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A B S T R A C T

Magnetic resonance imaging (MRI) is susceptible to visual artifacts that can degrade the perceptual image
quality, potentially leading to inaccurate or inefficient diagnoses in clinical practice. It is critical to evaluate the
perceptual image quality and build this technique into clinical solutions. In a previous study, an MRI database
was created for image quality assessment (IQA), where various types of MRI artifacts with different degrees
of degradation were simulated. Application specialists assessed the image quality; however, radiologists’
perception of MRI image quality remains unknown. To make IQA clinically relevant, in this paper we conduct
a new subjective experiment where 13 radiologists rated the quality of images contained in the MRI database.
Based on this subjective IQA benchmark named RAD-IQMRI, we evaluate the performance of state-of-the-art
objective IQA models, providing insights into their application for MRI image quality assessment in clinical
settings.
1. Introduction

Magnetic resonance imaging (MRI) represents an advanced, non-
invasive imaging technique, capable of revealing detailed tissue struc-
tures within the body. It provides invaluable biochemical information
on the body’s metabolism, reflecting cellular activity [1]. The advan-
tage of MRI over other imaging techniques, such as X-ray radiography
and Computed Tomography (CT), is not only the avoidance of haz-
ardous ionizing radiation but also the ability to produce images that
better represent the structure of soft tissues [2]. However, MRI suffers
from the disadvantage of extended acquisition times and complex
scanning protocols and parameters. During acquisition and process-
ing, various sources of interference such as hardware imperfections
(e.g., equipment noise, and electromagnetic interference), technician
errors, patient motion, and underlying physiological processes can
cause visual artifacts in MRI images [3]. These artifacts degrade per-
ceptual image quality, which can potentially lead to misinterpretations,
erroneous diagnoses, and substandard patient care [4]. Accurately
measuring perceptual image quality is crucial for ensuring the accuracy
and reliability of MRI-based diagnoses, as well as the efficiency of the
clinical workflow.

Perceptual image quality assessment (IQA) provides numerous ad-
vantages for medical imaging, such as enhancing diagnostic perfor-
mance, improving patient outcomes, and facilitating the development
of advanced imaging technologies [5]. For example, various methods
have been developed to reduce noise including both structural and

∗ Corresponding author.
E-mail address: louj2@cardiff.ac.uk (J. Lou).

non-structural noise in MRI images [6–8]. The ability to assess the
perceptual quality of output images is crucial for quality monitoring
and assurance. In real clinical practice, a large volume of MRI images
is generated. These images are initially screened by qualified inspectors
to exclude unusable and low-quality images, creating a substantial
workload and leading to variable results due to differing review criteria
amongst inspectors [9]. In this case, automatic image quality assess-
ment is highly beneficial for providing fast and consistent solutions for
quality screening.

The development of image quality assessment (IQA) models is
grounded in perception studies where human participants rate image
quality within a fully controlled experimental environment [10]. For
IQA of natural images, several widely recognized databases have been
established, such as LIVE [11], TID2013 [12], and CSIQ [13]. These
IQA databases enhance our understanding of how human viewers
perceive image quality and provide ground truth data essential for
developing IQA models that can automatically predict image quality.
However, the quality perception for medical images significantly dif-
fers from natural images [14]. For instance the perceived quality of
natural images is mainly determined by the visibility of artifacts. In
contrast, for medical images, both the diagnostic task and the presence
of artifacts play a crucial role in determining the perceptual image
quality [14]. Unfortunately, limited research has been undertaken in
the area of perceptual image quality assessment of medical images,
particularly there is a paucity of studies involving a sufficient number
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Table 1
MRI parameters of original MRI images used in the RAD-IQMRI database.

