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Unveiling the impact of the congruence between artificial intelligence and 

explorative learning on supply chain resilience 

 

Abstract 

Purpose – Drawing upon socio-technical system theory, this study intends to investigate the 

effects of the congruence and incongruence between artificial intelligence (AI) and explorative 

learning on supply chain resilience as well as the moderating role of organizational inertia. 

Design/methodology/approach – Using survey data collected from 170 Chinese 

manufacturing firms, we performed polynomial regression and response surface analyses to test 

our hypotheses. 

Findings – We find that the congruence between AI and explorative learning enhances firms’ 

supply chain resilience, while the incongruence between these two factors impairs their supply 

chain resilience. In addition, compared with low–low congruence, high–high congruence 

between AI and explorative learning improves supply chain resilience to a greater extent. 

Moreover, organizational inertia attenuates the positive influence of the congruence between 

AI and explorative learning on supply chain resilience, while it aggravates the negative 

influence of the incongruence between these two factors on supply chain resilience. 

Originality/value – Our study expands the literature on supply chain resilience by 

demonstrating that the congruence between a firm’s AI (i.e. technical aspect) and explorative 

learning (i.e., social aspect) boosts its supply chain resilience. More importantly, our study 

sheds new light on the role of organizational inertia in moderating the congruent effect of AI 
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and explorative learning, thereby extending the boundary condition for socio-technical system 

theory in the supply chain resilience literature. 

Keywords: Supply chain resilience; artificial intelligence; explorative learning; organizational 

inertia; socio-technical system 

 

1. Introduction 

The increasingly uncertain and volatile environments in the past decade have rendered firms 

more vulnerable to the risks of supply chain disruptions (Sturm et al., 2023). For example, the 

COVID-19 pandemic has triggered unprecedented disruptions in supply and demand, impeding 

the movement of materials and goods in the supply chain (Nikookar and Yanadori, 2022). The 

trade war between the U.S. and China has also immensely disrupted the supply chain, leading 

to significant delays in product delivery (Handfield et al., 2020). These tumultuous supply chain 

disruptions have a detrimental impact on firms’ operational and financial performance (Sturm 

et al., 2023). As such, researchers and practitioners have underlined that it is crucial for firms 

to boost supply chain resilience to effectively mitigate the risks of supply chain disruptions 

(Dubey et al., 2023). 

Supply chain resilience refers to a firm’s ability to remain alert to, adapt to, and respond 

promptly to supply chain disruptions (El Baz and Ruel, 2021; Wei et al., 2023). A resilient 

supply chain can successfully deal with changes in uncertain and turbulent environments, thus 

enabling firms to alleviate the negative impact of supply chain disruptions (Mirzabeiki and 

Aitken, 2023). Researchers have identified technical and social factors that can help firms 
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enhance their supply chain resilience (Eryarsoy et al., 2022; Le and Behl, 2023), as emphasized 

by socio-technical system (STS) theory (Tong et al., 2023). STS theory suggests that technical 

and social subsystems interact, and firms need to jointly optimize them to attain optimal 

performance (Bednar and Welch, 2020). In particular, with the rapid advancement of digital 

technologies, artificial intelligence (AI) has been glorified as an essential technical factor that 

promotes firms’ supply chain resilience (Belhadi et al., 2022a; Le and Behl, 2023). The 

implementation of AI is beneficial for firms to improve their predictive and data analytics 

abilities and facilitate the decision-making process, thereby allowing them to better anticipate, 

adapt to, and deal with unexpected supply chain disruptions such as supply shortages and 

delivery outages (Leoni et al., 2022). Moreover, as an emerging technology, the adoption of AI 

necessitates a firm to have substantial new knowledge and capabilities (Le and Behl, 2023) that 

could be created by the firm’s explorative learning. Explorative learning refers to the learning 

activities that generate novel knowledge and competencies by expanding the existing 

knowledge base (Patel et al., 2012), which can assist firms in adapting to environmental 

changes and developing new ideas and solutions to handle unforeseen supply chain disruptions 

(Eryarsoy et al., 2022). 

In the current rapidly changing and evolving business environments, firms are expected to 

be highly innovative and adaptive, and thus explorative learning is deemed as a critical social 

factor that can boost firms’ supply chain resilience (Belhadi et al., 2022b). Nevertheless, STS 

theory advocates for an integrated and synergistic perspective, underscoring that the alignment 

between technical and social factors is an important prerequisite for achieving optimal 
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organizational outcomes (Bostrom and Heinen, 1977). As such, it may be not sufficient to solely 

implement AI or explorative learning to achieve high supply chain resilience. Rather, firms that 

strike a balance between AI (i.e., technical aspect) and explorative learning (i.e., social aspect) 

and maintain a fit between them are more likely to improve supply chain resilience. Yet, so far, 

scant research has delved into how AI aligns with explorative learning to affect firms’ supply 

chain resilience, which hampers a nuanced understanding of the complementary effect of these 

two factors. 

To narrow this gap, our study adopts STS theory to investigate the influence of the 

congruence between AI and explorative learning on firms’ supply chain resilience. STS theory 

highlights that technical subsystems provide a supporting structure for social subsystems and 

vice versa (Tong et al., 2023). Specifically, in our context, AI can support explorative learning 

by offering real-time information for predictions and advanced decision-making that can help 

firms make better decisions in terms of responding to supply chain disruptions, thereby 

elevating their supply chain resilience (Yu et al., 2023). In turn, explorative learning, which 

involves the acquisition, interpretation, and utilization of new knowledge (Patel et al., 2012), 

can facilitate the effectiveness of AI implementation by providing valuable and novel insights 

that can help firms refine and optimize the algorithms employed in AI. The mutual 

reinforcement of AI and explorative learning enables firms to better cope with unanticipated 

disruptions or changes in supply chains and thus heightens their supply chain resilience. 

Hence, based on STS theory, we posit that the congruence between AI and explorative 

learning improves firms’ supply chain resilience. By contrast, the incongruence between these 
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two factors impairs firms’ supply chain resilience. Furthermore, different types of congruence 

(i.e., high–high vs. low–low) between AI and explorative learning may exert differential effects 

on firms’ supply chain resilience, given that the synergic effects of the two elements could vary 

across different situations of congruence. 

STS theory also holds that an organization constitutes a multifaceted system comprised of 

technical and social elements, where alterations in any single element can influence the entire 

system (Bostrom and Heinen, 1977). In this vein, the integration of AI and explorative learning 

is a system change, which might be impeded by organizational inertia that reflects an 

organization’s resistance to changes (Hannan and Freeman, 1984). We therefore endeavor to 

unravel the role of organizational inertia in modifying the effects of the congruence and 

incongruence between AI and explorative learning on firms’ supply chain resilience. 

To accomplish the above research objectives, this study collected survey data from 170 

Chinese manufacturing firms and conducted polynomial regression and response surface 

analyses. The results reveal that the congruence between AI and explorative learning enhances 

firms’ supply chain resilience, while the incongruence between these two factors dampens their 

supply chain resilience. Moreover, compared with low–low congruence, high–high congruence 

between AI and explorative learning improves firms’ supply chain resilience to a greater extent. 

Furthermore, organizational inertia weakens the positive influence of the congruence between 

AI and explorative learning on supply chain resilience, while it exacerbates the negative 

influence of the incongruence between these two factors on supply chain resilience. 
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This study makes several theoretical contributions. First, it expands the supply chain 

resilience literature by empirically unraveling the impacts of the congruence and incongruence 

between AI and explorative learning on firms’ supply chain resilience. Prior studies have 

primarily investigated the effect of AI (Le and Behl, 2023) or explorative learning (Eryarsoy et 

al., 2022) on supply chain resilience unilaterally, yet scant research has paid attention to their 

joint effect on supply chain resilience. We highlight the importance of the integration of a 

system’s technical aspect (i.e., AI) and social aspect (i.e., explorative learning) to enhance its 

effectiveness and achieve better supply chain resilience. Moreover, we disentangle the varying 

effects of different types of congruence. That is, high–high congruence between AI and 

explorative learning facilitates supply chain resilience more than low–low congruence. Second, 

this research provides novel insights into how organizational inertia alters the impacts of the 

congruence and incongruence between AI and explorative learning on supply chain resilience, 

which echoes recent research that calls for more investigations of the boundary condition of 

supply chain resilience (Sturm et al., 2023). Lastly, our research advances the literature on STS 

theory by theoretically elucidating the fit between the technical aspect (i.e., AI) and the social 

aspect (i.e., explorative learning) as well as the contingency effect of organizational inertia. 

