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A B S T R A C T   

Efficient electrochemical carbon dioxide reduction (eCO2RR) depends on addressing mass transfer kinetics 
hindering CO2 diffusion to the cathode surface. Gas diffusion electrodes (GDE) have enhanced this process, but 
the shift from lab-scale research to industrial use is to be explored, and we systematically assessed four variable 
factors: electrode area, gas flow rate, catalytic layer (CL) thickness and gas diffusion layer (GDL) porosity for 
scaling-up the electrolyser with a comprehensive two-dimensional physical model was developed to investigate 
the concentration, distribution, and consumption of CO2. Random Forest (RF) coupled with Latin Hypercube 
Sampling (LHS) data collection method demonstrate a prediction accuracy of 98.67 % and a RMSE of 0.00058 for 
the average CO2 concentration. A maximum CO2 consumption rate of 98 % was achieved at a CL thickness of 73 
μm and a GDL with a porosity of 0.8, for an electrode area of 100 cm2 and a gas flow rate of 91 mL/min. This high 
level of CO2 consumption was sustained throughout the scaling-up process, consistently at 96.7 %, as the evi-
dence attests to the reliability and feasibility of the scale-up approach.   

1. Introduction 

The process of capturing carbon dioxide (CO2) followed by electro-
chemical conversion has attracted increasing attention in research cir-
cles due to its numerous advantages, which include operating at a 
moderate reaction temperature, utilising a simple reaction setup, and 
yielding high-energy–density fuel products like carbon monoxide (CO) 
and formate etc [1–4]. This method stands out as one of the most effi-
cient approaches for large-scale energy storage, chemical production, 
and transportation systems. Furthermore, eCO2RR represents a highly 
controllable process, enabling the generation of various products by 
adjusting factors such as catalyst structure, electrolyte pH, applied po-
tential, and electrolyser design [5–9]. However, the inherent inertness of 
CO2 molecules necessitates a high activation potential, and the limited 
solubility of CO2 in the electrolyte (approximately 35 mM at 298 K, 1 
atm) can impede CO2 mass transfer, potentially leading to the competing 
hydrogen evolution reaction (HER) at the cathode side [10–12]. 

GDE reactors are reported to benefit the CO2 mass transfer, which 
allows CO2 fed directly through the GDL to the catalyst active sites in a 
short diffusion distance [13–15]. Diffusion in GDL has been reported by 
Wang et al. [16], who developed a hybrid eCO2RR reactor using bilayer 
porous electrode. By the directional diffusion of gas molecules onto the 
CL, 94 % Faraday Efficiency (FE) to carbonaceous products at − 1.0 V vs. 
RHE and a current density of 200 mA cm− 2 was achieved. Albo et al. 
[17] evaluated the effect of current density, electrolyte flow rate/area 
ratio and CO2 gas flow rate/area ratio on a GDE reactor and realised that 
the reactor was able to catalyse CO2 reduction for more than 20 h. A well 
designed porous/hydrophobicity of CL is reported to benefit the 
microenvironment near the electrode site and promote the CO2 mass 
transfer. Xing et al. [18] demonstrated a PTFE treated hydrophobic CL 
supported on carbon paper as GDE. This configuration led to enhanced 
reaction activity and FE, achieving a partial current density to 250 mA 
cm− 2 and single-pass conversion rate of 14 % at moderate potentials, 
achieved through the precise control of the hydrophobicity of electrode 
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surface. Wang et al. [19] developed a Cu2O/Graphene electrocatalyst, 
where the presence of the 2D graphene and 3D Cu2O nano flower en-
ables a microporous scaffolding structured CL. The pores which benefit 
the CO2 mass transfer and effectively improve the activity and efficiency 
of eCO2RR. However, such reported works confined to the laboratory 
scale, which is far from reaching industrial viability. In contrast to 
fundamental research, the large-scale integration of CO2RR technology 
remains in its nascent stages, necessitating the development of large- 
scale CO2 electrolysers. 

Scaling-up of the reactor includes issues related to the distribution of 
reactant gases and the imperative need to ensure uniform gas distribu-
tion across the CL. This uniformity is essential to prevent any distinct 
areas of the catalyst from being fully exposed to the electrolyte. Addi-
tionally, the mechanical properties of the GDL, particularly its strength 
in tolerating gas pressure at a large scale. It is well known that selec-
tivity, activity and stability are key parameters that hinder the industrial 
implementation of electrochemical CO2 reduction. Each of these pa-
rameters has been investigated by focusing on the nature of the elec-
trocatalysis, the morphology of the electrocatalyst, the electrolyte 
composition and the process conditions [20–22]. While ongoing 
research on scale-up includes various economic assessments in plant 
settings, there remains a scarcity of practical demonstrations at this 
scale. Moreover, establishing long-term stability is an essential 
requirement for the viable operation of commercial processes. Seonhwa 
Oh et al. [23] developed a large-area gas diffusion electrode (25.5 and 
136 cm2) with high conversion efficiency and high cell performance, 
and further applied it to a CO2 electrolyser with an effective area of 
107.44 cm2, which resulted in CO conversion efficiencies ranging from 
41.99 %-57.75 % at 2.2–2.6 V. The performance of GDE depends 
strongly on the local environment within the CL and the balance be-
tween transfer phenomena and reaction kinetics. Based on the reported 
higher partial pressures and concentrations of CO2 to saturate the FE of 
CO, Li et al. [24] found that flow rates from 1 to 50 mL/min resulted in 
increasing current densities in the overall geometry, which saturated at 
high flow rates. Lei et al. [25] investigated the single variation and 
interaction of Pt loading in the CL and the porosity of the GDL, and the 
fact that Pt distribution presenting inhomogeneity improves the current 
confinement, and the porosity of the GDL also exerts a great influence on 
the battery performance. Gao et al. [26] investigated the effect of 
porosity and thickness of the GDL on the effective diffusion coefficient, 
and the results showed that the effect of pore size on the transport 
properties was greater than that of thickness, especially in the direction 
of the penetration surface, and the thickness had almost no effect on the 
permeability. Similar to the fluid saturation values, the flux values 
change drastically as the porosity increases from 0.6 to 0.7, 0.8 and 0.9. 
The results also demonstrate that the flux changes are more drastic at 
higher porosities, which is natural since both porosity and saturation 
affect the effective diffusion coefficient. 

