the knowledge-based bridge
management system (BMS) by leveraging bridge real-time monitoring
and pattern recognition. For example, Li et al. [12] designed a bridge
structure health monitoring (SHM) system based on a fine-grained
ontology to integrate heterogenous data from various sensors. Yang
et al. [13] developed a framework for bridge management based on a
big-data knowledge engineering paradigm, consisting of both data
(including sources, storage, and computing) and knowledge (including
representation, computing, and services) layers. This framework can
facilitate intelligent bridge maintenance by leveraging the big data
within the entire bridge life cycle.

Moreover, some efforts have been made for automatic ontology
generation and KG completion, such as named entity recognition (NER)
for target classes [1,2] (i.e., bridge element, deficiency, cause, repair
action) and dependency parsing [3,4] (i.e., relation extraction) from
textual reports. NLP approaches are utilized in these works to build or
complete semantic triples (i.e., ontologies). However, subsequent data
mining still relies on classic algorithms through simple graph structures,
such as centrality, clustering, and pathfinding. Meanwhile, there have
been a few studies exploring graphs based on infrastructure architec-
ture, but they are mainly focused on modular design or generation, such
as mass customization of precast bridge systems [14] and building
structure layouts [15,16]. Therefore, it would be advantageous to create
a comprehensive BMKG by integrating knowledge from both bridge
structure design and maintenance experience gleaned from textual re-
ports. Additionally, there is a need to investigate the application of
emerging AI techniques, such as Graph Neural Networks (GNNs), for
practical implementations within this knowledge framework.

2.2. Graph neural networks and applications

Although the classic deep neural networks (DNNs) achieve great
success for latent embedding from Euclidean spatial data, they cannot
perform satisfactorily in processing non-Euclidean data, such as graphs.
Hence, graph neural networks (GNNs) are proposed to solve this issue (i.
e., graph embedding), which are defined as an optimizable trans-
formation on all attributes of the graph (nodes, edges, global context)
that preserves graph symmetries (permutation invariances) [17]. Graph
embedding is a process to generate a vector from graph features and
attributes but tries to preserve graph information as far as possible so
that the downstream graph analytic tasks can be achieved easily using
the off-the-self machine learning (ML) algorithms [18]. Embedding ag-
gregation and message passing are the primary attributes of GNNs. The
common GNN architectures [19] include graph convolutional networks
(GCN), graph attention networks (GAT), GraphSAGE, spatial-temporal
graph neural networks (STGNN), etc. Most GNNs are inherently trans-
ductive, in which the model is trained through the whole graph and can
only generate graph embeddings for a single fixed graph, so they are not
efficiently suitable for involving graphs and cannot learn to generalize
across different graphs. In contrast, a few others, like GraphSAGE, are
based on inductive learning, in which the model can only see the
training data and is trained through a sample partial graph or a set of
subgraphs. Thus, the generated model and graph embeddings can be
generalized to unseen nodes.

As GNNs function on graph data, they are typically utilized for tasks
such as graph classification, node classification, clustering, and link
prediction. In the AEC industry, Collins et al. [20] first applied graph
classification through GCN to classify IFC building objects based on their
geometry. Wang et al. [21] proposed an improved GraphSAGE algo-
rithm (SAGE-E), by involving edge features in aggregation, for semantic
enrichment of BIM models (i.e., identify room types) using node clas-
sification. Additionally, link prediction is usually utilized for KG
completion, relation prediction, and recommendation. Hence, in the
realm of maintenance for manufacturing systems, Xia et al. [22]
developed an approach to recommend potential solutions and explain
the fault for oil drilling equipment by using linkage prediction through
an attention-based compressed relational GCN (ACRGCN). Its model was
pre-trained with word2vec embeddings as node features and the ma-
chine components within the graph were organized as only a single
layer.

Nevertheless, the hierarchical bridge architecture suggests that the
multi-layer structure is likely more suitable for constructing its KG. The
modular bridge architecture often exhibits repetitiveness and symmetry,
which can be observed from textural inspection reports. Meanwhile, the
content of practical bridge maintenance reports, especially repair pro-
posals, is unlikely to adopt straightforward phrases used in the study
[22]. In these reports, the content tends to be more complex and

Y. Gao et al.

Automation in Construction 166 (2024) 105634

3

comprehensive and presented in sentence form. Furthermore, GNN has
demonstrated its potential in typical NLP tasks, like computing semantic
textual similarity and sentence completion. Hence, it would be advan-
tageous to 1) propose a hierarchical maintenance-oriented KG schema
based on bridge architectures and practical textural reports, and 2)
explore different text embeddings as well as GNN algorithms for graph
data mining on the generated KG to enhance practical applicability, e.g.,
node classification for properties comply check or semantic enrichment,
link prediction for maintenance recommendation.

2.3. Word and sentence embedding

As is known, machines have remarkable proficiency in handling
numerical data, but they encounter challenges when processing text
input (usually functioning less efficiently). Therefore, it is imperative to
convert the text into a format that machines can effectively interpret.

Various static word embedding techniques, including Bag of Words
[23], TF-IDF [24], Word2Vec [25] and GloVe [26], have been developed
to produce n-dimensional vectorized representations (i.e., word em-
beddings) of individual words by looking up through the created “ta-
bles”. These embeddings aim to capture the meanings and the semantic
relations of the words, as well as the diverse contexts in which they are
utilized, such as a classic example [25]: by removing the man attribute
from ‘King’ and incorporating the woman characteristic, appropriate
word embeddings can arrive at ‘Queen’, i.e., King − Man+ Woman =

Queen, which encapsulates the comparison between them. They are
supposed to maintain attributes of the individual words from the
training set by usually projecting similar ones as neighbours in a hy-
perspace. Word embeddings can be adopted for different downstream
tasks, such as sentiment classification and name entity recognition
(NER). Moreover, through transfer learning, the pre-trained word
embedding models can be extended to a wide range of applications.

Fig. 1. Proposed maintenance-oriented knowledge-graph schema for bridges.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

4

However, word embeddings encounter challenges in dealing with a
sentence, e.g., when manipulating multiple word embedding vectors to
produce a vectorized representation of a sentence. Hence, it is necessary
to develop techniques to convert the sentence to a n-dimensional vec-
torized representation, i.e., sentence embedding.

Word and sentence embeddings are both subsets of text embeddings.
The ideal text embeddings (or text representations) can retain the se-
mantic information of the text as much as possible. Texts with the same
semantics but different expressions should be mapped to the same po-
sition (or neighbours), while texts with different semantics should
maintain corresponding distances in the vector space. Currently,
numerous approaches and pre-trained models have been created for text
embedding, e.g., fastText [27], BERT [28], T5 [29], Instructor [30], as
well as the latest large language models (LLMs) such as ChatGPT [31]
and Llama [32,33]. Most of them are based on the transformer archi-
tecture and trained on two major objective tasks in natural language
processing (NLP), including masked language modelling (MLM) and
next sentence prediction (NSP).

In practice, text embedding vectors (i.e., text representations) are
usually derived through the following methods: 1) with the vectorized
representation of the [CLS] token as text embedding, i.e., [CLS] token
embedding; 2) with the vectorized representation of the [CLS] token
after processing through multilayer perceptron (MLP) as text embed-
ding, i.e., [CLS] + MLP embedding; 3) with all the tokens' vectorized
representations after pooling (mean or max pooling) as text embedding,
i.e., all the tokens + pooling embedding; 4) with all the tokens' vector-
ized representations after pooling (mean or max pooling) and MLP
processing as text embedding, i.e., all the tokens + pooling + MLP
embedding. The evaluation of text embeddings is based on their per-
formance in different downstream tasks, such as classification, clus-
tering, pair classification, reranking, retrieval, semantic textual
similarity (STS), summarization, and bitext mining.

3. Methodology

3.1. Problem statement

This research aims to develop a hierarchical Knowledge Graph (KG)
focused on bridge maintenance, referred to as BMKG. The goal is to
create a structured framework that incorporates information from

bridge designs and actual textual maintenance reports. Furthermore, the
study will explore different text embedding techniques and Graph
Neural Network (GNN) models for efficient data mining within the
BMKG, thus increasing its utility in real-world applications.