2. Theoretical background and literature review 

2.1. Socio-technical system theory 

STS focuses on the interaction between technical and social aspects of work systems to achieve 

optimal performance and worker satisfaction (Bednar and Welch, 2020; Bostrom and Heinen, 

1977). Under this concept, the technical aspects include the machines and techniques that help 



7 

transform inputs into outputs, while the social aspects feature human-related factors and social 

relations among organizations (Bednar and Welch, 2020; Chaudhuri and Jayaram, 2019). STS 

theory posits that it is necessary to adjust and balance technical and social subsystems to achieve 

superior performance (Shou et al., 2021). 

In the field of operations and supply chain management (OSCM), STS theory has been 

employed to explicate how firms integrate technical and social subsystems to attain superior 

performance. For instance, from the STS perspective, Chaudhuri and Jayaram (2019) 

disentangled the complementary effect of social and technical integration on quality and 

sustainability performance. Tong et al. (2023) built on STS theory to examine how 

organizations balance their focus on different environmental projects while building their 

environmental management capabilities to acquire better environmental performance. Shou et 

al. (2021) leveraged STS theory to propose a matching traceability and supply chain 

coordination framework that helps firms achieve high operational performance and customer 

satisfaction. 

The concept of congruence and incongruence in the context of STS theory is central to 

understanding the interaction between technical and social aspects for optimal performance in 

work systems (Tong et al., 2023). In our context, we contend that firms can achieve optimal 

supply chain resilience by balancing AI (i.e., technical aspect) and explorative learning (i.e., 

social aspect). This congruence cultivates compatibility between technical and social elements, 

facilitates efficiency and effectiveness, and fosters a culture of continuous improvement, 

thereby boosting firms’ supply chain resilience. Conversely, the incongruence between AI and 
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explorative learning hinders effective functioning, eroding the supply chain’s ability to handle 

supply chain disruptions and impairing supply chain resilience. As such, the degree of 

congruence or incongruence influences a system’s efficiency, effectiveness, and overall 

resilience in response to supply chain disruptions. However, the effect of the congruence 

between AI and explorative learning as an integrated system on supply chain resilience remains 

largely underexplored in the extant literature, which falls short of the imminent need for firms 

to effectively align these two factors to achieve higher supply chain resilience. To this end, we 

strive to bridge this gap by invoking STS theory to examine the impact of the congruence 

between AI and explorative learning on firms’ supply chain resilience. Moreover, we aspire to 

advance the existing literature by investigating the moderating role of organizational inertia, 

thus providing nuanced insights into the boundary condition that shapes the effectiveness of the 

STS composed of AI and explorative learning. 

2.2. Supply chain resilience 

The escalating uncertainties and disruption risks that grip the world have drawn considerable 

attention to the resilience of supply chains (Handfield et al., 2020; Nikookar and Yanadori, 

2022). Hence, supply chain resilience has emerged as a critical capability for firms to maintain 

operational continuity and a competitive edge in the face of supply chain disruptions such as 

supply failures, delivery delays, and demand fluctuations (Sturm et al., 2023). In this study, 

supply chain resilience is defined as a firm’s ability to prepare for, adapt to, and respond quickly 

to disruptions in its supply chain (El Baz and Ruel, 2021; Sturm et al., 2023; Wei et al., 2023). 

Firms with resilient supply chains can effectively deal with unanticipated supply chain 
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disruptions and mitigate their detrimental effects, ensuring that they can continue to function, 

bounce back from disruptions, and meet customer demands promptly under adverse conditions 

(Dubey et al., 2023). 

Given the increasing importance of achieving supply chain resilience, scholars in OSCM 

have shown a keen interest in examining the factors that affect supply chain resilience. 

Particularly, in volatile and unpredictable environments, researchers have identified technical 

and social factors as enablers of supply chain resilience. For example, previous studies have 

shown that additive manufacturing technology (Belhadi et al., 2022b), blockchain technology 

(Liu et al., 2024), digital agility and digital adaptability (Dubey et al., 2023), and 

entrepreneurial orientation (Sturm et al., 2023) can enhance firms’ supply chain resilience. 

Besides, recent research has documented that as an emerging digital technology, AI can boost 

firms’ supply chain resilience by bolstering their data analytics and predictive capabilities for 

identifying vulnerabilities and handling unexpected supply chain disruptions (Le and Behl, 

2023; Leoni et al., 2022). Past research has also stressed that given the intensified turbulence 

in global business environments, explorative learning serves as a key social factor that helps 

firms develop new solutions to cope with supply chain disruptions and thus elevate their supply 

chain resilience (Eryarsoy et al., 2022). Nevertheless, the extant studies have mainly examined 

the independent role of AI and explorative learning in building supply chain resilience, 

overlooking their complementary effect. As emphasized by STS theory (Bostrom and Heinen, 

1977), technical factor (i.e., AI) and social factor (i.e., explorative learning) interact and need 

to be balanced to enable firms to achieve higher supply chain resilience. Thus, there is a 
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significant lack of research that empirically unveils how AI aligns with explorative learning to 

influence firms’ supply chain resilience, which warrants further exploration. 

2.3. Artificial intelligence 

Over the past decade, AI has developed dramatically and gained rapid popularity (Mithas et al., 

2022). AI can be considered as a capability to acquire knowledge by analyzing the data from 

the outside environment and applying the obtained knowledge to modify or develop new tasks 

against fast-changing environments (Gupta et al., 2023). These tasks incorporate techniques 

and algorithms that allow humans to learn from input data, with or without prior knowledge 

regarding the eventual output formats (Yu et al., 2024). Increased computational capabilities, 

the expansion of big data, and the widespread applications of AI in OSCM have recently led to 

a renewed focus on AI (Mithas et al., 2022). 

Researchers in OSCM have maintained that AI can help firms improve operational 

efficiency, lessen costs, and boost decision-making processes (Mithas et al., 2022). Moreover, 

AI can overcome cognitive information processing constraints and therefore handle large 

quantities of data, detect patterns, and forecast customer demands (Yu et al., 2024). This 

enables firms to optimize inventory levels, reduce waste from excess materials, and elevate 

customer satisfaction (Le and Behl, 2023). 

Recently, researchers have studied the applications of AI in OSCM. For instance, Belhadi 

et al. (2024) explored AI-driven innovation from a supply chain dynamism perspective and 

found that it can enhance the resilience and performance of supply chains. Moreover, Gupta et 

al. (2023) discovered that AI can boost supply chains’ financial resilience. However, Li and Li 
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(2022) compared the decision-making between AI and humans in the retail sector, and found 

that AI’s decision-making leads to worse firm performance than humans. 

2.4. Explorative learning 

The existing literature underscores that organizational learning is critical in enhancing the 

competitiveness and performance of firms in turbulent business environments (Patel et al., 

2012). March (1991) developed a seminal framework of organizational learning that 

demonstrates the trade-off between two fundamental types of organizational ambidexterity: 

exploration and exploitation. Exploitative learning refers to the learning activities that make 

incremental improvements to current knowledge and capabilities. In contrast, explorative 

learning denotes the learning activities that create new knowledge and capabilities by extending 

the current core knowledge (Patel et al., 2012). Different from exploitative learning, 

exploratory learning is especially relevant to radical innovation, enabling firms to search distant 

domains of knowledge and thus generate a broad set of novel ideas or knowledge (Azadegan 

and Dooley, 2010). Considering that AI is one of the disruptive digital technologies, which 

requires firms to possess considerable new knowledge and skills (Le and Behl, 2023), 

explorative learning would be a more complementary element to be considered. That is, firms’ 

primary focus will be on the explorative learning activities to reconfigure their information 

technology competencies in response to advanced technologies such as AI. 

In the field of OSCM, a significant stream of literature has concentrated on the impact of 

explorative learning on innovation and operational performance. For instance, Raymond et al. 

