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Transcriptomics and weighted protein
network analyses of the LRRK2 protein
interactome reveal distinct molecular
signatures for sporadic and LRRK2
Parkinson’s Disease
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Mutations in the LRRK2 gene are the most common genetic cause of familial Parkinson’s Disease
(LRRK2-PD) and an important risk factor for sporadic PD (sPD). Multiple clinical trials are ongoing to
evaluate the benefits associated with the therapeutical reduction of LRRK2 kinase activity. In this
study, we described the changes of transcriptomic profiles (whole blood mRNA levels) of LRRK2
protein interactors in sPD and LRRK2-PD cases as compared to healthy controls with the aim of
comparing the two PD conditions. We went on to model the protein-protein interaction (PPI) network
centred on LRRK2, which was weighted to reflect the transcriptomic changes on expression and co-
expression levels of LRRK2 protein interactors. Our results showed that LRRK2 interactors present
both similar and distinct alterations in expression levels and co-expression behaviours in the sPD and
LRRK2-PD cases; suggesting that, albeit being classified as the same disease based on clinical
features, LRRK2-PD and sPD display significant differences from a molecular perspective.
Interestingly, the similar changes across the twoPD conditions result in decreased connectivity within
a topological cluster of the LRRK2 PPI network associated with protein metabolism/biosynthesis and
ribosomalmetabolismsuggestingprotein homoeostasis and ribosomal dynamicsmight be affected in
both sporadic and familial PD in comparison with controls.

Leucine-rich repeat kinase 2 is a large (>250 kDa), multifunctional
enzyme encoded by theLRRK2 gene, possessing 2 enzymatic (GTPase and
kinase) and 4 scaffold (armadillo, ankyrin, LRR and WD40 motifs)
domains1. LRRK2 is able to interact with a large number of protein
partners (Zhao et al. 2), and is involved in a range of biological processes
including vesicular transport, autophagy, regulation of cellular response
to stress, regulation of cell cycle, etc3–6.Mutations in theLRRK2 gene are an
important genetic cause of familial PD (fPD), with 1 to 40% of fPD cases
associated with coding variants in LRRK2, depending on the population
under study7–10. Since 2004,when thefirst variants in theLRRK2 genewere
associatedwith fPD, numerous coding andnon-coding variants of LRRK2

have been identified in PD families. These include the G2019S and
R1441C/Gmutations, which are the 2 most common pathogenic variants
occurring on the kinase and GTPase domains of the LRRK2 protein,
leading to an increased kinase activity and decreased GTPase activity
respectively11–15. Additionally, polymorphisms, mainly in the promoter of
LRRK2 and proposed tomodulate expression of LRRK2, have been linked
to lifetime risk of developing sporadic PD (sPD) (Nalls et al. 16), while
upregulated LRRK2 kinase activity (in the absence of pathogenic muta-
tions) has also been related with sPD.

Themolecularmechanism(s) underlying the contributionof LRRK2 to
both fPD and sPD are as yet unclear, despite the extensive efforts made to
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investigate LRRK2 function in health and disease. For example, PD-related
inflammation both in the Central Nervous System (CNS) and at the per-
iphery, was linked to an increasedLRRK2 expression level and strengthened
LRRK2 kinase activity in microglia and peripheral immune cells in sPD
patients as compared to controls (Cook et al. 17; DiMaio et al. 18). These data
indicate thatLRRK2 is crucial for theunderstandingofPDetiopathogenesis,
and that LRRK2might constitute a link between familial and sporadic forms
of the disease. There is extensive evidence suggesting that LRRK2 is a crucial
regulator of the crosstalk between the CNS and the periphery, possibly via
modulation of the immune system19,20. LRRK2 exhibits high expression
levels in monocytes, and its protein levels are increased in peripheral
immune cells in PD patients as compared to controls21,22. Some evidence
suggests that the presence of the LRRK2-G2019S and the LRRK2-R1441G
mutations in peripheral immune cells alone is sufficient for inflammation-
induced dopaminergic neuronal loss in genotypically normal mouse brain,
suggesting that the dysfunction in the peripheral immune system may be
pivotal for the disease, at least in the fPD condition23. Our previous study
found that a large number of LRRK2protein interactors are characterised by
a significantly higher expression in whole blood, as compared to their levels
in the brain regions and other peripheral tissues such as liver, lung and
kidney2, again suggesting the relevance of LRRK2 within the peripheral
immune system.

A second observation is that, from a clinical perspective, LRRK2-
PD and sPDhave been reported to present with distinct features. Despite
having similar motor-symptoms (such as bradykinesia, tremor, rigidity,
and postural instability) as well as sharing some of the non-motor
symptoms24–26, patients with LRRK2-PD display slower decline con-
sidering both movement and cognitive impairment27,28. In addition,
LRRK2-PD and sPD show slightly different pathological features. For
example, LRRK2-PD patients exhibit less α-synuclein aggregation in
Cerebrospinal Fluid (CSF), feature that is a hallmark of sPD29,30 as well as
increased basal forebrain volume, which is probably a compensation of
the cholinergic system31. Such differences might highlight an intrinsic
variation at the molecular level between these 2 forms of PD thus sug-
gesting different model systems might be required to investigate them.
Also, this consideration may pose a problem in translational research,
for example the use of LRRK2 inhibitors in clinical trials32 might require
patient stratification.