Anatomical area Sequence Sequence type TR (ms) TE (ms) Voxel size (mm) FA (◦) ETL Coil NSA

Brain T1 Plain Spin-Echo 650 15 0.72*0.72*5 69 N∕A SENSE-head-8 coil 2
T2 N∕A 4877 100 0.47*0.47*5 N∕A 15 SENSE-head-8 coil 3

Liver 4D Field echo 117 4.6 1.3*1.3*5 80 N∕A SENSE-torso-XL coil 2
Breast T2 N∕A 6107 120 0.74*0.74*3 N∕A 25 SENSE-body coil 2
Fetus PD Single shot N∕A 140 0.9*0.9*4 N∕A N∕A SENSE-cardiac coil N∕A
Hip T2 N∕A 2760 60 0.31*0.31*3.5 20 20 SENSE-body coil 4
Knee PD N∕A 5000 30 0.3*0.3*2.5 N∕A 11 SENSE-knee coil 2
Spine T2 N∕A 3255 120 0.52*0.52*4 N∕A 22 SENSE-spine coil 6

PD = Proton density; T1 = T1-weighted; T2 = T2-weighted; TR = Repetition Time; TE = Echo Time;
FA = Flip Angle; ETL = Echo Train Length; NSA = Number of Signal Averages.
4D = Four-Dimension, indicating an imaging technique where the fourth dimension is time, capturing the spatial structure as it evolves over time.
of radiologists in IQA research. In this paper, we advance the under-
standing of radiologists’ perception of image quality by conducting a
fully controlled psychovisual experiment. The quality of MRI images
including eight pristine undistorted images and 112 distorted images
was assessed by 13 radiologists. This study resulted in the creation of a
new IQA database of MRI images, named RAD-IQMRI. In addition, we
perform a comprehensive comparative study to evaluate the feasibility
of popular IQA models designed for natural images in the medical
image domain.

2. Related work

2.1. Medical image quality assessment databases

In recent years, significant progress has been made in establishing
medical image quality assessment databases. For example, a Magnetic
Resonance Imaging Quality Assessment (MRIQA) database was intro-
duced by Chen et al. which encompasses 3809 images categorized into
two distinct classes including high and low quality [15]. A quality
assessment database based on MRI images of the brain was created by
Narai et al. which includes images of 148 patients, categorized into
three levels of quality, i.e., good, medium, bad [16]. An MRI image
quality assessment database containing 635 images of six anatomical
areas was developed by Lei et al. [17]. A breast-based MRI image qual-
ity assessment database including 2618 dichotomous images labeled
by the presence or absence of artifacts was constructed by Kapsner
et al. [18]. A 3D-MRI database based on the similar strategy is estab-
lished by Pizarro et al. which includes 1457 images labeled according to
their diagnostic usability [19]. Beyond MRI, other imaging modalities
have also benefited from the development of specialized IQA databases.
The ‘‘Chest-X-ray8’’ database introduced by Wang et al. serves as a
hospital-scale chest X-ray database, providing a benchmark on classifi-
cation and localization of common thorax diseases [20]. Furthermore,
Zeng et al. developed a simple low-dose X-ray CT simulation method
from high-dose scans, which aids in understanding and evaluating
CT image quality [21]. Chen et al. introduced the Muiqa database
for medical ultrasound images, which assesses image quality using a
specialized algorithm [22]. The majority of these IQA databases used
the Absolute Category Rating (ACR) scale for rating quality, which
often fails to capture subtle differences in image quality. The ordinal
nature of the ACR scale makes it challenging to apply certain statistical
analyses; and treating ordinal data as internal data can lead to incorrect
conclusions and reduced statistical power. Also, these IQA databases
often involve a limited number of radiologists, reducing the clinical
relevance of IQA ratings.

2.2. Image quality assessment algorithms

Over the past few decades, many image quality assessment (IQA)
algorithms have been developed, which are tailored for predicting
the quality of natural images as perceived by human viewers. These
IQA algorithms are mainly classified into two categories including
2

Fig. 1. Original MRI images used in our RAD-IQMRI database. The images are referred
to (a) Brain_T1, (b) Brain_T2, (c) Liver, (d) Breast, (e) Fetus, (f) Hip, (g) Knee, and (h)
Spine.

full-reference (FR) method and no-reference (NR) method. The FR
IQA method requires both the original reference image and the dis-
torted image for the evaluation of image quality. Methods such as
Peak Signal-to-Noise Ratio (PSNR) [23] and Structural Similarity Index
(SSIM) [24] are commonly used in the FR IQA framework, where the
reference image provides a benchmark for identifying and quantifying
distortions. These methods have been proven effective in accurately
assessing image quality by comparing the test/distorted image against
its undistorted counterpart. In contrast, the NR IQA method relies
solely on the distorted image for quality prediction. Methods such as
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and
Natural Image Quality Evaluator (NIQE) are widely used in the NR
IQA framework, as they assess the quality based on statistical fea-
tures extracted from the test/distorted image itself without needing
a reference. Research has shown that these methods can effectively
predict perceived image quality by modeling natural scene statistics
or learning from large datasets of distorted images. Compared to the
FR IQA method, the NR IQA method has a wider range of applications,
mainly due to the fact that a reference is often unavailable in many real-
world scenarios. For example, in medical imaging distortions often stem
from factors such as equipment limitations and patient movements [4].
Typically, the image data often consists of a single distorted image
without an accompanying reference image.