(2020) found that firms that engage more in explorative learning activities are likely to achieve 
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higher innovation performance and competitive advantage. Patel et al. (2012) observed that 

firms with higher exploration learning capabilities are in a better position to enhance 

manufacturing flexibility to achieve superior performance. Belhadi et al. (2022b) uncovered 

that firms engaging in explorative learning are more likely to cultivate dynamic capabilities that 

enable them to respond to disruptions in volatile business environments. 

3. Hypotheses development 

3.1. The impact of the congruence and incongruence between AI and explorative learning on 

supply chain resilience 

STS theory indicates that the technical and social aspects of the system need to be balanced to 

enhance the system’s effectiveness and thus achieve optimal performance (Bostrom and Heinen, 

1977). AI is considered as a technical aspect that can reinforce decision-making and enhance 

the efficiency and effectiveness of supply chain operations (Gupta et al., 2023), and explorative 

learning refers to a social aspect that can enable adaptability and innovation in supply chain 

management (Raymond et al., 2020). In this study, AI and explorative learning are considered 

as being congruent when they are at similar levels in an organization, regardless of whether the 

congruence level is high or low. 

We postulate that the congruence between AI and explorative learning positively 

influences firms’ supply chain resilience for several reasons. First, fit is an essential concept of 

STS theory that focuses on the degree of compatibility or congruence between technical and 

social aspects of the system (Tong et al., 2023). When AI (i.e., technical aspect) is congruent 

with explorative learning (i.e., social aspect), firms are better able to cultivate dynamic 
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capabilities that enable them to adapt to and react quickly to supply chain disruptions in highly 

uncertain and volatile business environments (Belhadi et al., 2024). As such, the congruence 

between AI and explorative learning of the system would elevate firms’ supply chain resilience 

by improving their abilities to forecast, prepare for, and respond to potential supply chain 

disruptions, such as disruptions in the procurement of critical materials and customer demands. 

Such competence derives from the data analytics ability of AI and the innovation and adaptation 

ability of explorative learning, which collectively contribute to a more resilient supply chain 

that can predict and handle unexpected supply chain disruptions. 

Second, firms can leverage the advanced analytics capabilities of AI to detect patterns and 

gain novel insights into supply and demand fluctuations. For example, firms can utilize AI 

techniques to conduct scenario planning and simulation exercises for better mitigating the risks 

of supply chain disruptions, which contributes to building supply chain resilience (Modgil et 

al., 2022). AI can support explorative learning by providing real-time data for forecasting and 

decision-making that can assist firms in making better-informed decisions in response to 

disruptions or changes in the supply chain, thereby improving their supply chain resilience (Yu 

et al., 2023). 

Finally, by combining AI and explorative learning, firms can foster a culture of continuous 

improvement, which enhances their abilities to deal with unconventional emergency and 

disruption risks and thus elevates their supply chain resilience. Once the firms have such a 

culture in place, it further promotes the improvement of AI by providing valuable feedback and 

insights that can help refine and optimize the algorithms used in AI (Gupta et al., 2023). This 
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ensures that the adoption of AI is not only designed to optimize and automate current operations 

but is also geared toward improving the adaptive capability of the supply chain in the long term. 

The adaptive capability allows firms to rapidly respond to and recover from supply chain 

interruptions, thus playing a pivotal role in enabling firms to maintain continuity and enhance 

supply chain resilience (Dubey et al., 2022; Modgil et al., 2022). 

H1a. The congruence between AI and explorative learning has a positive impact on supply 

chain resilience. 

STS theory suggests that the misfit between technical and social factors could exert a 

negative impact on firm performance (Shou et al., 2021). We propose that the incongruence 

between AI and explorative learning potentially harms firms’ supply chain resilience. First, 

although AI can enhance decision-making processes, firms may need more explorative learning 

activities to develop capabilities to deal with unexpected disruptions in supply chains. 

Therefore, without engaging in explorative learning activities, firms could have very limited 

capabilities in using AI in their operations and supply chain processes and thus are less capable 

of handling supply chain disruptions, which erodes their supply chain resilience. Moreover, the 

incongruence between AI and explorative learning may lead firms to lack the necessary agility 

to respond quickly to supply chain disruptions. For instance, when firms rely heavily on AI but 

neglect explorative learning that is closely linked to innovation (Belhadi et al., 2022b; Patel et 

al., 2012), they may miss out on identifying innovative solutions and practices to cope with 

disruptions in supply chains. This will result in firms being technically advanced but unprepared 

for the dynamic nature of supply chain risks. As such, when supply chain disruptions occur, 
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firms are unable to innovate beyond the data-driven insights provided by AI and have limited 

capacity to address such disruptions, which impairs their supply chain resilience. 

Second, in rapidly changing business environments, developing supply chain resilience is 

critical. A lack of explorative learning may lead firms to encounter great difficulties in bouncing 

back from setbacks (Azadegan and Dooley, 2010), harming their readiness and agility in 

handling supply chain disruptions. Thus, firms with high AI usage but lack the accompanying 

ability to learn and innovate may be less resilient in the face of supply chain disruptions. 

Third, the incongruence between AI and explorative learning implies that the technical 

and social aspects are mismatched. This could give rise to systems that must be better aligned 

and well-integrated to harmonize these two aspects to accomplish a common goal (Bednar and 

Welch, 2020). The misfit of systems can bring about a breakdown in communicating and 

coordinating within the supply chain, as explorative learning contributes to a shared 

understanding within the organization. For example, employees who need to be adequately 

trained in learning activities may need help in terms of collaborating with AI-based systems 

effectively. As such, the misfit between AI and explorative learning jeopardizes firms’ ability 

to harness the benefits to deal with unpredictable supply chain disruptions, thus compromising 

their supply chain resilience. 

In sum, building on STS theory, we postulate that the incongruence between AI and 

explorative learning hinders the supply chain’s effective functioning and erodes its ability to 

remain alert to, adapt to, and respond promptly to unexpected supply chain disruptions, thus 

impairing firms’ supply chain resilience. 
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H1b. The incongruence between AI and explorative learning has a negative impact on 

supply chain resilience. 

3.2. The impact of different types of congruence: high–high vs. low–low congruence 

While supply chain resilience generally tends to be in the high zone when AI and explorative 

learning are congruent, we propose that different types of congruence may offer additional 

insights into predicting variations in supply chain resilience. We postulate that high–high 

congruence between AI and explorative learning is associated with higher supply chain 

resilience than low–low congruence. First, fit, a crucial concept of STS theory, refers to the 

degree of compatibility between technical and social aspects of the system (Bostrom and 

Heinen, 1977). When AI and explorative learning are congruent at a high level, firms can better 

cultivate dynamic capabilities, allowing them to adapt to highly volatile business environments 

and build a more resilient supply chain. High–high congruence between technical and social 

aspects enables firms to better respond to unforeseen disruptions in supply chains, thus 

enhancing supply chain resilience to a greater extent. However, low–low congruence only 

implies a primary level of compatibility (Wang et al., 2023), which is insufficient for the 

development of dynamic capabilities and thus limits the organization’s ability to respond 

adeptly to changing circumstances. In the context of establishing supply chain resilience, high–

high congruence between AI and explorative learning is considered more beneficial than low–

low congruence because the former aligns with the development of dynamic capabilities, 

enables firms to better leverage the complementary benefits of technical and social aspects, and 

allows firms to respond to supply chain disruptions in a more effective manner. When AI and 
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explorative learning are in the situation of low–low congruence, the supply chain may 

experience difficulties in handling unexpected disruptions beyond the capability of the entire 

STS, ultimately constraining its resilience (Bednar and Welch, 2020). 

Second, analytical effectiveness is essential in navigating rapidly changing environments, 

contributing to superior supply chain resilience. In the low–low congruent situation where both 

AI and explorative are at low levels, the STS can only provide limited analytical effectiveness 

that hinders a firm’s ability to anticipate and respond effectively to disruptions in supply chains. 

Consequently, the benefits of AI–explorative learning congruence for supply chain resilience 

may be constrained regardless of the compatibility between technical and social subsystems 

(Yu et al., 2023). Nevertheless, as the congruence level rises, the benefits of AI–explorative 

learning congruence can be gradually released, as high–high congruence implies more 

advanced analytics capabilities that allow firms to detect patterns and gain novel insights as 

well as cultivate better learning capabilities to assimilate and leverage these insights. 