Based on the above observations, in this study, we hypothesised that
despite important overlaps in their clinical presentation, sPD and LRRK2-
PDmight have a different molecular signature and therefore the molecular
alterations contributing to disease onset and progression might be func-
tionally different. We decided to focus on whole blood transcriptomics,
based upon the relevance of LRRK2 as potential regulator of the immune
activity. We constructed the protein-protein interaction (PPI) network
around LRRK2 (LRRK2net) and evaluated the whole-blood mRNA
expression changes within the LRRK2net in a cohort of sPD and LRRK2-PD
patients in comparison with healthy controls. The results provide a bioin-
formatic demonstration that the signature of expression changes in the
LRRK2net shows both similarities and differences in sPD vs LRRK2-PD. Of
particular interest are the statistically significant differences in both gene
expression and co-expression that suggest some of the molecular pathways
at the base of these two conditionsmight be different.Ourfinding is relevant
for the understanding of the different molecular mechanisms of PD, and it
highlights the necessity for patient stratification in both discovery research
and clinical trials, suggesting different therapeutic approaches might be
needed if we intend to move from symptomatic to effective disease
treatment.

Results
Whole blood transcriptomic profiling of the LRRK2 interactome
Atotal of 418 protein interactors of LRRK2 (LRRK2int)were retrieved via an
in-house pipeline developed in our previous study2 (Table S1). Tissue-
specific expression scores of 378LRRK2 interactors in thewhole bloodwere
extracted from the same study. Among the 418 LRRK2 interactors, 140

(37.0%) presented significantly higher expression scores in blood when
compared to other peripheral tissues (liver, lung and kidney) and brain
regions (Figure S1). Functional enrichment analysis performed on this
selection of LRRK2 interactors returned 234GO-BP terms (Table S2). After
semantic grouping of GO:BP terms, text cloud analysis of the enrichment
results showed that terms in the groups of “response to stimulus”, “immune
response” and “apoptosis” (N = 100/234, accounting for 42.7% of all enri-
ched GO terms) contained keywords highly associated with immune
functions, such as “cytokine”, “leucocyte”, “lymphocyte”, etc (Figure S1).
Overall, these results suggested that a substantial proportion of LRRK2
protein interactors might be involved in the regulation of the immune
functions at the periphery.

Whole blood transcriptomic profiling of the LRRK2 interactome
in the PPMI cohort
Whole blood RNA-Seq read counts were retrieved from the PPMI
dataset for 415 (out of 418) LRRK2 interactors and for 657 subjects with
validated genotyping data (controls = 170; sPD cases = 371; and LRRK2-
PD cases = 116). A total of 38 interactors were removed due to low read
counts. No subjects were identified as outliers by PCA (Figure S2).
Hence, mRNA levels of the remaining 377 LRRK2 interactors of 657
PPMI subjects formed the PPMI_Matrix. Demographic features of the
included cohorts are listed in Table 1 with no significant difference in sex
and age nor in motor symptom severity when the sPD and LRRK2-PD
cohorts were compared. Of note, 95.5% of the 3 cohorts have white
ancestry. Among the LRRK2-PD cases, 100 (86.2%) were LRRK2-
G2019S carriers while 16 (13.8%) were LRRK2-R1441C/G carriers.
Therefore, and to avoid bias induced by different LRRK2 variants,
LRRK2-R1441C/G carriers were removed, leaving a total of 641 PPMI
subjects for further analysis.

DEA results (Table S3) showed that: themRNA levels of 67 interactors
(17.7%) were significantly altered in the LRRK2-PD cases vs. controls, with
39 down-regulated and 28 up-regulated interactors (|log2(FC) > 0.05|,
adjusted-p < 0.05, Fig. 1A,Table S3). Functional enrichment analysis related
the up-regulated interactors mainly to cytoskeletal dynamics/transport,
while the down-regulated interactors were mainly related to biosynthetic
processes and ribosome biogenesis (Fig. 1B, C, Table S4).

As for the sPD cases, a total of 55 interactors (14.6%) presented sig-
nificant changes in expression levels in comparisonwith controls, including
28 down-regulated and 27 up-regulated interactors (|log2(FC) > 0.05|,
adjusted-p < 0.05, Fig. 2A, Table S3). Functional enrichment analysis
showed that the up-regulated interactorswere associatedwithGO-BP terms
related to protein metabolic processes and signalling, while the down-
regulated interactors, similar to the LRRK2-PD condition, were pre-
dominantly related to biosynthetic processes and ribosome biogenesis
(Fig. 2B, C, Table S4).

Of note, only a total of 13 interactors exhibited the same alteration in
LRRK2-PD and sPD (Fig. 3A), in which 9 interactors were down-regulated
while 4 interactors were up-regulated, suggesting these LRRK2 interactors
were consistently affected during PDprogression regardless of the existence

Table 1 | PPMI cohort characterisation

Control
(N = 170)

sPD
(N = 371)

LRRK2-PD
(N = 116)

Sex (Male) 94 (55.3%) 224 (60.4%) 71 (61.2%)

Age (Mean (SD)) 60.9 (0.8) 61.3 (0.5) 63.1 (0.8)

Ethnicity (White) 160 (94.1%) 360 (97.0%) 108 (93.1%)

MDS-UPDRS III – 21.1 (0.5) 20.1 (0.9)

LRRK2-G2019S carrier – – 100 (86.2%)

LRRK2-R1441C/G carrier – – 16 (13.8%)

Note: Movement disability for the sPD and LRRK2-PD cases was evaluated via MDS-UPDRS III
(Score range: 0–132; 32 and below is mild, 59 and above is severe)53,54. T-test showed there was no
significant difference in MDS-UPDRS III scores between the sPD and LRRK2-PD cases.
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of the LRRK2-G2019S mutation. Interestingly, 9 out of these 13 LRRK2
interactors were found in the interactome of other PD genes SNCA, PRKN,
PINK1, PARK7, VPS35, FBXO7; Supplementary Data S1.) Functional
enrichment analysis associated these 13 proteins with protein metabolism/
biosynthesis and ribosomal metabolism (Fig. 3B).