3. RAD-IQMRI: Subjective IQA database

3.1. Stimuli

Eight original MRI images, as shown in Fig. 1, were used in our
study. Each image was acquired using a Philips Achieva 1.5T MRI
system and is of high quality in terms of artifacts, signal-to-noise ratio
and resolution. All source images were taken from patients without sig-
nificant pathological conditions. The MRI parameters of these original
images are shown in Table 1. Based on the eight original MR images,
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Fig. 2. Illustration of the simulation of ghosting and white noise in an MRI image [29].

various distorted images were generated. More specifically, four types
of artifacts [25–27] were simulated at two levels (low and high) of
energy and linearly added to the original image content. The types of
artifacts includes structured colored artifacts (plain ghosting), struc-
tured white artifacts (edge ghosting), unstructured colored artifacts
(colored noise), and unstructured white artifacts (white noise). They
represent common distortions encountered in clinical settings [28]. A
benchmark energy level (BEL), i.e., the high-level energy, was defined
by the amount of energy in a typical ghosting artifact for each original
image and calculated as:

𝐵𝐸𝐿 =
𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
𝐼𝑔(𝑖, 𝑗)2, (1)

where 𝑀 and 𝑁 denote the pixel size of an original image (height and
width), 𝐼𝑔(𝑖, 𝑗) denotes the intensity of the simulated ghosting artifact
at pixel (𝑖, 𝑗) (𝑖 ∈ [1,𝑀], 𝑗 ∈ [1, 𝑁]). Based on the BEL, the low-
level energy was determined by reducing the BEL with 80%. Note,
all artifacts were applied to anatomical object areas rather than the
background.

Ghosting: As shown in Fig. 2, for a given original image, a corre-
sponding binary mask image (i.e., Mask) representing the anatomical
object area, and a low-intensity image with 20% of the original image’s
intensity, were generated. Two displaced images were generated by
shifting the low-intensity image by 1∕3 of its width: once leftward with
negative intensity values and once rightward with positive intensity
values, both relative to the original position of the anatomical object
area. A new low-intensity image featuring a double copy of the anatom-
ical area was obtained by superimposing these two displaced images.
A ghosting artifact image (𝐼𝑔) was generated by multiplying the new
low-intensity image with the Mask pixel by pixel. A test stimulus with
a high energy level of ghosting was produced by adding the ghosting
artifact image to the original image.

White Noise: As shown in Fig. 2, a white noise artifact image was
generated by multiplying an image containing additive white Gaussian
noise, of the same size as the original image, with the Mask pixel by
pixel and then scaling the intensity to achieve a total energy equal to
the BEL. By combining the white noise artifact image with the original
image, a test stimulus with a high energy level of white noise was
generated.

Edge ghosting: The simulation of edge ghosting was similar to that
of ghosting. As shown in Fig. 3, two images were generated based on
3

Fig. 3. Illustration of the simulation of edge ghosting and colored noise in an MRI
image [29].

the original image, including a Mask and a gradient image (GI). GI can
be calculated as:

𝐺𝐼(𝑖, 𝑗) = |𝐼(𝑖, 𝑗 + 1) − 𝐼(𝑖, 𝑗)| , 𝑗 ∈ [1, 𝑁 − 1] (2)

where 𝑖 and 𝑗 represent the row and column indices of a pixel within
the image matrix 𝐼 , traversing the image height and spanning from
1 to 𝑁 − 1 columns respectively, and 𝑁 denotes the total number of
columns in the image. The gradient image was shifted by 1∕3 of its
width leftward and rightward, separately, based on the original position
of the anatomical object area and then superimposed to yield a doubled
gradient image. The edge ghosting artifact image was generated by first
multiplying the doubled gradient image with the Mask, pixel by pixel,
and then performing intensity scaling to achieve a total energy equal
to the BEL. This artifact image was subsequently combined with the
original image to create a test stimulus characterized by a high energy
level of edge ghosting.