Simultaneously, a better explorative learning capability can further unfold the potential of AI 

and stimulate its evolvement. Collectively, compared with low–low congruence, high–high 

congruence can help firms better reap the benefits of the compatibility between technical and 

social subsystems (Bednar and Welch, 2020), which improves supply chain resilience to a 

larger extent. 

Finally, high–high congruence refers to a high level of shared commitment that fosters a 

culture of continuous improvement (Wang et al., 2023), enhancing firms’ supply chain 

resilience to unexpected events and risks. This alignment promotes supply chain resilience to a 
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greater extent by encouraging a proactive approach to handling supply chain disruptions. In 

contrast, low–low congruence may lead to a limited willingness to adapt to changes and thus a 

lower degree of the development of a culture that facilitates supply chain resilience. Therefore, 

firms with high–high congruence between AI and explorative learning are more likely to adapt 

to and respond to supply chain disruptions, elevating supply chain resilience to a greater extent. 

H2. Given that AI and explorative learning are congruent, high–high congruence is 

associated with higher supply chain resilience than low–low congruence. 

3.3. The moderating role of organizational inertia 

STS theory indicates that a firm is a complex system comprising interacted technical and social 

aspects, and changes in one aspect have ripple effects throughout the entire system (Bostrom 

and Heinen, 1977). In this sense, the integration of AI and explorative learning is a system 

change and organizational inertia might hamper it. Previous research suggests that 

organizational inertia represents the consequence of the organizational evolution process, 

which encompasses internal cognition, resources, structures, and conventions (Liang et al., 

2017). In this sense, Hannan and Freeman (1984, p. 151) defined organizational inertia in 

relation to environmental changes as “structures of organizations have high inertia when the 

speed of reorganization is much lower than the rate at which environmental conditions change.” 

Huang et al. (2013) pinpointed that inertia prevails in most organizations, and when a firm has 

strong inertia to retain the status quo, the firm tends to be slower in responding to environmental 

changes. The nature of organizational inertia represents resistance to an organization’s changes 

and its tendency to maintain the status quo due to various factors, including bureaucratic 
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structures, entrenched norms, and a lack of innovative culture (Huang et al., 2013). Therefore, 

when inertia is high, firms are inclined to maintain existing routines and practices rather than 

integrate AI and explorative learning into supply chain management. Such hesitant changes 

make it hard for firms to fully reap the benefits of new technologies and learning activities, thus 

weakening the positive influence of the congruence between AI and explorative learning on 

supply chain resilience. For instance, Haier Group, a leading appliance manufacturer in China, 

implemented an AI-driven system to forecast volatile customer demands and optimize the 

replenishment of raw materials (Cheng and Xie, 2021). In principle, this technical change will 

improve supply chain resilience by elevating the firm’s predictive abilities for navigating 

supply chain disruptions. However, when organizational inertia is high, employees are likely to 

persist with conventional processes. Thus, when unanticipated supply chain disruptions occur 

and request prompt responses, the firm encumbered by inertia may fail to respond to such 

disruptions by leveraging the insights derived from AI and explorative learning effectively, thus 

impairing its supply chain resilience. 

Moreover, organizational inertia might induce a misfit between the socio-technical aspects 

and the organizational culture, which diminishes firms’ flexibility and adaptability in 

integrating new technologies such as AI into the existing system. The reason is that 

organizational inertia often leads to rigid structures and processes that resist adaptation (Liang 

et al., 2017). Therefore, although firms are aware of the congruence between AI and explorative 

learning, they still cannot commit to adapting it to their operations and supply chains and take 

full advantage of the combined benefits. This could impair the organization’s capability to adapt 
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to changing circumstances and respond to supply chain disruptions, thus attenuating the 

positive influence of the congruence between AI and explorative learning on supply chain 

resilience. For instance, Lenovo, a high-tech manufacturer, utilized AI techniques to forecast 

shortages or oversupplies of electronic devices, thus enhancing its supply chain resilience to 

unexpected disruptions (China Daily, 2022). Yet, if the firm’s culture is embroiled in inertia, 

the evolution to AI-guided decision-making can be suppressed. Consequently, higher 

organizational inertia intensifies the firm’s resistance to leveraging the insights generated by 

AI and explorative learning, ultimately compromising its supply chain resilience. 

In addition, organizational inertia impedes learning and knowledge sharing in the firm 

(Yamoah et al., 2022), thereby restricting communication and collaboration across different 

functions and departments. This lack of cross-functional communication and collaboration 

limits the organization’s capability to integrate AI and explorative learning activities. As such, 

organizational inertia induces a low level of common understanding and cross-functional 

collaboration, which restrains the benefits of the congruence between AI and explorative 

learning, attenuating the positive impact on supply chain resilience. 

H3a. Organizational inertia weakens the positive impact of the congruence between AI 

and explorative learning on supply chain resilience. 

We further predict that organizational inertia exacerbates the negative influence of the 

incongruence between AI and explorative learning on supply chain resilience. Specifically, in 

a setting where AI is high but explorative learning is low, firms with high inertia not only 

struggle to adopt AI through learning processes but also exhibit heightened resistance to 
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embracing the intrinsic benefits of AI, such as enhanced decision-making and automation 

capabilities for handling supply chain disruptions. This dual challenge stems from the deeply 

ingrained resistance within the organizational culture and structure (Liang et al., 2017). High 

levels of inertia imply a rigid adherence to existing practices and a reluctance to embrace 

innovative technologies (Mikalef et al., 2021), even when their potential benefits, such as 

improved supply chain resilience, are apparent. For example, Intel, a semiconductor company, 

utilized AI techniques for defect classifications in its production lines and supply and demand 

predictions, aiming to enhance its supply chain resilience (Desineni and Tuv, 2024). 

Nevertheless, when organizational inertia is high, it adds to entrenching dependency on 

outdated practices and impairs the effectiveness of AI adoption for addressing supply chain 

disruptions. As such, organizational inertia exacerbates the incongruent effect of AI and 

explorative learning, leading to lower supply chain resilience. 

Moreover, in a setting where AI is low but explorative learning is high, organizational 

inertia aggravates the negative impact of the incongruence between these two factors on supply 

chain resilience. The reluctance to adopt AI, coupled with organizational inertia (Yamoah et 

al., 2022), creates a compounding effect that hinders a firm’s ability to effectively prepare for, 

adapt to, and respond to disruptions in supply chains, thus resulting in a greater reduction in 

supply chain resilience. For instance, supply chain managers who have worked for firms for an 

extended period may engage in explorative learning activities but still resist implementing AI, 

as they may feel that AI jeopardizes their job security and challenges their existing knowledge 

and expertise. The misfit between AI and explorative learning harms firms’ ability to handle 
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supply chain disruptions and thus compromises their supply chain resilience. In this situation, 

when organizational inertia is high, it aggravates the challenges posed by the incongruence 

between AI and explorative learning, because firms with high inertia are loath to embrace new 

technologies and ideas and prefer to maintain existing routines and practices (Liang et al., 2017). 

As such, organizational inertia impairs the effectiveness of leveraging AI and explorative 

learning to anticipate, adapt to, and respond to disruptions in supply chains, thereby 

exacerbating the adverse effect of the incongruence between these two factors on firms’ supply 

chain resilience. 

H3b. Organizational inertia exacerbates the negative impact of the incongruence between 

AI and explorative learning on supply chain resilience. 

The conceptual model is shown in Figure 1. 

[Insert Figure 1 here] 

4. Method 

4.1. Data collection and sample 

We conducted a survey of Chinese manufacturing companies to test the proposed model. We 

focused on Chinese manufacturing companies for several reasons. First, China is known as the 

world’s factory, yet due to intensified global uncertainties and turbulences, Chinese 

manufacturers confront mounting risks of supply chain disruptions, which emphasizes the 

urgent need for them to build supply chain resilience (Jiang et al., 2023). Thus, China offers a 

suitable and rich context in which to examine manufacturers’ supply chain resilience. Second, 

in response to the Chinese government’s policies stimulating the development and application 
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of digital technologies such as AI, Chinese manufacturers have dedicated significant efforts to 

the adoption of AI (Yu et al., 2024). Moreover, owing to increased market competition, Chinese 

manufacturers have proactively engaged in explorative learning activities. As such, it is 

important and meaningful to investigate how AI aligns with explorative learning to affect 

supply chain resilience within Chinese manufacturing industries. 

