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Energy-based sequential sampling for low-rank PSD-matrix approximation

Matthew Hutchings∗ and Bertrand Gauthier†

Abstract. We introduce a pseudoconvex differentiable relaxation of the column-sampling problem for the Nyström approxi-
mation of positive-semidefinite (PSD) matrices. The relaxation is based on the interpretation of PSD matrices
as integral operators and relies on the supports of measures to characterise samples of columns. We describe a
class of gradient-based sequential sampling strategies which leverages the properties of the considered framework,
and demonstrate its ability to produce accurate Nyström approximations. The time complexity of the stochastic
variants of the discussed strategies is linear in the order of the considered PSD matrices, and the underlying
computations can be easily parallelised.

Key words. Nyström approximation, reproducing kernel Hilbert spaces, differentiable relaxation, generalised convexity,
conditional gradient.

MSC codes. 65F55, 46E22, 47B32.

1. Introduction. The low-rank approximation of matrices through column sampling is a core
technique in scientific computing and machine learning. For positive-semidefinite (PSD) matrices,
the terminology Nyström approximation is often used, and the characterisation of samples of columns
leading to accurate approximations is referred to as the column sampling problem (CSP); see e.g.
[26, 1, 24, 23]. In practical applications, the combinatorial nature of the CSP and the cost inherent to
the evaluation of the Nyström approximation errors prevent the implementation of sampling strategies
based on direct minimisations, and as such, have motivated the development of a wide variety of
heuristic-based sampling strategies; see [7, 12, 10, 17, 20, 6] and references therein for an overview.

In this work, we describe a class of sequential sampling strategies leveraging the properties of a
differentiable pseudoconvex relaxation of the CSP. We characterise samples of columns through the non-
zero entries of selection vectors (interestingly enough, this alone leads to a convex, but non-differentiable,
relaxation of the CSP; see Theorem 2.2); such selection vectors can be regarded as discrete measures,
and together with the considered PSD matrix, define integral operators acting on the reproducing
kernel Hilbert space (RKHS; see e.g. [19]) defined by the matrix. Following [9, 8], the norm of the
corresponding Hilbert-Schmidt (HS) space can be used to discriminate among selection vectors, and
enforcing an invariance with respect to the rescaling of selection vectors gives rise to a quasiconvex
error map 𝑅 on the selection-vector space (𝑅 is in addition pseudoconvex on a specific convex cone
of interest, see Theorem 2.5). The error map 𝑅 can be minimised through gradient descent, and we
describe sequential sampling strategies based on minimisation procedures with sparse initialisation
and sparse descent directions (see e.g. [4, 2, 13] for related gradient-based approaches for sampling);
sparsity of the samples is enforced by early stopping of the optimisation.

For a 𝑁 ×𝑁 PSD matrix 𝐊, the described sampling strategies rely on a vector 𝖌 ∈ ℝ
𝑁 formed by

computing the squared 𝓁
2 norm of each row (or column) of 𝐊. The time complexity of forming the
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2 M. HUTCHINGS AND B. GAUTHIER

exact target potential 𝖌 is therefore quadratic in 𝑁 ; nevertheless, stochastic approximations of 𝖌 can be
considered, and the overall time complexity of the proposed strategies is then linear in𝑁 (for instance, a
strategy with (𝑚2 +𝑚𝑁 + 𝓁𝑁) time complexity is presented, with 𝑚 the size of the extracted column
sample, and where 𝓁 ≪ 𝑁 is a sample-size parameter related to the stochastic approximation of 𝖌).
The underlying computations can in addition be easily parallelised.

The manuscript is organised as follows. In Section 2, we describe the overall framework surrounding
the considered relaxation of the CSP. In Section 3, we present a class of gradient-based sequential
column-sampling strategies, and stochastic variants of these strategies are discussed in Section 4.
Section 5 is devoted to numerical experiments, and Section 6 consists of a concluding discussion. Proofs
are gathered in appendix, together with some technical results and additional figures.

2. Overall framework and notations. Throughout this note, we use the classical matrix notation

and identify a vector 𝜶 ∈ ℂ
𝑁 , 𝑁 ∈ ℕ, as the 𝑁 × 1 column matrix defined by the coefficients of 𝜶

in the canonical basis {𝐞
𝑖
}
𝑖∈[𝑁] of ℂ𝑁 ; [𝑁] stands for the set of all integers between 1 and 𝑁 . The

conjugate and conjugate-transpose of a matrix 𝐌 are denoted by 𝐌 and 𝐌
∗, respectively, and span{𝐌}

stands for the linear space spanned by the columns of 𝐌. Hermitian forms are assumed to be linear in
their second argument.

2.1. Nyström approximation of PSD matrices. Let 𝐊 ∈ ℂ
𝑁×𝑁 be a PSD matrix, with

𝑁 ∈ ℕ. For a subset 𝕀 ⊆ [𝑁] of size 𝑚 ⩽ 𝑁 , the Nyström approximation of 𝐊 induced by 𝕀 is the PSD
matrix

(2.1) �̂�(𝕀) = 𝐊∙,𝕀(𝐊𝕀,𝕀
)†𝐊

𝕀,∙ ∈ ℂ
𝑁×𝑁

,

where 𝐊∙,𝕀 ∈ ℂ
𝑁×𝑚 is the matrix defined by the columns of 𝐊 with index in 𝕀, and where (𝐊

𝕀,𝕀
)† is the

pseudoinverse of the 𝑚 × 𝑚 principal submatrix of 𝐊 defined by 𝕀 (and 𝐊
𝕀,∙ = (𝐊∙,𝕀)

∗ consists of rows
of 𝐊); see e.g. [7, 21, 12, 10, 5].

The accuracy of a Nyström approximation is often assessed through the trace, Frobenius or spectral
norm of the approximation error, that is

(2.2) ‖𝐊 − �̂�(𝕀)‖tr , ‖𝐊 − �̂�(𝕀)‖F, or ‖𝐊 − �̂�(𝕀)‖sp,

respectively, naturally raising questions related to the characterisation of subsets leading to accurate
approximations. In practice, the direct minimisation, as functions of 𝕀, of the error norms (2.2) is made
difficult by the combinatorial nature of the underlying problems and by the numerical cost inherent to
the evaluation of the corresponding norms. The following Remark 2.1 provides an important insight into
the theoretical framework surrounding the definition of Nyström approximations and the assessment of
their accuracy.

Remark 2.1. The entries of a PSD matrix𝐊 ∈ ℂ
𝑁×𝑁 characterise the kernel of a RKHS ofℂ-valued

functions on [𝑁]; see for instance [19, Chapter 2]. This RKHS can be identified with the subspace
 = span{𝐊} ⊆ ℂ

𝑁 endowed with the inner product

⟨𝒉 |𝒇⟩

= 𝒉

∗
𝐊

†
𝒇 , 𝒉 and 𝒇 ∈ .

A subset 𝕀 ⊆ [𝑁] then defines a closed linear subspace
𝕀
= span{𝐊∙,𝕀} of, and �̂�(𝕀) is the reproducing

kernel of 
𝕀
. Introducing 𝑃

𝕀
= 𝐊∙,𝕀(𝐊𝕀,𝕀

)†𝐈
𝕀,∙ ∈ ℂ

𝑁×𝑁 , with 𝐈 the 𝑁 ×𝑁 identity matrix, we indeed
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have
�̂�(𝕀) = 𝑃

𝕀
𝐊 = 𝐊𝑃

∗
𝕀
= 𝑃

𝕀
𝐊𝑃

∗
𝕀
,

and the matrix 𝑃
𝕀

corresponds to the orthogonal projection from  onto 
𝕀

(see Remark 2.3), that is

span{𝑃
𝕀
𝐊} = 

𝕀
, 𝑃

2
𝕀
= 𝑃

𝕀
and ⟨𝒉 |𝑃

𝕀
𝒇 ⟩


= ⟨𝑃

𝕀
𝒉 |𝒇⟩


, 𝒉 and 𝒇 ∈ .

Denoting by  the Euclidean Hilbert space ℂ
𝑁 (with inner product ⟨𝐮 | 𝐯⟩


= 𝐮

∗
𝐯, 𝐮 and 𝐯 ∈ ), and

observing that for all 𝒉 ∈ , there exists 𝜶 ∈ ℂ
𝑁 such that 𝒉 = 𝐊𝜶, we in particular have

(2.3) ⟨𝒉 |𝐊𝐯⟩

= ⟨𝒉 | 𝐯⟩


, 𝒉 ∈  and 𝐯 ∈  .

The matrix 𝐊 can in particular be regarded as an operator from, and to,  or . In (2.2), the trace norm
then corresponds to the squared HS norm of the PSD matrix 𝐊 − �̂�(𝕀) when interpreted as an operator
from  to ; indeed, setting 𝑃0𝕀 = 𝐈 − 𝑃

𝕀
(so that 𝐊 − �̂�(𝕀) = 𝑃0𝕀𝐊 = 𝐊𝑃

∗
0𝕀) and observing that the

matrix 𝑃0𝕀 is an orthogonal projection on , from (2.3), we obtain (see also Appendix A)

∑

𝑖∈[𝑁]

‖𝑃0𝕀𝐊𝐞
𝑖
‖2

=

∑

𝑖∈[𝑁]

⟨𝑃0𝕀𝐊𝐞
𝑖
|𝐊𝐞

𝑖
⟩

=

∑

𝑖∈[𝑁]

⟨𝑃0𝕀𝐊𝐞
𝑖
| 𝐞
𝑖
⟩

= trace(𝑃0𝕀𝐊).

Also, the Frobenius and spectral norms correspond to the HS and spectral norms, respectively, of the
matrix 𝐊 − �̂�(𝕀) when regarded as an operator on  . ⊲

2.2. First relaxation: selection vectors. For a selection vector 𝝊 = (𝜐
𝑖
)
𝑖∈[𝑁] ∈ ℝ

𝑁 , we set
𝕀
𝝊
= {𝑖 ∈ [𝑁]|𝜐

𝑖
≠ 0} and we refer to 𝕀

𝝊
as the support of 𝝊. Through its support, the vector 𝝊

characterises a subset of columns of 𝐊; following Remark 2.1, we introduce the simplified notations

�̂�(𝝊) = �̂�(𝕀
𝝊
), 

𝝊
= 

𝕀
𝝊

and 𝑃
𝝊
= 𝑃

𝕀
𝝊
.

We then define the error maps (notice the square in the definition of 𝐶F and 𝐶sp)

𝐶tr ∶ 𝝊 ↦ ‖𝐊 − �̂�(𝝊)‖tr , 𝐶F ∶ 𝝊 ↦ ‖𝐊 − �̂�(𝝊)‖2F and 𝐶sp ∶ 𝝊 ↦ ‖𝐊 − �̂�(𝝊)‖2sp.

Theorem 2.2. The error maps 𝐶X, X ∈ {tr,F, sp}, are convex on the convex cone ℝ
𝑁

⩾0, and for

𝝊 ∈ ℝ
𝑁

⩾0 and 𝜼 ∈ ℝ
𝑁

⩾0, we have lim
𝜌→0

+
1

𝜌

[
𝐶X

(
𝝊+𝜌(𝜼−𝝊)

)
−𝐶X(𝝊)

]
∈ {−∞, 0}, that is, the directional

derivatives of these maps take values in the discrete set {−∞, 0}.