Colored noise: A Fourier transform was applied to the original
image in the left–right direction, based on the original position of
the anatomical object area (with constant values in the horizontal
direction), and multiplied by a 2D spectrum with random values in
the vertical direction. An inverse Fourier transform was subsequently
applied to the result to generate an image of ‘‘colored noise’’. The
colored noise artifact image was generated by multiplying the colored
noise pattern and the Mask pixel by pixel and scaling the intensity to
achieve a total energy equal to the BEL. A test stimulus with a high
energy level of colored noise was produced by adding the colored noise
artifact image to the original image.

Due to the effect of randomization of the 2D spectrum with random
values in the vertical direction on the simulation of the colored noise
image, four different versions of the 2D spectrum were used to yield
four colored noise images. Therefore, this experiment contains 112
stimuli (i.e., 8 original images ×7 distortion versions ×2 energy levels)
in total.

3.2. Psychovisual experiment

The subjective experiment used a simultaneous-double-stimulus
(SDS) method, where subjects scored each test image (i.e., distorted
image) on a continuous scale from 0 to 100 in the presence of a
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Fig. 4. Illustration of the scoring interface used in the psychovisual experiment. The
interface presents two stimuli side-by-side, with the reference image on the left and
the test image on the right.

reference image simultaneously [30]. The SDS method enables direct
comparisons between reference and test images, reducing subjective
variability and highlighting subtle differences in quality [30]. Thirteen
radiologists from Angers University Hospital in France participated in
this experiment. Before starting the experiment, each subject was given
a written description of the procedure along with training instructions.
First, a set of 10 images containing the same types of artifacts as those
used in the actual experiment was shown to the subjects to familiarize
them with the stimuli. Subsequently, six representative stimuli were
presented one by one and each subject was asked to score them
familiarize themselves with the scoring procedure. The images from
the training phase were not included in the formal experiment. In the
formal experiment, each test image was presented only once and in a
random order. The subjective experiments were performed in a typical
radiological reading room at the Angers University Hospital in France,
with a consistent viewing environment ensured for all subjects. The
images were displayed on a 24" wide-screen liquid-crystal monitor with
a resolution of 1920 × 1200 pixels, calibrated to the Digital Imaging
and Communications in Medicine (DICOM): Grayscale Standard Display
Function (GSDF) standard [31–33]. The viewing distance was main-
tained at around 60 cm. No image adjustment (zoom, window level)
was allowed. The scoring interface is shown in Fig. 4, with the reference
image on the left and the test image on the right. The rating scale ranges
from 0 to 100 and includes five semantic labels (‘Bad’, ‘Poor’, ‘Fair’,
‘Good’, ‘Excellent’) to assist in scoring. No time limit was imposed on
the subjects for completing the experiment.

3.3. Processing of raw data

An outlier detection and subject rejection procedure was applied to
the raw data prior to data analysis. An individual score was considered
an outlier if it was more than two standard deviations from the mean
score for that image [34]. For each subject, if twenty percent of all
scores were outliers, the subject was excluded. Overall, none of the
13 subjects was excluded from the subsequent analysis and less than
three percent of all image scores were excluded as outliers. In order
to account for the differences in the use of the scoring scale between
subjects, the raw scores were normalized using z-scores after applying
the outlier removal and the subject rejection procedure:

𝑧𝑖𝑗 =
𝑟𝑖𝑗 − 𝜇𝑖

𝜎𝑖
, (3)

where 𝜇𝑖 and 𝜎𝑖 represent the mean and the standard deviation of all
images scored by radiologist 𝑖, respectively. 𝑟𝑖𝑗 and 𝑧𝑖𝑗 represent the
raw score and z score provided by the radiologist 𝑖 for the image 𝑗, re-
spectively. These z-scores were then linearly mapped to the interval [1,
4

Fig. 5. Illustration of the correlation (i.e., PLCC) between MOS and each individual
subject’s scores. The right-most bar shows the mean correlation with a 95% confidence
interval.

Fig. 6. Performance comparison of FR and NR IQA algorithms on our proposed RAD-
IQMRI database. (A) Performance of FR methods. (B) Performance of NR methods
including deep learning-based method without and with fine-tuning.