According to established survey measures in the literature, we developed the questionnaire 

in English and then translated it into Mandarin. A third party subsequently translated the 

Mandarin version back into the English version to verify precision, and no semantic 

discrepancy was detected. Before gathering data, we invited four academic professionals and 

two industry experts who had extensive experience regarding operations and supply chain 

management to assess the content validity of the scales (Deng et al., 2022). This process can 

help us verify the meaningfulness, wording, clarity, interpretability, structural accuracy, and 

relevance of each item. Based on the assessments and suggestions of these academic 

professionals and industry experts, a few slight adjustments on the translation from English to 

Chinese in terms of the wording and sentence structures were made to improve the clarity and 

interpretability of the scales. 

We targeted the operations or supply chain managers as key informants, given that they 

possess a comprehensive understanding of their firms’ supply chains (El Baz and Ruel, 2021). 

A professional survey company was employed to help us collect data. The company randomly 

distributed the questionnaire to 948 Chinese manufacturing firms. Eventually, we received 246 

responses, among which 66 responses were excluded due to missing data. This results in a 



24 

response rate of 17.9% with 170 valid responses. Table 1 presents the demographic information 

of our sample regarding type of ownership, annual revenue, number of employees, and firm 

age. 

[Insert Table 1 here] 

4.2. Assessment of bias 

First, the potential nonresponse bias was checked (Hair et al., 2010). The t-test indicates no 

significant differences across all constructs between the first 25% and last 25% responses. Thus, 

nonresponse bias is not a severe concern in our research. 

Second, we made the following efforts to alleviate the impact of common method bias 

(CMB). Specifically, as information reliability can lower the likelihood of CMB (Deng et al., 

2022), we targeted respondents who are supply chain professionals with a strong knowledge 

base. Moreover, we performed the Harman’s single-factor test (Podsakoff et al., 2003). 

Compared with our measurement model, the results (c2=484.181, d.f.=102, p=0.000, 

RMSEA=0.149, GFI=0.704, CFI=0.620, NFI=0.570, IFI=0.626) are significantly worse. 

Additionally, to assess the influence of CMB, we utilized a marker variable (i.e., the lowest 

bivariate correlation among the manifest variables) (Williams et al., 2010). We computed the 

adjusted correlations and found that they are significant after the adjustment. Collectively, these 

results suggest that CMB is not a serious issue for our study. 

Finally, we took the following measures to mitigate possible social desirability. 

Specifically, we adopted well-established multi-item scales used in previous studies (e.g., 

Azadegan and Dooley, 2010; Belhadi et al., 2024) and elaborately worded the Mandarin version 
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of the questions to ensure neutrality. We also assured the respondents that their responses would 

remain anonymous. Moreover, key constructs involved in this study were presented discretely 

in the original survey, which makes them less subject to social desirability bias because it is 

unlikely that informants will respond based on a connected mindset. Additionally, following 

Deng et al. (2022), we conducted an independent sample t-test for key variables to assess 

possible bias, which indicated no significant difference between the first and last quarter of the 

responses (e.g., t=-1.29 for supply chain resilience). 

4.3. Measurement and validity 

All measures for the constructs in our conceptual model were adopted from established multi-

item scales in the extant literature. Specifically, we used five items to measure AI (Belhadi et 

al., 2024) and three items to measure explorative learning (Azadegan and Dooley, 2010). The 

measure of supply chain resilience was derived from El Baz and Ruel (2021). Our measure of 

organizational inertia was derived from Li et al. (2019). These items were measured with a 5-

point Likert scale that ranges from 1 (strongly disagree) to 5 (strongly agree). Table 2 presents 

the survey items we used. 

The validity and reliability of the constructs used in this study were evaluated in the 

following ways. First, we evaluated the convergent and discriminant validity of the four latent 

variables (i.e. AI, explorative learning, supply chain resilience, and organizational inertia) in 

our conceptual model through a confirmatory factor analysis (CFA) in AMOS. Table 2 displays 

factor loadings, Cronbach’s alpha, average variance extracted (AVE) values, and composite 

reliability. To assess discriminant validity, we followed the method outlined by Hair et al. 
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(2010), which involves comparing the correlation between all possible construct pairs with the 

square root of the AVE value of each construct. Table 3 depicts that the square root of the AVE 

value of each construct is higher than its correlations with other constructs. This offers strong 

evidence of discriminant validity. Besides, the results of CFA (c2=165.771, d.f.=84, p=0.000, 

RMSEA=0.078, GFI=0.872, CFI=0.912, NFI=0.842, IFI=0.913) suggest an adequate model fit. 

[Insert Table 2 here] 

4.4. Polynomial regression and response surface analyses 

Following previous literature (Deng et al., 2022), we employed polynomial regressions coupled 

with the response surface analyses (RSA) to test the proposed hypotheses. Polynomial 

regression incorporates the linear and quadratic terms for AI and explorative learning in 

addition to their linear interaction term, as shown in Eq. (1). It offsets the methodological 

shortcomings such as oversimplification and inaccuracy of traditional difference scores and 

thus serves as an ideal approach to study the congruence effects (Edwards and Cable, 2009). 

𝑆𝐶𝑅 = 𝑏! + 𝑏"𝐴𝐼 + 𝑏#𝐸𝐿 + 𝑏$𝐴𝐼
# + 𝑏%(𝐴𝐼 × 𝐸𝐿) + 𝑏&𝐸𝐿

# + 𝑒  (1) 

In Eq. (1), 𝑆𝐶𝑅 represents supply chain resilience, 𝐴𝐼 stands for artificial intelligence, 

and 𝐸𝐿 denotes explorative learning. To further investigate the moderating effect, we included 

organizational inertia (𝑂𝐼) and the product of 𝑂𝐼 with each term in Eq. (1) to generate Eq. (2). 

To enhance the interpretability of the results, we mean-centered 𝐴𝐼, 𝐸𝐿, and 𝑂𝐼. 

𝑆𝐶𝑅 = 𝑏! + 𝑏"𝐴𝐼 + 𝑏#𝐸𝐿 + 𝑏$𝐴𝐼
# + 𝑏%(𝐴𝐼 × 𝐸𝐿) + 𝑏&𝐸𝐿

# + 𝑏'𝑂𝐼 + 𝑏((𝐴𝐼 × 𝑂𝐼) +

𝑏)(𝐸𝐿 × 𝑂𝐼) + 𝑏*(𝐴𝐼
# × 𝑂𝐼) + 𝑏"!(𝐴𝐼 × 𝐸𝐿 × 𝑂𝐼) + 𝑏""(𝐸𝐿

# × 𝑂𝐼) + 𝑒 (2) 



27 

Then, the estimated coefficients can be explained by using the RSA which provides a 

precise visualization and evaluation of a three-dimensional surface corresponding to the above 

polynomial regressions (Wang et al., 2023). Specifically, the interpretation of the results relies 

on the slopes and curvatures of the surface along the congruence (where 𝐴𝐼 = 𝐸𝐿 ) and 

incongruence (where 𝐴𝐼 = −𝐸𝐿) lines (Edwards and Cable, 2009). To derive the response 

surfaces, we substituted 𝐴𝐼 = 𝐸𝐿 and 𝐴𝐼 = −𝐸𝐿 for the congruence and incongruence lines 

in Eq. (1) and developed Eq. (3) and Eq. (4), respectively. 

𝑆𝐶𝑅 = 𝑏! + (𝑏" + 𝑏#)𝐴𝐼 + (𝑏$ + 𝑏% + 𝑏&)𝐴𝐼
# + 𝑒  (3) 

𝑆𝐶𝑅 = 𝑏! + (𝑏" − 𝑏#)𝐴𝐼 + (𝑏$ − 𝑏% + 𝑏&)𝐴𝐼
# + 𝑒  (4) 

Hence, 𝑏" + 𝑏# and 𝑏" − 𝑏# represent the slopes along the congruence and incongruence 

lines, respectively; 𝑏$ + 𝑏% + 𝑏&  and 𝑏$ − 𝑏% + 𝑏&  represent the corresponding curvatures 

along the congruence and incongruence lines (Shanock et al., 2010). Similarly, to inspect the 

slopes and curvatures along the congruence and incongruence lines in the moderated model, we 

transformed Eq. (2) into the following models. 

