
Knowledge-Based Systems 300 (2024) 112219

A
0
n

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

LLM-Commentator : Novel fine-tuning strategies of large language models for
automatic commentary generation using football event data
Alec Cook, Oktay Karakuş ∗

School of Computer Science and Informatics, Cardiff University, Abacws, Senghennydd Road, Cardiff, CF24 4AG, UK

A R T I C L E I N F O

Keywords:
Large language models
Natural language processing
Football
Commentary generation
Fine-tuning

A B S T R A C T

Real-time commentary on football matches is a challenging task that requires precise and coherent descriptions
of events as they unfold. Traditional methods often fall short in providing timely and accurate insights into
the game. This study aims to explore the utilisation of innovative Large language model (LLM) techniques
to develop an adept language model – dubbed LLM-Commentator – that can generate (near-) real-time
commentary on football matches. The goal is to demonstrate that open-source language models, when fine-
tuned with domain-specific data on consumer-grade hardware, can accurately depict football events from
raw match data. Three distinct training strategies are employed to fine-tune the language models, addressing
various challenges encountered in generating real-time football commentary. The study evaluates the efficacy
of these models in producing coherent and accurate descriptions of unseen football events. Among the
three strategies proposed, the Mixed Immediately Model emerges as particularly efficient in learning and
adeptly handling challenging workloads. This suggests a promising future for simultaneous multi-task learning
with compact, open-source language models in the context of real-time sports commentary. Additionally,
the study highlights the practicality of utilising consumer-grade hardware for fine-tuning language models
with specialised knowledge. The findings underscore the importance of customising training approaches and
ensuring well-balanced datasets when fine-tuning language models for specific tasks. Moreover, they serve as a
practical guide for broader accessibility to large language models and significantly contribute to the application
of NLP in sports journalism, enabling more insightful and engaging real-time commentary on football matches.
1. Introduction

Football has emerged as the most popular sport in today’s globalised
world [1]. It surpasses other sports in terms of viewership, participa-
tion, following, and cultural importance. The allure of football lies not
just in the moments of individual or team glory that are woven into
the fabric of the game, but in the overarching narratives of triumph,
ecstasy, sorrow, and even tragedy. These moments and stories are
brought to life for those not present by the power of commentary.

Iconic moments in football history are often remembered by how
they were commented on. From Martin Tyler’s emotional outburst
when Manchester City won the 2011/12 Premier League, to Kenneth
Wolstenholme’s narration of England winning the 1966 World Cup,
the commentary is intrinsically linked with the events that are being
described.

Commentary and technology have shared a historical connection
since the early days of radio, evolving from the commentator’s voice
as the sole link between fans and distant matches to the seamless
integration of visual and audio experiences in television broadcasts [2].
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In the contemporary digital era, there is a growing demand for football
content, with the European football market expanding by 50% in
the last decade [3], and the global market projected to grow by 4%
annually over the next five years [4].

The changing audience habits, characterised by a shift towards
digital consumption over traditional live TV, present a formidable chal-
lenge for clubs, especially those operating in lower tiers with limited
resources to undergo a digital transformation [5]. However, the recent
triumph of Wrexham AFC underscores the potential benefits for smaller
clubs in expanding their audience reach through consistent content
creation, resulting in amplified stadium attendance, heightened social
media interactions, and increased participation in match commen-
tary [6]. In this context, digital interaction with the fans (via automated
commentary or social media posts) offers an efficient and cost-effective
means for clubs to engage fans [7], and enhance their viewing experi-
ence amidst the evolving landscape of digital sports consumption and
computational sports journalism. By leveraging automated commentary
technology, small clubs and limited-resource teams can bridge the gap
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between digital and traditional media platforms, thereby empowering
themselves to thrive in an increasingly digital-centric environment
while maximising fan engagement and brand exposure.

The auto-generation of football commentary presents several signif-
icant challenges, with coherence and accuracy being at the forefront.
Ensuring that the generated commentary flows naturally and accu-
rately depicts the events of the match is crucial for maintaining the
engagement and trust of the audience. However, achieving coherence
and accuracy in automated commentary is inherently challenging due
to the complexity of natural language and the nuanced nature of
football events. In social chat-bot development research, a comparable
issue has been encountered historically, wherein the rapid evolution of
individualised traits among diverse users has hindered the progress of
research in this area. This ongoing challenge remains a prominent focus
in the field of text generation research [8].