10] for ease of interpretation. Next, the Mean Opinion Score (MOS) was
calculated for each image:

MOS𝑗 =
1
𝑁

𝑁
∑

𝑖=1
𝑧𝑖𝑗 , (4)

where 𝑁 represents the number of remaining radiologists in the group.
MOS has been regarded as the benchmark of perceptual image qual-
ity measurement (IQA) [34]. This results in the creation of a new
radiologist-rated subjective IQA database for MRI, named RAD-IQMRI.

To assess the validity of the obtained MOS, we quantify the differ-
ences in scores between individual subjects using the Pearson linear
correlation coefficient (PLCC), i.e., calculating the PLCC between the
MOS and each subject’s scores. Fig. 5 shows the PLCC values for all
subjects as well as the average PLCC value. The results indicate a high
degree of consistency (i.e., with the majority of PLCC values around
0.8) in the subjects’ scores for image quality.

4. Benchmarking and evaluation of IQA algorithms on the RAD-
IQMRI database

4.1. IQA algorithms

Based on our RAD-IQMRI database, we conduct thorough evalua-
tions of several typical IQA algorithms to quantify their applicability
and performance in assessing the perceptual quality of MRI images.
Despite their widespread use in assessing natural image quality, these
algorithms have not yet been applied to the medical imaging domain.
To bridge this gap, we specifically benchmark the following popular
IQA algorithms, including both FR and NR IQA methods, on our newly
established RAD-IQMRI database.

The Full-reference (FR) IQA methods used in our study are:

• Peak Signal-to-Noise Ratio (PSNR) [35] is a measure of the
difference between the reference and test images that is based
on the Mean Squared Error (MSE) and it sets a baseline for the
performance of objective IQA algorithms.
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Fig. 7. Distribution of discrepancies between FR/NR IQA method predicted values and MOS. (A) Results of FR methods. (B) Results of NR methods. The histogram show the data
istribution characteristics of MOS or an IQA method. The scatter plot show the relationship between two methods (i.e., MOS or an IQA method). Correlation coefficients and
heir significance levels (marked with an asterisk: *𝑝 < 0.05, **𝑝 < 0.01, ***𝑝 < 0.001) are displayed.
• Information Fidelity Criterion (IFC) [36] is an information-
theoretic based FR IQA method, which is based on the Gaussian
Scale Mixtures (GSM) model by quantifying the mutual informa-
tion between the local wavelet coefficients of the reference image
and the distorted image. The assessment of the image quality is
achieved by summing the mutual information over all sub-bands.
5

• Structural Similarity (SSIM) [37] is a method for evaluating
image quality through variations in image structural information,
simulating the ability of the human visual system (HVS) to extract
structural information from images. Firstly, using the calculation
process of the Universal image Quality Index (UQI) [23] method,
the local similarity score of the image is obtained by comparing
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Fig. 8. Cross-database comparison of the PLCC Rankings of traditional IQA methods on our proposed RAD-IQMRI database and two widely used IQA databases for natual images
(i.e., LIVE and TID).

Fig. 9. Performance comparison of IQA algorithms on different anatomical sites (i.e., brain, breast, fetus, hip, knee, liver and spine), based on the residuals (i.e., absolute differences)
between MOS and an FR/NR method predicted values. (A) Results of FR methods. (B) Results of NR methods.
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Fig. 10. Performance comparison of IQA algorithms for different anatomical sites (i.e., brain, breast, fetus, hip, knee, liver and spine), based on scatter plot of MOS versus
predictions of an FR/NR method. (A) Results of FR methods. (B) Results of NR methods.
the local brightness information, local contrast information and
local structure information between the reference image and the
distorted image according to the multi-channel characteristic of
HVS, and then the overall quality score of the distorted image is
obtained using the Minkowski model.

• Gradient Magnitude Similarity Deviation (GMSD) [38] is also
a structural similarity based FR IQA method, which discards
7

the extra information and calculates the gradient similarity in
different local structures to obtain local quality maps. It uses the
standard deviation of the local quality maps as a pooling strategy
to predict the overall image quality.