Theorem 2.2 illustrates that the error maps induced by the trace, Frobenius and spectral norms are
akin to convex piecewise-constant functions on ℝ

𝑁

⩾0 (for the trace and Frobenius norms, an equivalent of
this result can be found in [8]); see Figure 1 for an illustration. The selection-vector formulation can hence
be regarded as a non-differentiable convex relaxation of the CSP. Introducing |𝝊| = (|𝜐

𝑖
|)
𝑖∈[𝑁] ∈ ℝ

𝑁

⩾0,
we may observe that 𝐶X(𝝊) = 𝐶X(|𝝊|), X ∈ {tr,F, sp}.

2.3. Second relaxation: quadrature approximation. Following Remark 2.1, we introduce

HS() = {𝐌 ∈ ℂ
𝑁×𝑁 | span{𝐌𝐊} ⊆ },
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that is, a matrix 𝐌 belongs to HS() if and only if 𝐌𝒉 ∈  for all 𝒉 ∈ . Observing that for any
orthonormal basis (ONB) {𝒉

𝑗
}
𝑗∈𝕁 of , 𝕁 ⊆ [𝑁], we have 𝐊 =

∑
𝑗∈𝕁 𝒉𝑗𝒉

∗
𝑗

(see e.g. [19]), we set

(2.4) ⟨𝐌 |𝐓⟩HS() =
∑

𝑗∈𝕁

⟨𝐌𝒉
𝑗
|𝐓𝒉

𝑗
⟩

= trace(𝐊𝐌

∗
𝐊

†
𝐓), 𝐌 and 𝐓 ∈ HS().

Endowed with the Hermitian form ⟨⋅ | ⋅⟩HS(), the linear space HS() is a semi-Hilbert space, and
‖𝐌‖HS() = 0 if and only if 𝐌𝐊 = 0 (see Remark 2.3). If 𝐊 is invertible, HS() is a Hilbert space.

Remark 2.3. When the matrix 𝐊 is singular, the matrices representing a given operator on  are
non-unique. Indeed, for 𝐯 ∈ ℂ

𝑁 , with 𝐯 ≠ 0 such that 𝐊𝐯 = 0, we have 𝐯
∗
𝒉 = 0, 𝒉 ∈ ; for

𝐌 ∈ HS() and 𝐮 ∈ ℂ
𝑁 , we obtain (𝐌+ 𝐮𝐯

∗)𝒉 = 𝐌𝒉, so that the matrices 𝐌 and 𝐌+ 𝐮𝐯
∗ represent

the same operator on . ⊲

A selection vector 𝝊 ∈ ℝ
𝑁 can be regarded as a signed measure on [𝑁], and as such, defines

together with 𝐊 a discrete integral operator of the form 𝐮 ↦ 𝐊𝐕𝐮, 𝐮 ∈ ℂ
𝑁 , with 𝐕 = diag(𝝊) ∈ ℂ

𝑁×𝑁

the diagonal matrix with diagonal 𝝊. The matrix 𝐊𝐕 belongs to HS() and span{𝐊𝐕} = 
𝝊

(so that

the matrices 𝐊𝐕 and �̂�(𝝊) relate to the same subset of columns of 𝐊). Let 𝝎 ∈ ℝ
𝑁 be another selection

vector, and set 𝐖 = diag(𝝎). From (2.4), we have

(2.5) ⟨𝐊𝐖 |𝐊𝐕⟩HS() = trace(𝐊𝐖𝐊𝐊
†
𝐊𝐕) = trace(𝐊𝐖𝐊𝐕) = 𝝎

∗
𝐒𝝊,

where 𝐒 = 𝐊⊙𝐊 (element-wise product) is the 𝑁 ×𝑁 PSD matrix with 𝑖, 𝑗 entry |𝐊
𝑖,𝑗
|2, the squared

modulus of the 𝑖, 𝑗 entry of 𝐊 (the matrix 𝐒 is real symmetric). Introducing 1 = (1)
𝑖∈[𝑁] ∈ ℝ

𝑁 , we in

particular have diag(1) = 𝐈 (the identity matrix) and ‖𝐊‖2HS() = 1
∗
𝐒1 = ‖𝐊‖2F.

We denote by 𝐷 ∶ ℝ
𝑁

→ ℝ
⩾0 the error map defined as

(2.6) 𝐷(𝝊) = ‖𝐊 −𝐊𝐕‖2HS() = (1 − 𝝊)∗𝐒(1 − 𝝊) = ‖𝐊‖2F + 𝝊
∗
𝐒𝝊 − 2𝖌∗𝝊, 𝝊 ∈ ℝ

𝑁
,

with 𝖌 = 𝐒1 ∈ ℝ
𝑁

⩾0 (we refer to 𝖌 as the target potential; see Remark 2.4). The error map 𝐷 is convex

on ℝ
𝑁 , and the gradient of 𝐷 at 𝝊 is ∇𝐷(𝝊) = 2(𝐒𝝊 − 𝖌). The relation between 𝐷 and the error maps

𝐶tr , 𝐶F and 𝐶sp is further discussed in Section 2.5 (see also [8]).

Remark 2.4. Following Remark 2.1, the PSD matrix 𝐒 defines a RKHS that can be identified with
the vector space  = span{𝐒} ⊆ ℂ

𝑁 endowed with the inner product ⟨𝒈 | 𝒋⟩

= 𝒈

∗
𝐒
†
𝒋, 𝒈 and 𝒋 ∈ . In

view of (2.5), we have

⟨𝐊𝐖 |𝐊𝐕⟩HS() = 𝝎
∗
𝐒𝝊 = 𝝎

∗
𝐒𝐒

†
𝐒𝝊 = ⟨𝐒𝝎 |𝐒𝝊⟩


, 𝝎 and 𝝊 ∈ ℝ

𝑁 .

We refer to 𝐒𝝊 as the potential of 𝝊 in , and to ‖𝐒𝝊‖2

= ‖𝐊𝐕‖2HS() = 𝝊

∗
𝐒𝝊 as the energy of 𝝊 with

respect to 𝐒. The map (𝝎, 𝝊) ↦ ‖𝐊𝐖 − 𝐊𝐕‖HS() can then be interpreted as a generalised integral

probability metric, or maximum mean discrepancy (see e.g. [22, 16, 8]). ⊲

2.4. Invariance under rescaling. For 𝝊 ∈ ℝ
𝑁 and 𝑐 > 0, we have 𝕀

𝝊
= 𝕀

𝑐𝝊
; the error maps

𝐶X, X ∈ {tr,F, sp}, are thus invariant under rescaling, that is, 𝐶X(𝑐𝝊) = 𝐶X(𝝊). To enforce a similar
invariance within (2.6), we introduce the error map

(2.7) 𝑅(𝝊) = min
𝑐⩾0

𝐷(𝑐𝝊) =

{
‖𝐊‖2F − (𝖌∗𝝊)2∕(𝝊∗𝐒𝝊) if 𝖌∗𝝊 > 0,

‖𝐊‖2F otherwise,
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and we set D = {𝝊 ∈ ℝ
𝑁 |𝖌∗𝝊 > 0}. From the Cauchy-Schwarz (CS) inequality, if 𝝊 ∈ D , then

𝝊
∗
𝐒𝝊 > 0; we indeed have |𝖌∗𝝊|2 = |1∗

𝐒𝝊|2 ⩽ (1∗
𝐒1)(𝝊∗𝐒𝝊). We also have 𝑅(𝝊) = 𝐷(𝑐

𝝊
𝝊), with

𝑐
𝝊
=

{
(𝖌∗𝝊)∕(𝝊∗𝐒𝝊) if 𝝊 ∈ D ,

0 otherwise.

The appearance of the error maps 𝐷, 𝑅 and 𝐶F over ℝ𝑁

⩾0 is illustrated in Figure 1.

𝝊 ↦ 𝐷(𝝊)

1
𝜐1

𝜐2

𝝊 ↦ 𝑅(𝝊)

1
𝜐1

𝜐2

𝝊 ↦ 𝐶F(𝝊)

1
𝜐1

𝜐2

Figure 1. Schematic representation of the error maps 𝐷, 𝑅 and 𝐶F on ℝ
𝑁

⩾0; the red star represents the selection vector

1 ∈ ℝ
𝑁

. The presented graphs correspond to a 2 × 2 matrix 𝐊 such that 𝐊1,1 = 1.225, 𝐊2,2 = 0.894 and 𝐊2,1 = 0.316. In

the graphs of 𝑅 and 𝐶F, the point on the vertical axis indicates the value of these maps at 𝝊 = 0 (that is ‖𝐊‖2F), and the bold

lines indicate the constant values taken by these maps along the horizontal axes.

For 𝜼 ∈ ℝ
𝑁 , the directional derivative Θ(𝝊; 𝜼) of 𝑅 at 𝝊 ∈ ℝ

𝑁 along 𝜼 − 𝝊 is given by

(2.8) Θ(𝝊; 𝜼) = lim
𝜌→0

+

1

𝜌

[
𝑅
(
𝝊 + 𝜌(𝜼 − 𝝊)

)
− 𝑅(𝝊)

]
=

{
−∞ if 𝝊 ∈ Z and 𝜼 ∈ D ,

2𝑐
𝝊
(𝜼 − 𝝊)∗(𝑐

𝝊
𝐒𝝊 − 𝖌) otherwise,

with Z = {𝝊 ∈ ℝ
𝑁 |𝐒𝝊 = 0}. As D ∩ Z = ∅, the gradient of 𝑅 at 𝝊 ∈ D is ∇𝑅(𝝊) = 2𝑐

𝝊
(𝑐

𝝊
𝐒𝝊 − 𝖌).

We may observe that for 𝝊 ∈ D , 𝝊∗(𝑐
𝝊
𝐒𝝊 − 𝖌) = 0.

Theorem 2.5. The map 𝑅 is quasiconvex on ℝ
𝑁

, and pseudoconvex on the convex cone D .

For 𝝊⋆ = 𝑐1 + 𝝐, with 𝑐 > 0 and 𝝐 ∈ ℝ
𝑁 such that 𝐒𝝐 = 0, we have 𝑅(𝝊⋆) = 0, and 𝑅 is thus

minimum at 𝝊⋆. For suitable step sizes, the pseudoconvexity of 𝑅 on D ensures the convergence to
such a minimum of any gradient descent starting from a vector in D . Lemma 2.6 provides an analytical
expression for the optimal step size and for the improvement induced by a descent with optimal step
size in the framework of interest for Section 3.