Transcriptomic profiles of the LRRK2 interactors differentiate
LRRK2-PD and sPD cases
Univariate logistic regression was performed on each of the 109 LRRK2
interactors with significant differential expression in the sPD and/or
LRRK2-PD cohorts vs. controls, out of which 11 interactors with
p-value < 0.05 were selected for further model construction, including
TUBB6, SNCA, HSPA1A, BAG3, ACTA2, TUBG1, LMNB1, CDK2,
RAB5B, LRRK2 and SLC25A6 (Table S5). A LASSO regression model
constructed with these 11 interactors was then trained on a randomly
picked cohort of 296 sPD cases (coded as 1) and 80 LRRK2-PD cases
(coded as 0). A λ value of 0.006 (log(λ) =−5.062 was chosen to reach the
minimum MSE = 0.316 (Fig. 4A), leaving a total of 9 interactors in the
model, including CDK2 (beta =−0.069), RAB5B (beta =−0.967),
ACTA2 (beta =−0.910), TUBB6 (beta =−1.051), LRRK2 (beta = 0.224),
HSPA1A (beta = 3.103), LMNB1 (beta = 0.611), SNCA (beta =−1.027),
SLC25A6 (beta =−1.328) (Fig. 4B). The cut-off on the predicted value
wasoptimised as 0.54 to reach themaximumaccuracy in the training set of
80.3%, with True Positive (TP) of 82.8% andTrueNegative (TN) of 57.9%
(Fig. 4C). The refinedmodel was then validated on the test set, containing
75 sPD cases and 20 LRRK2-PD cases. ROC curve showed an AUC =
0.735 (95% CI: 0.617–0.853), suggesting a good classification perfor-
mance of the LASSO model built upon the mRNA levels of LRRK2
interactors (Fig. 4D).

Co-expression modules of LRRK2 interactors in the sPD and
LRRK2-PD conditions
A signed gene co-expression network was constructed across the 3 exam-
ined cohorts viaWGCNAwith the soft power β = 12 (Fig. S3), withinwhich
a total of 3 co-expression modules were identified: MTurquoise (N = 92
interactors), MBlue (N = 72 interactors) and MBrown (N = 42 interactors)
(Fig. 5A, Table S6). Of note, LRRK2 was found in none of these 3 modules,
suggesting that the overall co-expression level between LRRK2 and its
interactors was relatively low in the whole blood, which is in accordance
with the findings in our previous study2. Functional enrichment analysis
associated theMBluewithmetabolism (N = 16/82GO-BPs, 19.5%), protein
modification (N = 13/82GO-BPs, 15.8%), biosynthesis (N = 13/82GO-BPs,
15.8%), ribosomal function (N = 11/82 GO-BPs, 13.4%) and apoptosis
(N = 8/82 GO-BPs, 9.7%) (Fig. 5B, Table S7); MBrown was enriched for
transport (N = 7/15 GO-BPs, 46.7%), intracellular organisation (N = 3/15
GO-BPs, 20.0%), cytoskeleton organisation (N = 3/15 GO-BPs, 20.0%) and
cell cycle (N = 2/15 GO-BPs, 13.3%) (Fig. 5C, Table S7); while MTurquoise
was associated with localisation (N = 12/62 GO-BPs, 19.4%), metabolism
(11/62 GO-BPs, 17.7%), protein modification (11/62 GO-BPs, 17.7%) and
transport (9/62 GO-BPs, 14.5%) (Fig. 5D, Table S7). Module-Trait corre-
lation analysis showed that the eigengene of MBlue (MEblue) was sig-
nificantly down-regulated in the LRRK2-PD and sPD cases as compared to
the control cohort (p < 0.05), while MEbrown was significantly down-
regulated in the LRRK2-PD cases only. No significant changes were iden-
tified for the MEturquoise in the 2 PD conditions vs. controls (Fig. 5E).
Interestingly, 58 out of 76 LRRK2 interactors within the blue module were
found in the interactome of other PD genes (SNCA, PRKN, PINK1, GBA1,
PARK7, VPS35, ATP13A2 FBXO7, SLC6A3, DNAJC6, DCTN1 and SYNJ1;
Supplementary Data S1).