One of the challenges hindering the scaling-up of eCO2RR electro-
lysers is the inadequate and non-uniform distribution of CO2 molecules 
on the catalyst surface. This phenomenon results in reduced CO2 utili-
zation, low and uneven current density, and compromised FE [27,28]. 
To enhance selectivity for CO2 reduction while inhibiting hydrogen 
generation, a significant competing reaction occurs at the cathode- 
electrolyte interface. This reaction is influenced by various factors, 
including solution pH, electrolyte composition, temperature, pressure, 
potential, CO2 concentration, as well as the chemical and morphological 
attributes of the catalyst [29]. All these factors require careful consid-
eration. Researchers conducted numerous experiments to determine 
optimised manufacturing options, but the substantial investment of time 
and resources has severely limited the feasibility. Furthermore, complex 
experiments encompass a multitude of variables, potentially leading to 
testing standard ambiguities. 

Designing highly accurate physical models for multiple types of 
electrolysers and operating environments is a very difficult task [30]. 
Solving this bottleneck is possible thanks to the rapid development of 

artificial intelligence (AI) technology. AI algorithms can extract useful 
information from raw data and output independent decisions when 
performing industrial tasks. 

The development of models that can perform precise simulation for 
electrolyser still remain a challenge. However, addressing this bottle-
neck has become achievable due to the swift progression of AI tech-
nology. AI algorithms possess the capability to discern valuable insights 
from unprocessed data and autonomously make informed decisions 
while executing industrial tasks. The main commonly used ML algo-
rithms are Recurrent Neural Network (RNN), Support Vector Machine 
(SVM), and RF [31–33]. Algorithms are evaluated on the basis of ac-
curacy. Zheng et al. [34] investigated the polarisation curve prediction 
and performance degradation prediction of Proton Exchange Membrane 
Fuel Cells (PEMFC) using Long Short-Term Memory (LSTM). The co-
efficients of determination (R2) of the LSTM models with different 
training data were greater than 0.95. Han et al. [35] conducted a study 
comparing the performance of PEMFC using Artificial Neural Networks 
(ANN) and SVM algorithms. They considered input variables such as 
temperature, humidity, and pressure. The results demonstrated that the 
ANN model achieved outstanding predictive accuracy, with a high score 
of 0.9995, outperforming the SVM model with a predictive accuracy of 
0.982. Huo et al. [36] have proposed a predictive method that combines 
the RF algorithm with the Convolutional Neural Network (CNN) model. 
Additionally, advanced deep learning techniques, such as batch 
normalization and dropout layers, have been employed to enhance the 
model’s generalization capability. The research findings indicate that, in 
the majority of cases, this predictive model consistently achieves an 
accuracy rate exceeding 90 %. The predictive curve of this model closely 
aligns with the actual curve. Consequently, this model has the potential 
to significantly reduce experimental time and costs. All of the bove- 
mentioned algorithms can be adopted for in electrolysis reactor 
research and design. However, in real-world cases, the specific data 
characteristics, problem types and requirements will be the decisive 
factors that lead to the high or low accuracy of AI algorithms. 

Several issues persist when employing these single-variable multi-
parameters, including: Notably, not all single parameters exhibited 
significant changes in the scaled-up studies; Simultaneous studies of 
multi-parameter interactions were overlooked due to the single-variable 
principle’s application; The consideration of simultaneous changes in 
both directions was omitted for each single direction; Additionally, the 
simulation process is characterized by its time-consuming nature and its 
dependence on computational resources. 

The aim of this study is to reveal the effect of variations in GDL 
porosity, electrode area, CL thickness, and the gradient of gas volumetric 
flow rate on CO2 concentration throughout the scaling-up process. When 
increasing the electrode area from 1 cm2 to 100 cm2, there is a signifi-
cant decrease in CO2 concentration, dropping from 30.92 mol/m3 to 
0.99 mol/m3. Similarly, when the CL thickness is increased from 5 μm to 
55 μm, CO2 concentration also decreases from 13.65 mol/m3 to 6.92 
mol/m3. Simultaneously, the porosity of the GDL and the gas volumetric 
flow rate influence CO2 concentration, although the change in concen-
tration is relatively small, around 1 mol/m3. By utilizing ML algorithms 
and employing various analytical techniques, we conducted a compre-
hensive investigation. Remarkably, even as we scaled up the process, we 
managed to pinpoint the specific conditions necessary to sustain a robust 
CO2 consumption rate of 96.7 %, mirroring the outcomes observed at the 
laboratory scale. Furthermore, our study sheds light on the development 
of a cost-effective industrial engineering design methodology, leading to 
reduced labour expenses and providing precise details on high- 
performance electrolyser manufacturing. 