Lemma 2.6. For 𝝊 ∈ D and 𝜼 ∈ ℝ
𝑁

such that Θ(𝝊; 𝜼) < 0 and Θ(𝜼; 𝝊) ⩽ 0, the function

𝜌 ↦ 𝑅
(
𝝊 + 𝜌(𝜼 − 𝝊)

)
, 𝜌 ∈ [0, 1], is minimum at 𝜌 = 𝑟 ∈ (0, 1], with

(2.9) 𝑟 =
𝑇1

𝑇1 + 𝑇2
, 𝑇1 = (𝝊∗𝐒𝝊)(𝖌∗𝜼) − (𝖌∗𝝊)(𝝊∗𝐒𝜼) and 𝑇2 = (𝜼∗𝐒𝜼)(𝖌∗𝝊) − (𝖌∗𝜼)(𝝊∗𝐒𝜼);

introducing (𝝊; 𝜼) = 𝑅(𝝊) − 𝑅
(
𝝊 + 𝑟(𝜼 − 𝝊)

)
⩾ 0, we then have

(2.10) (𝝊; 𝜼) =
(
𝜼
∗(𝑐

𝝊
𝐒𝝊 − 𝖌)

)2/(
(𝜼∗𝐒𝜼) − (𝝊∗𝐒𝜼)2∕(𝝊∗𝐒𝝊)

)
.
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2.5. Additional error maps and further properties. In HS(), the Nyström approximation
of 𝐊 relates to the approximation of the underlying operator on  through projections. For 𝝊 ∈ ℝ

𝑁 ,
we have (see Lemma A.1 and (B.2), in appendix)

‖𝐊 − 𝑃
𝝊
𝐊‖2HS() = ⟨𝐊 − �̂�(𝝊) |𝐊⟩F and ‖𝐊 − 𝑃

𝝊
𝐊𝑃

𝝊
‖2HS() = ‖𝐊‖2F − ‖�̂�(𝝊)‖2F,

with ⟨⋅ | ⋅⟩F the Frobenius inner product on ℂ
𝑁×𝑁 . This observation suggests the definition of the

additional error maps

𝐶P(𝝊) = ⟨𝐊 − �̂�(𝝊) |𝐊⟩F and 𝐶PP(𝝊) = ‖𝐊‖2F − ‖�̂�(𝝊)‖2F;

these maps are of the same type as the maps 𝐶X, X ∈ {tr,F, sp}, as illustrated by Proposition 2.7.

Proposition 2.7. The maps 𝐶P and 𝐶PP are convex on the convex cone ℝ
𝑁

⩾0, and their directional

derivatives take values in the discrete set {−∞, 0}.

The following Lemma 2.8 shows that the error maps 𝐶X, X ∈ {F, sp,P,PP}, are upper-bounded by
𝑅. We may also observe that

𝐶X(1) = 𝑅(1) = 0,X ∈ {tr,F, sp,P,PP} and 𝐶X(0) = 𝑅(0) = ‖𝐊‖2F,X ∈ {F,P,PP}.

Lemma 2.8. For all 𝝊 ∈ ℝ
𝑁

, we have 𝐶sp(𝝊) ⩽ 𝐶F(𝝊) ⩽ 𝐶P(𝝊) ⩽ 𝐶PP(𝝊) ⩽ 𝑅(𝝊) ⩽ 𝐷(𝝊); in

addition, 𝐶PP(𝐞𝑖) = 𝑅(𝐞
𝑖
), 𝑖 ∈ [𝑁].

In view of the above, the error map 𝑅 can be regarded as a differentiable surrogate for the charac-
terisation of samples of columns for Nyström approximation (see also [9, 11, 8]). In the forthcoming
Section 3, we describe a class of sequential sampling strategies driven by the gradient of 𝑅.

3. Gradient-based sequential sampling. From now on, we assume that the diagonal entries
of 𝐊 are strictly positive, so that ℝ𝑁

⩾0∖{0} ⊂ D (this assumption is not restrictive: if a diagonal
entry of 𝐊 is equal to 0, then by CS, the corresponding row and column of 𝐊 are zero vectors). For
𝐟 = (𝑓

𝑖
)
𝑖∈[𝑁] ∈ ℝ

𝑁

>0 and 𝜘 > 0, we introduce


𝐟
= {𝝊 ∈ ℝ

𝑁

⩾0|𝐟
∗
𝝊 = 𝜘} ⊂ D ;

we refer to 𝐟 as the restriction vector. The set 
𝐟

is convex, and its extreme points are the vectors

{𝝃
𝑖
}
𝑖∈[𝑁], with 𝝃

𝑖
= 𝜘𝐞

𝑖
∕𝑓

𝑖
∈ ℝ

𝑁

⩾0. Below, we describe a column-sampling procedure based on the
minimisation of 𝑅 over 

𝐟
via line search with sparse initialisation and sparse descent directions

(specifically, the directions defined by the extreme points of 
𝐟
); sparsity of the samples is enforced

via early stopping. Many variants may be considered (see for instance Remarks 3.1, 3.2 and 3.3), and
stochastic variants are discussed in Section 4. Due to the invariance under rescaling of 𝑅, the value of
𝜘 does not impact the sampling procedure (and we may thus set 𝜘 = 1, for instance).

The procedure is initialised at 𝝊(1) = 𝝃
𝑏
∈ 

𝐟
, with

(3.1) 𝑏 ∈ arg min
𝑖∈[𝑁]

𝑅(𝝃
𝑖
) = arg max

𝑖∈[𝑁]
𝔤
2
𝑖
∕𝐒

𝑖,𝑖
, with 𝔤

𝑖
= 𝐞

∗
𝑖
𝖌 the 𝑖-th entry of 𝖌 = 𝐒1,

and the selection vector at step 𝑞 ∈ ℕ is denoted by 𝝊
(𝑞). An iteration of our sampling procedure consists

of selecting a direction 𝝃
𝑖
− 𝝊

(𝑞), with 𝑖 ∈ [𝑁] such that Θ(𝝊(𝑞); 𝝃
𝑖
) < 0, and of next performing a
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descent with the corresponding optimal step size 𝑟(𝑞) given by (2.9). As descent direction, we consider
the Frank-Wolfe (FW) direction 𝝃

𝑢
− 𝝊

(𝑞), with

(3.2) 𝑢 ∈ arg min
𝑖∈[𝑁]

Θ(𝝊(𝑞); 𝝃
𝑖
) = arg min

𝑖∈[𝑁]
[∇𝑅(𝝊(𝑞))]

𝑖
∕𝑓

𝑖
.

Notably, the initialisation of the procedure via (3.1) ensures that if Θ(𝝊(𝑞); 𝝃
𝑖
) < 0, 𝑖 ∈ [𝑁], then

Θ(𝝃
𝑖
; 𝝊(𝑞)) < 0 (by pseudoconvexity, we would otherwise have 𝑅(𝝃

𝑖
) < 𝑅(𝝃

𝑏
), which is impossible by

definition of 𝝃
𝑏
). The descents therefore necessarily occur within the framework of Lemma 2.6, and we

always have 𝝊
(𝑞) ∈ 

𝐟
(indeed, 

𝐟
is convex and 𝑟(𝑞) ∈ [0, 1]).

A pseudocode of the procedure is given in Algorithm 1. The algorithm produces a sequence
𝝊
(1)
, 𝝊

(2)
,⋯ of selection vectors with increasing support. At stage 𝑞 ∈ ℕ, the number 𝑚

𝑞
of non-zero

entries of 𝝊(𝑞) verifies 𝑚
𝑞
⩽ min(𝑞,𝑁) (see also Remark 3.2). The algorithm stops when 𝑞 = 𝑄, where

𝑄 ∈ ℕ is a given maximum number of iterations, with in practice 𝑄 ≪ 𝑁 (different stopping rules
could be considered, based on 𝑚

𝑞
for instance); the algorithm also stops if 𝝊(𝑞) minimises 𝑅 over 

𝐟

(that is, if there are no descent directions; this situation is unlikely, especially for 𝑞 ≪ 𝑁). We may
observe that 𝝊⋆ = 𝜘1∕(𝐟∗1) ∈ 

𝐟
verifies 𝑅(𝝊⋆) = 0.

Algorithm 1 Column sampling with FW direction and optimal step size.
Input: matrix 𝐒; vector 𝐟 ; number of iterations 𝑄 ∈ ℕ;

Preliminary: compute 𝖌 = 𝐒1 (stochastic approximations may be considered, see Section 4);
Initialisation: compute 𝑏 ∈ [𝑁] using (3.1); set 𝑞 = 1, 𝝊(1) = 𝝃

𝑏
and 𝕀

𝝊
(1) = {𝑏};

while 𝑞 < 𝑄 and 𝑅(𝝊(𝑞)) > 0 do

compute 𝑢 ∈ [𝑁] using (3.2);
compute the optimal step size 𝑟(𝑞) from (2.9) with 𝝊 = 𝝊

(𝑞) and 𝜼 = 𝝃
𝑢
;

set 𝝊(𝑞+1) = (1 − 𝑟(𝑞))𝝊(𝑞) + 𝑟(𝑞)𝝃
𝑢

and 𝕀
𝝊
(𝑞+1) = 𝐼

𝝊
(𝑞) ∪ {𝑢}; increment 𝑞;

end while

Output: subset 𝕀
𝝊
(𝑞) ⊆ [𝑁];

The implementation of Algorithm 1 involves the preliminary computation of the target potential
𝖌 = 𝐒1. Although easily parallelisable, this operation has a (𝑁2) worst-case time complexity (it
requires reading every entry of 𝐒 once); this cost can nevertheless be reduced by considering stochastic
approximations of 𝖌, as discussed in Section 4. Once 𝖌 is known, each iteration of Algorithm 1 has a
(𝑁) time complexity. Notably, for 𝑞 ∈ ℕ, we for instance have

𝐒𝝊
(𝑞+1) = (1 − 𝑟(𝑞))𝐒𝝊(𝑞) + 𝑟(𝑞)(𝜘∕𝑓

𝑢
)𝐒∙,𝑢,

so that sparse updates of the terms 𝐒𝝊, 𝝊∗𝐒𝝊 and 𝖌
∗
𝝊 can be easily implemented.

In view of (3.2), the sequence of subsets 𝕀
𝝊
(1) ⊆ 𝕀

𝝊
(2) ⊆⋯ generated by Algorithm 1 depends on the

choice of the restriction vector 𝐟 . Our experiments suggest that considering 𝐟 = diag(𝐊), the diagonal
of 𝐊, appears to be a relevant choice. Variants of Algorithm 1 producing sequences of subsets that are
independent of the choice of 𝐟 are discussed in Remark 3.4.

Remark 3.1 (Best-improvement direction). Instead of considering the steepest conditional descent
directions (3.2), we may combine the information provided by (2.8) and (2.10) to characterise the
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conditional descent directions inducing the best one-step-ahead improvements. In Algorithm 1, we may
hence replace the FW direction (3.2) by the best-improvement (BI) direction

𝑢 ∈ arg max
𝑖∈[𝑁]

{(𝝊(𝑞); 𝝃
𝑖
)|Θ(𝝊(𝑞); 𝝃

𝑖
) < 0}.