Domain specificity poses another formidable challenge in the auto-
generation of football commentary. Football matches are rich in domain
specific knowledge, including player names, team tactics, match statis-
tics, and historical context. To generate commentary that resonates
with football fans, automated systems must possess a deep under-
standing of the sport and its intricacies. Incorporating this domain-
specific knowledge into the commentary generation process is essential
for producing commentary that is relevant, insightful, and engaging.
Handling diverse events in real-time adds further complexity to the
auto-generation of football commentary. Football matches are dynamic
and unpredictable, with a wide range of events occurring throughout,
including goals, fouls, substitutions, tactical changes, and momentum
shifts. Generating coherent and accurate commentary that captures
the significance of each event requires robust algorithms capable of
detecting, analysing, and contextualising diverse types of events in
real time. Moreover, different events may require different linguistic
expressions and levels of detail, further complicating the commentary
generation process.

In the last couple of years, large language models (LLMs) have
demonstrated remarkable capabilities in understanding and generating
natural language, making them a promising solution for addressing
the challenges of auto-generating football commentary. Their ability
to process vast amounts of text data and learn intricate language
patterns enables them to capture the nuances of football events, main-
tain coherence, and provide accurate insights. Recent studies, such as
Radford et al. [9] and Brown et al. [10], showcase the potential of
large language models in various natural language understanding and
generation tasks, suggesting their applicability in the context of football
commentary generation.

Particularly, a large language model (LLM) is an artificial neural net-
work that has been designed to understand, generate, and manipulate
human language [11]. LLMs are characterised by their:

1. Architecture: Most modern LLMs are built upon the transformer
architecture, which significantly enhances language processing
capabilities [12].

2. Scale: GPT-3 was trained on 175 billion parameters [13].
3. Transfer learning capability: LLMs can be fine-tuned to fit a

specific task, demonstrating remarkable versatility [14].

The release of ChatGPT in November 2022 marked a significant ad-
ancement in LLM sophistication and was followed by the widespread
vailability of Meta’s LLaMA in February 2023 [15]. LLaMA’s impact is
oteworthy on multiple fronts: firstly, Meta’s 13B model outperforms
PT-3 in reasoning tasks with fewer parameters [15]. Secondly, its

maller models demonstrate the ability to efficiently operate on a single
onsumer-grade GPU, enhancing accessibility to advanced LLMs [16].
astly, the open-source nature of LLaMA, freely available for download
nd experimentation, has produced innovation in the field.

This surge in creative application is evident in the enthusiast com-
unity’s rapid expansion of the technology’s uses. For instance, Hug-
2

ingFace, a popular machine learning platform, now hosts nearly
16,000 text generation models, of which 4000 are derivatives of LLaMA
[17], highlighting the exponential growth in the usage and experimen-
tation of large language models.

When considering the task of generating commentary, LLMs offer
a promising solution, yet they are not without their challenges. Ob-
taining domain-specific data of high quality for fine-tuning LLMs can
be difficult, especially given the limited size and diversity of football
commentary datasets. Furthermore, identifying the most suitable fine-
tuning strategies for LLMs in the context of football commentary gener-
ation necessitates extensive experimentation and optimisation. Address-
ing these issues entails significant demands for data, computational
resources, and financial investment.

The potential implications of effectively fine-tuning a large language
model (LLM) for generating football commentary using consumer-grade
hardware are extensive and multifaceted. Introducing an AI-driven
football commentator could substantially augment the accessibility of
the sport within the sports industry. Prior efforts have explored fine-
tuning LLMs to support multilingual capabilities [18], and supported
computer vision machine learning research for example on Norwe-
gian sign language [19]. While the former study primarily focuses
on English-language commentary, the outlined methodology holds
promise for potential adaptation to minority, lesser-known, or even
endangered languages, thereby extending the global reach of the sport.

Smaller football clubs stand to benefit. Consider Chelmsford City FC,
playing in the English National League South division. An examination
of their official website shows that supporters currently have no way
of following live text commentary for their team, a predicament shared
by most fans in the depths of the English league system. Enhanc-
ing content offerings and match coverage has consistently proven to
amplify the growth of smaller clubs [20]. The primary reason why
these clubs do not offer live match coverage is mainly attributed to
financial constraints, as most clubs at this level typically operate with
an annual budget shortfall of nearly £700,000 [21]. An automated
football commentator presents a viable, cost-effective solution for these
clubs to enhance fan engagement and expand their audience.