The BMKG is designed to evolve by integrating ongoing inspection
reports throughout a bridge's lifecycle. It typically functions as an
incomplete graph, marked by the introduction of new nodes without the
corresponding links. For example, a newly identified defect might not
have a corresponding repair proposal, whether the defect is newly
discovered or an existing one found in a new location. In such cases,
experienced engineers can utilize the accumulated maintenance records
(i.e., a knowledge base) to pinpoint similar defects and suggest appro-
priate repair actions. This study is inspired by the above observation and
the specific objectives of this study can be listed below:

1. Propose a hierarchical KG schema oriented towards bridge mainte-
nance incorporating bridge architectures and practical textual
reports.

2. Identify the node hierarchy (i.e., node classification) in an incom-
plete BMKG with missing links through pre-trained text encoding
and GNN algorithms for compliance check and semantic enrichment.

3. Predict potential connections (i.e., link prediction) in a deficient
BMKG by leveraging text encoding and GNN neural networks for KG
completion.

4. Design a practical implementation framework that incorporates the
above strategies and approaches for effective bridge maintenance.

3.2. BMKG schema

Modular bridges typically display recurring patterns and symmetries
in both their structure and defects. These patterns can be observed from
design documents like CAD drawings or Revit models, as well as from
textual inspection reports, through semantic textual similarities and
consistent demonstrative relationships. For example, bridge spans of the
same type usually have similar components (such as main girders, cross
girders, soffits, and rail bearers) and tend to show similar types of defects
and repair needs (e.g., stiffener cranks with medium section loss <50%
and remarkable section loss >50% may require progressively extensive
repair actions). In light of this, this study introduces a bridge
maintenance-oriented knowledge graph (BMKG) schema, derived from

Fig. 2. Procedures of text encoding to generate node features.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

5

both bridge design and practical maintenance reports, as depicted in
Fig. 1. This schema consists of five distinct layers: the main structure
layer, component layer, element (or sub-component) layer, defect (or
fault) layer, and repair action (or proposal) layer.

In this schema, nodes in the main structure layer are interconnected.
However, other connections (links) are limited to adjacent layers,
ensuring no cross-layer or intra-layer connections (except in the top
layer). This structure allows for effective graph aggregation within a
single BMKG. All connections between different layers are directed from
the upper to the lower layers. Previous research has extensively focused
on target classification (i.e., Named Entity Recognition, NER) [1,2] and
dependency parsing (i.e., relation extraction) [3,4] in the context of
bridge inspection reports. As a result, the necessary BMKG can be
automatically generated from historical textual reports (whether un-
structured or semi-structured), following the proposed KG schema.
Furthermore, this BMKG can be dynamically expanded with regular
inspections, to facilitate bridge maintenance activities such as infor-
mation storage, retrieval, and clustering.

3.3. Text encoding and GraphSAGE

3.3.1. Text encoding
Bridge inspection reports are usually unstructured or semi-

structured. Previous studies have shown that these textural reports can
be transformed into structured data through NLP techniques. This
structured data can then be used to create a directed, hierarchical Bridge
Maintenance Knowledge Graph (BMKG) following a specific schema. In
this schema, textual information, such as “Span 1” → “Deck” → “Bearing
stiffener web plate” → “Hole and pitting” → “Remove existing rivets
using burning equipment and install a new steel plate to the stiffener
web”, serve as nodes. Traditionally, node features are represented
through manual encoding methods like one-hot encoding or word em-
beddings such as word2vec. The former requires meticulous design for
differentiation, which can be labour-intensive, while the latter may not
effectively capture sentence-level context. Therefore, using sentence
embeddings to represent node features, especially to capture semantic
textual similarity in bridge maintenance reports, is advantageous. These
embeddings can be obtained from pre-trained text encoders or language
models, like BERT. This process can be illustrated with BERT and [CLS]
embeddings in Fig. 2.

Different text encoders can lead to varying performance when their
embeddings are used as node features in GNNs. The performance dif-
ference can be attributed to several factors below:

1) Quality of embeddings: different text encoders may capture semantic
information with varying levels of effectiveness. Some encoders may
be better at context understanding or semantic relationship

encoding, which can significantly affect the performance of the
GNNs that use these embeddings.

2) Pre-training data and objectives: the pre-trained text encoders are
based on specific datasets and tasks (such as language modelling,
sentence prediction, etc.). It can influence how well the embeddings
meet the specific requirements of the downstream task. For example,
an encoder trained on a dataset like the application domain may
produce more relevant embeddings.

3) Dimensions: different encoders may produce embeddings of different
sizes. In principle, higher-dimensional embeddings can potentially
capture more information but at the cost of increased computational
complexity. Conversely, lower-dimensional embeddings are
computationally efficient but may lack expressiveness.

4) Model architecture: the architecture of the text encoder (e.g., LSTM,
transformer) can affect task performance. For example, transformer-
based models like BERT are known for capturing contextual infor-
mation effectively, which may be beneficial for certain GNN tasks.

5) Robustness: some encoders are more robust to variations in specific
text, like slang and typos. The robustness of embeddings can affect
the model's ability for generalization.

3.3.2. GraphSAGE
Traditional transductive GNNs, like the Graph Convolutional

Network (GCN), are limited to creating representations through all the
nodes for a single fixed graph [34], which is difficult to generalize for
unseen nodes in an evolving graph with new links, as well as different
graphs. GraphSAGE addresses these limitations by learning a dynamic
representation method across subsets of graphs through inductive
training, which is particularly beneficial for graphs that evolve with rich
node attribute information [35]. Once trained, GraphSAGE can generate
representations for new nodes or entirely different graphs, provided they
share the attribute schema of the training data. Additionally, the learned
node representation can change along with the neighbour relationship
variation in an evolving graph. Therefore, in this study, GraphSAGE is
employed to create low-dimensional vector representations (graph em-
beddings) for nodes in the proposed BMKG. The algorithm for GraphS-
AGE embedding is outlined in the following pseudo-code.

Algorithm 1. Generating node representation based on graphSAGE

During the GraphSAGE embedding process, nodes progressively
aggregate more information from their neighbours and extend their
reach across the graph through iterative processes. Suppose there are K
aggregation functions, denoted as AGGREGATEk (∀k ∈ {1,…,K}),
which are used for aggregating features from node neighbours. These
functions are associated with a set of weight matrices, denoted as Wk

(∀k ∈ {1,…,K}), which are utilized for message propagation across
different layers of the model [35]. The variable k represents the current

Y. Gao et al.

Automation in Construction 166 (2024) 105634

6

iteration step (or the search depth) and hk denotes the latent embedding
at step k (or the hidden layer k). Initially, k = 0, indicating the input
node features.

At first, each node v ∈ V aggregates its neighbourhood embeddings,
i.e., hk− 1u ∀u ∈ N(v), into a single vector hk− 1N(v). Then, GraphSAGE

concatenate the node's embedding hk− 1v with the aggregated neigh-
bourhood embedding hk− 1N(v), and feed the result into a fully connected
neural network (FCN) with a nonlinear activating function σ to generate
the representation vector (i.e., hkv). Finally, the representation output at
the depth K is obtained after normalization as zv = hKv , ∀v ∈ V. In
practice, the aggregation of neighbour embeddings, i.e., AGGREGATEk,
can be implemented through diverse architectures [35], including
mean, pooling, GCN, and LSTM. The mean and pooling aggregators are
adopted in this study, as indicated in Eq. 1.

hkv←σ
(
W⋅MEAN

({
hk− 1v

}
∪
{
hk− 1u ,∀u ∈ N (v)

})
(1)

AGGREGATEpoolk = max
({

σ
(
Wpoolhkui + b

)
, ∀ui ∈ N (v)

})
(2)

3.4. Proposed approaches and framework

3.4.1. Node-layer classification
Node-Layer Classification (NLC) can be applied for compliance

checks or semantic enrichment within a BMKG. This process typically
begins with a Depth-First Search (DFS), a traditional method used for
finding the shortest path between two nodes in a graph. The effective-
ness of DFS relies on graph integrity. For example, in an ideal, complete
BMKG, once the nodes in the top layer (i.e., the main structure layer) are
identified, the layers of the other nodes can be determined using bidi-
rectional depth-first search (B-DFS) according to the 5-layer schema
configuration. However, BMKGs based on real-world inspection reports
might be incomplete due to data gaps or inconsistencies, like missing
entities or relationships. In such scenarios, some nodes may remain

unclassified after B-DFS due to absent connections. To address this
challenge in an incomplete BMKG, a method that combines pre-trained
text encoding with GraphSAGE is proposed. This approach utilizes
contextual information such as semantic textual similarity and parts of
speech, along with the benefits of GNNs. The methodology for this
process is depicted in Fig. 3.