𝑆𝐶𝑅 = 𝑏! + (𝑏" + 𝑏# + 𝑏(𝑂𝐼 + 𝑏)𝑂𝐼)𝐴𝐼 + (𝑏$ + 𝑏% + 𝑏& +	𝑏*𝑂𝐼 + 𝑏"!𝑂𝐼 + 𝑏""𝑂𝐼)𝐴𝐼
# +

𝑏'𝑂𝐼 + 	𝑒  (5) 

𝑆𝐶𝑅 = 𝑏! + (𝑏" − 𝑏# + 𝑏(𝑂𝐼 − 𝑏)𝑂𝐼)𝐴𝐼 + (𝑏$ − 𝑏% + 𝑏& +	𝑏*𝑂𝐼 − 𝑏"!𝑂𝐼 + 𝑏""𝑂𝐼)𝐴𝐼
# +

𝑏'𝑂𝐼 + 	𝑒  (6) 

where (𝑏" + 𝑏# + 𝑏(𝑂𝐼 + 𝑏)𝑂𝐼)  and (𝑏" − 𝑏# + 𝑏(𝑂𝐼 − 𝑏)𝑂𝐼)  represent the slopes along 

the congruence and incongruence lines, respectively; (𝑏$ + 𝑏% + 𝑏& +	𝑏*𝑂𝐼 + 𝑏"!𝑂𝐼 +
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𝑏""𝑂𝐼)  and (𝑏$ − 𝑏% + 𝑏& +	𝑏*𝑂𝐼 − 𝑏"!𝑂𝐼 + 𝑏""𝑂𝐼)  stand for the curvatures along the 

congruence and incongruence lines, respectively. 

5. Results 

The descriptive statistics and correlation coefficients of all variables are presented in Table 3. 

We calculated the values of variance inflation factors (VIFs). All VIF values are lower than the 

recommended threshold of 10, indicating that multicollinearity is not a concern in our study. 

[Insert Table 3 here] 

Before generating the interaction and curvilinear terms, we centered the scores of 𝐴𝐼 and 

𝐸𝐿  by deducting the scale mid-point from the measured values (i.e., 3) to reduce 

multicollinearity and promote their interpretation (Paulraj and Blome, 2017). We initially 

controlled for four demographic features (shown in Table 1) of the sample firms, including 

ownership, annual revenue, number of employees, and firm age. The control variables did not 

show significance in the models. Consequently, we dropped them to generate response surfaces 

that reflect the combined effect of 𝐴𝐼 and 𝐸𝐿 (Paulraj and Blome, 2017). 

H1a (H1b) posits that the congruence (incongruence) between AI and explorative learning 

enhances (impairs) supply chain resilience, which can be verified after satisfying two conditions. 

First, it is expected that the incongruence line exhibits an inverted U-shape, suggesting that the 

curvature along the incongruence line should be significantly negative. Moreover, the slope and 

intercept of the first principal axis of the concave surface should not be significantly different 

from one and zero, respectively (Edwards and Cable, 2009). This would indicate that the first 

principal axis does not deviate from the projection of the congruence line in the “𝐴𝐼-𝐸𝐿” plane. 
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Hence, the downward trend would be minimal along the congruence line but maximal along 

the incongruence line. Table 4 demonstrates the results of polynomial regressions and response 

surface features. We discovered that the curvature along the incongruence line is significantly 

negative ([ 𝑏$ − 𝑏% + 𝑏& ]=-0.55, p<0.01), thereby satisfying the first condition of the 

congruence effect. Furthermore, we utilized the bootstrapping approach to derive 10,000 

subsamples and constructed the 95% bias-corrected confidence intervals (CI) for the slope and 

curvature of the first principal axis, respectively. The slope of the first principal axis is not 

significantly different from one (95% bias-corrected CI=[-1.77, 3.45]) and the intercept is not 

significantly different from zero (95% bias-corrected CI=[-4.41, 25.38]), which meets the 

second condition of the congruence effect (Edwards and Cable, 2009). Hence, in together, H1a 

and H1b are supported. We also plotted the response surface in Figure 2(a) and found that it 

curves downward along the incongruence line, such that supply chain resilience is higher when 

AI and explorative learning are more congruent. 

H2 predicts that high–high congruence between AI and explorative learning leads to 

higher supply chain resilience as compared to low–low congruence. In Model 1 of Table 4, we 

found that the slope along the congruence line is significant and positive ([𝑏" + 𝑏#]=0.41, 

p<0.05). This indicates that under the condition of congruence, supply chain resilience will be 

higher when AI and explorative learning are congruent at a higher level. Hence, H2 is supported. 

H3a (H3b) proposes that the positive (negative) impact of the congruence (incongruence) 

between AI and explorative learning on supply chain resilience will be weakened (exacerbated) 

when organizational inertia increases. In Table 4, we observed that the addition of 𝑂𝐼 and its 
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interactions with other polynomial terms into Model 1 will lead to significant increases in R-

squared in Model 2 and Model 3, respectively (Model 2: ∆𝑅# =0.03, p<0.05; Model 3:	

∆𝑅#=0.08, p<0.001). In Model 3, the curvature along the incongruence line becomes -1.40 

(p<0.001). Moreover, we estimated the response surface parameters at the mean of 𝑂𝐼, and 

mean minus and plus one standard deviation of 𝑂𝐼, as shown in Table 5. We further plotted the 

corresponding surfaces in Figure 2(b)-(d). This displays that the inverted U-shaped curvilinear 

surface along the incongruence line is steepened significantly at higher levels of 𝑂𝐼, implying 

that the positive (negative) effect of the congruence (incongruence) between AI and explorative 

learning on supply chain resilience is weaker (stronger) when organizational inertia is higher. 

Collectively, H3a and H3b are supported. 

[Insert Tables 4 and 5 here] 

[Insert Figure 2 here] 

Power analysis was also conducted to ensure the power of our estimations. We adopted an 

R2 method that computes power given the sample size and R2 of the models (Chau et al., 2020). 

All our models have a power value over 0.9, which exceeds the prescribed threshold (Chau et 

al., 2020). 

6. Discussion and conclusion 

6.1. Theoretical contributions 

Our study makes several theoretical contributions. First, it extends the supply chain resilience 

literature by empirically untangling how the congruence and incongruence between AI and 

explorative learning affect supply chain resilience. Previous studies have mainly examined the 
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unilateral effect of AI (Le and Behl, 2023; Leoni et al., 2022) and explorative learning (Belhadi 

et al., 2022b; Eryarsoy et al., 2022) on supply chain resilience, yet the joint effect of these two 

factors on supply chain resilience remains largely underexplored in the existing body of work. 

Our study takes an initial step in examining how AI aligns with explorative learning to influence 

supply chain resilience, thus responding to a recent call for more research investigating the 

synergic effect of different factors on supply chain resilience (Jiang et al., 2023). We emphasize 

the importance of the balance between a system’s technical aspect (i.e., AI) and social aspect 

(i.e., explorative learning) to enhance its effectiveness and achieve better resilience in the 

supply chain. Our results confirm that when AI and explorative learning are congruent, they 

complement each other and enable firms to boost supply chain resilience. In contrast, the 

incongruence between AI and explorative learning signifies a lack of fit and compatibility 

between the technical capabilities of AI and the social processes of explorative learning within 

the organization. Such incongruence hinders the organization’s ability to leverage the full 

potential of AI in enhancing supply chain resilience. This phenomenon may be due to 

inefficiencies when AI, the technical capability, is not seamlessly integrated with explorative 

learning, the social process. Therefore, achieving supply chain resilience requires a harmonious 

blend of technical capability and social process, underscoring the significance of the 

congruence between AI and explorative learning in the modern supply chain landscape. 

Our study also engages in dialog with previous research which underlines the importance 

of the integration of technical and social aspects. Although the extant literature has highlighted 

the advantage of the fit between technical and social aspects (Chaudhuri and Jayaram, 2019; 
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Shou et al., 2021; Tong et al., 2023), rare efforts have been devoted to unpacking how the fit 

between AI and explorative learning promotes supply chain resilience. Our results imply that 

only pursuing technological advancements, such as AI, without sufficient attention to aligning 

them with explorative learning, may lead to unintended consequences and even backfire. Issues 

such as lack of adaptability to changes and disruptions in communication and collaboration 

may arise. Hence, the incongruence between AI and explorative learning compromises the 

organization’s capacity to prepare for, adapt to, and respond effectively to supply chain 

disruptions, resulting in weakened supply chain resilience. 