2. Model development and validation 

A two-dimensional model was developed, consisting of four parts: 
gas chamber (GC), GDL, CL and the electrolyte channel (ELEC), as shown 
in Fig. 1. They are rectangular compartments arranged in parallel, with 
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the same height and width but varying thicknesses. The feed gas enters 
the system from the bottom of the GC and exits along with other gaseous 
products such as CO and H2 on the opposite side. A current collector is 
placed between the GC and the GDL. Its main function is to supply 
electrons, with negligible ohmic loss compared to the GDL and the CL. 
CO2 and electrons are transported via diffusion and conduction 
respectively through the porous hydrophobic GDL and react in the CL. It 
is widely recognized that only dissolved CO2(aq) serves as the active 
reactant for electrochemical reactions, rather than HCO3

− , CO3
2− , or 

CO2(g). Therefore, gas–liquid mass transfer for CO2 and homogeneous 
aqueous-phase reactions consuming CO2(aq) in the CL should be taken 
into account. The CL consists of a layer coated with granular CuxO 
catalyst (a mixture of Cu2O, CuO, and Cu), offering a non-toxic and 
abundant option suitable for scaling up and holding promise for 
generating multi-carbon products. The electrolyte (potassium hydrox-
ide, KOH) and the aqueous products (i.e. formate) flow through the 
ELEC. 

2.1. Model assumptions and characteristics 

The multiphysics field model is based on the following assumptions:  

(1) The variation of the flow rate is fixed in the range of Ma < 0.3, 
consistent with laminar flow conditions, it is maintained at a low 
flow rate with a Reynolds number of about 10-2 [37]. Thus the 
reacting gases passing through the cathode channel are consid-
ered to be laminar.  

(2) Constant flow rates and a uniform supply of gas can help maintain 
flow stability in the system, and the flow path is straight from 
bottom to top to avoid instability and eddies in the flow. An 
adequate supply of CO2 is uniformly supplied at the cathode inlet 
at a constant flow rate, and the ideal gas law is applied to the gas 
species.  

(3) It is assumed that gas mass transfer occurs only through diffusion 
and convection mechanisms. The relatively weak interaction 
between the gases in a system with a low density and low flow 
rate allows the drag effect on the overall gas flow to be simplified 
or ignored. 

(4) A reasonable isothermal assumption was used because the pres-
ence of a flowing liquid (a good conductor of heat) electrolyte in 
the model would carry away the heat generated by the relatively 

low current density of about 102 mA/cm2. The Soret effect of 
mass transfer is therefore not considered.  

(5) The pH of the anode body solution is kept constant, and no acid- 
base equilibrium occurs at the catalyst layer-electrolyte 
boundary.  

(6) The model investigates the CO2 mass transfer process on the 
cathode side, where the gas flow rate is less than 100 mL/min and 
the resulting pressure is not sufficient to break through the 
membrane. 

The model processes: 1) conservation of mass, matter, charge, and 
momentum; 2) migration of matter through the porous electrodes by 
diffusion and convection mechanisms; and 3) generation and con-
sumption of species within the CL powered by electrical energy. In 
addition, the physical properties of the CL, such as thickness, pore size 
and porosity, were modelled. 

2.2. Governing equation 

2.2.1. Gaseous substance 
There are four distinct gaseous components: CO2, N2, H2, and CO. At 

the inlet, a gas mixture consisting primarily of CO2 with a mass fraction 
of 0.999 is introduced, with the remaining gases being N2. CO is one of 
the byproducts of reduction reactions, whereas H2 is produced because 
of the water electrolysis reaction. These gaseous components are 
distributed across three regions: the CL, the GDL, and the GC. To 
maintain mass conservation, we employ Eq. (1) as a modelling basis 
with assumption of a constant temperature and do not account for the 
Soret effect in the diffusion. The subscript i in the formula denotes the 
corresponding different species of gas substances [38]. 

∇⋅( − ρgDi,m∇ωi − ρgωiDi,m
∇Mg

Mg
) + ∇⋅(ρgugωi) = Ri,m (1)  

Mg =

(
∑

i

ωi

Mi

)− 1

(2)  

ρg is the average density of multiple gases when they are mixed; ωi is the 
mass fraction for gas; Mg is the average molar mass of the gas mixture 
calculated as shown in Eq. (2); Mi is the molar mass of gas; Di,m is the 
diffusion coefficients of the gas i in the medium m; and Ug is the velocity 
of the gas mixture. It is important to note that the Ri,m term has a zero 
value in both the GC and GDL. 

2.2.2. Liquid type 
The conservation of mass of the water-bearing material j is modelled 

by the Nernst-Plank Eq. (3) [33]. 

∇⋅(− ρ1Dj,m∇ωj −
zjFρ1ωjDj,m∇V1

RidealT
+ ρ1ωju1) = Rj,m (3)  

where ρl is the density of the liquid mixture; zj is the valence electrons of 
the ionic species; Rideal is the ideal gas constant; T is the operating 
temperature; ul is the liquid flow rate, and ql/AELEC is the ratio of 
volumetric flow rate to the cross-sectional area of the liquid chromato-
gram; Dj,m is the diffusion coefficient of the aqueous substance, which 
can also be corrected by the Bruggeman’s relational equation in porous 
media. 