In the beginning, bidirectional B-DFS is used for node-layer classi-
fication in the incomplete BMKG with missing links. It starts from the
given node in the top layer to the bottom layer (i.e., top-down DFS), and
then reverses from the classified nodes in the bottom layer to the upper
layer (i.e., down-top DFS), which aims to identify the missing nodes due
to absent connections in the top-down DFS. Subsequently, the classified
nodes are taken as the training set and the remaining unidentified nodes
are adopted as the test set. After encoding through an appropriate pre-
trained text encoder (or language model), the generated text embed-
dings are utilized as features for each node. Finally, a model consisting of
multiple GraphSAGE layers (for graph embedding or aggregation) and a
Softmax layer (as the classifier) is trained through inductive learning for
NLC.

The loss function is based on multi-class cross-entropy (MCE), indi-
cated in Eq. 2.

L = −
1
N
∑N

i=1

∑M

c=1
yiclog(pic)# (3)

Where, L is the average loss for N examples; M is the number of
classes and c ∈ [1,M]; yic is a binary value (0 or 1) – if the ith example's
true class is c, yic = 1, and vice versa; pic is the probability of the ith
example belonging to the class c, which is derived from the Softmax
function (Eq. 3).

The performance of NLC is assessed using accuracy, indicated in Eq.
4.

accuracy =
TP+ TN

TP+ TN+ FP+ FN
(4)

Where, TP – true positive; TN – true negative; FP – false positive; FN –
false negative.

3.4.2. Contrastive link prediction
In an evolving Bridge Maintenance Knowledge Graph (BMKG),

which often resembles an incomplete graph with missing links due to
data scarcity, determining the connections between new and existing
nodes is a challenge of link prediction. This has various practical ap-
plications, such as suggesting repairs and creating dependencies. This
study proposes a method based on contrastive learning to address this
challenge, comprising the following steps [36]:

1) Existing and missing links in the BMKG are considered positive ex-
amples, labelled as {1, 1, …, 1}. Existing links form the positive
training set while missing links are used as the positive test set.

Fig. 3. Proposed pipeline for NLC in an incomplete BMKG.

Fig. 4. Proposed pipeline for link prediction in an incomplete BMKG.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

7

2) Non-existent edges in the current BMKG, representing node pairs
without edges, are randomly sampled as negative examples and
labelled as {0, 0, …, 0}. Then, they are divided into training and test
sets.

3) All nodes in both sets are encoded using a pre-trained text encoder or
language model. The generated text embeddings become node fea-
tures for graph embedding.

4) A binary classification model, designed for link prediction, is trained
using inductive learning. This model includes graph embedding
based on GraphSAGE architecture and a pair-wise score calculation.

5) The score is derived using various metric-based methods like L2
distance, dot product, cosine similarity, element-wise product (sum
or mean), and MLP.

6) Finally, a binary classification model based on graph embedding and
pair-wise score calculation is trained through inductive learning for
link prediction.

The link prediction model is composed of two parts: 1) Graph
embedding, which involves aggregating node information using the
GraphSAGE architecture, and 2) Pair-wise scoring, where a scalar value
is generated for each edge or node pair. This scoring is based on the
features of the connected nodes after aggregation. The calculation of this
score employs various metrics, including L2 distance (Eq. 5), dot product
(Eq. 6), cosine similarity (Eq. 7), element-wise product (Eq. 8), and
Multilayer Perceptron (MLP) (Eq. 9).

score =
̅̅
(
hi − hj

)2
+
(
hi − hj

)2
√

(5)

score = hTi hj# (6)

score =
hTi hj

‖hi‖2 ⊙
⃒
⃒
⃦
⃦hj

⃦
⃦
2

(7)

score = SUM
(
hi ⊙ hj

)
or MEAN

(
hi ⊙ hj

)
(8)

score =W
(
hi
⃦
⃦hj

)
+ b# (9)

Where, score is the pair-wise score of the edge between node i, j ∈ V;
hi, hj are graph embeddings for node i, j ∈ V.

The comprehensive process for link prediction using contrastive
learning is illustrated in Fig. 4. Notably, this involves constructing two
types of graphs: a positive graph using positive examples and a negative
graph using negative examples. Both these graphs share the same nodes
as the original BMKG. Consequently, this allows for the calculation of a
scalar score for each edge or node pair, utilizing the same node repre-
sentations post-GraphSAGE embedding. This scoring is consistent across
various graphs, encompassing the original, incomplete BMKG as well as
the newly created positive and negative graphs.

It's important to note that the negative examples are generated from
node pairs that are not connected in the current BMKG. These examples
must be filtered by eliminating unqualified links that violate the re-
strictions in the proposed BMKG schema, such as connections that span
beyond adjacent layers. Moreover, due to limitations in the dataset, i.e.,
the BMKG derived from existing inspection reports cannot cover all
scenarios, the generated negative examples can be divided into two
categories:

1) Authentic negative examples, which are pairs of nodes that should
not be linked essentially, such as non-existing components (or ele-
ments) and inappropriate repair solutions.

2) Pseudo-negative examples, which are pairs of nodes that might be
connected but were not recorded in historical reports. Examples
include components (or elements) that were not found to be defec-
tive and defects that were not detected.

To mitigate the impact of pseudo-negative examples in contrastive
learning, negative examples are randomly generated in the same
quantity as positive examples, as recommended in [37]. Then, the bi-
nary cross-entropy (BCE), indicated in Eq. 10, is used as the loss
function.

L = −
1
N
∑N

i=1
[yi⋅log(pi) + (1 − yi)⋅log(1 − pi)]# (10)

Where L represents the average loss for N examples; yi is the label of
the example i; pi is the predicted probability of the example i.

The effectiveness of the model is assessed using the ROC (Receiver
Operating Characteristic Curve) and AUC (Area Under the ROC Curve)
metrics. The ROC is a graphical representation that displays the classi-

Fig. 5. Framework applying NLC and link prediction for practical implementation.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

8

fication model's performance across various thresholds, with the x-axis
indicating the False Positive Rate (FPR) (Eq. 11) and the y-axis showing
the True Positive Rate (TPR) (Eq. 12).

FPR =
FP

FP+ TN
(11)

TPR = Recall =
TP

TP+ FN
(12)

AUC measures the entire two-dimensional area underneath the
entire ROC curve, which denotes the probability that the score of a
positive example exceeds that of a negative example when both are
randomly sampled from the data, indicated in Eq. 13.

AUC =

∑(
pi, nj

)

pi>nj

P*N
(13)

Where, P – the number of positive examples; N – the number of
negative examples; pi – the prediction score for a positive example; nj –
the prediction score for a negative example.

Determining the best threshold based on known True Positive Rates

(TPRs) and False Positive Rates (FPRs) varies according to specific goals
or priorities. For instance, if the aim is to increase the TPR while mini-
mizing the FPR, the ideal threshold is that which corresponds to the
point nearest to the top left corner of the ROC plot. Conversely, if the
goal is to achieve a balance between TPR and FPR, the preferred
threshold is one that optimizes the Youden Index (J) in the ROC curve. In
this study, the latter approach has been chosen for determining the most
effective threshold for evaluating model performance, as indicated in
Eq. 14 and 15.

J(t) = TPR(t) − FPR(t)# (14)

t* = argmax
t

J(t)# (15)

Where, t* – optimal threshold; t – threshold.
Additionally, precision and F1 score are also utilized to evaluate

model performance in this work, as indicated in Eqs. 16 and 17.

Precision =
TP

TP+ FP
(16)

Fig. 6. Examples of inspection reports preprocessing for BMKG establishment.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

9

F1 = 2×
Precision× Recall
Precision+ Recall

(17)

3.4.3. Implementation framework
The proposed methods can be widely used in bridge maintenance

knowledge engineering, covering areas like KG completion, semantic
enrichment, node dependency analysis, and compliance checks. These
methods can improve the efficiency of engineers in bridge maintenance
planning, e.g., by offering automated repair suggestions. This involves
transferring knowledge from experienced engineers to junior ones,
enabling them to come up with viable repair suggestions using historical
data and BMKG. This is made possible through text encoding and GNNs,
which use semantic textual similarities, label propagation, and graph
embedding. A framework for this implementation is illustrated in Fig. 5,
integrating node-layer classification and link prediction into practical
bridge maintenance procedures.