Fig. 1 | DEA on whole-blood mRNA levels of LRRK2 interactors in the LRRK2-
PD cases vs. Controls. A The scatter plot shows results from DEA performed on
LRRK2 interactors; LRRK2-PD (LRRK2-G2019S) cases vs. Controls. Interactors
with significant alterations (|log2FC| > 0.05 & adjusted-p < 0.05) are colour coded as
blue (down-regulated) and red (up-regulated) dots.B,CThe bubble graphs show the

enrichedGO-BPs for up-regulated and down-regulated LRRK2 interactors; LRRK2-
PD cases vs. Controls. The colour of the bubble represents enrichment significance
(−log10(adjusted-p)), while bubble size represents enrichment ratio (intersection
size/query size).
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Construction of the LRRK2net
A total of 4860 connections (interactions) across the LRRK2 interactors
were extracted fromtheHIPPIEdatabase (v2.3), amongwhich1466 (30.2%)
were scored as “high confidence” (HIPPIE confidence score ≥ 0.72), out of
which 121 self-interactionswere removed from the list, thereby leaving 1345
“2nd-layer” PPIs for 338 LRRK2 interactors for LRRK2net construction
(Fig. 6A, Table S8). Degree (i.e., the number of PPIs connected to a given
interactor) distribution analysis showed that 216 interactors (51.7%) had
degrees ≤ 4; 141 interactors (33.7%) presented degrees between 5 and 14; 41
interactors (9.8%) presented degrees between 15 and 24; 24 interactors
showed degree ≥ 24, suggesting that the LRRK2net follows the Power Law
distribution (log–log plot R-square = 0.8606) (Fig. 6B, C, Table S9). Inter-
actors with degree ≥ 24 (the top 5% of all) were defined as “sub seed”
proteins in the LRRK2net, with TP53 (degree = 68), CDK2 (degree = 48),
HSPA8 (degree = 46), HSP90AB1 (degree = 44), HSP90AA1 (degree = 43),
YWHAZ (degree = 43), LAPR7 (degree = 39), NPM1 (degree = 37), TRAF2
(degree = 32), IQGAP1 (degree = 32), LIMA1 (degree =31), CAPZA2
(degree = 31), PRKN (degree = 28), DBN1 (degree = 28), YWHAQ (degree
= 27), RPS8 (degree = 27), YWHAG (degree = 26), TRADD (degree = 26),
RPS3 (degree = 26), AKT1 (degree = 25), YWHAB (degree = 24), HSPA1A
(degree = 24), RPS3A (degree = 24) presenting the highest degree, sug-
gesting that these proteinsmayplay an essential role inmaintaining the local
connectivity of the LRRK2net.

Weighted network analysis on the LRRK2net
A total of 14 topological clusters were identified in the trimmed-LRRK2net
using the Fast Greedy algorithm based on themeasure of edge betweenness
(Fig. 7A,Table S9).Of note, 3 clusters containing less than 5 interactors each
were removed (considering a cut-off threshold on cluster connectivity ≥5
proteins), leaving a total of 11 clusters for further analysis. For each of the 11
topological clusters, edges were classified as up/down-regulated or
unchanged bases on the differential expression and co-expression levels of
LRRK2 interactors in the sPD and LRRK2-PD conditions as compared to
the controls. The distribution of the edges across these 3 categories was
compared via One Sample Proportion Test to identified clusters sig-
nificantly altered in expression in sPD or LRRK2-PD in comparison with
controls (Fig. 7B, C).

Among the 11 clusters, Cluster A was significantly altered (down-
regulated) in both sPD and LRRK2-PD cases vs. controls (p < 0.05),
with 72/115 (62.6%) and 57/115 (49.5%) edges down-regulated,
respectively (Fig. 7B, C, Fig. 8A). Of note, out of the 14 down-regulated
interactors, 12 of them were ribosomal proteins. Functional enrich-
ment analysis associated Cluster Awith gene translation and ribosomal
functions, suggesting that the sPD and LRRK2-PD pathologies
potentially contribute to perturbed ribosomal homoeostasis and
translation process by down-regulating this cluster of LRRK2 inter-
actors (Fig. 8B, Table S10).

Fig. 2 | DEA on whole-blood mRNA levels of LRRK2 interactors in the sPD cases
vs. Controls. A The scatter plot shows results from DEA performed on LRRK2
interactors; sPD cases vs. Controls. Interactors with significant alterations (|log2FC|
> 0.05 and adjusted-p < 0.05) are colour coded as blue (down-regulated) and red (up-
regulated) dots.B,CThe bubble graphs show the enrichedGO-BPs for up-regulated

and down-regulated LRRK2 interactors; sPD cases vs. Controls. The colour of the
bubble represents enrichment significance (−log10(adjusted-p)), while bubble size
represents enrichment ratio (intersection size/query size). Of note, for up-regulated
interactors, only top 20 GO-BPs are shown in the graph.
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Discussion
Multifactorial neurodegenerative disorders such as PD present with a
complicated aetiopathogenesis, triggered by multiple causative events (or
risk factors) from the environment and from the genome. In PD, for
example, the majority of the patients have a sporadic form of the disease,
with no large effect size genetic variants contributing to etiology; these cases
are considered to be due to a complex interplay of small effect size genetic
risk factors in combination with a triggering environmental exposure. The
often-transient nature of environmental exposures are difficult to study,
however PD has been linked to long-term exposure to air pollution and
chemicals33–36, while old age remains the major risk factor for PD37,38. In
contrast, a minority of patients present with a familial pattern of disease,
with at least one mutation with effect size large enough to drive neurode-
generation. The sporadic and the genetic forms of PD are, therefore, by
definition triggered by different combinations of risk factors. This poses the
question as to whether, despite the similar clinical presentation and the
classification under the same disease name, sporadic and genetic forms
might represent a more nuanced spectrum of disorders. This nosological