The successful fine-tuning of an LLM on consumer-grade hardware
demonstrated in the context of football commentary generation, ex-
tends beyond benefits for the sports industry. This achievement holds
broader implications for AI research and development, particularly in
democratising access to LLMs. While this is not the first attempt to fine-
tune LLMs without relying on supercomputers or cloud infrastructure,
this paper aims to serve as a comprehensive guide for enthusiasts,
independent researchers, and smaller organisations interested in cre-
ating their models. By showcasing the feasibility of locally training
sophisticated LLMs on a single GPU accessible to all consumers, this
paper encourages grassroots innovation and emphasises the potential
for broader applications beyond football commentary generation. The
primary excitement lies in the democratisation of LLM usage and
training, which could spark widespread curiosity about the diverse
capabilities of locally trained models. The goal is to inspire a wave of
innovation and exploration in the field of AI.

This paper presents a novel approach, termed LLM-Commentator,
in the field of computer science research. Our innovation involves
fine-tuning an open-source LLM on standard consumer-grade hard-
ware to develop an AI football commentator. Our primary objective
is to create a model capable of providing accurate match event nar-
rations from raw sporting data, thereby enabling clubs to engage
with fans worldwide at reduced costs and facilitating comprehensive
match analyses irrespective of geographical limitations. Additionally,
by leveraging consumer-grade hardware, we aim to not only pioneer a
cost-effective AI-driven sports commentary solution but also fully ex-
plore the immense potential within the realm of LLMs in this emerging
era. Specifically, we introduce three novel fine-tuning models – Layered
(LM), Mixed Immediately (MIM), and Mixed Sequentially (MSM) –
to fine-tune the Llama 7B LLM using two raw football commentary

datasets. Each of these models addresses significant challenges in the
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literature surrounding fine-tuning LLMs, such as catastrophic forget-
ting. We evaluate the performance of these models across various
scenarios using error metrics such as Precision, Recall, and Rouge
Score. Among the proposed strategies, the Mixed Immediately Model
demonstrates notable efficiency in learning with a 0.91 𝐹1 score whilst
preventing catastrophic forgetting and effectively managing complex
tasks involved in generating automated football commentary data.

The novel contributions of this paper include:

• Introduction of the LLM-Commentator, a pioneering approach to
AI football commentary through fine-tuning of open-source LLMs
on consumer-grade hardware.

• Advancement of previous methodologies by proposing innovative
fine-tuning strategies, including LM, MIM, and MSM models,
aimed at enhancing the base model’s behaviour, capabilities, and
learning rate.

• With the application of the suggested fine-tuning methodologies,
the LLM-Commentator can be made available as an AI football
commentary tool on standard consumer-grade hardware.

• Stand-alone testing of each fine-tuning approach to comprehen-
sively understand its impact on the model’s performance.

• Comprehensive comparative analysis of the outcomes from the
fine-tuning processes, providing insights into the effectiveness of
each strategy in crafting an adept football commentary model.

The rest of the paper is organised as follows: The paper begins
with a thorough examination of existing literature, with a particular
focus on previous attempts to create an AI football commentator and
recent advancements in the field, outlined in Section 2. It then pro-
ceeds to explore the methodologies utilised for fine-tuning, covering
topics such as data preprocessing in Section 3, whilst detailing fine-
tuning strategies, encountered challenges, and testing procedures in
Section 4. Subsequently, the paper presents the results derived from
the training and testing of the proposed fine-tuning models in Section 5.
The subsequent discussion in Section 6 analyzes the findings, providing
an assessment of the various fine-tuning strategies employed. Finally,
Section 7 concludes the paper by summarising its key points.

2. Related works

2.1. AI commentators

The first attempts to create an automated football commentator
took place at the Robot World Cup (RoboCup) in 1997. Created to
spur innovative research in robotics and AI, the RoboCup held football
competitions in three formats: a simulation league, a small-sized robot
league, and a medium-sized robot league [22]. Of particular interest
to this research was the scientific challenge award introduced in the
1998 RoboCup. At the 1998 RoboCup, three different research groups
introduced three automated football commentators [22]. These systems
were MIKE [23] and Rocco [24], two data-to-text models, and Byrne,
an animated talking head model [25].