The complexity of each iteration of the BI variant of Algorithm 1 is still (𝑁); however, in comparison
to FW, the resulting procedure is costlier as it requires, in addition to the gradient of 𝑅, the computation
of the relevant improvement scores. ⊲

Remark 3.2 (Enforcing the selection of new columns). In Algorithm 1, at step 𝑞 ∈ ℕ, the FW
direction (3.2) might lead to the selection of a column which already belongs to the sample, that is, we
may have 𝑢 ∈ 𝕀

𝝊
(𝑞) ; we refer to such an event as a correction step (a similar observation holds for the BI

variant of the algorithm). To enforce the selection of a new column at each iteration, we may replace
the FW direction (3.2) by

(3.3) 𝑢 ∈ arg min
𝑖∈[𝑁]

{Θ(𝝊(𝑞); 𝝃
𝑖
)|𝑖 ∉ 𝕀

𝝊
(𝑞) and Θ(𝝊(𝑞); 𝝃

𝑖
) < 0};

if the set characterising (3.3) is empty, the sampling should stop (or an alternative direction should be
considered). Such a variant of Algorithm 1 ensures a faster, although less accurate, exploration of the
columns of 𝐊; it appears to be of particular interest in the stochastic setting of Section 4. ⊲

Remark 3.3 (Weight optimisation). For a subset 𝕀 ⊆ [𝑁] of size 𝑚 ∈, let �̃�(𝕀) ∈ ℝ
𝑁

⩾0 be a vector

minimising 𝐷 over the set of all selection vectors 𝝊 ∈ ℝ
𝑁

⩾0 such that 𝕀
𝝊
⊆ 𝕀 (the entries of the PSD

matrix 𝐒 being non-negative, such a vector always exists). The non-trivial entries [�̃�(𝕀)]
𝕀

of �̃�(𝕀) are
provided by solutions to the quadratic program (QP) associated with the minimisation of the function
𝒙 ↦ 𝒙

∗
𝐒
𝕀,𝕀
𝒙 − 2𝖌∗

𝕀
𝒙 over ℝ𝑚

⩾0. The rescaled vector 𝝊(𝕀) = 𝜘�̃�(𝕀)∕(𝐟∗�̃�(𝕀)) ∈ 
𝐟

then minimises 𝑅 over
the set of all selection vectors 𝝊 ∈ 

𝐟
such that 𝕀

𝝊
⊆ 𝕀. In Algorithm 1 and its BI variant, at iteration

𝑞 ∈ ℕ, rather than performing a descent with optimal step size, we may instead set 𝝊(𝑞+1) = 𝝊(𝕀
𝝊
(𝑞) ∪{𝑢}).

We refer to this modified update rule as weight optimisation (WO); the algorithm then converges in
at most 𝑁 iterations. In terms of numerical complexity, and in comparison to descents with optimal
step sizes, for the WO variants, the computation of 𝝊(𝑞+1) involves solving a QP over ℝ𝑚

𝑞
+1 (in practice,

�̃�
(𝑞) may be used as a warm start for the computation of �̃�(𝑞+1)). As a technical remark, for 𝑞 ∈ ℕ, the

support of 𝝊(𝑞+1) might sometimes be a strict subset of 𝕀
𝝊
(𝑞) ∪ {𝑢}; this situation occurs when some

entries of the solution to the underlying QP are zero. In the experiments of Section 5, instead of the
true support 𝕀

𝝊
(𝑞+1) , we keep track of the virtual support �̃�

𝝊
(𝑞+1) = �̃�

𝝊
(𝑞) ∪ {𝑢}, so that card(�̃�

𝝊
(𝑞)) = 𝑞 for all

𝑞 ⩽ 𝑁 (that is, once a column of 𝐊 has been selected, it is kept inside the sample even if its associated
weight vanishes at some stages of the optimisation process). ⊲

Remark 3.4 (Restriction vector and BI direction). In Algorithm 1, the column of 𝐊 selected
at initialisation via (3.1) does not depend on the choice of 𝐟 . In the framework of Lemma 2.6, we in
addition have ∇𝑅(𝑐𝝊) = ∇𝑅(𝝊)∕𝑐 and (𝝊; 𝜼) = (𝑐𝝊; 𝑐𝜼), 𝑐 and 𝑐 > 0. Consequently, the sequences
of column subsets produced by the BI and BI-WO variants of Algorithm 1 (that is, BI direction with
optimal-step-size or WO update rule) do not depend on the choice of 𝐟 . For the optimal-step-size update
rule, we should observe that a descent from 𝝊 along 𝜼 − 𝝊 and a descent from 𝑐𝝊 along 𝑐𝜼 − 𝑐𝝊 lead to
proportional selection vectors; a similar observation holds for the WO update rule. ⊲
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4. Stochastic approximation of the target potential. In practical applications, and due to its
quadratic complexity in 𝑁 , the preliminary computation of the target potential 𝖌 might be prohibitive.
An alternative consists in relying on numerically affordable stochastic approximations of 𝖌. Many
approaches may be considered, and below, we simply describe one possible way to proceed. We assume
that 𝑁 > 1.

Direct Monte Carlo approximation. The entries of 𝖌 = 𝐒1 correspond to the row sums of 𝐒; as
such, they can be approximated by random sampling. The matrix 𝐒 being PSD, we handle its diagonal
separately and only sample off-diagonal entries of 𝐒; each row is sampled independently of the others,
with the same sample size 𝓁 ∈ ℕ. The sampling is performed uniformly, and for simplicity, with
replacement. For all 𝑖 ∈ [𝑁], that is, for each row of 𝐒, this operation amounts to forming a random
multiset 

𝑖
of 𝓁 indices in [𝑁]∖{𝑖}. Denoting by 𝐅 the 𝑁 ×𝑁 random matrix whose 𝑖, 𝑗 entry counts

the number of times 𝑗 ∈ [𝑁] appears in 
𝑖

(so that 𝐅1 = 𝓁1), the random vector

(4.1) �̂�
𝐅
= diag(𝐒) +

(𝑁−1)

𝓁
(𝐒⊙ 𝐅)1,

corresponds to an unbiased estimator of 𝖌. We may observe that the off-diagonal entries of 𝐅 follow a
binomial distribution with parameters 𝓁 and 1

𝑁−1
.

Accounting for the symmetry of 𝐒. In the framework of (4.1) and for 𝓁 fixed, the number of
entries of 𝐒 involved in the approximation of 𝖌 can be increased by accounting for the symmetry of 𝐒.
Indeed, if 𝑖 ∈ 

𝑗
, 𝑖 and 𝑗 ∈ [𝑁], 𝑖 ≠ 𝑗, that is, if 𝐒

𝑗,𝑖
appears in the approximation of 𝔤

𝑗
(the 𝑗-th

entry of 𝖌), then 𝐒
𝑖,𝑗

= 𝐒
𝑗,𝑖

may be incorporated into the approximation of 𝔤
𝑖
. The corresponding

entries of 𝐒 are provided by the matrix 𝐅
∗, and the random vector 𝒍 = (𝑙

𝑖
)
𝑖∈[𝑁] = 𝐅

∗
1 indicates the

number of additional entries per row of 𝐒. The rows of 𝐅 being independent random vectors, for all
𝑖 ∈ [𝑁], the random variables {𝐅∗

𝑖,𝑗
}
𝑗∈[𝑁]∖{𝑖} are independent, and 𝑙

𝑖
follows a binomial distribution

with parameters 𝓁(𝑁 − 1) and 1

𝑁−1
. Observing that 𝔼(𝐅∗

𝑖,𝑗
|𝑙
𝑖
) =

𝑙
𝑖

𝑁−1
(conditional mean of 𝐅∗

𝑖,𝑗
given 𝑙

𝑖
;

see Lemma A.3), and denoting by (1∕𝒍) = (1∕𝒍) ∈ ℝ
𝑁 the vector with 𝑖-th entry 1∕𝑙

𝑖
if 𝑙

𝑖
≠ 0, and 0

otherwise (element-wise pseudoinversion), the random vector

�̂�
𝐅
∗ = diag(𝐒) +

(𝑁−1)

𝒍
⊙
(
(𝐒⊙ 𝐅

∗)1
)

is an unbiased estimator of 𝖌 (cf. Bernoulli sampling). From the independence between the rows of 𝐅,
for all 𝑖 ∈ [𝑁], the 𝑖-th entries of �̂�

𝐅
and �̂�

𝐅
∗ are independent; by considering sample-size-dependent

convex combinations of these entries, we can form the unbiased estimator �̂�sym of 𝖌, with

�̂�sym =
𝓁

𝓁+𝒍
⊙ �̂�

𝐅
+

𝒍

𝓁+𝒍
⊙ �̂�

𝐅
∗ = diag(𝐒) +

𝑁−1

𝓁+𝒍
⊙
(
[𝐒⊙ (𝐅 + 𝐅

∗)]1
)
,

where 𝓁 + 𝒍 is a simplified notation for 𝓁1 + 𝒍. Accounting for the symmetry of 𝐒 therefore results in
increasing the number of independent samples per row of 𝐒 at the cost of introducing a small residual
dependence between the entries of �̂�sym (indeed, contrary to �̂�

𝐅
, the entries of �̂�

𝐅
∗ are dependent); the

mean of 𝒍 being 𝓁1, for each row, we in average double the sample size, hence reducing the variance of
the approximation.

Remark 4.1. Computing a realisation of �̂�
𝐅
, �̂�

𝐅
∗ or �̂�sym involves sampling (𝓁 + 1)𝑁 entries of 𝐒.

The time-complexity of forming such approximations is thus (𝓁𝑁), with in practice 𝓁 ≪ 𝑁 (here,
we assume that the complexity of the considered random generator does not depend on 𝑁); notably, if
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𝓁 is chosen independently of 𝑁 (see Remark 4.2), the time complexity of forming an approximation is
linear in 𝑁 . The computation can in addition be easily parallelised. Observe that we should in practice
not form the matrix 𝐅, but instead simply sample a set of indices per row of 𝐒 and use the corresponding
entries of 𝐒 to build the approximation. ⊲

Sampling driven by an approximate potential. In (2.6) and (2.7), substituting 𝖌 with an approx-
imation �̂� ∈ ℝ

𝑁

⩾0∖{0} gives rise to approximate error maps �̂� and �̂�. Let 1̂ ∈ ℝ
𝑁

⩾0∖{0} be a vector

minimising �̂� over ℝ𝑁

⩾0 (the non-negativity of the entries of the PSD matrix 𝐒 ensures that such a vector
always exists). When 𝖌 is replaced by �̂�, Algorithm 1 produces a sequence of selection vectors with
increasing supports converging towards a vector minimising �̂� over 

𝐟
, that is, a vector of the form

𝜘1̂∕(𝐟∗1̂). A similar approximation scheme can be applied to the BI and WO variants of the algorithm.
The same approximation of 𝖌 is used throughout the optimisation process (alternative strategies, where
the approximation is updated during the optimisation process, could be considered).

Remark 4.2. When a realisation of �̂�
𝐅

or �̂�sym is considered, for 𝓁 ≪ 𝑁 , our experiments suggest

that the underlying vector 1̂ ∈ ℝ
𝑁

⩾0 is often sparse (that is, 1̂ has many zero entries); the sparsity of 1̂
appears to decrease as 𝓁 increases. These observations suggest that the sample size 𝓁 should be selected
in accordance with the number 𝑚 of columns of 𝐊 one wishes to extract; see Section 5 for illustrations.
Following Remark 3.2, for the stochastic variant of Algorithm 1, we also observe that considering
the modified FW direction (3.3) improves the behaviour of the sampling procedure by preventing the
apparition of early correction steps resulting from the sparsity of 1̂. Furthermore, in comparison to �̂�

𝐅
,

the reduced variance of the estimator �̂�sym appears to have a beneficial impact on the column-sampling
process. ⊲

5. Experiments. We now illustrate the behaviour of Algorithm 1 and its variants on a series of
examples. To assess the accuracy of the Nyström approximation induced by a subset 𝕀 ⊆ [𝑁] of size
𝑚 ⩽ 𝑁 , we consider the approximation factors (see e.g. [5])

(5.1) EP(𝕀) =
‖𝐊 − �̂�(𝕀)‖HS()

‖𝐊 −𝐊
⋆

𝑚
‖HS()

,EPP(𝕀) =
‖𝐊 − 𝑃

𝕀
𝐊𝑃

𝕀
‖HS()

‖𝐊 −𝐊
⋆

𝑚
‖HS()

and EX(𝕀) =
‖𝐊 − �̂�(𝕀)‖X
‖𝐊 −𝐊

⋆

𝑚
‖X

,

X ∈ {tr,F, sp}, where 𝐊⋆

𝑚
is an optimal rank-𝑚 approximation of 𝐊 (that is, an approximation obtained

by spectral truncation). The values of the approximation factors are necessarily larger than or equal to
1, and the smaller the value, the more accurate the approximation.