• Most Apparent Distortion (MAD) [24] is a mixed strategy based
FR IQA method, which considers that the HVS places different

emphasis under varying image quality conditions. It classifies
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Fig. 11. Illustration of correlation strength (using a heatmap) between MOS and predictions of an FR/NR method across different for different anatomical image sites including
brain, breast, fetus, hip, knee, liver and spine. (A) Results of FR methods. (B) Results of NR methods.
images into two categories: high quality and low quality. For high
quality images, perceptual distortion is evaluated by considering
contrast sensitivity, local luminance and contrast masking, while
for low quality images, perceptual distortion is evaluated by the
change in local statistics between the sub-bands of the reference
and distorted images.

The No-reference (NR) IQA methods used in our study are:

• Blind/Referenceless Image Spatial Quality Evaluator (BRIS
QUE) [39] is a natural scene statistics (NSS) based NR IQA
method that operates in the spatial domain. BRISQUE does not
compute distortion-specific features. Instead, it uses the statistics
of the locally normalized luminance coefficients of the scene to
assess the potential loss of ‘‘naturalness’’ in the image caused by
the presence of distortions, resulting in an image quality score.
Other approaches based on the similar concept are CORNIA [40]
and NIQE [41].

• Deep learning-based NR IQA algorithms: Convolutional Neural
Network (CNN) [42] is used for NR IQA, which combines feature
learning and regression in an end-to-end optimization process. In
addition, we could replace the backbone network with ResNet34
to produce another NR IQA method. Other deep learning based
approaches are DBCNN [43]: a deep bilinear CNN-based NR
model; HyperIQA [44]: a NR model that adaptively establishes
perceptual rules; ClipIQA [45]: a text-image pair NR model.

In this paper, we distinguish between the IQA methods based on
their underlying technologies, depending on how they leverage image
features. Hence, we refer to IQA algorithms that do not utilize deep
learning as traditional methods, while those that employ deep learning
are referred to as learning-based methods.

4.2. Evaluation metrics

The metric that is used to quantify the prediction accuracy of
an objective IQA algorithm is Pearson linear correlation coefficient
(PLCC):

𝑃𝐿𝐶𝐶 =
∑𝑁

𝑖=1(𝑝𝑖 − 𝑝̄)(𝑠𝑖 − 𝑠̄)
√

∑𝑁
𝑖=1(𝑝𝑖 − 𝑝̄)2(𝑠𝑖 − 𝑠̄)2

(5)

where 𝑝𝑖 and 𝑠𝑖 are values of subjective and objective measures, re-
spectively, and 𝑝̄ and 𝑠̄ are the mean values, while 𝑁 is the number of
images in the test database.
8

The metric that is used to quantify the prediction monotonicity of an
objective IQA algorithm is Spearman rank-order correlation coefficient
(SROCC):

𝑆𝑅𝑂𝐶𝐶(𝑄,𝑆) = 1 −
6
∑𝑁

𝑖=1 𝑑
2
𝑖

𝑁(𝑁2 − 1)
(6)

where 𝑑𝑖 is the difference between the 𝑖th image’s ranks in the objective
(𝑄) and subjective (𝑆) scores, while 𝑁 is the number of images in the
test database.

4.3. Performance evaluation

4.3.1. Overall performance
The performance results of all IQA algorithms, including FR and NR

methods, are shown in Fig. 6. Since deep learning models typically
require substantial datasets for training, and medical image data is
often not as abundant as natural image data, we adopt a two-stage
evaluation process for deep learning-based IQA algorithms. In the #1
phase, we pre-train a deep learning-based IQA model on a large number
of natural images, and test the resulting model on our RAD-IQMRI
database. In the #2 phase, the pre-trained IQA model is fine-tuned on
our RAD-IQMRI database via transfer learning, and is tested on the
same database.

From the results, it is observed that FR IQA methods generally
outperform NR methods. This is attributed to the utilization of ref-
erence in the FR framework, which provides additional context for
assessing image quality. Among the FR IQA methods, SSIM and GMSD
based on structural similarity and MAD based on hybrid strategies show
better performance compared to PSNR based on errors and IFC based
on information theory. The deep learning-based IQA methods, which
are also part of the NR approach, show improved performance after
fine-tuning on medical images.