Fig. 5 illustrates the framework for applying Node-Layer Classifica-
tion (NLC) and link prediction in practical use. The framework begins
with BMKG derived from textual reports (either unstructured or semi-
structured), obtained either manually or through NLP. The BMKG may
have missing links due to incomplete data or new inspection findings.
Initially, each node's content (words, phrases, sentences) is encoded
using a pre-trained text encoder or language model. The derived text
embeddings serve as node features. Compared to traditional encoding
methods like one-hot encoding, it can enhance node encoding efficiency
within the GNNs. Node-layer classification is then achieved using B-DFS
and GraphSAGE, aiding in semantic enrichment of the BMKG and
compliance checks. Additionally, link prediction is accomplished using
GraphSAGE and contrastive learning. The results of node-layer classifi-
cation can help filter out unqualified negative examples, increasing the
accuracy of link prediction.

It's important to note that the context-based predicted node

connections may not always be reliable due to data limitations in the
textual reports. Therefore, a manual review of link prediction results is
required. For instance, a link from a component to an element should be
verified against the bridge design diagram. Similarly, proposed repair
solutions, i.e., links between defect and repair action nodes, require
manual verification as well. Verified predicted connections can be
incorporated into maintenance planning or used as text prompts in a
plugin, thereby improving the efficiency of engineers' documentation
tasks. In contrast, unsatisfactory predictions can be used as new negative
examples for further contrastive learning, enhancing the model's per-
formance in a closed-loop system.

4. Proof of concept

4.1. BMKG construction

To verify the practical effectiveness of the proposed methodologies,
real-world maintenance reports for multiple railway truss bridges in the
UK, which are semi-structured containing 953 records in terms of
“date”, “location”, “defect”, “query”, and “proposal”, are employed to
create the BMKG. Then, the textural reports are manually preprocessed
(e.g., abbreviation replacement, lowercase conversion, misspelling
correction) and manipulated into “main structure”, “component”,
“element”, “defect”, and “repair action” layers according to the pro-
posed BMKG schema, as illustrated in Fig. 6. Because of irregularity in
routine inspection reports, such as blank spaces, special abbreviations,
misspellings (or misuse of punctuation), this pre-processing step be-
comes necessary. It is also promising to be accomplished through NLP
techniques (e.g., NER and relations extraction) like in previous research
[1–4].

Consequently, a BMKG with 264 nodes and 451 relationships (i.e.,
edges) is created according to the proposed schema for the following
experiments and illustrated via Neo4j, as shown in Fig. 7.

4.2. Node layer classification for incomplete BMKGs

4.2.1. Experiment preparation for NLC
As for a complete directed BMKG, the B-DFS method can effectively

determine the layers of every node, provided the hierarchy of at least
one node is known. This is depicted in Fig. 8 (1). However, in the case of
an incomplete BMKG with missing links, the B-DFS method can only
identify the layers of partial nodes due to the absent connections, as
illustrated in Fig. 8 (2). To address this challenge, the approach
described in Section 3.4.1 is proposed, which integrates text embeddings
as initial node features into GraphSAGE, leveraging both contextual
similarities and the strengths of GNNs. The experiment is designed to
test the proposed approach on a deficient BMKG with missing links. A
deficient or incomplete BMKG is created from the original intact BMKG
in Fig. 8 by randomly removing a certain proportion of its connection (e.
g., 20%).

The experiment is carried out on Google CodeLabs utilizing PyTorch
and the Deep Graph Library (DGL). A GraphSAGE architecture, as
detailed in Table 1, is proposed for graph learning. The NLC model is
developed by incorporating a Softmax layer as the classifier at the end of
the proposed neural network. The experiment's objective is to identify
the layers of unknown nodes in the deficient BMKG with absent con-
nections, as illustrated in Fig. 8 (2), using the information and attributes
of the recognized nodes.

4.2.2. Ablation study for NLC

4.2.2.1. Different text encoders for NLC. In graph neural networks
(GNNs), the initial node features can significantly affect the model
performance in downstream tasks. Different text encoding methods
produce various embeddings, leanding to diverse outcomes. This

Fig. 7. Established intact BMKG in Neo4j (264 nodes, 451 edges, and 5
node layers).

Y. Gao et al.

Automation in Construction 166 (2024) 105634

10

ablation study aims to identify which text encoder can generate the best
performance in the proposed BMKG (shown in Fig. 7) for NLC. Then, an
experiment was conducted to compare traditional word embedding
methods and multiple pre-trained LLMs in node feature initialization for

NLC. Traditional word embedding methods include bag of words (BOW)
[18], TF-IDF [19], Skip-gram [38], and GloVe [21], which are trained on
the corpus derived from the same maintenance reports used to establish
the BMKG. LLM-based text encoders include bart-base (BART) [39],
bert-base-uncased (BERT) [40], CLIP text encoder [41], deberta-v3-base
(DeBERTaV3) [42], gtr-t5-base (GTR) [43], text-embedding-ada-002
(OpenAI) [44], sentence-t5-base (T5) [45], UAE-Large-V1(UAE) [46],
and xlm-mlm-en-2048 (XLM) [47].

In the experiment, the identified nodes after B-DFS and their layer
information serve as the training set, while the remaining unknown
nodes are treated as the test set. As illustrated in Fig. 8, there are 5
classes of node labels, i.e., main, component, element, defect, action.
The experiment configuration is detailed in Table 2.

The experimental results are presented in Fig. 9 and 10. As can be
seen, multiple LLM text encoders, like BERT, DeBERTaV3, GTR, OpenAI-
ada, UAE, overperform all the traditional word embedding methods in
the experiment. Especially, BERT achieves the top test accuracy of
97.73%. Hence, BERT is adopted as the text encoder to initialize node

Fig. 8. NLC for intact and deficient BMKGs after B-DFS.

Table 1
GraphSAGE model architecture for NLC.

Search
depth

Hidden layer
dimension

Aggregation Activation
function

Dropout Classifier

k = 3 128 mean ReLU 0.3 Softmax

Table 2
Training configuration for NLC.

Optimiser Learning rate Weight_decay AMSGrad Epochs

AdamW 0.0001 0.001 True 3000

Y. Gao et al.

Automation in Construction 166 (2024) 105634

11

features for following NLC experiment. Additionally, most of the LLMs
used in the experiment perform well for the NLC task (i.e., 5-class
classification) in the target BMKG, demonstrating the effectiveness of
proposed NCL method (see section 3.4.1) and GraphSAGE architecture
(detailed in Table 1). The difference in results is most likely due to the
different training data used for each LLM. The BERT model's superior
performance could be attributed to its robust pre-training on a corpus
closely related to bridge maintenance textual reports, which enhances
its ability to generalize across this specific task.

4.2.2.2. Varying BMKG completeness for NLC. An experiment is con-
ducted for NLC on incomplete BMKGs across a range of missing con-
nections from 10% to 50%, leading to 20, 44, 62, 106 and 121 unknown

node labels after B-DFS, respectively. The experiment configuration is
detailed in Table 2 and the initial node features are generated by text
encoding through the pre-trained BERT model. The training and test
accuracies are displayed in Fig. 11.

As can be seen in Fig. 11, test accuracy decreases as the missing rate
of connections increases in the BMKG, indicating that the robustness of
the proposed NLC approach is significantly affected by the completeness
of the BMKG. Furthermore, in the deficient BMKG with 50% missing
links (leading to 121 unknown nodes of 234 nodes after B-DFS), test
accuracy can achieve an accuracy of over 86%, demonstrating the
effectiveness and robustness of the proposed NLC method and GraphS-
AGE architecture. It is also evident that ensuring a lower rate of missing
connections can lead to better performance in downstream tasks.

Fig. 9. Training process based on different text encoders for NLC.

Fig. 10. Training and test performance based on different text encoders for NLC.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

12

Therefore, it is essential to consider the impact of missing links' pro-
portions when applying the approach to the BMKG generated from the
real-world maintenance textual reports that usually has data de-
ficiencies and irregularities.