MIKE relies on being fed a continuous stream of high-quality data
every 100 ms from a server that records the robot participants [23].
This data is interpreted by ’analyser modules’ to detect specific game
events, such as passes and shots. These modules process each event as
a ‘proposition’, characterised by a tag and an attribute. To illustrate,
a pass executed by player 5 is denoted as ’PASS 5’, where ‘PASS’
is the tag, and ‘5’ is the attribute. MIKE’s commentary generation is
contingent upon an expansive inventory of remarks corresponding to
different events. Comments are assigned an importance score which
deprecates over time [26]. MIKE then chooses events with the highest
scores to output. MIKE was a ground-breaking model for its time but is
now extremely outdated in its methods and processes. Its reliance on
a game log to provide data to recognise events may not be feasible for
human games. Output is a very simple description of basic play (see
3

Fig. 1(a)).
Similar to MIKE, Rocco receives granular game data, like player
locations and ball orientation, directly from a server [24]. Rocco’s
ability to transform this raw data into a 2D geometric representation of
the ongoing game set it apart at the time. Movements observed within
this geometric model equate to predefined definitions, allowing Rocco
to recognise specific game events. The system then categorises these
events based on a combination of their importance and the elapsed
time since they occurred. Language generation in Rocco is rooted in
a template-based system. Depending on the nature and context of
the game event, specific templates, comprising strings and variables,
are chosen. These templates are populated with the most up-to-date
game data, ensuring the commentary is current and relevant. The tem-
plate selection process weighs the event type, specificity, and desired
commentary length. While Rocco was groundbreaking for its era, its
template-driven approach to language generation is now considered
archaic (see Fig. 1(b)).

Chen and Mooney use a RoboCup engine to simulate matches from
which their model receives data on events within the game [27]. Unlike
previous systems, their model determines which events to commentate
on based on the probability of whether a human commentator would
choose to highlight them, a method termed ’strategic generation’. This
is the first football commentary model to use machine-learning tech-
niques to train a language model with a dataset of human-produced
commentary. The model learns to attach meaning representations to
human commentary of events through a combination of KRISPER [28]
and WASP [29] learning algorithms. When confronted with a similar
event during a match, the model uses these learned associations to
generate natural language descriptions. However, a notable limitation
is its lack of contextual understanding, which the authors acknowl-
edge results in repetitive and occasionally oversimplified commentary.
When compared against human commentators using various evaluation
metrics, the model did not surpass human performance [27].

The model proposed by Taniguchi et al. [30] is another important
milestone, as it focuses on being able to describe key events during
a game, eschewing the play-by-play approach of previous models. The
model preprocesses events into 70 primary categories such as ‘pass’ and
’foul,’ and further classifies these into 298 subcategories like ’through
ball’ and ’long ball’. Events are assigned an attention score, which
the model uses to decide which moments warrant commentary. A
specialised gate mechanism further refines the model’s understanding
of the sequential nature of these events [31]. The model was trained
using Chainer, a deep learning framework, by utilising a corpus of
13,662 different pieces of commentary [32]. Templates with placehold-
ers are generated, which the model then populates with contextually
appropriate information [30]. The framework the model was built on
is now defunct, as the developer has shifted their focus to the PyTorch
framework [33]. The model is also prone to generating incorrect or
nonsensical descriptions of events (see Fig. 1(c)). To date though, this
remains the most impressive attempt to create an automated football
commentary language model.

Apart from the models reviewed above to the best of our knowledge,
there are no other significant attempts to produce a model capable of
generating football commentary based on match events. This gap is
particularly notable in the context of recent advancements in LLMs and
neural networks. Existing models, once pioneering, now appear obso-
lete due to their reliance on older technologies and limited processing
capabilities, resulting in commentary that often lacks depth, contextual
relevance, and accuracy.