Remark 5.1. Denoting by 𝜆1 ⩾ ⋯ ⩾ 𝜆
𝑁

⩾ 0 the eigenvalues of 𝐊 (repeated with multiplicity),

for all 𝑚 < 𝑁 , we have ‖𝐊 − 𝐊
⋆

𝑚
‖2HS() = ‖𝐊 − 𝐊

⋆

𝑚
‖2F =

∑𝑁

𝑙=𝑚+1 𝜆
2
𝑙
, ‖𝐊 − 𝐊

⋆

𝑚
‖tr =

∑𝑁

𝑙=𝑚+1 𝜆𝑙 and

‖𝐊 −𝐊
⋆

𝑚
‖sp = 𝜆

𝑚+1. ⊲

We implement Algorithm 1 (referred to as FW, for short) and its BI variant (referred to as BI).
In addition to the optimal-step-size update rule, for both the FW and BI descent directions, we also
implement the WO update rule (the resulting procedures are referred to as FW-WO and BI-WO); see
Remarks 3.1 and 3.3. In the stochastic case, that is, when stochastic approximations of 𝖌 are considered
(see Section 4), we rely on the estimator �̂�sym and implement the modified FW direction (3.3); we refer
to this variant as S-MFW. The affine restrictions are defined with 𝐟 = diag(𝐊) and 𝜘 = 1. Due to the
specificity of our sampling procedures (which rely on early stopping of optimisation procedures with
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sparse initialisations and sparse descent directions), in all our experiments, we placed a special emphasis
on approximations involving a relatively small number of columns.

We compare the resulting column samples with samples obtained through random sampling with
respect to uniform weights and weights proportional to the squares of the diagonal entries of 𝐊, leverage-

score-based random sampling, and determinantal-point-process-based (DPP-based) random sampling;
see for instance [7, 3, 12, 10, 14, 20, 6] for an overview.

5.1. Random PSD matrix. We consider a random PSD matrix 𝐊 ∈ ℂ
𝑁×𝑁 , with 𝑁 = 1,500;

the eigenvalues of 𝐊 are independent realisations of a log-normal distribution (𝜇 = −2.5 and 𝜎 = 3),
and a set of associated eigenvectors is defined using a random unitary matrix (multiplication-invariant
Haar measure; see [15]). In this first experiment, we use the exact target potential 𝖌.

The evolution of the error maps 𝑅 and 𝐶X, X ∈ {F,P,PP}, during the 100 first iterations of
Algorithm 1 and its BI variant is illustrated in Figure 2 (these four error maps are considered since they
take the same value at 𝝊 = 0); in accordance with Lemma 2.8, the error maps 𝐶X, X ∈ {F,P,PP} are
bounded by 𝑅. We observe a strong similarity between the evolution of these maps, further supporting
the use of 𝑅 as surrogate error map for Nyström approximation.

0 20 40 60 80 100𝑞0 20 40 60 80 1000 20 40 60 80 100

0

3.0 × 105

6.0 × 105

9.0 × 105

1.2 × 106

0

3.0 × 105

6.0 × 105

9.0 × 105

1.2 × 106
Frank-Wolfe

𝑞 ↦ 𝑅(𝝊(𝑞))

𝑞 ↦ 𝐶PP(𝝊
(𝑞))

𝑞 ↦ 𝐶P(𝝊
(𝑞))

𝑞 ↦ 𝐶F(𝝊
(𝑞))
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𝑞 ↦ 𝐶P(𝝊
(𝑞))

𝑞 ↦ 𝐶F(𝝊
(𝑞))

Figure 2. For a random PSD matrix (𝑁 = 1,500), evolution of the value of the error maps 𝑅 and 𝐶X, X ∈ {F,P,PP},

during the 100 first iterations of Algorithm 1 (left) and its BI variant (right). The exact target potential 𝖌 is used. See

Section 5.1 for more details.

We then compare, for various sampling strategies, the evolution of the five approximation factors
EX, X ∈ {tr,F, sp,P,PP}, as functions of 𝑚 (number of columns). For the stochastic strategies, 100
repetitions are performed. The results are presented in Figure 3. In the considered regime (that is,
𝑚 ≪ 𝑁), and for all the approximation factors, we observe that the Nyström approximations induced by
Algorithm 1 and its variants are more accurate than the ones obtained using uniform random sampling,
squared-diagonal random sampling or leverage-score-based random sampling. For this particular
example, we may also notice the similarity and small variability of the approximation factors induced
by the considered stochastic procedures.

5.2. Abalone data set. We consider the Abalone data set (see [18]). Two entries of the data
set appearing as outliers are removed, and the features are standardised; the resulting data set consists
of 𝑁 = 4,175 points in ℝ

𝑑 , with 𝑑 = 8. We use this data set and a squared-exponential kernel

𝐾(𝑥, 𝑥′) = 𝑒
−𝛾‖𝑥−𝑥′‖2 , 𝑥, 𝑥′ ∈ ℝ

𝑑 and 𝛾 > 0 (with ‖.‖ the Euclidean norm of ℝ𝑑), to generate a PSD
matrix 𝐊. To illustrate the impact of the decay of the spectrum of 𝐊 on the sampling process, we
consider different values of 𝛾 , namely 𝛾 = 0.1, 0.25 and 1, chosen so that the eigenvalues of 𝐊 exhibit
relatively steep, moderate and shallow decays, respectively; see Figure 4.
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Figure 3. For a random PSD matrix (𝑁 = 1,500), and for various sampling strategies, evolution of the five approximation

factors (5.1) as functions of the number of columns 𝑚. The 200 largest eigenvalues of 𝐊 are also displayed. For the stochastic

methods, the solid line represents the median over 100 repetitions, and the boundaries of the shaded regions indicate the

corresponding maximum and minimum values. The exact target potential 𝖌 is used. See Section 5.1 for more details.

5.2.1. Exact target potential. We first consider the exact target potential 𝖌 and compare the
accuracy of the Nyström approximations induced by four variants of Algorithm 1 (namely FW, BI,
FW-WO, BI-WO) with the accuracy of the approximations obtained via uniform random sampling,
leverage-score-based random sampling and 𝑘-DPP-based random sampling. The experiments involving
random sampling are repeated 100 times. The results are presented in Figure 4, where we display the
evolution of the approximation factors EF and EP up to𝑚 = 100 (the evolution of the other approximation
factors is provided in Figure 7, in appendix; in terms of behaviour, Etr and Esp appear closely related to
EF, while EPP shows similarities with EP).

Remark 5.2. Following Remark 5.1, in Figure 4 (and in the complementary Figure 7, in appendix),
to illustrate the decay of the spectrum of 𝐊 we indicate the thresholds

𝜏X = min
{
𝑚 ∈ [𝑁]||‖𝐊 −𝐊

⋆

𝑚
‖X ⩽ 0.01‖𝐊‖X

}
,X ∈ {tr,F, sp},

and with 𝜏P = 𝜏PP = 𝜏F. For a given X ∈ {tr,F, sp,P,PP}, the smaller 𝜏X is, the faster the decay. ⊲

In comparison to the considered random-sampling procedures, we observe that Algorithm 1 and its
variants lead to more accurate approximations, especially in the range corresponding to the significant
eigenvalues of 𝐊 (this range is illustrated by the thresholds 𝜏X defined in Remark 5.2). After a certain
number of iterations (which appears to be related to the spectrum of 𝐊), the accuracy of the approxi-
mations induced by Algorithm 1 and its BI variant deteriorates (this is especially visible for 𝛾 = 0.1).
The deterioration is stronger for EF (and Etr and Esp) than for EP (and EPP), and the WO update rule
appears to be able to mitigate this drop-off in accuracy (following Lemma 2.8, we recall that among the
considered error maps, 𝐶P and 𝐶PP are the ones that are the most closely related to 𝑅). A comparison
of the sample sizes required for random-uniform samples to achieve accuracies comparable to those of
samples obtained via Algorithm 1 and its WO variant is provided in Figure 8 (in appendix).



ENERGY-BASED SAMPLING FOR LOW-RANK APPROXIMATION 13

𝛾 = 0.1

0 20 40 60 80 100

0
10

00
Eigenvalues of 𝐊

0 20 40 60 80 100

50
0

10
00

00

𝑞

𝑞 ↦ 𝑅(𝝊(𝑞))

0 20 40 60 80 100

2
4

6
8

10
12

𝑚

ℰF as function of 𝑚

𝜏F = 18

0 20 40 60 80 100

0
10

20
30

40
50

𝑚

ℰP as function of 𝑚

𝜏P = 18

𝛾 = 0.25

0 20 40 60 80 100

0
60

0

Eigenvalues of 𝐊

0 20 40 60 80 100

50
00

50
00

00

𝑞

𝑞 ↦ 𝑅(𝝊(𝑞))

0 20 40 60 80 100

1
2

3
4

5
6

𝑚

ℰF as function of 𝑚

𝜏F = 53

0 20 40 60 80 100

5
10

15

𝑚

ℰP as function of 𝑚

𝜏P = 53

𝛾 = 1

0 20 40 60 80 100

0
20

0
40

0

Eigenvalues of 𝐊

0 20 40 60 80 100

20
00

0
50

00
00

𝑞

𝑞 ↦ 𝑅(𝝊(𝑞))

0 20 40 60 80 100

1.
0

2.
0

3.
0

4.
0

𝑚

ℰF as function of 𝑚

𝜏F = 465

0 20 40 60 80 100

1
2

3
4

5
6

𝑚

ℰP as function of 𝑚

𝜏P = 465

Uniform-random Leverage score 𝑘-DPP FW FW-WO BI BI-WO

Figure 4. For kernel matrices defined from the Abalone data set and squared exponential kernels, evolution of the

approximation factors EF and EP as functions of the number of columns 𝑚 (the evolution of the other approximation factors

is provided in Figure 7, in appendix). Each column in the figure corresponds to a different value of the kernel parameter 𝛾 .

For each 𝛾 , the 100 largest eigenvalues of 𝐊 are displayed, together with the decay, in logarithmic scale, of the error map 𝑅

during the 100 first iterations of the FW and BI variants of Algorithm 1, with both optimal-step-size and WO update rules (the

exact target potential 𝖌 is used). The evolutions of EF and EP are represented for the four variants of Algorithm 1, as well as

for random sampling strategies based on uniform weights, leverage scores and 𝑘-DPPs. For the stochastic strategies, we

present the median, minimum and maximum of the approximation factors over 100 repetitions (see Figure 3). The vertical

dashed lines indicate the value of the thresholds 𝜏X, X ∈ {F,P}, defined in Remark 5.2 (when the threshold is outside the plot

window, we only report its value). See Section 5.2.1 for more details.

5.2.2. Approximate target potential. We now consider the stochastic variant S-MFW of
Algorithm 1, that is, we use realisations of the estimator �̂�sym (see Section 4) in combination with
the modified FW direction (3.3), and we investigate the impact of the row-sample-size parameter 𝓁
on the accuracy of the induced Nyström approximations. For the kernel parameter, we use 𝛾 = 0.25

(intermediate case, see Figure 4) and we consider three different values of 𝓁, namely 𝓁 = 100, 250 and
500. The results are presented in Figure 5.