4.2.3. Cross-validation for NLC
5-fold cross-validation (i.e., removing 20% of links in each fold) is

performed to evaluate the model's generalization capability for NLC. The
experiment follows the configuration detailed in Table 2. The initial
nodes features are generated by encoding through the pre-trained BERT
model. The results are shown in Fig. 12, achieving an average accuracy
of 98.94% on the test set. This demonstrates that the proposed NLC
method and GraphSAGE with node features initialized from BERT text
encoding cannot only achieve excellent performance in the target BMKG
but also exhibit strong generalization capability. Hence, the approach is
promising for significantly improving the efficiency, accuracy, and
accessibility of knowledge engineering and documentation work in
bridge maintenance, including tasks such as compliance checking and
knowledge graph generation.

Fig. 11. NLC performance based on varying BMKG completeness.

Fig. 12. 5-fold cross-validation for NLC.

Fig. 13. Training, validation, and test performance in a deficient BMKG
for NLC.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

13

4.2.4. Semantic enrichment
BMKGs derived from real-world maintenance reports are usually

deficient with absent connections due to data deficiencies and irregu-
larities, which results in missing node layer information of many nodes
after B-DFS. Hence, it would be beneficial to enrich such semantic in-
formation in an incomplete BMKG using various methods. An experi-
ment is conducted to validate the proposed approach for such NLC
semantic enrichment tasks. The deficient BMKG is created with 10% of
its links missing randomly, leading to 22 problematic nodes without
layer information after B-DFS. The other nodes with known layers are
split into the training set (i.e., 220 nodes) and validation set (22 nodes),
respectively, while the problematic nodes are adopted as the test set (i.
e., 20 nodes). The experiment configuration is detailed in Table. 2 with
the number of epochs set to 10,000. Initial node features are derived by
text encoding through the pre-trained BERT model. Finally, the model
training process and the experiment results are shown in Fig. 13.

In Fig. 13, training, validation, and test accuracies can achieve
95.91%, 90.91%, and 95.45%, respectively. Notably, due to a limited
number of samples, each back-propagation update during training can
cause significant changes in accuracies, leading to the stepwise pattern
observed. This indicates the sensitivity of the model to the data volume.
Especially for a relatively small dataset, each data point can dispro-
portionately affect the training process.

Furthermore, the node-layer results of the BMKG before and after
semantic enrichment are displayed in Fig. 14. It demonstrates the
effectiveness of the proposed method in semantic enrichment (i.e., node
layer information) in a deficient BMKG with missing links by leveraging
available textual information through GNNs. As can be seen, this
approach is beneficial for practical applications in bridge maintenance
documentation work, such as facilitating easier retrieval and under-
standing of data, ensuring that all critical information is captured and
structured, and reducing the likelihood of errors and omissions.

4.3. Link prediction for incomplete BMKGs

4.3.1. Experiment preparation for link prediction
The GraphSAGE architecture for link prediction is detailed in

Table 3, where the Softmax layer in the NLC model is replaced with a

function for calculating pairwise scores. The experiment is conducted on
Google CodeLabs using PyTorch and the Deep Graph Library (DGL).

In the experiment, a portion of links were randomly removed from
the intact BMKG in Fig. 7 to simulate a deficient BMKG due to the data
deficiencies or irregularities commonly found in practical maintenance
reports. The positive and negative examples are generated using the
method proposed in Section 3.4.2. Binary cross-entropy (BCE), as indi-
cated in Eq. 9, is used as the loss function.

4.3.2. Ablation study for link prediction

4.3.2.1. Different edge pair-scoring methods for link prediction. To iden-
tify the most effective edge pair-scoring method for link prediction, five
different metric-based pairwise score calculators are compared in the
experiment, including L2 distance, dot product, cosine similarity,

Fig. 14. Deficient BMKG before and after semantic enrichment via NLC.

Table 3
GraphSAGE architecture for link prediction.

Search depth Hidden layer dimension Aggregation activation function

k = 3 128 pool Sigmoid

Table 4
Training configuration for link prediction.

Optimiser Learning rate Weight_decay StepLR Epochs

step_size gamma

AdamW 1 × 10− 5 0.01 10 0.98 2000

Fig. 15. Training process based on different pairwise scoring methods for
link prediction.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

14

Hadamard product (both summation and average), and anMLP based on
concatenation. The incomplete BMKG is created by randomly removing
20% of the links from the original BMKG (Fig. 7). The node features are
initialized through a pre-trained BERT model (i.e., bert-base-uncased
[40]). The experimental configuration is detailed in Table 4.

The model performance for link prediction is evaluated using the
AUCmetric (Eq. 12). The results are presented in Fig. 15. As can be seen,
the choice of edge score calculation method can significantly affect
model performance. The L2 distance (i.e., Euclidean distance) achieves
the highest test AUC (i.e., 0.90), showing its superior effectiveness over
the other metric-based pairwise score calculators in capturing the un-
derlying relationships within the proposed BMKG. Consequently, the L2
distance method is employed in the following experiment.

4.3.2.2. Different text encoders for link prediction. An experiment is
conducted to compare traditional word embedding methods and mul-
tiple pre-trained LLMs in node feature initialization for link prediction,
including the models utilized in Section 4.2.2.1. The experiment
configuration is detailed in Table 4. The results are shown in Fig. 16.

As can be seen from Fig. 16, most LLM text encoders overperform the

traditional word embedding methods in the experiment for link pre-
diction on test AUC. BERT stands out with the best AUC (i.e., 0.90) on
the test set, as well as the minimal AUC difference between training and
test sets, indicating its robustness and reliability. Consequently, the pre-
trained BERT model is employed as the text encoder for node feature
initialization in the following link prediction experiment. Additionally,
the other LLM text encoders used in the experiment demonstrate
excellent performance and strong generalization capabilities as well,
which are promising to be further improved by tuning and
regularization.

4.3.2.3. Varying BMKG completeness for link prediction. An experiment
is conducted for link prediction on incomplete BMKGs across a range of
missing links from 10% to 50%, i.e., 45, 90, 135, 180, and 225 edges,
respectively. The configuration is detailed in Table 4. The initial node
features are generated by text encoding through the pre-trained BERT
model. The results are shown in Fig. 17.

As can be seen from Fig. 17, it demonstrates the impact of varying
levels of BMKG completeness on the model's performance. As the pro-
portion of missing connections increases from 10% to 50%, a clear

Fig. 16. Training and test performance based on different text encoders for link prediction.

Fig. 17. Link prediction performance based on varying BMKG completeness.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

15

decline can be observed from test accuracies. This trend underscores the
sensitivity of link prediction models to the availability of complete data
in BMKGs. Therefore, in practical applications of link prediction, it is
crucial to consider the impact of BMKG completeness for achieving more
robust model performance.

4.3.3. Cross-validation for link prediction
To evaluate the model's generalization capability for link prediction,

a 5-fold cross-validation is performed by removing 20% of links in each
fold, generating different training and test sets. The experiment follows
the configuration detailed in Table 4. The results are presented in
Fig. 18, achieving an average AUC of 0.88 on the test set. This demon-
strates that the proposed contrastive link prediction method with BERT
text embeddings and the L2 pairwise scoring method, is not only
effective in predicting node connections for the target BMKG but also
exhibits excellent generalization capability, which is crucial for practical
applications.

4.3.4. BMKG completion
KG completion plays a crucial role in knowledge engineering and has

various practical usages, such as enhancing search engine outcomes,
powering recommendation systems, generating scenarios, knowledge

discovery, data integration and interoperability [48]. To assess the
effectiveness of the proposed link prediction method in BMKG comple-
tion, an experiment is conducted following the configuration detailed in
Table 4. The Youden index (J), as depicted in Eqs. 13 and 14, is
employed as the threshold for pairwise scores to determine whether to
accept predicted node connections. An incomplete BMKG is created by
removing 10% connections (i.e., 45 edges) randomly for the experiment,
and the split of train, validation, and test sets is 80%:10:10%. The
updated BMKG after link prediction is shown in Fig. 19.

Moreover, because the proposed contrastive link prediction essen-
tially performs as binary classification (with J as the threshold of pair-
wise scores), the result confusion matrix can be displayed in Fig. 20 and
the prediction performance can be evaluated as shown in Table 5.