question holds the key to a very practical issue: sporadic disorders are
difficult to be modelled in vitro, thus the scientific community frequently
relies on genetic models based on the familial forms of the same disease to
simulate the disease scenario in vitro and in vivo. These experimental
modelsmight not be accurate if we are indeed studying a spectrum disorder
where the same clinical manifestation may be triggered by different mole-
cular scenarios. Similarly, a therapeutic approach targeted to the molecular
core of the neurodegeneration developed for the genetic forms of the disease
might not be fully effective on the sporadic disease, thus requiring cohort-
specific interventions. In this study, we applied a systems biology approach
to generate a model and investigate the potential molecular differences
between sPD and LRRK2-PD, focusing on the transcriptomic expression
profile of the LRRK2 protein interactome. We considered that the LRRK2
functionality is orchestrated by the protein interactions that interlink
LRRK2 with the cell proteome. It has previously been reported that LRRK2
interactionbehaviour is affectedby thepresence ofmutations39; we therefore
speculated that the presence of PD causing mutations in LRRK2 (LRRK2-
PD) would modify the LRRK2 connectivity and in turn trigger expression

Fig. 3 | DEA on LRRK2 interactors in the LRRK2-PD and sPD cases vs. Controls.
A The Venn diagram and the network graph show 13 LRRK2 interactors presenting
the same differential expression pattern in the LRRK2-PD and the sPD cohorts in
comparison with controls. In the network graph, interactors with significant

differential expression profiles are colour-coded based on up-regulation (red) and
down-regulation (blue). B The bubble graph shows the GO-BP terms enriched for
the 13 LRRK2 interactors that presented similar alterations in the 2 PD conditions as
compared to controls.
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changeswithin the LRRK2 interactome. These changesmight be specific for
the LRRK2-PD scenario since no LRRK2 mutations are present in sPD.
However, it is also possible that expression changes of the LRRK2 inter-
actome happen just as a consequence of PD, in a feedback response to the
molecular alterations induced by the disease; in this case, these alterations
should be evident in both presence (LRRK2-PD) and absence (sPD) of
LRRK2 mutations.

There is increasing evidence that the immune system and immune-
related functions are deeply linked to the pathogenesis of PD40. Indeed, we
demonstrate that a large portion of the LRRK2 interactome (37%) is enri-
ched for immune related functions and highly expressed in whole blood in
comparison with other peripheral tissues and the CNS. We therefore
evaluated expression changes of the LRRK2int (cases vs controls) in whole
blood mRNA and found that 28.9% (109/377) of the LRRK2 interactors
presented significant changes, amongwhich only 13 showed a similar trend
of alteration (4 up-regulated and 9 down-regulated) in both the sPD and
LRRK2-PD cases. Among these 109 interactors, 9 were selected by the
LASSO regression model differentiating the LRRK2-PD and sPD cohorts
including: CDK2, RAB5B, ACTA2, TUBB6, LRRK2, HSPA1A, LMNB1,
SNCA, andSLC25A6.Thismodel suggested that, globally, sPDandLRRK2-
PDmight be differentiated by looking at the transcriptomics profiles of the
LRRK2 interactors inwhole blood.Thesefindings supported ourhypothesis
that LRRK2-PD and sPD might be triggered by different molecular
alterations and thereby need to be treated as different conditions for bio-
marker discovery and drug development.

When we carried out a functional analysis of the 109 significantly-
altered LRRK2 interactors, we found that proteins up-regulated in the
LRRK2-PD condition were mainly related to cytoskeletal dynamics and
transport, while those up-regulated in the sPD condition were associated
with signalling and protein metabolic processes, again suggesting divergent
functional profiles for the LRRK2int in the PD scenario depending on the

presence/absence of the LRRK2G2019S mutation. However, the down-
regulated proteins in both cohorts were associated withmetabolic processes
and ribosomal assembly suggesting these functions tobe consistently altered
in both PD scenarios regardless of the presence/absence of the LRRK2-
G2019Smutation. Interestingly, the 13proteinwhose expressionprofilewas
altered in both LRRK2-PD and sPD were similarly related to ribosomal
activity and protein biosynthesis, suggesting that there are commonalities at
the molecular level between LRRK2-PD and sPD.

The results obtained via DEA were further corroborated by the co-
expression analysis.We analysed the co-expression behaviour of the LRRK2
interactome using the classical WGCNA pipeline to identify modules of
LRRK2 interactors that are co-express across the sPD, LRRK2-PD and
control cohorts. A total of 3 co-expression modules were consistently
identified in the 3 conditions, and they might indicate functional units of
LRRK2 interactors that participate in communal processes. Module-Trait
analyses found that one of the 3 modules (MBlue) was down-regulated in
both sPDandLRRK2-PDcases as compared to controls, one (MBrown)was
down-regulated only in the LRRK2-PD cohort while the other remained
unchanged in both PD cohorts vs. controls. Interestingly, MBlue, altered in
both LRRK2-PD and sPD, contained 31 ribosomal proteins (RPs).

All these findings suggested the existence of molecular alterations that
are specific to the LRRK2 and sporadic PD conditions, however molecular
and functional similarities can also be found. For example, in this in silico
investigation, we suggest altered ribosomal functionality and protein bio-
synthetic processes to be an hallmark of PD, regardless the presence of
pathogenic LRRK2mutations. In additions, we confirmed that the LRRK2
interactors that are similarly altered in LRRK2-PD and sPD considering
DEA andWGCNA are largely represented within the interactome of other
PDgenes. This observationmight suggest their importance to themolecular
pathogenesis of PD, regardless the absence or presence of familial
mutations.