This paper aims to bridge the research gap by building a model
that leverages advanced NLP frameworks, modern computing power,
and refined fine-tuning methods. These advancements enable a model
to provide full match coverage with accurate, meaningful, and infor-
mative descriptions of each event in a football match in a superior
way to these past projects. By doing so, this paper seeks to elevate
the standard of AI-generated sports commentary and align it with the

recent evolution in AI technology
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Fig. 1. AI commentator examples. (a) Examples of MIKE’s descriptions of game events [23]. (b) The Rocco system. Examples of language generation are given [24]. (c) Examples
of Taniguchi et al.’s model’s output. Compare human-produced commentary (ref.) with commentary produced by the first (1) and seventh (7’) iteration of the model [30].
2.2. Fine tuning

In 2011 and 2012, breakthroughs in deep learning training emerged
with DanNet and AlexNet [34], the latter being a pioneer in fully
leveraging the computational power of modern GPUs [35]. Initially
impactful in computer vision, these models paved the way for the
wider adoption of deep learning in NLP by addressing computation-
ally challenging problems. Their success inspired the development of
more sophisticated and efficient language models in NLP. The deep
learning revolution was fuelled further with the introduction of the
‘Transformer’ architecture [12]. Transformers revolutionised NLP and
other sequence-based tasks by enabling language models to train in a
parallel, and therefore more efficient, manner due to a ‘self-attention’
mechanism. This mechanism allows a model to weigh the importance
of different parts of the text, which strengthens its understanding of
context and the relationships between words [36]. Unlike previous ar-
chitectures that processed tasks sequentially, transformers can perform
multiple computations simultaneously. This parallel nature allows for
faster data throughput, meaning more data can be processed in less
time. This alleviated bottleneck issues that plagued earlier models and
contributed to much quicker training and fine-tuning runs.
4

Transfer learning, a concept borrowed from cognitive science [37],
became a central strategy in the training of language models after
the introduction of transformer architecture. This technique involves
refining a neural network on a specific task after pre-training on a
general task [38]. ULMFiT, released in 2018, was pivotal in demonstrat-
ing how pre-trained language models could be fine-tuned for specific
tasks with minimal data by effectively applying the principle of transfer
learning [39]. In the same vein, BERT [40], released in 2018, and
GPT-2 [9], released in 2019, both set new performance benchmarks by
utilising these new advances in model architecture, training techniques,
and transfer learning. These methods have become the standard for
modern large language models.

Current state-of-the-art models now employ sophisticated tech-
niques like few-shot and zero-shot learning, which can be seen as
extensions of transfer learning [41]. These techniques enable language
models, such as GPT-3, to learn a new task from a small number of
examples or none at all [10]. Additionally, meta-learning techniques
are being explored, where models ‘learn how to learn’ by teaching
themselves better learning algorithms [42].

This paper leverages breakthroughs in research by adopting a trans-
former architecture as the model’s backbone and utilising specialised
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libraries and frameworks designed to maximise its potential. The fine-
tuning strategies employed involve transfer-learning techniques by re-
fining a pre-trained, generalist base model for the specific task of
generating football commentary. Additionally, the paper delves into
few-shot and zero-shot learning, pushing the boundaries of AI efficiency
by achieving significant outcomes with minimal data, computing re-
sources, and training time. This exploration highlights the feasibility of
locally fine-tuning an LLM on domain knowledge, contributing to the
democratisation of advanced AI technologies.

2.3. LLMs

The last few years have seen dramatic improvements in the accessi-
bility and variability of LLMs. The memory requirements and resource
demands of deploying and running large language models have shrunk
rapidly, lighting a spark in NLP experimentation and innovation.

In June 2022, Meta AI introduced OPT (Open Pre-Trained Trans-
formers), a series of models designed to allow the research community
to freely experiment with LLMs [43]. This initiative departed from
the conventional practice of interacting with models through APIs,
providing researchers with hands-on experience with the raw code of
an LLM. OPT’s release facilitated insights into the challenges of LLM
training, fostering a collaborative response to longstanding issues and
emphasising the importance of community engagement in addressing
problems like loss spikes, hardware failures, and mid-training adjust-
ments [44]. In a similar spirit, BigScience released BLOOM in July
2022, extending public access to LLMs even further [45]. BLOOM
not only provided open access to anyone, researcher or not but also
offered direct access to the model through their HuggingFace page [45].
Additionally, BLOOM stood out by being trained in 46 different human
languages, contributing to the broader accessibility of LLM technology
for widespread research and experimentation.

This increasing trend of releasing more open, inclusive, and ac-
cessible language models reached a crescendo with the publishing of
LLaMA by Meta in February 2023. Comprising four different-sized
models, LLaMA was lightweight enough to run on consumer-grade
hardware [46], sophisticated enough to go toe-to-toe with GPT-3 [15],
and shapeable enough to be fine-tuned quickly and effectively [47].
The release of LLaMA ignited a huge upswing in interest and subsequent
experimentation with LLMs with many models being released in a short
amount of time that built upon LLaMA’s foundations.