As can be seen from Fig. 19, a significant portion of the missing links
in the incomplete BMKG have been accurately reestablished after link
prediction, i.e., 42 out of 45 edges, achieving a high true positive rate.
The performance metrics in Table 5 showcase an AUC of 0.91 and an
optimal threshold of 0.42. The model's accuracy stands at 0.84, with a
precision of 0.79 and an F1 score of 0.86. Notably, the recall, i.e., true
positive rate (TPR), is 0.93, indicating the model's proficiency in iden-
tifying positive examples. The false positive rate (FPR) is 0.24, reflecting
the model's balance between sensitivity and specificity.

Fig. 18. 5-fold cross-validation for link prediction.

Fig. 19. BMKG completion via link prediction.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

16

The results demonstrate the effectiveness of the proposed link pre-
diction method in BMKG completion, which can support various prac-
tical applications in bridge maintenance knowledge engineering, such as
maintenance schedule and repair recommendations, data augmentation,
and anomaly detection. By accurately predicting missing links, the
method can help to maintain comprehensive and up-to-date BMKGs,
ultimately enhancing decision-making in bridge maintenance. It is also
worth noting that a few negative example edges were incorrectly iden-
tified as positive. This is partially attributed to the presence of pseudo-
negative examples (see Section 3.4.2), which requires further explora-
tion in the future.

4.4. Comparison with cutting-edge models

4.4.1. Comparative analysis for NLC
Multiple cutting-edge models are employed in this section to

compare with the proposed GraphSAGE model for NLC, including GCN
[45], GAT [46], RGCN [47], and GINconv [49]. The target deficient
BMKG is generated by removing 20% links randomly, leading to 41
unknown nodes after B-DFS. The experiment is conducted on Google
CodeLabs using PyTorch and the Deep Graph Library (DGL), with the
model architectures recommended in their respective papers. The con-
figurations are adjusted as needed for the target BMKG, such as setting
the number of layers to 5. The results are shown in Fig. 21. As can be
seen, the proposed GraphSAGE model overperforms the other SOTA
models in test accuracy for node layer classification in BMKG, demon-
strating the superiority of the proposed NLC approach.

4.4.2. Comparative analysis for link prediction
Different state-of-art models and approaches are compared with the

proposed contrastive link prediction method based on GraphSAGE,
including GCN [45], RGCN [47], TAGCN [48], TransE [50], and Dis-
tMult [51]. The target deficient BMKG is created by removing 20% links
randomly, leading to 90 missing links. The experiment is conducted on
Google CodeLabs using PyTorch and the Deep Graph Library (DGL),
with the cutting-edge model architectures recommended in their
respective papers. The configurations are adjusted as needed for the
target BMKG, such as setting the number of layers to 5. The results are
shown in Fig. 22.

As can be seen, the proposed GraphSAGE link prediction model by
leveraging contrastive learning overperforms the other cutting-edge
models and approaches in test AUC, demonstrating the superiority of
the proposed link prediction method in the BMKG. Additionally, nega-
tive examples in TransE and DistMult are generated via head and tail
embeddings' corruption, whereas negative examples in GCN, RGCN,
TAGCN, and GraphSAGE are proposed with non-existent edges. The
experiment results further validate the effectiveness of using non-
existent edges for generating negative examples in downstream tasks
within the BMKG.

5. Discussion

The proposed KG schema for bridge maintenance is well-grounded in
practical applications, because real-world bridge inspections and repairs
rely on the step-by-step details of defect descriptions, such as locations,

Fig. 20. Confusion matrix for link prediction.

Table 5
Evaluation of link prediction based on the Youden threshold.

AUC Threshold
(J)

Accuracy Precision F1
score

TPR
(Recall)

FPR

0.91 0.42 0.84 0.79 0.86 0.93 0.24

Fig. 21. Comparative analysis for NLC.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

17

types, and severity, which are typically summarized in routine textual
reports. Hence, the textual content of these reports plays a significant
role in knowledge engineering for bridge maintenance. For instance,
clauses that begin with action verbs like ‘insert’, ‘replace’, ‘remove’,
‘install’, and ‘weld’ often indicate repair actions. Similarly, specific
phrases such as ‘section loss’, ‘bolt missing’, ‘corrosion’, ‘hole’, and
‘pitting’ are commonly used to describe defects. Additionally, the re-
lationships between defects and repair solutions tend to follow regular
patterns based on specific phrase pairings. These principles are also
applicable to the components and elements of bridge structures and
their interdependencies. However, the utility of bridge maintenance
reports for knowledge mining is usually hindered by data gaps and
inconsistencies.

Moreover, traditional word embedding methods like one-hot or
word2vec are limited in capturing the contextual relationships between
words in a sentence. They often fail to represent the nuanced meanings
and dependencies that arise from word order and syntax, which are
crucial for accurately understanding and processing bridge maintenance
textual reports. As a result, more advanced techniques, such as text
encoding through LLMs, have been developed to address these limita-
tions by generating contextual embeddings for node feature initializa-
tion in the BMKG. Furthermore, the GraphSAGE-based NLC and
contrastive link prediction approaches are proposed to overcome the
challenges posed by data deficiencies or irregularities in practical
maintenance reports.

Although the GraphSAGE-based NLC and link prediction approaches
proposed in this study has proven effective in semantic enrichment and
completing a deficient BMKG, there remains a need for future work in
several areas. First, the currently established BMKG is limited in scope,
and there is a lack of bridge maintenance-oriented data in academic
research. Therefore, it is essential to develop a comprehensive corpus
from industrial practices to facilitate the development and validation of
AI-assisted approaches in bridge knowledge engineering, including the
approaches proposed in this study.

Second, the current method of generating negative examples through
simple random pairing leads to numerous pseudo-negative examples. In
the study, this issue is addressed with a closed-loop framework that
includes manual review, as shown in Section 3.4.3. However, other
methods, such as utilizing node attributes, considering common neigh-
bours, sampling from low-probability edges, or applying adversarial
techniques may help to mitigate this problem and reduce overfitting in
link prediction. Furthermore, exploring transductive learning methods

for evolving BMKGs offers a promising direction for future research.

6. Conclusion

By integrating structural designs and real-world maintenance reports
into the proposed BMKG schema, the paper addresses the need for a
dynamic knowledge graph adapting to isolated nodes and missing con-
nections within bridge routine inspection, which also shows superiority
in documenting the domain expertise of bridge maintenance. Then, the
research demonstrates that the proposed GrapshSAGE-based NLC and
contrastive link-prediction approaches by leveraging contextual em-
beddings through LLMs can achieve satisfactory performance and
generalizability on the deficient BMKGs for semantic enrichment and KG
completion. The performance is validated through ablation study and
cross-validation.

These approaches can improve the graph data mining in BMKG and
facilitate many practical applications in bridge maintenance knowledge
engineering, such as semantic enrichment, compliance checks, de-
pendency analysis, and repair recommendations. Experimentally, it is
also observed that the pre-trained BERT model, i.e., bert-base-uncased
[40], outperforms many other LLMs in text encoding for NLC and link
prediction tasks. Similarly, the pairwise scoring method via L2 distance
(i.e., Euclidean distance) shows superior effectiveness compared to
other metrics for link prediction. A practical implementation framework
that integrates the proposed approaches has been designed for effective
routine bridge maintenance. Additionally, the areas for future en-
hancements and potential research directions are thoroughly discussed
in the discussion section of the study.

CRediT authorship contribution statement

Yan Gao: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Methodology, Investigation,
Conceptualization. Guanyu Xiong: Investigation, Formal analysis, Data
curation. Haijiang Li: Supervision, Project administration, Methodol-
ogy. Jarrod Richards: Validation, Resources, Investigation, Data
curation.

Declaration of competing interest

The authors declared that they have no conflicts of interest in this
work.

Fig. 22. Comparative analysis for link prediction.

Y. Gao et al.

Automation in Construction 166 (2024) 105634

18

Data availability

Data will be made available on request.

Acknowledgement

This work is part of the knowledge transfer partnerships (KTP)
project – DIGIBRIDGE: BIM and Digital Twins in support of Smart Bridge
Structural Surveying. The project receives funding from Innovate UK
with reference number 10003208.