Fig. 4 | ML model for sPD/LRRK2-PD differ-
entiation based on the transcriptomic profiles of
the LRRK2int. A The logistic regression model with
LASSO (Least Absolute Shrinkage and Selection
Operator) was adopted to reduce dimensionality
and select themost significant expression profiles for
the LRRK2 interactors able to differentiate sPD and
LRRK2-PD. λ value of 0.006, with log(λ) =−5.062
was selected according to 10-fold cross-validation.
B LASSO coefficient profiles of 11 LRRK2 inter-
actors are plotted. The optimal coefficient profile
was produced against the selected λ (marked as the
vertical red line). C The distribution curve shows
different cut-off values and the model performance
(as assessed by accuracy) on the train set. A cut-off of
0.54 was selected to reach the accuracy of 80.3%,
with True Positive (TP) of 82.8% and True Negative
(TN) of 57.9%.DThe graph shows the ROC curve of
the model validation on the test set = AUC value
of 0.735.
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Fig. 5 | WGCNA on LRRK2 interactors in the sPD, LRRK2-PD and control
conditions. A The dendrogram shows the 3 co-expression modules identified
among LRRK2 interactors across the 3 cohorts. Modules are represented by colours
(MBlue, MBrown and MTurquoise). B–D The bubble plots show the semantic
groups of GO-BPs enriched for MBlue, MBrown and MTurquoise. The bubble
colour represents the adjusted-p value of the most significant GO-BP within each

semantic group (reported on the vertical axis), while the bubble size represents the
number of GO-BPs in each semantic group. EThe heatmap shows theModule-Trait
correlation between the eigengene of the 3 co-expression modules (MEblue, MEb-
rown and MEturquoise) and PD type. The numbers in cells and cell colours
represent Pearson’s coefficients. Significant correlation was defined as Pearson’s
p-value < 0.05 (marked with *).
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Similar alterations in protein synthesis/ribosomal functions were
indeed observed in previous studies in the blood and substantia nigra tissues
of PD patients as well as related animal models41–44.

We finally proceeded to identify topological clusters within the LRRK2
interactome, based on the protein connections across LRRK2 interactors.
Topological clusters might indicate functional local communities within a
larger network based on how proteins relate/connect with each other. The
topological clustering algorithm identified 11 clusters in the LRRK2net, these

are portions of the network that aremore connected within each other than
the average connection of the entire network. Among these 11 clusters,
cluster A presented lower connectivity in both LRRK2-PD and sPD vs
controls and this cluster was functionally related to ribosomal functions.
The majority of the RP were, as expected, contained within cluster A; this
cluster was significantly downregulated, again potentially suggesting that
the functionality of RPs and ribosomal/protein biosynthetic processes are
universally reduced during PD.

Fig. 6 | The LRRK2net. A The network graph shows the LRRK2net, in which nodes
represent the LRRK2 interactors (N = 338), while edges represent the “2-layer” PPIs
(N = 1345). Node size refers to the node degree. Interactors with higher centrality
(with degree ≥ 24) were colour-coded according to their degree. B The bar graph
shows the distribution of degrees for the LRRK2 interactors. C The log–log plot

shows that the LRRK2net follows the power law, in which the X-axis represents the
log-transformed degree (logD), while the Y-axis represents the log-transformed
frequency of a LRRK2 interactor with a certain degree level (log(n(D))). The scatters
fit a linear regression line with R-square = 0.8606.

Fig. 7 | Topological clustering of the LRRK2net. A The bar graph shows the 14
topological clusters identified in the LRRK2net via the Fast Greedy Algorithm.
Cluster L, M, N were discarded from further analysis due to their small size (they
contained ≤ 5 interactors). B The bar graph shows the impact of expression changes
linked to the sPD condition on the edges of each topological cluster. Upregulated
edges (in red) were defined as (1) with ≥ 1 connected interactor exhibiting increased
expression level in sPD as compared to controls; and/or 2) 2 connected interactors
positively co-expressed (with Pearson’s coefficient > 0.6) in sPD but not in controls.

Downregulated edges (in blue) were defined in the opposite way: (1) with ≥ 1
connected interactor exhibiting decreased expression level in sPD as compared to
controls; and/or (2) 2 connected interactors positively co-expressed (with Pearson’s
coefficient > 0.6) in controls but not in sPD. The percentage of upregulated,
unchanged and downregulated edges were compared within each cluster via One
Sample Proportion test. Only Cluster A was significantly downregulated in sPD
(p < 0.001, *). C Same as B but analysis comparing LRRK2-PD vs. Controls. Cluster
A was significantly downregulated in LRRK2-PD (p < 0.05, *).
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There are a number of limitations to this study: (1) the sample size of
the cohorts are relatively small, especially for the LRRK2-PD cohort and
larger sample size would improve statistical power and thereby provide
more robust results; (2) PD cases recruited by PPMI were at the early stages
of the disease and the whole blood mRNA sequencing was run at the first
visit; therefore, the alterations of some LRRK2 interactors could be too
subtle to be detected by DEA or WGCNA; 3) expression changes (used as
proxy forprotein levels) in theLRRK2 interactomearedynamic andaffected
by the local environment (such as absence/presence of inflammation) while
(due to the data available) in our analyses protein interactions have been
considered as static.