Showcasing the potential of the LLaMA models, Alpaca, a fine-tuned
version of the LLaMA 7B model, was released a month later and proved
itself able to compete with the strongest proprietary models from
OpenAI [48]. Alpaca was fine-tuned using 52,000 instruction-following
examples that were generated by OpenAI’s Text-davinci-003 [48]. The
total development process cost around 600 dollars and took a couple of
weeks. The success of Alpaca has set a template for the current deluge
of fine-tuned, lightweight, and capable language models that are freely
available to anyone with an internet connection.

These recent developments have ushered in a new era of accessibil-
ity and flexibility in natural language processing. The recent democrati-
sation of LLMs, or the ability to operate these models locally, has
been instrumental in this paper. Without it, the feasibility of locally
running a sophisticated LLM, let alone training one to generate football
commentary, would have been a far more daunting, if not an imprac-
tical endeavour. The ability to not only access, but also modify the
architecture, weights, and parameters of modern LLMs has provided an
unprecedented opportunity to tailor a model that can understand and
articulate the flow of football matches.

2.4. Fine-tuning LLMs

Progress in deep-learning techniques and neural network under-
5

standing led to the increased sophistication of modern language mod-
els. The openness of organisations like BigScience and Meta put these
advancements in the hands of the public. However, training or fine-
tuning a model still requires prohibitively large computational re-
sources. For instance, a 7B model using float32 precision data types,
where 32 bits or 4 bytes are used to store one number, would ne-
cessitate a 28 GB GPU for fine-tuning [49]. Whilst most people could
now run inference on a language model locally, these hardware re-
quirements put the customisation of modern language models out of
reach.

That is until LoRA (Low-rank adaptation), a method stemming
from the PEFT (parameter efficient fine-tuning [50]) paradigm, was
introduced. LoRA focuses on updating a select subset of a pre-trained
model’s parameters to achieve the same result as training on all of the
model’s parameters [51]. In essence, the bulk of the original model
remains unmodified and new information is added separately to the
core store of knowledge.

This approach offers three primary advantages. Firstly, it reduces
the hardware memory requirements by approximately one-third [52].
Secondly, models fine-tuned with LoRA are less susceptible to catas-
trophic forgetting, a phenomenon where models forget previous in-
formation when learning new knowledge [53] since the foundational
knowledge embedded in the model remains intact. Finally, whilst the
hardware requirements are greatly downgraded, this technique retains
the effectiveness of a full fine-tuning of all of a model’s weights and
parameters [54].

Building upon LoRA, QLoRA (Quantised Low-Rank Adaptation) fur-
ther minimises the memory demands for fine-tuning LLMs [55]. LLMs
use various precision data types for storage. These precision types
usually store values in 32 and 16 bits respectively and are what makes
training a large language model prohibitively costly in terms of com-
puting power. An important trend in neural networks is quantisation, or
fitting more into less, where the memory needs of an LLM is reduced by
converting high-precision data types (float32) into low-precision data
types (float16) [56]. Quantisation allows less-capable GPUs and CPUs
to run the model, and even fine-tune it, in its quantised state [57].
The trade-off has traditionally been that you get a worse model, as
some of the model’s original performance is lost in the quantisation
process [58], and there is a drop in the efficacy of fine-tuning [59].

The QLoRA method allows for both quantisation of a model so that
it can fit on a consumer setup and an efficient and effective fine-tuning
of a quantised model. It does this by first quantising a model from
float32 to a new experimental data type: NormalFloat, or nf4, which
is a 4-bit precision data type, allowing it to be stored and run on less
capable GPUs [60]. Next, LoRA training is performed by converting a
model’s parameters back to float 32-bit precision. This is done because
to train LoRA adapters in float32, when training is most effective, the
model’s parameters must also be de-quantised to float32. Essentially,
QLoRA de-quantises the 4-bit elements of a model only when they are
needed for training, and then re-quantises these elements once they are
fine-tuned [61].