Furthermore, we found some key trends and patterns of these IQA
algorithms’ performance, as shown in Fig. 7. First, the histogram of
the MOS data appears to be closer to a uniform distribution. The
distribution of images in many existing IQA databases tends to be
normal [2], which has certain drawbacks. Specifically, there is a higher
concentration of images with mid-range quality, while fewer images
fall into the low- and high-quality extremes. This imbalance can affect
the accuracy as well as the robustness of the assessment methods.
In contrast, our RAD-IQMRI database features an even distribution of
images across low to high quality. This balanced distribution is more

conducive to the development of robust and accurate IQA algorithms.
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Fig. 12. Performance comparison of IQA algorithms for different imaging parameters
(i.e., 4D, PD, T1 and T2), based on scatter plot of MOS versus predictions of an FR/NR
method. (A) Results of FR methods. (B) Results of NR methods.

Fig. 7(A) shows that the distribution of MAD closely resembles the dis-
tribution of MOS. This similarity in shape suggests that the MAD scores
align well with the subjective scores in terms of statistical properties.
As illustrated in the scatter plots in Fig. 7(A), both MAD and GMSD
demonstrate a significant linear relationship with the subjective scores
9

(MOS). This indicates their sensitivity and ability to accurately reflect
changes in image quality, showing a high degree of consistency with
the subjective scores. Among all the IQA algorithms examined, MAD
exhibits the most significant correlation with MOS (Corr: −0.860***).
This strong correlation confirms the reliability and validity of MAD in
image quality assessment. For the NR IQA algorithms, as illustrated in
Fig. 7(B), we found a lack of a strong linear correlation with MOS.
Note the #1 phase of NR IQA evaluation is used hereafter to ensure a
fair comparison between the FR and NR methods, where the entire RAD-
IQMRI database is used as the test set. This indicates that NR methods,
in their current form, are limited in their ability to directly predict
image quality of medical images and require further improvement
and development. These results provide an empirical basis for further
optimization and development of more suitable IQA models for medical
imaging.

4.3.2. Cross-database comparison
We conduct a cross-database comparison of the performance of FR

and NR IQA methods to investigate whether these methods perform
consistently on our RAD-IQMRI database compared to other widely
used natural IQA databases, such as LIVE [11] and TID [12]. As shown
in Fig. 8, the performance rankings of the FR IQA methods show
consistency cross the three IQA databases including LIVE, TID, and
the proposed RAD-IQMRI. In particular, MAD and GMSD consistently
rank as the top models across all three databases. This consistency
implies the robustness of these methods in aligning with subjective
quality assessment. In contrast, the rankings of NR IQA methods ex-
hibit greater variation across databases. This variability suggests a
heightened sensitivity of NR methods to particular content types and
distortion categories. Certain NR methods may excel in assessing spe-
cific image types or distortions but under-perform with others. This
performance dependency underscores the influence of content speci-
ficity and highlights potential constraints in algorithm adaptability.
These findings emphasize the importance of considering a comprehen-
sive assessment of algorithm adaptation in different IQA application
contexts.

4.3.3. Performance on different anatomical sites
Ensuring consistent quality assessment results across imaging of

diverse anatomical sites is a critical performance indicator for IQA
algorithms. This reliability and applicability are essential for their
effective use in various medical diagnostic contexts. To evaluate the
performance of IQA algorithms across various anatomical sites, in-
cluding brain, breast, fetus, hip, knee, liver, and spine, we calculate
the residuals (i.e., absolute differences) between the MOS and the
predicted scores of each IQA algorithm. The results are illustrated
in Fig. 9. It can be seen that MAD and GMSD demonstrate a high
degree of consistency with the subjective scores (MOS) across different
anatomical regions. Specifically, MAD exhibits the highest agreement,
showing minimized variability from MOS across different anatomical
regions, thus demonstrating robust scoring stability. This consistency
highlights MAD’s capability to reliably assess image quality across di-
verse content types, highlighting its significant practical value. The NR
IQA methods consistently under-perform across different anatomical
regions Compared to the FR IQA methods. This may be due to the
inherent difficulty of accurately capturing comprehensive information
about image quality degradation in the absence of a reference image.
Moreover, certain methods show high reliability in the prediction of
specific anatomical regions. For example, GMSD shows consistent per-
formance in assessing quality of fetal, hip, knee, and spine images; IFC
exhibits strong consistency in evaluating quality of liver images; PSNR
proves reliable in assessing quality of brain and liver images, despite
some instability in other anatomical regions; and SSIM demonstrates
consistency in predicting quality of fetal, hip, and knee images.