We observe that as 𝓁 increases, the accuracy of the Nyström approximations induced by the S-MFW
procedure approaches that of the deterministic FW algorithm, and the variability in the approximation
factors decreases. In the considered range of values of 𝑚, the obtained column samples maintain a
high level of accuracy, even for small values of 𝓁. Following Remarks 3.2 and 4.2, the maximum
number of iterations of the S-MFW procedure tends to increase with 𝓁. For this particular example,
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Figure 5. For the kernel matrix defined from the Abalone data set and a squared exponential kernel with 𝛾 = 0.25,

evolution of the five approximation factors EX, X ∈ {tr,F, sp,P,PP}, as functions of the number of columns 𝑚, for samples

obtained using the S-MFW variant of Algorithm 1 (modified FW direction with realisations of �̂�sym; see Remark 3.2 and

Section 4). Three different values of the row-sample-size parameter 𝓁 are considered. For each value of 𝓁, we present the

median, minimum and maximum of the approximation factors over 100 repetitions. For comparison, the approximation factors

for the column samples obtained with Algorithm 1 (FW direction with exact target potential 𝖌) and through 𝑘-DPP-based

random sampling (median over 100 repetitions) are also presented. The bottom-right plot displays the distribution of the

maximum number of iterations of the S-MFW procedure for the considered values of 𝓁 (see Remark 3.2). The experiment is

discussed in Section 5.2.2.

considering 𝓁 = 500 allows for a consistent exploration of the range 𝑚 ⩽ 100 (see Section 5.3 for a
further illustration of the link between 𝓁 and the maximum number of S-MFW iterations).

5.3. HIGGS data set. We now illustrate the ability of the proposed approach to handle large
PSD matrices. We consider the HIGGS dataset (see [25]), consisting of 𝑁 = 11,000,000 points in ℝ

𝑑 ,
with 𝑑 = 21; all the features are standardised. To define a PSD matrix 𝐊, we use a squared-exponential
kernel (same expression as in Section 5.2) with 𝛾 = 0.1. To lower the memory requirement of the
experiment, rather than being stored, the required entries of the matrix 𝐊 are computed on demand
from the data set and the kernel (on-the-fly evaluation).

In Figure 6, we display the decay of the error map𝑅 during the first 50,000 iterations of Algorithm 1
(exact target potential). Lemma 2.8 ensures that the evolution of the error maps 𝐶X, X ∈ {sp,F,P,PP}

is bounded by the decay of 𝑅 (see Figure 2 for an illustration). We also present the eigenvalues of the
approximation �̂�(𝝊(𝑞)) of 𝐊 for 𝑞 = 1,000; this approximation involves 𝑚

𝑞
= 1,000 columns of 𝐊.

We next implement the S-MFW variant of Algorithm 1 for 10 realisations of the estimator �̂�sym
with 𝓁 = 10,000. For these 10 realisations, the maximum number of S-MFW iterations is distributed
between 65,000 and 67,000 (see Remark 3.2). We extract 10 samples of columns of size 𝑚 = 1,000

and 2,000, and compare the trace errors of these samples with those of 10 random column samples of
the same sizes (uniform sampling); the relatively small values of 𝑚 are chosen to ensure a reasonably
fast computation of the trace errors. The results are presented in Table 1.

As observed in Sections 5.1 and 5.2, the samples of columns obtained using Algorithm 1 and its
S-MFW stochastic variant are noticeably more accurate than the ones obtained through random uniform
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Figure 6. For the HIGGS data set, decay of the the error map 𝑅 during the 50,000 first iterations of Algorithm 1

(logarithmic scale). The non-zero eigenvalues of the Nyström approximation of 𝐊 obtained at 𝑞 = 1,000 are also presented.

The experiment is discussed in Section 5.3.

Table 1

For the HIGGS data set, summary statistics for the trace errors (rounded to the nearest integer) of various Nyström

approximations of 𝐊 for 𝑚 = 1,000 and 2,000. Results are presented for 10 random column samples (uniform sampling), and

for 10 samples generated by the S-MFW variant of Algorithm 1 with 𝓁 = 10,000 (stochastic approximations of 𝖌), as well as

for the deterministic column samples produced by Algorithm 1 (exact target potential 𝖌). See Section 5.3 for more details.

Method
Number of Trace error

columns 𝑚 Minimum Median Maximum

Uniform-random
1,000 7,090,945 7,117,127 7,149,980
2,000 6,121,979 6,142,811 6,166,798

S-MFW (𝓁 = 10,000)
1,000 6,525,128 6,527,669 6,532,889
2,000 5,698,986 5,703,138 5,707,372

FW (exact 𝖌)
1,000 — 6,439,653 —
2,000 — 5,605,268 —

sampling, and for the considered values of 𝑚, the S-MFW variant is able to achieve an accuracy that is
on par with the deterministic FW variant at a fraction of the numerical cost (here, 𝑁∕𝓁 = 1,100).

6. Concluding discussion. We gave a detailed description of the framework surrounding the
definition of a pseudoconvex differentiable relaxation of the CSP for PSD-matrix approximation, and
described a class of gradient-based sequential sampling strategies leveraging the properties of this
relaxation. The considered column-sampling procedures rely on the preliminary computation of a target
potential, and stochastic approximation schemes can be implemented to reduce the time complexity of
this operation. For PSD matrices of order 𝑁 , and when relying on such stochastic approximations, the
overall time complexity of the discussed strategies in linear in 𝑁 . For instance, the worst-case time
complexity of performing 𝑚 iterations of the S-MFW variant of Algorithm 1 is (𝑚2 + 𝑚𝑁 + 𝓁𝑁),
with in practice 𝑚 and 𝓁 ≪ 𝑁 ; the algorithm then extracts a sample of 𝑚 columns (and 𝓁 is the sample
size used for the stochastic approximation of 𝖌).

We presented a series of experiments which demonstrate the ability of the proposed sampling
strategies to produce accurate Nyström approximations while efficiently handling large PSD matrices.
Notably, the discussed strategies appear to be able to achieve high levels of accuracy in ranges where
other approaches (such as leverage-score and DPP-based sampling strategies) do not seem to lead to
significant improvements over naive random column-sampling techniques, hence offering an interesting
complement to the existing methodologies. The described procedures are in addition straightforward to
implement, and the involved computations can be easily parallelised.

In view of our experiments, and especially for the optimal-step-size update rule, the range in which
the discussed strategies are able to maintain high levels of accuracy appears to relate to the decay of the
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spectrum of 𝐊; gaining a deeper understanding of the mechanisms at play could improve the operating
framework of the proposed procedures. In addition, although the error maps 𝐶X, X ∈ {sp,F,P,PP},
are upper-bounded by the surrogate error map 𝑅, obtaining tighter approximation bounds could help
further support the considered relaxation. The impact of the stochastic approximation of the target
potential on the column-sampling process could also warrant a more in-depth investigation. Finally, in
complement to sequential sampling procedures, other types of strategies leveraging the properties of
the energy setting may be considered, such as regularisation-based approaches and, for kernel matrices
specifically, particle-flow-based techniques; see for instance [9, 11].

Acknowledgments. The authors thank the editors and the anonymous referee for their valuable
comments and suggestions. M. Hutchings thankfully acknowledges funding from the Engineering and
Physical Sciences Research Council grant EP/T517951/1.

Appendix A. Technical results.

In this section, we state and prove three technical lemmas. Following Remark 2.1, we introduce
HS( ,) = {𝐌 ∈ ℂ

𝑁×𝑁 | span{𝐌} ⊆ }, and we set

⟨𝐌 |𝐓⟩HS( ,) =
∑

𝑖∈[𝑁]

⟨𝐌𝐞
𝑖
|𝐓𝐞

𝑖
⟩

= trace(𝐌∗

𝐊
†
𝐓), 𝐌 and 𝐓 ∈ HS( ,).

Endowed with the Hermitian form ⟨⋅ | ⋅⟩HS( ,), the linear space HS( ,) is a Hilbert space (indeed,
we have ‖𝐌‖HS( ,) = 0 if and only 𝐌𝐞

𝑖
= 0 for all 𝑖 ∈ [𝑁], and so 𝐌 = 0).

Lemma A.1. Let 𝑃 and 𝑄 ∈ ℂ
𝑁×𝑁

be two matrices corresponding to orthogonal projections onto

closed linear subspaces of . We have ‖𝑃𝐊𝑄‖2HS() = ⟨𝑃𝐊 |𝑄𝐊⟩F.

Proof. We first observe that 𝑃𝐊 = 𝐊𝑃
∗ = 𝑃𝐊𝑃

∗ (a similar property holds for 𝑄). From (2.3),
we indeed have

𝐞
∗
𝑖
𝑃𝐊𝐞

𝑗
= 𝐞

∗
𝑖
𝐊𝐊

†
𝑃𝐊𝐞

𝑗
= ⟨𝐊𝐞

𝑖
|𝑃𝐊𝐞

𝑗
⟩

= ⟨𝑃𝐊𝐞

𝑖
|𝐊𝐞

𝑗
⟩

= ⟨𝑃𝐊𝐞

𝑖
| 𝐞
𝑗
⟩

= ⟨𝐊𝐞

𝑖
|𝑃 ∗

𝐞
𝑗
⟩


= ⟨𝐊𝐞
𝑖
|𝐊𝑃 ∗

𝐞
𝑗
⟩

= 𝐞

∗
𝑖
𝐊𝐊

†
𝐊𝑃

∗
𝐞
𝑗
= 𝐞

∗
𝑖
𝐊𝑃

∗
𝐞
𝑗
, 𝑖 and 𝑗 ∈ [𝑁];

in particular, the equality 𝐞
∗
𝑖
𝑃𝐊𝐞

𝑗
= 𝐞

∗
𝑖
𝐊𝐊

†
𝑃𝐊𝐞

𝑗
follows by noticing that since 𝑃𝐊𝐞

𝑗
∈ , there

exists 𝜶 ∈ ℂ
𝑁 such that 𝑃𝐊𝐞

𝑗
= 𝐊𝜶. We then obtain

‖𝑃𝐊𝑄‖2HS() = trace(𝐊𝑄∗
𝐊𝑃

∗
𝐊

†
𝑃𝐊𝑄) = trace(𝐊𝑄∗

𝑃𝐊𝐊
†
𝐊𝑃

∗
𝑄)

= trace(𝑃𝐊𝑃 ∗
𝑄𝐊𝑄

∗) = trace(𝐊𝑃 ∗
𝑄𝐊),

completing the proof.

Lemma A.2. For 𝕁 ⊆ 𝕀 ⊆ [𝑁], we have ‖𝐊 − �̂�(𝕀)‖X ⩽ ‖𝐊 − �̂�(𝕁)‖X, X ∈ {tr,F, sp}.