References

[1] R. Li, T. Mo, J. Yang, D. Li, S. Jiang, D. Wang, Bridge inspection named entity
recognition via BERT and lexicon augmented machine reading comprehension
neural model, Adv. Eng. Inform. 50 (September) (2021) 101416, https://doi.org/
10.1016/j.aei.2021.101416.

[2] K. Liu, N. El-Gohary, Ontology-based semi-supervised conditional random fields for
automated information extraction from bridge inspection reports, Autom. Constr.
81 (2017) 313–327, https://doi.org/10.1016/j.autcon.2017.02.003.

[3] K. Liu, N. El-Gohary, Semantic neural network ensemble for automated
dependency relation extraction from bridge inspection reports, J. Comput. Civ.
Eng. 35 (4) (2021), https://doi.org/10.1061/(asce)cp.1943-5487.0000961.

[4] R. Li, et al., Joint extraction of entities and relations via an entity correlated
attention neural model, Inf. Sci. 581 (2021) 179–193, https://doi.org/10.1016/j.
ins.2021.09.028.

[5] Knowledge Engineering: What it Means, Examples, Accessed: Aug. 09, 2023.
[Online]. Available: https://www.investopedia.com/terms/k/knowledge-enginee
ring.asp, 2024.

[6] Y. Zhang, J. Liu, K. Hou, Building a knowledge base of bridge maintenance using
knowledge graph, Adv. Civil Eng. 2023 (2023), https://doi.org/10.1155/2023/
6047489.

[7] G. Ren, R. Ding, H. Li, Building an ontological knowledgebase for bridge
maintenance, Adv. Eng. Softw. 130 (July) (2019) 24–40, https://doi.org/10.1016/
j.advengsoft.2019.02.001.

[8] K. Liu, N. El-Gohary, Bridge deterioration knowledge ontology for supporting
bridge document analytics, J. Constr. Eng. Manag. 148 (6) (2022) 1–14, https://
doi.org/10.1061/(asce)co.1943-7862.0002210.

[9] G. Lee, S. Chi, Graph-based clustering of bridge management system data for bridge
maintenance cost estimation, in: EG-ICE 2023 Workshop on Intelligent Computing
in Engineering, London, UK, 2023.

[10] C. Wu, P. Wu, J. Wang, R. Jiang, M. Chen, X. Wang, Ontological knowledge base
for concrete bridge rehabilitation project management, Autom. Constr. 121 (May)
(2021) 103428, https://doi.org/10.1016/j.autcon.2020.103428.

[11] R. Li, T. Mo, J. Yang, S. Jiang, T. Li, Y. Liu, Ontologies-based domain knowledge
modeling and heterogeneous sensor data integration for bridge health monitoring
systems, IEEE Trans. Industr. Inform. 17 (1) (2021) 321–332, https://doi.org/
10.1109/TII.2020.2967561.

[12] J. Yang, et al., Intelligent bridge management via big data knowledge engineering,
Autom. Constr. 135 (January) (2022) 104118, https://doi.org/10.1016/j.
autcon.2021.104118.

[13] L. Kolbeck, S. Vilgertshofer, A. Borrmann, Graph-based mass customisation of
modular precast bridge systems – Methodology for kit development and
algorithmic design, in: EG-ICE 2023 Workshop on Intelligent Computing in
Engineering, London, UK, 2023.

[14] P. Zhao, W. Liao, Y. Huang, X. Lu, Intelligent design of shear wall layout based on
graph neural networks, Adv. Eng. Inform. 55 (January) (2023) 101886, https://
doi.org/10.1016/j.aei.2023.101886.

[15] P. Zhao, W. Liao, Y. Huang, X. Lu, Intelligent beam layout design for frame
structure based on graph neural networks, J. Building Eng. 63 (PA) (2023) 105499,
https://doi.org/10.1016/j.jobe.2022.105499.

[16] B. Sanchez-Lengeling, E. Reif, A. Pearce, A.B. Wiltschko, A gentle introduction to
graph neural networks, Distill 6 (9) (Sep. 2021) e33, https://doi.org/10.23915/
DISTILL.00033.

[17] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A comprehensive survey on
graph neural networks, IEEE Trans. Neural Netw. Learn. Syst. 32 (1) (2021) 4–24,
https://doi.org/10.1109/TNNLS.2020.2978386.

[18] J. Zhou, et al., Graph neural networks: a review of methods and applications, AI
Open 1 (April) (2020) 57–81, https://doi.org/10.1016/j.aiopen.2021.01.001.

[19] F.C. Collins, A. Braun, M. Ringsquandl, D.M. Hall, A. Borrmann, Assessing IFC
classes with means of geometric deep learning on different graph encodings, in:
Proceedings of the 2021 European Conference on Computing in Construction vol.
2, 2021, pp. 332–341. Rhodes, Greece, on July 19–28, 10.35490/ec3.2021.168.

[20] Z. Wang, R. Sacks, T. Yeung, Exploring graph neural networks for semantic
enrichment: Room type classification, Autom. Constr. 134 (December) (2022)
104039, https://doi.org/10.1016/j.autcon.2021.104039.

[21] L. Xia, Y. Liang, P. Zheng, J. Leng, Maintenance planning recommendation of
complex industrial equipment based on knowledge graph and graph neural
network, Reliab. Eng. Syst. Saf. 232 (December) (2023) 109068, https://doi.org/
10.1016/j.ress.2022.109068.

[22] Y. Zhang, R. Jin, Z.H. Zhou, Understanding bag-of-words model: a statistical
framework, Int. J. Mach. Learn. Cybern. 1 (1–4) (2010) 43–52, https://doi.org/
10.1007/s13042-010-0001-0.

[23] S. Qaiser, R. Ali, Text mining: use of TF-IDF to examine the relevance of words to
documents, Int. J. Comput. Appl. 181 (1) (2018) 25–29, https://doi.org/10.5120/
ijca2018917395.

[24] K.W. Church, Emerging Trends: Word2Vec, Nat. Lang. Eng. 23 (1) (2017) 155–162,
https://doi.org/10.1017/S1351324916000334.

[25] J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word
representation, in: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 2014, pp. 1532–1543,
https://doi.org/10.3115/v1/D14-1162.

[26] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with
subword information, Trans. Assoc. Comput. Linguist. 5 (2017) 135–146, https://
doi.org/10.1162/tacl_a_00051.

[27] J. Devlin, M.W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep
bidirectional transformers for language understanding, in: NAACL HLT 2019–2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies - Proceedings of the Conference vol. 1,
2019, pp. 4171–4186, https://doi.org/10.18653/v1/N19-1423, no. Mlm.

[28] C. Raffel, et al., Exploring the limits of transfer learning with a unified text-to-text
transformer, J. Mach. Learn. Res. 21 (2020) 1–67. https://dl.acm.org/doi/abs/1
0.5555/3455716.3455856.

[29] H. Su, et al., One embedder, any task: instruction-finetuned text embeddings, in:
Proceedings of the Annual Meeting of the Association for Computational
Linguistics, Toronto, Canada, 2023, pp. 1102–1121, https://doi.org/10.18653/v1/
2023.findings-acl.71.

[30] Introducing ChatGPT, Accessed: Jan. 13, 2024. [Online]. Available: https://open
ai.com/blog/chatgpt, 2024.

[31] H. Touvron, et al., Llama 2: Open Foundation and Fine-Tuned Chat Models
[Online]. Available: http://arxiv.org/abs/2307.09288, 2023.

[32] H. Touvron, et al., LLaMA: Open and Efficient Foundation Language Models
[Online]. Available: http://arxiv.org/abs/2302.13971, 2023.

[33] S. Zhang, H. Tong, J. Xu, R. Maciejewski, Graph convolutional networks: a
comprehensive review, Comput. Soc. Netw. 6 (1) (2019), https://doi.org/10.1186/
s40649-019-0069-y.

[34] W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large
graphs, in: Advances in Neural Information Processing Systems vol. 2017, 2017,
pp. 1025–1035. Decem, no. Nips.

[35] Link Prediction using Graph Neural Networks — DGL 1.1.1 Documentation,
Accessed: Aug. 09, 2023. [Online]. Available: https://docs.dgl.ai/tutorials/blit
z/4_link_predict.html#sphx-glr-tutorials-blitz-4-link-predict-py, 2024.