The result is a significant decrease in the memory needed to fine-
tune an LLM whilst retaining the effectiveness of non-quantised model
fine-tuning. The authors of the QLoRA method backed this up by
unveiling another camelid-themed language model: Guanaco. Guanaco
is a family of LLMs built upon the foundations of LLaMA, the biggest of
which is a 65B parameter model that was fine-tuned on a single 48 GB
GPU. The same model trained without QLoRA would have required
780 GB of GPU memory [55].

LoRA and QLoRA have effectively dismantled the final barrier that
once restricted the customisation and deployment of sophisticated
LLMs to those with access to high-end computational resources. By
drastically reducing the memory and hardware requirements needed
to fine-tune a large language model, these techniques enable the
capability to fine-tune an LLM locally, thus serving as the crucial final
piece in realising the feasibility of this paper. These methods enable

anybody to now easily use, train, and deploy their own fully customised
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LLM by just using their local machine. We make full use of these
modern techniques by employing QLoRA to conduct the fine-tuning of
the three models, demonstrating the practicality and accessibility of
advanced NLP models in a more resource-constrained environment.

3. Data

When fine-tuning large language models, the calibre and volume of
the dataset are of paramount importance. The efficacy and accuracy of
the final model are intrinsically linked to the quality of the data it is
trained on [62]. For this paper, the selection of datasets was guided by
three essential criteria to ensure their utility in achieving the paper’s
goals.

First, it must include enough examples of all the events that could
take place in a football game, or at least enough events to give a
satisfactory level of coverage. Without this, the final model could not
hope to be used in real-world applications. Key events include goals,
attempts, cards, and fouls, as they make up the majority of a football
game’s narrative.

Second, the dataset must include the raw details of each event. This
includes specifics such as the pitch location, player names, and the
nature of each event. Training the model on data with this level of
granularity is crucial for it to grasp the intricate context surrounding
each event. Understanding these fine details is imperative for the model
to accurately interpret and process the dynamics of a football match.

Finally, this granular event data must be coupled with correspond-
ing natural language descriptions of these events. By doing so, the
model is trained to draw meaningful connections between the raw data
of match events and their narrative descriptions. This enables the model
to generate its own accurate and contextually relevant descriptions
when confronted with new, previously unseen football events.

Despite extensive research, just two datasets were found that match
these criteria:

1. An English football dataset: Sourced from the blog of Chris
Love, a data scientist, this dataset exclusively covers the top
four leagues of the English football system during the 2015/2016
season [63]. It was created by web-scraping BBC football com-
mentary and pairing the commentary with event data from Opta,
a large sports analytics company.

2. A European football dataset: Located on Kaggle, this dataset
contains data from five major European leagues spanning the
seasons from 2011/12 to 2016/17 [64]. Similar to the English
dataset, it provides a play-by-play account of matches, provid-
ing the details of hundreds of thousands of events and their
corresponding descriptions.

Events in the datasets are separated into seven discrete categories,
ith a varied quantity of each presented in Table 1. There are several
ther categories included in the datasets, such as penalties, handballs,
nd own goals. However, the number of occurrences for these events is
xtremely small compared to the categories shown in Table 1, and there
s a risk that the models would not be able to effectively learn from
he small number of samples. Ultimately, these events are excluded
rom the training process as a balance needs to be struck between
omprehensive event coverage, time to train the models, challenges
resented by data sparsity, and added value.

Both datasets required extensive pre-processing. While they cap-
ured similar football match events, their representation in the datasets
ignificantly differed. The English dataset provided information in a
irect, descriptive format. In contrast, the European dataset used coded
alues, necessitating its interpretation with an accompanying reference
see Table 2).

Fortunately, the datasets shared more similarities than they had
ifferences. Both broke match events down into discrete categories,
oth provided a granular examination of these events and crucially,
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Table 1
Data set quantitative details for each event.

Event English dataset European dataset Total

Attempts 23,473 204,694 228,167
Goals 3,311 24,446 27,757
Substitutions 6,496 51,738 58,234
Offsides 2,325 43,476 45,801
Cards 4,188 41,163 45,351
Corners 13,100 91,204 104,304
Fouls 25,304 232,925 258,229

Total 78,197 689,646 767,843

both included a relevant commentary of the event. Furthermore, com-
mentary patterns in both datasets were strikingly consistent. Having a
unified linguistic pattern throughout the entirety of the training data
makes it much easier for the model to learn to replicate these patterns
when generating its commentary. These patterns, encompassing ‘what’
happened, ‘who’ was involved, and ‘how’ it happened, can be seen with
this description of a goal:

Goal! Morton 1, Falkirk 1. Peter Macdonald (Morton)
header from very close range to the top left corner.
Assisted by Ross Forbes with a cross following a corner.