Proof. Let 0𝕀 be the orthogonal complement of 
𝕀

in ; we set 𝑃0𝕀 = 𝐈 − 𝑃
𝕀
. The matrix 𝑃0𝕀

corresponds to the orthogonal projection from  onto 0𝕀 (and 𝐊 − �̂�(𝕀) = 𝑃0𝕀𝐊). We similarly
introduce the subspace 0𝕁 and the matrix 𝑃0𝕁. Since 𝕁 ⊆ 𝕀, we have 

𝕁
⊆ 

𝕀
, and we denote by


𝑒

the orthogonal complement of 
𝕁

in 
𝕀
; the matrix 𝑃

𝑒
= 𝑃

𝕀
− 𝑃

𝕁
corresponds to the orthogonal

projection from  onto 
𝑒
.
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Trace norm. Observing that ⟨𝑃
𝑒
𝐊 |𝑃0𝕀𝐊⟩HS( ,) = 0, we have

‖𝐊 − �̂�(𝕁)‖tr = ‖𝑃0𝕁𝐊‖2HS( ,) = ‖𝑃0𝕀𝐊‖2HS( ,) + ‖𝑃
𝑒
𝐊‖2HS( ,) ⩾ ‖𝐊 − �̂�(𝕀)‖tr .

Frobenius norm. Since 0𝕀 and 
𝑒

are orthogonal in , the matrices 𝑃0𝕀𝐊𝑃0𝕀, 𝑃𝑒𝐊𝑃𝑒, 𝑃0𝕀𝐊𝑃𝑒 and
𝑃
𝑒
𝐊𝑃0𝕀 are orthogonal in HS(). Lemma A.1 then gives

‖𝐊 − �̂�(𝕁)‖2F = ‖𝑃0𝕁𝐊‖2F = ‖𝑃0𝕁𝐊𝑃0𝕁‖
2
HS()

= ‖𝑃0𝕀𝐊𝑃0𝕀‖
2
HS() + ‖𝑃

𝑒
𝐊𝑃

𝑒
‖2HS() + ‖𝑃0𝕀𝐊𝑃𝑒‖

2
HS() + ‖𝑃

𝑒
𝐊𝑃0𝕀‖

2
HS()

⩾ ‖𝑃0𝕀𝐊𝑃0𝕀‖
2
HS() = ‖𝑃0𝕀𝐊‖2F = ‖𝐊 − �̂�(𝕀)‖2F.

Spectral norm. We first observe that if 𝑃 ∈ ℂ
𝑁×𝑁 is an orthogonal projection on , then the PSD

operator on  related to 𝑃𝐊 and the PSD operator on  related to 𝑃𝐊𝑃 have the same strictly-positive
eigenvalues. Indeed, if 𝑃𝐊𝐯 = 𝜆𝐯, with 𝐯 ∈  , 𝐯 ≠ 0 and 𝜆 > 0, then 𝑃𝑃𝐊𝐯 = 𝜆𝑃𝐯 = 𝑃𝐊𝐯 = 𝜆𝐯, and
so 𝜆(𝑃 𝐯 − 𝐯) = 0; as 𝜆 > 0, we obtain 𝐯 = 𝑃𝐯 ∈  and 𝑃𝐊𝑃𝐯 = 𝜆𝐯. Reciprocally, if 𝑃𝐊𝑃𝒉 = 𝜆𝒉,
with 𝒉 ∈ , 𝒉 ≠ 0 and 𝜆 > 0, then 𝑃𝑃𝐊𝑃𝒉 = 𝜆𝑃𝒉 = 𝑃𝐊𝑃𝒉 = 𝜆𝒉 and so 𝜆(𝑃𝒉 − 𝒉) = 0; as 𝜆 > 0,
we have 𝑃𝒉 = 𝒉 and 𝑃𝐊𝒉 = 𝜆𝒉. Observing that 0𝕀 ⊆ 0𝕁, we get

‖𝐊 − �̂�(𝕁)‖sp = max{⟨𝐯 |𝑃0𝕁𝐊𝐯⟩

|𝐯 ∈  , ‖𝐯‖


= 1}

= max{⟨𝒉 |𝑃0𝕁𝐊𝑃0𝕁𝒉⟩|𝒉 ∈ , ‖𝒉‖

= 1}

= max{⟨𝑃0𝕁𝒉 |𝐊𝑃0𝕁𝒉⟩|𝒉 ∈ , ‖𝒉‖

= 1}

= max{⟨𝒉 |𝐊𝒉⟩

|𝒉 ∈ 0𝕁, ‖𝒉‖ = 1}

⩾ max{⟨𝒉 |𝐊𝒉⟩

|𝒉 ∈ 0𝕀, ‖𝒉‖ = 1} = ‖𝐊 − �̂�(𝕀)‖sp,

completing the proof. For the trace and Frobenius norms, an alternative characterisation of these
inequalities can be found in [8, Lemma A.2].

Lemma A.3. Let 𝑋 and 𝑌 be two independent random variables following binomial distributions

with size parameters 𝑚 and 𝑛 ∈ ℕ, respectively, and with same probability parameter 𝑝 ∈ [0, 1]. We

have 𝔼(𝑋|𝑋 + 𝑌 ) =
𝑚

𝑚+𝑛
(𝑋 + 𝑌 ).

Proof. We set 𝑋 =
∑𝑚

𝑖=1 𝐵𝑖 and 𝑌 =
∑𝑚+𝑛
𝑖=𝑚+1 𝐵𝑖, with {𝐵

𝑖
}
𝑖∈[𝑚+𝑛] a set of independent random

variables following a Bernoulli distribution with parameter 𝑝. We have

𝑋 + 𝑌 = 𝔼(𝑋 + 𝑌 |𝑋 + 𝑌 ) =

𝑚+𝑛∑

𝑖=1

𝔼(𝐵
𝑖
|𝑋 + 𝑌 ) = (𝑚 + 𝑛)𝔼(𝐵1|𝑋 + 𝑌 ),

and 𝔼(𝑋|𝑋 + 𝑌 ) =
∑𝑚

𝑖=1 𝔼(𝐵𝑖|𝑋 + 𝑌 ) = 𝑚𝔼(𝐵1|𝑋 + 𝑌 ). The result follows.

Appendix B. Proofs.

This section gathers the proofs of the results presented in the main body of the paper.

Proof of Theorem 2.2. For 𝝃 = 𝝊+ 𝜌(𝜼− 𝝊), 𝝊 and 𝜼 ∈ ℝ
𝑁

⩾0, 𝜌 ∈ (0, 1), we have 𝕀
𝝃
= 𝐼

𝝊
∪ 𝐼

𝜼
, and

the maps 𝜌 ↦ 𝐶X(𝝊 + 𝜌[𝜼 − 𝝊]), X ∈ {tr,F, sp}, are thus constant on the open interval (0, 1). From
Lemma A.2, we also have 𝐶X(𝝃) ⩽ 𝐶X(𝝊) and 𝐶X(𝝃) ⩽ 𝐶X(𝜼), concluding the proof.
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Proof of Theorem 2.5. We first show the quasiconvexity of 𝑅 on ℝ
𝑁 . For 𝝃 = 𝝊 + 𝜌(𝜼 − 𝝊), 𝝊 and

𝜼 ∈ ℝ
𝑁 , 𝜌 ∈ [0, 1], there always exists 𝑐 ⩾ 0 and 𝜌′ ∈ [0, 1] such that 𝑐𝝃 = (1−𝜌′)𝑐

𝝊
𝝊+𝜌′𝑐

𝜼
𝜼; indeed:

∙ for 𝝊 ∉ D and 𝜼 ∉ D , the condition is verified for 𝑐 = 0 and for any 𝜌′ ∈ [0, 1];
∙ for 𝝊 ∉ D and 𝜼 ∈ D , the condition is verified for 𝑐 = 0 and 𝜌′ = 0;
∙ for 𝝊 ∈ D and 𝜼 ∉ D , the condition is verified for 𝑐 = 0 and 𝜌′ = 1;
∙ for 𝝊 ∈ D and 𝜼 ∈ D , we have coni{𝝊, 𝜼} = coni{𝑐

𝝊
𝝊, 𝑐

𝜼
𝜼} (with coni{𝝊, 𝜼} the conical hull

of {𝝊, 𝜼}), so that 𝝃 ∈ coni{𝑐
𝝊
𝝊, 𝑐

𝜼
𝜼} (in this case, 𝝃 ∈ D and 𝑐 > 0).

From the definition of 𝑅 and the convexity of 𝐷, we obtain

𝑅(𝝃) ⩽ 𝐷(𝑐𝝃) ⩽ (1 − 𝜌′)𝐷(𝑐
𝝊
𝝊) + 𝜌′𝐷(𝑐

𝜼
𝜼) = (1 − 𝜌′)𝑅(𝝊) + 𝜌′𝑅(𝜼) ⩽ max{𝑅(𝝊), 𝑅(𝜼)},

and 𝑅 is therefore quasiconvex on ℝ
𝑁 .

We now show the pseudoconvexity of 𝑅 on D . Let 𝝊 and 𝜼 ∈ D be such that Θ(𝝊; 𝜼) ⩾ 0. As
𝝊
∗
𝐒(𝑐

𝝊
𝝊 − 1) = 0, the condition Θ(𝝊; 𝜼) ⩾ 0 reads 𝜼∗𝐒(𝑐

𝝊
𝝊 − 1) ⩾ 0, that is,

(B.1) (𝝊∗𝐒1)(𝜼∗𝐒𝝊) ⩾ (𝝊∗𝐒𝝊)(𝜼∗𝐒1).

As 𝝊 and 𝜼 ∈ D , we have 𝝊
∗
𝐒1 > 0, 𝝊∗𝐒𝝊 > 0 and 𝜼

∗
𝐒1 > 0, and so, from (B.1), 𝜼∗𝐒𝝊 > 0. The

matrix 𝐒 being PSD, the CS inequality gives (𝜼∗𝐒𝝊)2 ⩽ (𝝊∗𝐒𝝊)(𝜼∗𝐒𝜼); combining the CS inequality
with (B.1), we get (note that we also have 𝜼

∗
𝐒𝜼 > 0 as 𝜼 ∈ D)

(𝝊∗𝐒1)2

(𝝊∗𝐒𝝊)2
⩾

(𝜼∗𝐒1)2

(𝜼∗𝐒𝝊)2
⩾

(𝜼∗𝐒1)2

(𝝊∗𝐒𝝊)(𝜼∗𝐒𝜼)
.

We hence obtain (𝜼∗𝐒1)2∕(𝜼∗𝐒𝜼) ⩽ (𝝊∗𝐒1)2∕(𝝊∗𝐒𝝊), that is 𝑅(𝝊) ⩽ 𝑅(𝜼), and 𝑅 is therefore pseudo-
convex on D .

Proof of Lemma 2.6. We set 𝑎 = 𝖌
∗
𝝊 > 0, 𝑏 = 𝖌

∗
𝜼, 𝑐 = 𝝊

∗
𝐒𝝊 > 0, 𝑑 = 𝜼

∗
𝐒𝜼 and 𝑒 = 𝝊

∗
𝐒𝜼. For

𝑥 ∈ ℝ, we also set 𝝃
𝑥
= 𝝊 + 𝑥(𝜼 − 𝝊), and we introduce the functions

𝜑(𝑥) = 𝖌
∗
𝝃
𝑥
= 𝑥(𝑏 − 𝑎) + 𝑎 and 𝜓(𝑥) = 𝝃

∗
𝑥
𝐒𝝃

𝑥
= 𝑥

2(𝑐 + 𝑑 − 2𝑒) + 2𝑥(𝑒 − 𝑐) + 𝑐.