In conclusion, our study suggests that although sPD and LRRK2-PD
share defining aspects of neuropathology and clinical characteristics, the
molecular pathways underlying the etiology and pathogenesis of the two
conditions have important distinct features. There are shared changes of the
LRRK2 interactome that can be appreciated at the transcriptome level in
both the conditions, mainly associated with alterations of RPs and proteins
whose function is important for protein biosynthesis. However, there are
also substantial differences between the two conditions suggested by their
unique transcriptomics signatures. This conclusion cautions against con-
sidering LRRK2-PD and sPD as identical conditions, highlights the need to
for specific experimental models to be generated to differentially study
sporadic and LRRK2 PD, and confirms the requirement for patient strati-
fication in clinical trials.

Methods
LRRK2 protein interactors download and quality control (QC)
LRRK2 protein interactors were downloaded via PINOT v1.1 (http://
www.reading.ac.uk/bioinf/PINOT/PINOT_form.html), HIPPIE v2.3
(http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/index.php) and
MIST v5.0 (https://fgrtools.hms.harvard.edu/MIST/)45–47 on 16thMarch
2023 and the LRRK2 interactome was built following the pipeline in
ref. 2. In summary: to access the most comprehensive set of LRRK2
interactors, “Lenient” filter level was applied in PINOT; while no filter
was applied for HIPPIE and MIST to download the entire set of raw
interaction to be filtered in a second step. Interactors retrieved from the
3 tools were merged and QC-ed to identify interactors with missing
publication identifier, missing interaction detection method, no

conversion to a standard gene identifier, and with low interaction
confidence score.

LRRK2 protein interactome (LRRK2int) in whole blood
In our previous study2, we compared themRNA levels of LRRK2 interactors
pair-wise across 11 brain regions and 4 peripheral tissues in healthy indi-
viduals derived from the GTEx database (https://www.gtexportal.org/).
Tissues were scored based on the pair-wise comparison results for each
LRRK2 interactor. Briefly, the higher the score, the higher a certain inter-
actor is expressed in a certain tissue. A specifically high expression level was
defined as tissue score ≥ 12, meaning that a given interactor exhibited
significantly highermRNA levels in tissueXas compared to other 12 tissues.
For this current study, scores of LRRK2 interactors in the whole blood were
extracted from2 and the interactors with tissue scores≥ 12were analysed via
functional enrichment analysis.

Whole blood RNA-Seq data download and QC
Baseline (BL = time at diagnosis) whole blood mRNA data (read counts)
of LRRK2 interactors for healthy controls (HC), sPD patients and
LRRK2-PD patients were retrieved using Ensembl gene ID from the
Parkinson’s ProgressionMarker Initiative (PPMI) dataset on 24th March
2023. PPMI is an ongoing observational, international, multicentred
cohort study aimed at identifying the biomarkers of PD progression in a
large cohort of participants (https://www.ppmi-info.org/). The current
PPMI Clinical study protocol (#002) is WCG approved (IRB Tracking
#20200597). The previous PPMI Clinical protocol (#001), was IRB
reviewed by theUniversity of Rochester Research Subjects ReviewBoard.
Informed consent was obtained from all human participants. PPMI is a
public-private partnership—is funded by TheMichael J. Fox Foundation
for Parkinson’s Research and funding partners, including those reported
at https://www.ppmi-info.org/about-ppmi/who-we-are/studysponsors.
Study protocol andmanuals are available online (http://www.ppmi-info.
org/study-design). PPMI enroled patients with early, untreated (de
novo) Parkinson’s disease as well as healthy controls of similar age and
sex as well as genetic cohorts with Parkinson’s disease and non-
manifesting carriers of mutations. Pathogenic variants used to define
genetic PD cases included 7 PD-related genes, namely LRRK2, GBA1,
VPS35, SNCA, PRKN, PARK7 and PINK1.

Fig. 8 | Details of cluster A in LRRK2-PD and sPD. The network graphs show the
significant downregulation of Cluster A in sPD (A) and LRRK2-PD (B), in which
LRRK2 interactors are represented as nodes (N = 45) while PPIs are represented as
edges (N = 115). Edges are represented with a continuous red line if they are up-

regulated, with a dotted blue line if they are down-regulated. The thickness of the
edges refers to the level of alterations of PPIs: the line is thicker if the 2 interactors
connected by a given edge exhibited both the same trend of alteration (i.e, both up-
regulated or down-regulated in PD cases vs. Controls).
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In this study, we included the “de novo”, “genetic (with LRRK2
mutations)” and “healthy control” cohorts. Subjects from the 3 cohortswere
further filtered to keep only those with robust genetic status records using
the following criteria: confirmed by at least 3 out of 6 detection techniques
(WGS, WES, RNA-Seq, GWAS, CLIA, SANGER) of which 1 should be a
next generation sequencing technique (WGS,WES,RNA-Seq) and1 should
be a screening technique (GWAS, CLIA, SANGER). For the healthy control
cohort, subjects with pathogenic variants in the above-mentioned PD-
related genes were excluded. PD patients with no pathogenic variants were
defined as the sporadic PD (sPD) cohort, while those with pathogenic
variants in the LRRK2 gene only were defined as the LRRK2-PD cohort.
Principal Component Analysis (PCA) was performed on mRNA read
counts to remove potential outliers. Metadata of QC-ed subjects at BL were
derived from the PPMI database, including gender, age at screen, motor
symptom severity (as evaluated by the MDS-Unified Parkinson’s Disease
Rating Scale IIII (MDS-UPDRS III) and LRRK2 mutation type (for the
LRRK2-PDcases only).MDS-UPDRS III scores of the sPD and LRRK2-PD
cohortwere compared via t-test. Transcripts of LRRK2 interactorswith read
counts≤ 15 inmore than 75%QC-ed subjects were removed48. Read counts
of LRRK2 interactors retrieved fromPPMIwere extracted for the 3 cohorts,
thereby forming the “PPMI_Matrix”.