2.2.3. Gas-liquid mass transfer 
In this scenario, two competing electrochemical reduction reactions 

of CO2 occur in the electrolyte [33]. 

CO2(aq) + H2O + 2e - ↔ HCOO - + OH - (Ea) 
CO2(aq) + H2O + 2e - ↔ CO + 2OH - (Eb) 
2H2O + 2e - ↔ H2 + 2OH - (Ec) 

Fig. 1. Two-dimensional cathode-side CO2 reduction electrolyser.  
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For gas–liquid transfer in the CL, we focus solely on the CO2 transfer 
due to the negligible solubility of CO and H2. Therefore, the rate of 
gas–liquid transfer rate for CO2 is [33]. 

RP,CO2 (aq) = − RP,CO2(g) = aglKGLMCO2 (
PCO2(g)

HCO2

− CCO2(aq)) (4)  

where agl is the gas–liquid specific interfacial area; KGL is the total mass 
transfer coefficient; HCO2 is the Henry’s constant of CO2, which factors in 
the salting out effect; PCO2(g) is the partial pressure of CO2(g), which is 
calculated according to Dalton’s law; PCO2(g) = PCL × CO2(g); and CCO2 

(aq) is the concentration of dissolved CO2 in the electrolyte [33]. 

agl = 2
ε0

CL(rp,CL − δele)

r2
p,CL

(5)  

2.2.4. Electrode kinetics 
The current densities which corresponds to the reactions (Ea) to (Ec), 

iEa, iEb and iEc were determined using Tafel dynamics [33]. 

iEa = − iref
o,Ea(

CCO2 (aq)
Cref

CO2(aq),Ea
)exp(−

βEaF
RidealT

(Vs − Vl − Vref
eq,Ea)) (6)  

iEb = − iref
o,Eb(

CCO2 (aq)
Cref

CO2(aq),Eb
)exp(−

βEbF
RidealT

(Vs − Vl − Vref
eq,Eb)) (7)  

iEc = − iref
o,Ecexp(−

βEcF
RidealT

(Vs − Vl − Vref
eq,Ec)) (8)  

where iref o,Ea, iref o.Eb and iref o,Ec are the exchange current densities 
for each catalyst surface area under reference conditions; Cref CO2(aq), 
Ea, Cref CO2(aq),Eb are the reference concentrations of CO2(aq) corre-
sponding to the reaction (Ea) and the reaction (Eb), respectively; βEa, 
βEb, and βEc denote the symmetry factors 

associated with the formation of HCOO− , CO and H2, respectively; F 
is the Faraday constant; Vref eq,Ea, Vref eq,Eb and Vref eq,Ec are the 
equilibrium potentials for the reactions (Ea) to (Ec) at the reference 
conditions and operating temperatures, respectively. 

The local electron and electrolyte potentials Vs and Vl are derived 
from Ohm’s law and the principle of charge conservation [33]. 

∇⋅(− σeff
s,m∇Vs) = Qs,m (9)  

∇⋅(− σeff
l,m∇Vl) = Ql,m (10)  

where σeff s,m and σeff l,m are the effective conductivities of the solid 
material and electrolyte. These values are constants and are corrected 
for (1 − εm) and εmSm according to the Bruggeman equation in porous 
media, with Qs,m and Ql,m as source terms; respectively. Other control 
equations Ref. SI(1–13). 

2.3. Boundary condition 

The gaseous species in the GC, GDL, and CL are collectively modeled. 
At the inlet of the GC, the mixture gas composition and velocity are set to 
be identical to those of the inlet mixture gas. Ambient pressure (i.e., 1 
atm) is assumed for the outlet mixture gas at the GC outlet, with non- 
diffusive species. Zero-flux for gaseous species is applied at the ELEC/ 
CL interface, assuming that any gas can only escape from the GC. 
Pressure remains continuous at the GDL/GC interface. 

2.4. Numerical calculation method 

Above equations were developed using COMSOL Multiphysics 5.6, 
with the volume fraction of the substance defined by the coefficient 
partial differential equations, the rate of transfer and concentration 
distribution of the substance defined by the Concentrated Substance 

Transfer Module, and Darcy’s Law describing the fluid flow, and a free 
trihedral mesh was used to integrate the above three main modules for 
the overall modelling, which used a steady state solver to facilitate the 
observation of the CO2 concentration distribution in the CL under 
steady-state conditions, which is used to increase the CO2 concentration 
in the CL to a relatively saturated value by keeping the intrinsic condi-
tional parameters and adjusting the parameters that are highly affected 
by local variations. 

2.5. AI modelling 

In the context of scaling-up modelling research, it is essential to 
acknowledge that a single variable may not give accurate results. This 
limitation arises from the fact that a single variable adjustment cannot 
eliminate all potential confounding factors or distractors. Therefore, in 
this study, we selected a constrained set of variations encompassing 
electrode area, gas flow rate, CL thickness, and GDL porosity as the four 
key input parameters to drive our model. The resulting output param-
eter of interest was the average CO2 concentration within the CL. To 
generate the necessary dataset, we employed the physically grounded 
mechanistic model of eCO2R implemented in COMSOL. Subsequently, 
we applied the Latin Hypercube algorithm to screen and optimise the 
data points. These curated data points were subsequently utilized to 
train ML models, including RNN, RF, and SVM, each serving as a distinct 
approach to model training and analysis. Refer to SI (14–21) for the 
formulae of the different algorithms. 