The condition Θ(𝝊; 𝜼) < 0 ensures that the degree-2 polynomial 𝜓 is strictly positive; indeed, 𝜓 is
non-negative and admits a real root if and only if 𝑒2 = 𝑐𝑑, that is, from the CS inequality, if 𝜼 = 𝛼𝝊+ 𝝐,
with 𝛼 ∈ ℝ and 𝝐 ∈ ℝ

𝑁 such that 𝐒𝝐 = 0, and we would in this case have Θ(𝝊; 𝜼) = 0.
We define 𝑓 (𝑥) = −𝜑2(𝑥)∕𝜓(𝑥), 𝑥 ∈ ℝ; if 𝝃

𝑥
∈ D , then 𝑓 (𝑥) = 𝑅(𝝃

𝑥
) − ‖𝐊‖2F. We have

𝑓
′(𝑥) = 2

𝜑(𝑥)

𝜓
2(𝑥)

[
𝑥
(
(𝑏𝑐 − 𝑎𝑒) + (𝑎𝑑 − 𝑏𝑒)

)
− (𝑏𝑐 − 𝑎𝑒)

]
, 𝑥 ∈ ℝ,

so that 𝑓 admits at most two stationary points on ℝ. The conditions on 𝝊 and 𝜼 and the pseudoconvexity
of 𝑅 on D ensure that the function 𝜌 ↦ 𝑅(𝝃

𝜌
) admits a minimum on (0, 1]; the argument of this

minimum is the optimal step size 𝑟 and corresponds to a stationary point of 𝑓 . If 𝑎 = 𝑏, the function
𝜑 is constant and strictly positive (as 𝑎 > 0). If 𝑎 ≠ 𝑏, for 𝑥1 = 𝑎∕(𝑎 − 𝑏), we have 𝜑(𝑥1) = 0, and

so 𝑓 ′(𝑥1) = 0. However, we then have 𝖌
∗
𝝃
𝑥1

= 0, and so 𝑅(𝝃
𝑥1
) = ‖𝐊‖2F > 𝑅(𝝊); we can therefore
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conclude that 𝑟 ≠ 𝑥1. Canceling the linear function 𝑥 ↦ 𝑥
(
(𝑏𝑐 − 𝑎𝑒) + (𝑎𝑑 − 𝑏𝑒)

)
− (𝑏𝑐 − 𝑎𝑒), we

obtain 𝑓 ′(𝑥2) = 0 with

𝑥2 =
𝑏𝑐 − 𝑎𝑒

𝑏𝑐 − 𝑎𝑒 + 𝑎𝑑 − 𝑏𝑒
,

and so 𝑟 = 𝑥2; we then have (𝝊; 𝜼) = 𝑓 (0) − 𝑓 (𝑥2) = (𝑏𝑐 − 𝑎𝑒)2∕
(
𝑐(𝑐𝑑 − 𝑒2)

)
.

Proof of Proposition 2.7. We follow the proof of Theorem 2.2, and show that if 𝕁 ⊆ 𝕀 ⊆ [𝑁], then

‖𝐊 − 𝑃
𝕀
𝐊‖HS() ⩽ ‖𝐊 − 𝑃

𝕁
𝐊‖HS() and ‖𝐊 − 𝑃

𝕀
𝐊𝑃

𝕀
‖HS() ⩽ ‖𝐊 − 𝑃

𝕁
𝐊𝑃

𝕁
‖HS();

see [8, Section 4] for an alternative characterisation of these inequalities. Using the same notations as
in the proof of Lemma A.2 and noticing that 0𝕀 and 

𝑒
are orthogonal in , we have

‖𝐊 − �̂�(𝕁)‖2HS() = ‖𝑃0𝕁𝐊‖2HS() = ‖𝑃0𝕀𝐊‖2HS() + ‖𝑃
𝑒
𝐊‖2HS() ⩾ ‖𝐊 − �̂�(𝕀)‖2HS(),

as required. Next, if 𝑃 is an orthogonal projection on , then ⟨𝐊 |𝑃𝐊𝑃 ⟩HS() = ‖𝑃𝐊𝑃‖2HS() and

(B.2) ‖𝐊 − 𝑃𝐊𝑃‖2HS() = ‖𝐊‖2HS() − ‖𝑃𝐊𝑃‖2HS().

Observing that the matrices 𝑃
𝕁
𝐊𝑃

𝕁
, 𝑃

𝑒
𝐊𝑃

𝑒
, 𝑃

𝕁
𝐊𝑃

𝑒
and 𝑃

𝑒
𝐊𝑃

𝕁
are orthogonal in HS(), we obtain

‖𝑃
𝕀
𝐊𝑃

𝕀
‖2HS() = ‖𝑃

𝕁
𝐊𝑃

𝕁
‖2HS() + ‖𝑃

𝑒
𝐊𝑃

𝕁
‖2HS() + ‖𝑃

𝕁
𝐊𝑃

𝑒
‖2HS() + ‖𝑃

𝑒
𝐊𝑃

𝑒
‖2HS()

⩾ ‖𝑃
𝕁
𝐊𝑃

𝕁
‖2HS(),

giving, in combination with (B.2), the expected inequality.

Proof of Lemma 2.8. The inequality 𝐶sp(𝝊) ⩽ 𝐶F(𝝊) follows from the relation between the Frobe-
nius and spectral norms. From Lemma A.1, we have (with ℜ(𝑧) the real part of 𝑧 ∈ ℂ)

(B.3) 𝐶F(𝝊) = ‖𝐊‖2F + ‖�̂�(𝝊)‖2F − 2ℜ
(
⟨𝐊 | �̂�(𝝊)⟩F

)
= ‖𝐊‖2F + ‖𝑃

𝝊
𝐊𝑃

𝝊
‖2HS() − 2‖𝑃

𝝊
𝐊‖2HS().

We introduce 𝑃0𝝊 = 𝐈 − 𝑃
𝝊
. The matrix 𝑃0𝝊 correspond to the orthogonal projection from  onto the

orthogonal complement of 
𝝊

in , and so

(B.4) ‖𝑃
𝝊
𝐊‖2HS() = ‖𝑃

𝝊
𝐊𝑃

𝝊
‖2HS() + ‖𝑃

𝝊
𝐊𝑃0𝝊‖

2
HS() ⩾ ‖𝑃

𝝊
𝐊𝑃

𝝊
‖2HS().

Combining (B.3) and (B.4), we obtain

𝐶F(𝝊) ⩽ ‖𝐊‖2F − ‖𝑃
𝝊
𝐊‖2HS() = 𝐶P(𝝊) ⩽ ‖𝐊‖2F − ‖𝑃

𝝊
𝐊𝑃

𝝊
‖2HS() = 𝐶PP(𝝊).

We next observe that 𝐊𝐕𝒉 = 𝑃
𝝊
𝐊𝐕𝑃

𝝊
𝒉, 𝒉 ∈  (indeed, we have span{𝐊𝐕} ⊆ 

𝝊
, and 𝐞

∗
𝑖
𝑃
𝝊
𝒉 = 𝐞

∗
𝑖
𝒉

for all 𝑖 ∈ 𝕀
𝝊
), and so ⟨𝐊 − 𝑃

𝝊
𝐊𝑃

𝝊
|𝑃

𝝊
𝐊𝑃

𝝊
−𝐊𝐕⟩HS() = 0. We hence obtain

‖𝐊 −𝐊𝐕‖2HS() = ‖𝐊 − 𝑃
𝝊
𝐊𝑃

𝝊
‖2HS() + ‖𝑃

𝝊
𝐊𝑃

𝝊
−𝐊𝐕‖2HS(),

and so 𝐶PP(𝝊) ⩽ 𝐷(𝝊). Observing that 𝐶PP(𝝊) ⩽ ‖𝐊‖2F = 𝑅(0) and that 𝑅(𝝊) = min
𝑐⩾0𝐷(𝑐𝝊), we

necessarily have 𝐶PP(𝝊) ⩽ 𝑅(𝝊) ⩽ 𝐷(𝝊), completing the expected sequence of inequalities.

We conclude the proof by observing that if 𝐒
𝑖,𝑖
> 0, 𝑖 ∈ [𝑁], then ‖�̂�(𝐞

𝑖
)‖2F = (𝖌∗𝐞

𝑖
)2∕𝐒

𝑖,𝑖
, and if

𝐒
𝑖,𝑖
= 0, then ‖�̂�(𝐞

𝑖
)‖2F = 0 and 𝐞

𝑖
∉ D .

Appendix C. Abalone data set: additional figures.

In this section, we further illustrate the results of our experiments on kernel matrices defined from
the Abalone data set (Section 5.2).
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C.1. Complement to Figure 4. Figure 7 complements Figure 4 by providing the evolution,
as functions of the number of columns 𝑚, of the approximation factors EX, X ∈ {tr, sp,PP}, for the
various sampling strategies considered in Section 5.2.1 (exact target potential 𝖌).
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Figure 7. In complement to Figure 4 and for the various sampling strategies considered in Section 5.2.1, evolution

of the approximation factors EX, X ∈ {tr, sp,PP}, as functions of the number of columns 𝑚 (Abalone data set and squared-

exponential kernel). The values of the corresponding thresholds 𝜏X, X ∈ {tr, sp,PP} are also indicated (see Remark 5.2).

C.2. Approximation accuracy versus sample sparsity. In Figure 8, and in the framework of
Figure 4 (Abalone data set and exact target potential 𝖌, see Section 5.2.1), we compare the sample sizes
required for random-uniform samples to achieve accuracies comparable to those of samples obtained
via Algorithm 1 and its WO variant. For simplicity, we solely consider the error map 𝐶F (a similar
behaviour is nevertheless also observed for the error maps 𝐶X, X ∈ {tr, sp,P,PP}).

For 𝛼 ∈ [0, 𝐶F(0)], we denote by 𝑚FW(𝛼) the minimum sample size required for a sample 𝐼
𝝊
⊆ [𝑁]

obtained with Algorithm 1 to achieve 𝐶F(𝝊) ⩽ 𝛼. We similarly define the sample sizes 𝑚FW-WO(𝛼) for
the WO variants of Algorithm 1, and 𝑚unif (𝛼) for random-uniform sampling (in this case, the median
of 𝐶F(𝝊) over 100 repetitions is considered). A schematic illustration of the definition of 𝑚FW(𝛼),
𝑚FW-WO(𝛼) and 𝑚unif (𝛼) is provided in Figure 8. We then represent the evolution, as a function of 𝑚, of
the sample-size ratio 𝑚unif (𝛼)∕𝑚FW(𝛼), with 𝛼 such that 𝑚FW(𝛼) = 𝑚. The evolution of the sample-size
ratio 𝑚unif (𝛼)∕𝑚FW-WO(𝛼) is presented accordingly. In the considered range of values of 𝑚FW(𝛼) and
𝑚FW-WO(𝛼) (that is, between 1 and 100), the observed sample-size ratios vary between 1.47 and 3.8.
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Figure 8. In the framework of Section 5.2.1 (Abalone data set and exact target potential) and in complement to Figure 4,

evolution of the error map 𝐶F (logarithmic scale) as a function of the number of columns 𝑚, for samples obtained using

random-uniform sampling (median over 100 repetitions), and for Algorithm 1 and its WO variant (top). Also, comparison of

the sample sizes required for random-uniform sampling to achieve accuracies similar to those of the samples obtained via

Algorithm 1 and its WO variant (bottom; for simplicity, references to 𝛼 are omitted in the notations); see Section C.2. Each

column in the figure corresponds to a different value of the kernel parameter 𝛾 .
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