Differential Expression Analysis (DEA) and classification models
for sPD and LRRK2-PD
The PPMI_Matrix was then normalised via the median of ratios method
using the “count” function in the R package “DESeq2”49. The normalised
PPMI_Matrix (hereby referred as “norm_PPMI_Matrix”) was utilised
to perform DEA to compare the expression levels of LRRK2 interactors
in the control, sPD and LRRK2-PD cohorts using “DESeq2” and cal-
culating fold change (FC) for each of the LRRK2 interactors (i) in [sPDvs
control] and [LRRK2-PD vs control]. P-value adjustment for multiple
comparisons were performed via Bonferroni’s method. Of note, results
from DEA were adjusted for sex. LRRK2 interactors were considered
significantly altered when |log2FC| > 0.05 and adjusted-p < 0.05 in [sPD
vs control] or [LRRK2-PD vs control]50. Up/down-regulated LRRK2
interactors in the 2 PD conditions were functionally annotated via Gene
Ontology Biological Process (GO-BP) enrichment analysis. The read
counts of LRRK2 interactors with significant alterations in the 2 PD
conditions as compared to controls were utilised to construct a machine
learning model via Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm using the R package “glmnet”. Of note, in order to
reduce the risk for model overfitting, univariate logistic regression was
performed on each LRRK2 interactor prior to model training and only
those with p-value < 0.05 were included in the LASSO regression model.
The train-test split ratio for the LASSO regression model was set as 4:1.
The tunning parameter lambda (λ) were optimised by a 10-fold cross-
validation (CV) to reach the minimum Mean-Squared Error (MSE) via
the “cv.glmnet” function of the “glmnet” package. The refined models
were then assessed on the test set. Receiver Operating Characteristic
(ROC) curves were generated via the “roc.glmnet” function of the
“glmnet” package.

Weighted Gene Co-expression Network Analysis (WGCNA)
Signed Weighted Gene Co-expression Network Analyses (WGCNA) were
performed on the norm_PPMI_Matrix via the R package “WGCNA” to
identify co-expression modules within the LRRK2net across the sPD,
LRRK2-PDand control conditions.Module-Trait correlationwas evaluated
via the “corPvalueStudent” function in the “WGCNA” package.

LRRK2 PPI network (LRRK2net) construction and weighted net-
work analysis
To construct the LRRK2net, the 2nd-layer PPIs (i.e., PPIs among LRRK2
interactors) were downloaded via HIPPIE (v2.3) on 16th March 2023. The
2nd-layer PPIs with high confidence score (≥ 0.72) were kept for network
construction (the LRRK2net). The Fast Greedy Clustering algorithm

51 was

utilised to detect topological clusters in the LRRK2net based on edge
betweenness (i.e., calculating the number of shortest paths between any pair
of nodes in the network that pass-through a given edge), via the “cluaster-
maker2” Cytoscape add-in (v2.3.4). For each obtained topological cluster,
edges were classified as up/down-regulated or unchanged based on the
following criteria: A) up-regulated edge: i) at least 1 of the 2nodes connected
by the edge had increased expression level in sPD and/or LRRK2-PD vs
controls or ii) a strong positive co-expression (Pearson’s coefficient > 0.6)
was observed for the 2 nodes connected via the edge in sPD and/or LRRK2-
PD but not in controls; B) downregulated edge: i) at least 1 of the 2 nodes
connected by the edge presented decreased expression level in sPD and/or
LRRK2-PD vs controls or ii) a strong positive co-expression (Pearson’s
coefficient > 0.6) for the 2 nodes connected via the edge was observed in the
controls but not in sPD and/or LRRK2-PD cases. The percentage of upre-
gulated, downregulated and unchanged edges for each single topological
cluster were calculated for the sPD and the LRRK2-PD scenarios and
compared via One Sample Proportion Test to identify the trend of each
topological cluster and qualitatively definewhether a cluster wasmainly up/
down regulated or unchanged in sPD or LRRK2-PD vs controls.

Functional enrichment analysis
In this study, functional enrichment analyses for LRRK2 interactors were
performed via the webtool “g:Profiler” (https://biit.cs.ut.ee/gprofiler/
gost)52. The parameters were set as follows: organism—Homo sapiens
(Human); data source—GO biological process (GO-BPs) only; statistical
domain scope—annotated genes only; statistical method—Fisher’s one-
tailed test; significance threshold—Bonferroni correction (threshold =
0.05). No hierarchical filteringwas included. To increase the sensitivity of
analysis, a cut-off of ≤ 2500 was set for the “term size” of enriched GO
terms. For larger GO term lists, GO-BPs were grouped based on semantic
similarity and text cloud analysis was performed to extract keywords
from term names via the R package “wordcloud” (https://CRAN.R-
project.org/package=wordcloud).

Data availability
Data used in the preparation of this article were obtained from the Par-
kinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.
org/access-data-specimens/download-data), RRID:SCR_006431. For up-
to-date information on the study, visit www.ppmi-info.org.

Code availability
The pipelines used in thiswork are based onpublicly available Rpackages as
detailed in the methods section.
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