2.6. Model training and experimental setup 

The model was chosen to be arranged using four variables and one 
outcome. Among them, the electrode area, gas flow rate and CL thick-
ness were scaled up by magnitude orders (1–100 cm2; 1–100 mL/min; 
1–100 μm), and the porosity of the GDL conformed to the experimental 
and commercial values of 0.5–0.9. Steps were set to obtain about 8,000 
nodes. The LHS method extracted 10 % of the original number of nodes. 
LHS ensures a uniform positional distribution between the levels of each 
factor, and the representative experimental results were screened and 
used to substitute into the AI algorithm. A performance prediction 
model was developed using PythonCharm. Four metrics are commonly 
used to evaluate the performance of performance prediction models, 
namely: 1) RMSE: Root Mean Square Error. 2) R2: Coefficient of Deter-
mination. 3) MAE: Mean Absolute Error. 4) MAPE: Mean Absolute 
Percentage Error. Reference SI (22–25) for calculation of equations. 

3. Results and discussion 

The simulation results are categorised into two types: single-variable 
and combined-variable analyses. In the single-variable analysis, one of 
the following parameters – electrode area, gas flow rate, CL thickness, or 
GDL porosity – is selected as the variable, while the other parameters 
remain constant. Detailed parameters, settings, and conditions in the 
simulationsare summarized in Tables S1 and S2, Supporting Informa-
tion. In contrast, for combined-variable analysis, all four of these pa-
rameters are simultaneously varied. In this case, we conduct exhaustive 
sampling while ensuring that each parameter adheres to its respective 
conditions and equidistant sampling criteria. This comprehensive 
approach allows us to assess how different parameters impact the 
enlargement of the electrode. 

3.1. Univariate analysis 

The study primarily examines the variation in the average CO2 
concentration within the CL, serving as a pivotal evaluation metric in the 
electrode enlargement process. A lower average concentration indicates 
a higher CO2 consumption. The research delves into the significance of 
four parameters: electrode area, CL thickness, gas flow rate, and GDL 
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porosity, concerning CO2 conversion during the model calculation. The 
experimental design adheres to the single-variable approach, investi-
gating how various parameters influence the change of CO2 concentra-
tion within the device while ensuring reaction equilibrium is achieved. 
The gas is introduced into the device from below the GC, as illustrated in 
Fig. 1. The gas diffuses through the GDL, culminating in the establish-
ment of a localised region with a high concentration of CO2 at the inlet of 
the CL-GDL interface. When the electrode area is varied while the other 
parameters are kept constant, shown as the range of this high- 
concentration region corresponds to the region marked in red in 
Fig. S1. Nevertheless, the concentration within this region consistently 
maintains a higher value, typically within the range of 37–40 mol/m3, 
displaying a negligible decreasing trend. This phenomenon arises from 
the continuous supply of gas, which compensates for the consumed gas, 
a trend that becomes more pronounced when higher gas flow rates are 
employed. Consequently, when calculating the average CO2 concentra-
tion within the CL, these results become diluted by the additional gas, 
thereby influencing the assessment of the device’s CO2 consumption 
capability. To mitigate this error and enhance result accuracy, the CL’s 
thickness was divided evenly into three segments with identical thick-
nesses at the front end (proximate to the CL-GDL interface), middle 
section, and rear end (proximate to the CL-EC interface), as illustrated in 
Fig. S2. In order to provide a more precise representation of the device’s 
gas conversion capability, the foremost segment, which is particularly 
sensitive to reduction reactions, was selected as the primary focus for 
investigating the eCO2RR within the device. 

The primary parameter under investigation is the electrode area, 
which has been systematically evaluated across six gradient groups: 1, 
20, 40, 60, 80, and 100 cm2. Other key conditions were kept constant, 
including the CL thickness (20 μm), GDL porosity (0.8), and gas flow rate 
(15 mL/min) as outlined in Table S1. The alteration in electrode area is 
visually depicted by the height shift observed during the 2D simulation 
model (refer to Fig. S1). It’s noteworthy that the highest concentration 
of CO2 molar occurs at the surface of the CL adjacent to the gas inlet 
(Fig. S3), which serves as the primary diffusion center for gas transport. 
Conversely, the lowest CO2 concentration is observed at the surface of 
the EC-CL interface, with a concentration of 6.8 mol/m3. This suggests 
that unreacted CO2 may potentially dissolve in the liquid phase or 
obstruct pores on the surface of the EC-CL, hindering the formation of a 
three-phase interface and impeding the efficiency of the eCO2RR. 

The CO2 concentration at the front end, held at a consistent height, 
shows a clear trend: an increase in consumed CO2 with an enlarged 

electrode area, as shown in Fig. 2. This observation is consistent with the 
findings presented in Fig. S1, reinforcing the idea that a larger electrode 
area results in a lower CO2 concentration. However, it’s important to 
note that the lower gas flow rate provides inconclusive evidence 
regarding the CO2 consumption capacity of the enlarged electrode area. 
For further investigation, a gradient variation in gas flow rates was 
implemented. 

To explore the influence of CO2 flow rate within the cell, gas flow 
rates were set at 1, 20, 40, 60, 80, and 100 mL/min while maintaining 
the constant parameters outlined in Table S1. 