[36] Link Prediction Pipelines - Neo4j Graph Data Science, Accessed: Jan. 29, 2024.
[Online]. Available: https://neo4j.com/docs/graph-data-science/current/machin
e-learning/linkprediction-pipelines/link-prediction/, 2024.

[37] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations
ofwords and phrases and their compositionality, in: Advances in Neural
Information Processing Systems, 2013, pp. 1–9, https://doi.org/10.5555/
2999792.2999959.

[38] Facebook/bart-base⋅Hugging Face, Accessed: Jan. 13, 2024. [Online]. Available:
https://huggingface.co/facebook/bart-base, 2024.

[39] Bert-base-uncased⋅Hugging Face, Accessed: Jan. 13, 2024. [Online]. Available:
https://huggingface.co/bert-base-uncased, 2024.

[40] openai/CLIP: CLIP (Contrastive Language-Image Pretraining), Predict the most
relevant text snippet given an image, 2024. Accessed: Jan. 13, 2024. [Online].
Available: https://github.com/openai/CLIP.

[41] microsoft/deberta-v3-base⋅Hugging Face, Accessed: Jan. 13, 2024. [Online].
Available: https://huggingface.co/microsoft/deberta-v3-base, 2024.

[42] sentence-transformers/gtr-t5-base⋅Hugging Face, Accessed: Jan. 13, 2024.
[Online]. Available: https://huggingface.co/sentence-transformers/gtr-t5-base,
2024.

[43] Embeddings - OpenAI API, Accessed: Jan. 13, 2024. [Online]. Available:
https://platform.openai.com/docs/guides/embeddings, 2024.

[44] sentence-transformers/sentence-t5-base⋅Hugging Face, Accessed: Jan. 13, 2024.
[Online]. Available: https://huggingface.co/sentence-transformers/sentence-t5-
base, 2024.

[45] WhereIsAI/UAE-Large-V1⋅Hugging Face, Accessed: Jan. 13, 2024. [Online].
Available: https://huggingface.co/WhereIsAI/UAE-Large-V1, 2024.

[46] xlm-mlm-en-2048⋅Hugging Face, Accessed: Jan. 13, 2024. [Online]. Available:
https://huggingface.co/xlm-mlm-en-2048, 2024.

[47] T. Shen, F. Zhang, J. Cheng, A comprehensive overview of knowledge graph
completion, Knowl.-Based Syst. 255 (2022) 109597, https://doi.org/10.1016/j.
knosys.2022.109597.

[48] K. Xu, S. Jegelka, W. Hu, J. Leskovec, How powerful are graph neural networks, in:
7th International Conference on Learning Representations, ICLR 2019, New
Orleans, USA, 2019, pp. 1–17, https://doi.org/10.13140/RG.2.2.23687.70561.

[49] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translating
embeddings for modeling multi-relational data, Adv. Neural Inf. Proces. Syst. 26
(2013), in: https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8
133fa24680a88d2f9-Abstract.html.

[50] B. Yang, W. Yih, X. He, J. Gao, L. Deng, Embedding entities and relations for
learning and inference in knowledge bases, arXiv preprint arXiv:1412.6575, 2014.

Y. Gao et al.

https://doi.org/10.1016/j.aei.2021.101416
https://doi.org/10.1016/j.aei.2021.101416
https://doi.org/10.1016/j.autcon.2017.02.003
https://doi.org/10.1061/(asce)cp.1943-5487.0000961
https://doi.org/10.1016/j.ins.2021.09.028
https://doi.org/10.1016/j.ins.2021.09.028
https://www.investopedia.com/terms/k/knowledge-engineering.asp
https://www.investopedia.com/terms/k/knowledge-engineering.asp
https://doi.org/10.1155/2023/6047489
https://doi.org/10.1155/2023/6047489
https://doi.org/10.1016/j.advengsoft.2019.02.001
https://doi.org/10.1016/j.advengsoft.2019.02.001
https://doi.org/10.1061/(asce)co.1943-7862.0002210
https://doi.org/10.1061/(asce)co.1943-7862.0002210
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0045
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0045
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0045
https://doi.org/10.1016/j.autcon.2020.103428
https://doi.org/10.1109/TII.2020.2967561
https://doi.org/10.1109/TII.2020.2967561
https://doi.org/10.1016/j.autcon.2021.104118
https://doi.org/10.1016/j.autcon.2021.104118
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0065
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0065
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0065
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0065
https://doi.org/10.1016/j.aei.2023.101886
https://doi.org/10.1016/j.aei.2023.101886
https://doi.org/10.1016/j.jobe.2022.105499
https://doi.org/10.23915/DISTILL.00033
https://doi.org/10.23915/DISTILL.00033
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1016/j.aiopen.2021.01.001
http://10.35490/ec3.2021.168
https://doi.org/10.1016/j.autcon.2021.104039
https://doi.org/10.1016/j.ress.2022.109068
https://doi.org/10.1016/j.ress.2022.109068
https://doi.org/10.1007/s13042-010-0001-0
https://doi.org/10.1007/s13042-010-0001-0
https://doi.org/10.5120/ijca2018917395
https://doi.org/10.5120/ijca2018917395
https://doi.org/10.1017/S1351324916000334
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5555/3455716.3455856
https://doi.org/10.5555/3455716.3455856
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2302.13971
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1186/s40649-019-0069-y
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0170
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0170
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0170
https://docs.dgl.ai/tutorials/blitz/4_link_predict.html#sphx-glr-tutorials-blitz-4-link-predict-py
https://docs.dgl.ai/tutorials/blitz/4_link_predict.html#sphx-glr-tutorials-blitz-4-link-predict-py
https://neo4j.com/docs/graph-data-science/current/machine-learning/linkprediction-pipelines/link-prediction/
https://neo4j.com/docs/graph-data-science/current/machine-learning/linkprediction-pipelines/link-prediction/
https://doi.org/10.5555/2999792.2999959
https://doi.org/10.5555/2999792.2999959
https://huggingface.co/facebook/bart-base
https://huggingface.co/bert-base-uncased
https://github.com/openai/CLIP
https://huggingface.co/microsoft/deberta-v3-base
https://huggingface.co/sentence-transformers/gtr-t5-base
https://platform.openai.com/docs/guides/embeddings
https://huggingface.co/sentence-transformers/sentence-t5-base
https://huggingface.co/sentence-transformers/sentence-t5-base
https://huggingface.co/WhereIsAI/UAE-Large-V1
https://huggingface.co/xlm-mlm-en-2048
https://doi.org/10.1016/j.knosys.2022.109597
https://doi.org/10.1016/j.knosys.2022.109597
https://doi.org/10.13140/RG.2.2.23687.70561
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0250
http://refhub.elsevier.com/S0926-5805(24)00370-4/rf0250

	Exploring bridge maintenance knowledge graph by leveraging GrapshSAGE and text encoding
	1 Introduction
	2 Literature review
	2.1 Bridge maintenance knowledge engineering
	2.2 Graph neural networks and applications
	2.3 Word and sentence embedding

	3 Methodology
	3.1 Problem statement
	3.2 BMKG schema
	3.3 Text encoding and GraphSAGE
	3.3.1 Text encoding
	3.3.2 GraphSAGE

	3.4 Proposed approaches and framework
	3.4.1 Node-layer classification
	3.4.2 Contrastive link prediction
	3.4.3 Implementation framework

	4 Proof of concept
	4.1 BMKG construction
	4.2 Node layer classification for incomplete BMKGs
	4.2.1 Experiment preparation for NLC
	4.2.2 Ablation study for NLC
	4.2.2.1 Different text encoders for NLC
	4.2.2.2 Varying BMKG completeness for NLC

	4.2.3 Cross-validation for NLC
	4.2.4 Semantic enrichment

	4.3 Link prediction for incomplete BMKGs
	4.3.1 Experiment preparation for link prediction
	4.3.2 Ablation study for link prediction
	4.3.2.1 Different edge pair-scoring methods for link prediction
	4.3.2.2 Different text encoders for link prediction
	4.3.2.3 Varying BMKG completeness for link prediction

	4.3.3 Cross-validation for link prediction
	4.3.4 BMKG completion

	4.4 Comparison with cutting-edge models
	4.4.1 Comparative analysis for NLC
	4.4.2 Comparative analysis for link prediction

	5 Discussion
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