Moreover, we broaden the understanding of how different types of congruence between 

AI and explorative learning exert distinct effects on supply chain resilience. We uncover that 

compared with low–low congruence, high–high congruence between AI and explorative 

learning can better facilitate supply chain resilience. This result supports the idea that the 

benefits reaped from a low-level congruence between AI and explorative learning could be 

inherently limited. That is, the supply chain might experience difficulties in coping with 

unexpected disruptions beyond the capability of the entire STS, regardless of the potential 

complementary effect between the system’s technical and social aspects, which ultimately 

constrains supply chain resilience. Nevertheless, as the level of congruence escalates, the 

advantages of the compatibility between technical and social subsystems can gradually 

manifest (Bednar and Welch, 2020), which elevates firms’ supply chain resilience to a greater 

extent. This finding adds knowledge to prior research by offering a more fine-grained 

understanding of factors affecting the magnitude of supply chain resilience (El Baz and Ruel, 
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2021; Mirzabeiki and Aitken, 2023). 

Second, our study provides novel insights by disentangling that organizational inertia 

weakens the positive influence of the congruence between AI and explorative learning on 

supply chain resilience, while exacerbating the negative influence of the incongruence between 

these two factors on supply chain resilience. This finding lends support to the notion that an 

organization’s resistance to changing regular operating routines and the current status quo 

impairs its willingness and capability to fully utilize resources and leverage emerging digital 

technologies effectively (Mikalef et al., 2021). Consequently, organizational inertia acts as a 

barrier that undermines the benefits of the congruence between AI and explorative learning for 

building supply chain resilience. Meanwhile, it aggravates the adverse impact of the 

incongruence between these two factors on supply chain resilience. Despite that prior studies 

have examined the influence of organizational inertia on circular economy practices (Yamoah 

et al., 2022), organizational agility (Liang et al., 2017), and dynamic capability (Mikalef et al., 

2021), little is known about how organizational inertia alters the joint effect of AI and 

explorative learning on supply chain resilience. Recently, OSCM scholars have called for more 

research to explore the boundary condition of supply chain resilience (Eryarsoy et al., 2022; 

Sturm et al., 2023). Echoing this call, our research sheds light on the supply chain resilience 

literature by investigating the important yet neglected role of organizational inertia in 

modifying the effect of the congruence and incongruence between AI and explorative learning 

on supply chain resilience. 

Finally, this research enriches the literature on STS theory by theoretically elucidating the 
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interplay of AI, explorative learning, and organizational inertia in shaping firms’ supply chain 

resilience. Previous studies have primarily employed the resource-based view (Eryarsoy et al., 

2022), practice-based view (Dubey et al., 2022), dynamic capability theory (Sturm et al., 2023; 

Wei et al., 2023), panarchy theory (Mirzabeiki and Aitken, 2023), and information processing 

theory (Yu et al., 2024) to examine the antecedents of supply chain resilience. Nonetheless, the 

literature has offered limited knowledge regarding the use of STS theory as the theoretical lens 

to explicate how firms balance technical and social subsystems to boost supply chain resilience. 

In this sense, our research contributes to the theoretical advancement of STS theory by adopting 

it to illuminate how the alignment between AI (i.e., technical aspect) and explorative learning 

(i.e., social aspect) influences firms’ supply chain resilience. More importantly, our research 

introduces a boundary condition to STS theory by articulating how organizational inertia alters 

the system change induced by the integration of AI and explorative learning, thus resonating 

with previous research which highlights that organizational characteristics affect the 

effectiveness of STS (Soliman et al., 2018). Overall, our study sheds new light on the STS 

literature by delineating the congruent effect of AI and explorative learning on supply chain 

resilience and the role of organizational inertia as the boundary condition. 

6.2. Managerial implications 

This research provides several insightful implications for operations and supply chain managers. 

First, our findings reveal that the congruence between AI and explorative learning boosts supply 

chain resilience, while the incongruence between them impairs supply chain resilience. This 

highlights that when AI and explorative learning are at similar levels (i.e., low–low or high–
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high), firms can achieve higher supply chain resilience. This also informs managers that the 

imbalance between AI and explorative learning (i.e., low–high or high–low) is undesirable 

because it is detrimental to firms’ supply chain resilience. Thus, we strongly suggest that firms 

should strive to align AI with explorative learning rather than simply focusing on either AI or 

explorative learning in isolation. Moreover, by showing that low–low congruence is better than 

low–high and high–low incongruence, our study provides insights regarding why some firms 

fail to succeed with AI, as failure to understand firms’ balanced STS may lead to an incomplete 

or even biased assessment of the benefits derived from AI. When firms are in a balanced low–

low STS, they can maintain stable operations and leverage the synergic effect of AI and 

explorative learning to build supply chain resilience. Yet, once either system is alert, the 

imbalanced STS would disrupt existing stable operations and harm supply chain resilience. For 

example, firms invest considerable resources in developing a high level of AI but underinvest 

in explorative learning. In this situation, employees will find it challenging to adapt quickly to 

such technologically innovative environments enabled by AI, which ultimately would 

negatively influence established supply chain resilience. Hence, we advise that firms should be 

mindful of the potential dark side of the incongruence between AI and explorative learning and 

make efforts to harmonize them to elevate supply chain resilience. For instance, firms can 

arrange regular meetings between different departments to promote communication and 

coordination and put more emphasis on timely evaluation of the current levels of AI and 

explorative learning. In doing so, firms can better detect incongruent situations and balance 

their resource allocations to ensure that AI and explorative learning are aligned and complement 
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each other effectively. 

Second, managers need to recognize the importance of fostering high levels of both AI and 

explorative learning, because high–high congruence is better than low–low congruence. Our 

results indicate that compared with low–low congruence, high–high congruence between AI 

and explorative learning can enhance supply chain resilience to a greater extent. Therefore, we 

highly recommend that firms invest resources in developing AI and explorative learning 

capabilities simultaneously to maximize their complementary effect on supply chain resilience. 

For example, firms can increase the use of AI techniques in their operations and supply chain 

processes, such as developing AI-based systems and utilizing AI techniques to predict supply 

and demand changes and advance decision-making. Meanwhile, they can make dedicated 

efforts to cultivate high explorative learning capabilities, such as undertaking frequent training 

programs to nurture employees’ creativity and conducting experiments to generate new ideas 

or products. 

Finally, managers need to be alarmed that organizational inertia attenuates the positive 

influence of the congruence between AI and explorative learning on supply chain resilience, 

while it exacerbates the negative effect of the incongruence between these two factors on supply 

chain resilience. Given this, managers should be cautious about the potential downside of 

organizational inertia and carefully oversee the level of organizational inertia. Hence, it is 

suggested that when engaging in AI and explorative learning simultaneously, firms should be 

vigilant about analyzing the change in organizational inertia and proactively take actions to 

lower the level of organizational inertia to alleviate its adverse impact. For example, firms can 
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empower the workforce, reward the efforts of employees, and promote cross-functional 

collaboration and mutual trust to mitigate organizational inertia. 