Increasing the gas flow rate, enhances the concentration of CO2 
within the cell, as shown in Fig. 3. Notably, The high concentration of 
CO2 stays more at 9 µm to the left of the CL-GDL interface, while the 
increase of gas flow rate will increase the CO2 concentration at the outlet 
side, so that the gas distribution inside the whole 9 µm-thickness CL 
tends to be homogeneous, which is able to improve the stability of the 
reaction inside the catalytic layer. Meanwhile, with the increase of gas 
flow rate, the concentration distribution of CO2 at 11 µm on the EC-CL 
side did not change significantly, and it was reported that the overall 
activity would no longer have a direct correlation with the CL thickness 
after increasing the CL thickness to more than 9 µm [39]. Therefore, a 
robust gas flow rate demands a minimum thickness for the CL. This is 
because an excessively high gas flow rate may lead to pore blockage, 
potentially compromising the generation of the phase interface essential 
for eCO2RR and favouring the dominance of the standard electro-
chemical reaction (RHE). As shown in Fig. S4, under unchanged basic 
parameters, the reaction at the front end of the CL has reached equi-
librium when the gas flow rate reaches 20 mL/min. In summary, the 
enlarged electrode’s capability to accommodate higher gas flows can 
potentially lead to a reduction in the minimum CL thickness required for 
optimal performance. 

Initially a small sized electrode area of 1.95 cm2 was selected to 
study the flow rate influence, but the effect was minor. Then we 
explored the impact of the varied flow rate towards performance with 
different electrode areas. 6 different electrode areas exhibiting a 
gradient increase and 12 diverse flow rates were systematically chosen 
for this investigation. 

The gradient flow rate impacts largely on the CO2 molar concertation 
with different electrode areas, as shown in Fig. 4. To ensure the neces-
sary molar concentration of CO2 along the CL, each electrode area must 
satisfy the minimum flow rate necessary to meet the reaction’s demands. 
For example, an electrode area of 20 cm2 needs a maximum flow rate of 

Fig. 2. Under various electrode areas, the distribution of CO2 concentration at the internal front end of the CL in the same region (y-CL = 10000 μm). Electrode area: 
(a) 1 cm2; (b) 20 cm2; (c) 40 cm2; (d) 60 cm2; (e) 80 cm2; (f) 100 cm2. 
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approximately 35 mL/min. Beyond this point, exceeding 35 mL/min 
leads to negligible alterations in the average concentration within the 
CL, signifying the attainment of the upper consumption limit. However, 
with the expansion of the electrode area, the flow rate exhibits a gradual 
increase, reaching up to 100 mL/min (Refer to Table S3 for detailed 
data). Although the slope of the curve remains nonzero, the concen-
tration on the frontal side remains above zero, indicating an inadequate 
supply of CO2. Considering the accuracy of the COMSOL modelling, 
along with gas recycling and recovery considerations, we have selected 
100 mL/min as the maximum flow rate for larger electrode areas. 

The thickness of the CL was chosen as one of the variables. Fig. S5 
shows the CO2 concentration distribution of the CL, and since the CO2 
molar concentration at the back of the electrode remains almost un-
changed, the average concentrations of the front, middle and back parts 
were analysed separately (Fig. S6). The results indicate that when the 
catalyst thickness reaches 25 μm, its capacity to store CO2 at the rear 
reaches its maximum. Under the constraint of limited CO2 availability, 

as the thickness increases, the CO2 at the front end is continually 
consumed. 

The specific gradient design is shown in Fig. 5(a–f), because the re-
action in the CL reaches equilibrium, it is necessary to ensure that its 
thickness reaches at least 9 μm, this solves the problem that EC-CL does 
not produce a large number of bubbles that block the catalyst particles. 
We analysed the molar concertation at the thickness of the CL into 5, 15, 
25, 35, 45 and 55 μm, this is to explores the optimal thickness. Fig. 5(a) 
shows a very high CO2 molar concentration within the CL, due to the 
thick is only 5 μm that is too thin for our analysis. Gas entering from the 
CL-GDL interface undergoes diffusion in the direction across and along 
the channel, and the rate of this diffusion is strongly correlated with the 
gas flow rate. We controlled the gas flow rate to be constant and diffused 
from the gas chamber into the CL at a flow rate of 15 ml/min. Due to the 
thin thickness of the catalytic layer, the flow rate of the gas is greater 
than its own diffusion rate, so a gradient concentration change along the 
channel direction is produced, as shown in Fig. 5(a). 

The overall concentration of the CL decreases significantly with 
increasing thickness (>9 μm), indicating ongoing CO2 consumption at 
the front end. Increasing the CL thickness changes the gas diffusion rate, 
with the slope of the gas diffusion concentration distribution tending to 
increase from 0◦, as seen in Fig. 5(b)(c). In Fig. 5(d–f), the molar con-
centration of CO2 at the EC-CL interface gradually approaches 0 mol/m3 

as the thickness increases beyond 25 μm. This change ensures maximum 
CO2 supply at the rear and shifts the slope of the gas diffusion concen-
tration distribution from 0◦ to 90◦ at the EC-CL side, gradually achieving 
uniform diffusion across the channel. Two primary reasons contribute to 
this phenomenon: firstly, the increased thickness creates a longer mass 
transfer distance for CO2 diffusion from rear to front, reducing the 
impact of CO2 mass transfer; secondly, the increased thickness provides 
a larger effective reaction area, promoting more complete CO2 
consumption. 