In addition, as illustrated in Figs. 10 and 11, FR IQA methods

not only score each anatomical site consistently, but also maintain a
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Fig. 13. Illustration of correlation strength (using a heatmap) between MOS and predictions of an FR/NR method for different imaging parameters including 4D, PD, T1 and T2.
(A) Results of FR methods. (B) Results of NR methods.
consistent scoring pattern across the entire dataset. This suggests that
FR methods can provide stable quality scores for similar image content,
regardless of minor differences in the images. In contrast, NR IQA
methods exhibit significant variability in scores for different anatomical
sites, suggesting higher sensitivity to varying image characteristics. For
example, while some NR methods may consistently score the quality of
spine images, they may show considerable fluctuations when assessing
the quality of brain or liver images. These variations may be attributed
to the fact that NR methods rely on the intrinsic properties of the image,
leading to inconsistent results due to visual differences across different
anatomical regions.

Our results emphasize the importance of selecting IQA methods
that are appropriate for specific anatomical image sites. For example,
certain FR methods may deliver more reliable scores for fetal or hip
images, while a different set of methods might be better suited for brain
or liver images. This targeted approach allows us to more accurately
model the image quality assessment process in a clinical setting, hereby
enhancing the precision of image quality control in the field of medical
imaging.

4.3.4. Performance on different imaging parameters
Our analysis of image quality assessment (IQA) algorithms reveals

distinct performance characteristics when evaluating different imag-
ing parameters, including 4D, PD, T1 and T2. As shown in Figs. 12
and 13, FR IQA methods exhibit a uniform range of scores for each
parameter, suggesting consistent application regardless of parameter-
specific image characteristics. This consistency in scoring suggests a
degree of robustness of these methods, which may be attributed to
their utilization of reference images for evaluation. In contrast, NR
IQA methods show greater variability in scores when applied to dif-
ferent parameters, highlighting their potential sensitivity to the unique
features of each parameter. This increased variability may reflect the
underlying models of NR methods, which are potentially more finely
tuned or responsive to artifacts specific to certain image quality aspects
or unique to particular imaging parameters.

4.3.5. Discussion
Overall, the results show that extending IQA methods from the

natural image domain to the medical image domain is feasible and has a
certain room for improvement. While traditional FR methods generally
outperform traditional NR methods and deep learning-based methods
without fine-tuning, deep learning-based methods that have been fine-
tuned on medical images can achieve performance on par with FR
methods. This demonstrates the technical feasibility and potential of
deep learning-based IQA models in the medical imaging field. In a
real clinical setting, the integration of IQA methods can offer several
clinical benefits. For example, high-quality medical images are critical
for accurate diagnosis; and IQA models can ensure superior image
quality, leading to more reliable diagnostic outcomes. Automated IQA
can streamline the workflow in radiology departments, reducing the
10
time radiologists spend on assessing image quality, leading to faster
diagnosis and treatment planning. The integration of automated IQA in
healthcare facilities can reduce the need for repeat scans due to poor
image quality, optimizing resource utilization and reducing patient
exposure to additional radiation, lowering operational costs.

5. Conclusions

In this study, we established a novel benchmark for assessing the
quality of MRI images. A fully-controlled psychovisual experiment
was undertaken to construct the RAD-IQMRI database, in which 13
radiologists assessed the quality of MRI images of varying quality.
The proposed database comprises eight distinct undistorted MRI im-
ages, along with 112 associated distorted images that span a range
of perceived quality levels. We conducted a comprehensive evaluation
to benchmark the effectiveness of a series of IQA methods using the
RAD-IQMRI database, thereby demonstrating the viability of adapting
IQA methods from the natural image domain to the medical domain.
The RAD-IQMRI database not only establishes a baseline for quality
assessment in the radiological context but also serves as a foundation
for further refinement and application of these methods in a clinical
setting. Recognizing the limitations of our current database, which
relies on simulated rather than real clinical artifacts and is constrained
by the unique challenges of medical image data resulting in a smaller
scale, future work will aim to develop a more expansive and clin-
ically representative database that includes pathological information
to accommodate diverse research objectives and improve diagnostic
processes.
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