6.3. Limitations and future research 

Our research has a few limitations, which point out the avenues for future research. First, our 

study centers on the Chinese context, which might hinder the generalizability of our results in 

the context of other countries. Future studies are encouraged to gather data from other countries 

to verify our results. Second, drawing upon STS theory, we unearth how the congruence 

between AI and explorative learning enhances firms’ supply chain resilience. Future research 

could contribute to the relevant literature by unpacking the synergic effect of AI and other social 

factors (e.g., human capital) on supply chain resilience. Third, we examine the critical role of 

organizational inertia in shaping the impact of the congruence between AI and explorative 

learning on supply chain resilience, yet there might be other contingent factors (e.g., supply 

chain complexity and uncertainty) that reinforce or attenuate this impact. Hence, a promising 

pathway for future research is to investigate other potential contingency factors, which can 

provide more implications regarding the boundary conditions of supply chain resilience. Finally, 

our study uses a traditional definition of supply chain resilience, which mainly denotes a firm’s 

ability to respond quickly to supply chain disruptions and bounce back to the original or desired 

status (El Baz and Ruel, 2021; Sturm et al., 2023). Complementing this traditional view, recent 

research has drawn on social-ecological systems theory to elucidate supply chain resilience, 

highlighting the evolutionary adaptation and radical transformation of the system in response 

to supply chain disruptions (Wieland et al., 2023). Future research can build on this theory to 
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further augment our understanding of how to build supply chain resilience. 
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Figure 1. Conceptual model 

  

Explorative learning 

Supply chain resilience 

Organizational inertia 

H3a (-) 

H3b (+) 

H1a (+): Congruence 

H1b (-): Incongruence 

Artificial intelligence 

(In)Congruence 

H2 (+): High-high vs. Low-low congruence 



43 

 

 
 



44 

 

 

Figure 2. Response surfaces 
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Table 1. Demographic information of the sample 
  

Frequency Percentage (%) 

Ownership State-owned firms 40 23.5  

Privately owned firms 105 61.8  

Foreign controlled firms 25 14.7 

Annual revenue (million CNY) <3 3 1.8  

3 to 20 25 14.7  

20 to 100 58 34.1  

100 to 400 35 20.6  

400 to 1000 19 11.2  

>1000 30 17.6 

Number of employees <100 17 10  

100 to 299 43 25.3  

300 to 499 21 12.4  

500 to 999 40 23.5  

1000 to 4999 41 24.1  

>5000 8 4.7 

Firm age (years) ≤5 3 1.8 

 6-10 15 8.8 

 11-20 73 42.9 

 21-30 52 30.6 

 >30 27 15.9 
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Table 2. Measurement validity and reliability 

Constructs Items Factor 

loadings 

Cronbach’s 

alpha 

AVE CR 

Artificial 

intelligence 

(Belhadi et al., 

2024) 

Please complete the following set of 

items by indicating to what extent your 

company has ever taken the following 

action (1=strongly disagree; 5=strongly 

agree): 

0.52 0.85 

 

AI1. We possess the infrastructure and 

skilled resources to apply AI 

information processing system. 

0.69 

   

 

AI2. We use AI techniques to forecast 

and predict environmental behavior. 

0.70 

   

 

AI3. We develop statistical, self-

learning, and prediction using AI 

techniques. 

0.72 

   

 

AI4. We use AI techniques at all levels 

of the supply chain. 

0.79 

   

 

AI5. We use AI outcomes in a shared 

way to inform supply chain decision-

making. 

0.72 

   

Explorative 

learning 

(Azadegan and 

Dooley, 2010) 

Please complete the following set of 

items by indicating your level of 

agreement on each of the statements 

below (1=strongly disagree; 5=strongly 

agree): 

  

0.48 0.74 

EL1. Frequently experiments with 

important new ideas or ways of doing 

things. 

0.71 

 

EL2. Employees frequently come up 

with creative ideas that challenge 

conventional ideas. 

0.68 

   

 

EL3. Compared to competition, a high 

percent of sales come from new 

products launched in the past three 

years. 

0.69 

   

Supply chain 

resilience (El 

Baz and Ruel, 

2021) 

Please complete the following set of 

items by indicating your level of 

agreement on each of the statements 

below (1=strongly disagree; 5=strongly 

agree): 

  

0.40 0.73 
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SCR1. We are able to cope with 

changes brought by the supply chain 

disruption. 

0.56 

   

 

SCR2. We are able to adapt to the 

supply chain disruption easily. 

0.70 

   

 

SCR3. We are able to provide a quick 

response to the supply chain disruption. 

0.68 

   

 

SCR4. We are able to maintain high 

situational awareness at all times. 

0.58 

   

Organizational 

inertia (Li et al., 

2019) 

Please complete the following set of 

items by indicating your level of 

agreement on each of the statements 

below (1=strongly disagree; 5=strongly 

agree): 

  

0.60 0.82 

OI1. Massive changes or adjustments to 

mechanisms in our company are very 

difficult. 

0.75 

 

OI2. Communication and coordination 

in our company are expensive and time-

consuming. 

0.82 

   

 

OI3. We cannot change and adjust our 

mechanisms quickly to adapt to 

changing environments. 

0.76 

   

Note: All estimated loadings are significant at p<0.001; AVE=average variance extracted; CR=composite 

reliability. 
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Table 3. Descriptive statistics, correlations matrix, and discriminant test 

Constructs Mean S.D. 1 2 3 4 5 6 7 8 

1. Artificial intelligence 3.90 0.66 0.72    
    

2. Explorative learning 3.87 0.67 0.60** 0.69   
    

3. Supply chain resilience 3.99 0.58 0.53** 0.59** 0.63  
    

4. Organizational inertia 2.81 0.99 -0.06 -0.12 -0.23** 0.78     
5. Ownership 1.91 0.61 -0.03 0.03 0.15 -0.05 /    

6. Annual revenue 3.78 1.37 0.18* 0.05 0.11 0.01 -0.10 /   

7. Number of employees 3.41 1.46 0.20** 0.18* 0.07 -0.04 -0.17* 0.73* /  

8. Firm age 3.50 0.93 0.17** 0.06 0.03 0.00 -0.19* 0.43** 0.41** / 

Note: *p<0.05; **p<0.01 (two-tailed test); The values along the diagonal are the square root of the AVE values. 
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Table 4. Results of polynomial regressions 

Variables Model 1 Model 2 Model 3 

Constant 2.32*** 2.87*** 2.93*** 

𝐴𝐼 0.09 0.08 0.19 

𝐸𝐿 0.32** 0.26* 0.11 

𝐴𝐼
! -0.07 -0.08 -0.13+ 

𝐴𝐼 × 𝐸𝐿 0.33** 0.35* 0.36** 

𝐸𝐿
! -0.14+ -0.13 -0.06 

𝑂𝐼  -0.11** -0.09 

𝐴𝐼 × 𝑂𝐼   -0.22 

𝐸𝐿 × 𝑂𝐼   0.16 

𝐴𝐼
!
× 𝑂𝐼   -0.17* 

𝐴𝐼 × 𝐸𝐿 × 𝑂𝐼   0.45** 

𝐸𝐿
!
× 𝑂𝐼   -0.22+ 

Response surface features 

Congruence line (𝐴𝐼 = 𝐸𝐿) 

Slope (𝑏" + 𝑏!) 0.41* 0.34* 0.25 

Curvature (𝑏# + 𝑏$ + 𝑏%) 0.11 0.14 0.23+ 

Incongruence line (𝐴𝐼 = −𝐸𝐿) 

Slope (𝑏" − 𝑏!) -0.23 -0.18 -0.30 

Curvature (𝑏# − 𝑏$ + 𝑏%) -0.55** -0.56** -1.40*** 

F-value 24.57 23.17 14.82 

R2 0.43 0.46 0.51 

∆R2  0.03* 0.08*** 

Observations 170 170 170 

Note: +p<0.1; *p<0.05; **p<0.01; ***p<0.001 (two-tailed test). 
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Table 5. Results of moderating analyses  
Congruence line (AI=EL) Incongruence line (AI=−EL) 

 

Slope Curvature Slope Curvature 
 

Observed 

coefficient 

Bootstrap 95% CI Observed 

coefficient 

Bootstrap 95% CI Observed 

coefficient 

Bootstrap 95% CI Observed 

coefficient 

Bootstrap 95% CI 
 

LLCI ULCI LLCI ULCI LLCI ULCI LLCI ULCI 

OI -1SD 0.20 -0.70 1.11 0.28 -0.19 0.75 -0.61 -1.99 0.77 -2.08 -3.96 -0.20 

OI mean 0.15 -1.21 1.51 0.34 -0.34 1.01 -0.99 -3.07 1.08 -2.92 -5.70 -0.14 

OI +1SD 0.09 -1.74 1.92 0.40 -0.49 1.28 -1.38 -4.17 1.42 -3.76 -7.47 -0.05 

Note: bootstrap with 10,000 replications; +p<0.1; *p<0.05; **p<0.01 (two-tailed test); LLCI=lower limit confidence interval, ULCI=upper limit confidence interval. 