As the porosity of the GDL changes, the diffusion rate of gas increases 
within the diffusion layer when porosity is increased. This enhanced 
diffusion rate facilitates a greater number of CO2 molecules coming into 
contact with the catalyst surface, thereby accelerating the reaction rate 
[40]. On the other hand, an interesting phenomenon is observed, 
whereby the gas concentration within the catalyst CL remains nearly 
constant for different porosities, as shown in Fig. S7. Based on the ex-
periments and related simulations by Sinha and colleagues [41], it was 
shown that Darcy’s law, which has a linear relationship between the 
pressure gradient and flow rate at low flow rates, may be invalid. 

Fig. 3. Distribution of CO2 concentration within the CL under different gas flow rates. The various gas flow rates are as follows: (a) 1 mL/min; (b) 20 mL/min; (c) 40 
mL/min; (d) 60 mL/min; (e) 80 mL/min; (f) 100 mL/min. 

Fig. 4. Average CO2 concentration distribution in the CL for electrode areas of 
1, 20, 40, 60, 80 and 100 cm2 corresponding to gas flow rates from 0 to 100 
mL/min. 
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When four individual variables are simultaneously varied from six 
gradients for each variable, the CO2 molar concentration results are 
illustrated in Fig. 6 (Refer to Table S4 for detailed data).It is evident that 
a sole modification in electrode area and CL thickness has a substantial 
impact on enlargement. In contrast, variations in the GDL porosity and 
gas flow rate exclusively facilitate enlargement in Case 1 and Case 2. 

3.2. Multivariate analysis 

We initiated the process by filtering a dataset consisting of 8000 
valid nodes. We employed a fixed step size within an established 
parameter range for this purpose. Subsequently, we utilised LHS method 
to select 800 nodes for further analysis. These nodes were then applied 
within the COMSOL model, with CO2 concentration as the output vari-
able (Refer to Table S5 for detailed data). 

The dataset underwent normalisation and was then input into three 
distinct ML algorithms: RNN-LSTM, RF, and SVM. The process of ma-
chine learning algorithms is aided by PythonCharm. The ratio of training 

to testing data was set at 8:2, encompassing a total of 30 degrees of 
freedom. This deliberate choice aimed to enhance the model’s stochas-
ticity while mitigating potential concerns related to overfitting. As well 
as hyper-parameter tuning of different algorithms to better adapt the 
algorithms to a particular dataset or problem and to improve their 
performance in terms of prediction accuracy and generalisation ability 
(Tables S6–S8). 

To ensure the reliability of the results and minimize the impact of 
chance, we conducted cross-validation for the RNN and SVM algorithms. 
Given that the RF algorithm is inherently capable of avoiding overfitting 
issues, we employed a randomized validation approach. We executed 
ten rounds of repeated operations for each algorithm. Subsequently, the 
results were aggregated to compute both the average CO2 concentration 
and the root mean square error coefficient (Figs. S8–S10). 

The accuracy rates of 95.79 % for RNN, 98.67 % for RF, and 86.24 % 
for SVM algorithms are shown in Fig. 7, respectively detailed calculation 
data is listed in Table S9. The RF algorithm has good stability, which 
remains at 98.6 ± 0.2 %, with small fluctuations. On the contrary, 
although the magnitude of parameter differences in RNN is also small, 
the prediction results are 3 % lower compared to RF algorithm, on the 
other hand, its prediction accuracy is lower than that of RF algorithm, so 
we did not use it for modelling. The SVM algorithm has a large 

Fig. 5. Distribution of CO2 concentration at the internal front end of the CL under various CL thicknesses. CL thickness: (a) 5 μm; (b) 15 μm; (c) 25 μm; (d) 35 μm; (e) 
45 μm; (f) 55 μm. 

Fig. 6. Single variable & mean concentration at the front end of the CL (Case: 
grouped gradient), which includes electrode area (1 cm2; 20 cm2; 40 cm2; 60 
cm2; 80 cm2; 100 cm2), CL thickness (5 μm; 15 μm; 25 μm; 35 μm; 45 μm; 55 
μm.), GDL porosity (0.4; 0.5; 0.6; 0.7; 0.8; 0.9), and gas flow (1 mL/min; 20 
mL/min; 40 mL/min; 60 mL/min; 80 mL/min; 100 mL/min.). Fig. 7. R2 and RMSE based on the three algorithms RNN, RF and SVM.  
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magnitude of fluctuation, and the difference between the maximum and 
minimum values is as high as 8 %, and the deviation of its data from the 
results of multiple calculations is too large, and the magnitude of fluc-
tuation is much larger than that of RNN and RF algorithms. However, R2 

is not the only criterion for evaluation, and the RMSE of the three 
different algorithms is also evaluated, and the evaluation shows that the 
RMSE of the three algorithms is less than 0.05, indicating that the pre-
diction results of these three algorithms have small errors, but the error 
results of RNN, RF and SVM algorithms are 0.0351, 0.0006 and 0.0038 
(Table S9). The advantage of RF over the other two algorithms is not 
only in the higher accuracy, but also in the small error value. The MAE 
and MAPE are also considered for a more comprehensive evaluation of 
the algorithm results, and it is also verified that the RF algorithm has a 
higher degree of fit with the physical model (Table S10). Feature 
importance analysis is important for the validation of machine learning 
data, it helps to analyse and understand the degree of influence of 
different features in the dataset on the target variables, and to analyse 
the weights of key and secondary variables. Fig. S11 displays the 
importance of the four variable factors obtained for CO2 concentration. 
It found that the thickness, electrode area and gas flow rate had signif-
icant impact to the results in the model, but the impact from porosity can 
be neglected. The feature importance results agree well with simulation 
results of the single variable, demonstrating that the algorithm performs 
well. In addition, substituting the data with ML inverse prediction into 
the original model, comparing the prediction and simulation results of 
the data-driven surrogate model, and the relative error is 0.32 (as shown 
in Table S11), indicating a strong correlation between modelling and 
simulation. 

The CO2 molar concentration along the CL of Case I-IV in relation to 
the four individual variables: electrode area, CL thickness, GDL porosity, 
and gas flow, is shown in Fig. 8(a). While maintaining the baseline pa-
rameters, the specific values for these individual variable parameters 
corresponding to each optimal outcome are as follows: electrode area: 1 
cm2, CL: 55 μm, gas porosity: 0.8, gas flow: 20 mL/min (detailed data-
sets can be found in Table S12). Notably, the concentration distribution 
of CO2 within the CL in Case II is significantly lower when compared to 
Case I, Case III, and Case IV. This suggests that alterations in the the CL 
thickness, as a single variable, exert a more substantial influence on the 
CO2 conversion within the entire device. In contrast, Case V, incorpo-
rating multiple variables, exhibits a lower average CO2 concentration 
compared to the scenario with a single variable. The electrode area and 
the thickness of the catalytic layer play a decisive role in determining the 
overall concentration, and the variation of these two parameters leads to 
a larger reaction space for the incoming CO2, which increases the active 
area of the reaction, and the sufficient consumption is based on the 
prerequisite of a guaranteed supply of CO2 to prevent the error of too 
low a concentration of CO2, whereas the size of the porosity directly 

determines the mass transfer path of the CO2 to the surface of the re-
action. The case with multiple variables V takes into account the in-
teractions between the above four parameters to show a superior 
average CO2 concentration compared to the case with a single variable. 

When employing multiple variables, Fig. 8(b) shows the lowest CO2 
molar concentration distribution within the CL(please see Table S13 for 
details regarding the optimal parameters for the 5 groups). This 
approach maintains an average CO2 concentration difference of 
approximately 1 mol/m3 for the scaling-up process, which falls well 
within the acceptable range. It’s worth mentioning that although A1 
yields the lowest average CO2 molar concentration, an electrode area of 
1 cm2 is much inadequate for industrial production. 

The next step is to find the optimal parameter combinations for A1, 
A37, A55, A73 and A100 where were predicted using the RF algorithm 
we developed with the detailed parameter combinations shown in 
Table S13. Substituting the parameters into the physical model for 
calculation, yielded the conversion efficiencies of 97.6 %, 96.1 %, 96.2 
%, 96.0 % and 97.7 % for the five combinations. Results show the ac-
curacy can be maintained at 96.7 ± 0.94 %, indicating that the pre-
diction result for large sized reactor is meaningful. Meanwhile, in the 
electrode enlargement study, the gas flow rate should be increased from 
19 mL/min to 91 mL/min when the electrode area is expended from 1 to 
100 cm2. The thickness of the CL is chosen to ensure the maximum value 
of 73 μm that can be achieved under the accuracy of the physical model, 
and the porosity is chosen to be 0.8, so that such combinations of vari-
ations can keep a high conversion throughout the enlargement process. 

4. Conclusion 

The effect of four key variables, namely electrode area, CL thickness, 
GDL porosity, and gas flow, towards CO2 molar concentration along the 
CL in both longitudinal and transverse dimensions are studied in both 
single variable and combined multiple variable models. RF ML algo-
rithm was used as the most suitable method for developing a 2D COM-
SOL Multiphysics model for scale-up investigation. Low CO2 molar 
concentration within an enlarged electrode area was not solely 
responsible for a complete reactant consumption; it was also related to 
CO2 supply insufficiency due to the bigger electrode area’s size, longi-
tudinal diffusion, and insufficient gas flow. The CL’s thickness was found 
to have a significant impact on CO2 amount and bubble generation at the 
EC-CL interface, with optimal thickness identified as 73 μm. The influ-
ence of GDL porosity was less important due to a trade-off between gas 
quantity and equilibrium concentration. Simultaneously considering 
these four variables, LHS was applied for data collection and selection, 
and the RF showed excellent results of R2 and RMSE values of 98.67 %, 
and 0.0006, respectively. This data-driven model met experimental re-
quirements while significantly reducing computational time and costs 

Fig. 8. (a) Cases I–IV: single-variable minimum average concentration values (electrode area, CL thickness, GDL porosity, gas flow rate); Case V: multivariate 
combination of AI-calculated minimum average concentration values; (b) Comparison of predicted and true multivariate minimum average concentration values for 
electrode areas of 1, 37, 55, 73, and 100 cm2. 
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for scaling up. We applied this model to a 100 cm2 electrode area reactor 
and received result of high and consistent CO2 conversion efficiency of 
96.7 ± 0.94 %, at a GDL porosity of 0.8 and a flow rate of 91 mL/min. 
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