All of these qualities bode well for the fine-tuning. The model is
able to learn from repeatable patterns, it has all the individual pieces
of information needed to construct its commentary, and it will have a
lot of examples.

3.1. Preprocessing

To enhance the learning capabilities of the LLM for generating
commentary, the datasets from the two sources had to undergo stan-
dardisation to address challenges arising from discrepancies and errors.
Decisions were made on retaining essential information and maintain-
ing consistency in event descriptions across the training dataset. The
European dataset, due to its larger size, served as the gold standard,
shaping the style of the English dataset. To meet the requirements of
the QLoRA training, each event in the datasets was converted into a
JSONL object and grouped together with other similar events. Each
JSONL object comprises a prompt, containing granular event details,
and a reference, containing a natural language description of the event.
The primary objective during fine-tuning is for the LLM to learn how to
synthesise the various pieces of information in the prompt to generate
accurate event descriptions.

The process of pre-processing the datasets to construct the prompts
is thus: (1) filter each row of the dataset depending on what type of
event it describes, (2) save each cell in a row to a variable. For example,
the cell containing the player name is saved to a ‘Player’ variable. Most
of the data cleaning takes place in this step, (3) insert these variables
into a pre-prepared JSONL object. This moulds the raw information
in the dataset into a format more suitable for training. These objects
were different for each event, as each event had different categories of
information, and (4) save the JSONL object into an event-specific file
and continue filtering the rows in the source dataset.

There are several points to mention about this JSONL object; Struc-
ture: inspired by the QLoRA fine-tuning method this JSONL format
was chosen due to its success with the Guanaco chatbot models [65].
Training style: The model trains on raw, continuous text. It learns to
understand context, cues, and relationships within a flowing textual
space. This is different from methodologies such as sentiment analysis
where a sentence would have a corresponding sentiment label (positive,
negative, neutral) as its distinct output. Human and Assistant: A
‘‘Human’’ is designated to provide instructions on what to do and an
‘‘Assistant’’ to provide a concluding description of the event data that
has come before, the model learns a flow. Prefix symbols: Each piece
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Table 2
An attempt event in (left) the English, (right) the European datasets.
English Dataset European Dataset

Column name Example value Column name Example value

Half 2 id_odsp UFot0hit/

Home Team Crawley Town id_event UFot0hit1

Away Team Peterborough sort_order 1

Time 76:10:00 time 2

Extra Time (blank) text Attempt missed. Mladen
Petric (Hamburg)
left-footed shot from the
left side of the box is high
and wide to the left.
Assisted by Gokhan Tore.

Mins 76 event_type 1

Secs 10 event_type2 12

Decimal Mins 76.17 side 2

Decimal + Injury 76 event_team Hamburg SV

Mins + Injury 76 opponent Borussia Dortmund

Injury Secs 0 player Mladen Petric

Event Attempt missed. Gwion
Edwards (Crawley Town)
left footed shot from a
difficult angle and long
range on the left misses to
the right.

player2 (assister) Gokhan Tore

Special Event (blank) player_in N/A

What Attempt player_out N/A

Event Team Crawley Town shot_place 6

Vs Team Peterborough shot_outcome 2

Player Gwion Edwards is_goal 0

Result missed location 9

Pitch Position a difficult angle and long
range on the left

bodypart 2

Goal Placement to the right assist_method 1

Goal Following (blank) situation 1

Assist Method (blank) fast_break 0

Assist Following (blank)

Foot left footed

Shot Close No

Reason (blank)

Card Type (blank)

Home Score 2

Away Score 0

Home Players on 11

Away Players on 11

Match id 33 768 514

League League Cup

Date 11/08/2015

Pitch Position x/y 102.37/808.99
of event data has been flagged with a ‘###’ prefix to aid the model in
recognising the start and end of different pieces of information.

Post-fine-tuning, the model’s ability to interpret and respond to
similar prompts will be the key indicator of its learning efficacy.
When presented with a new prompt, structured in the same format but
containing information about an unseen match event, the model will
be expected to fill in the ‘### Assistant: ’ section itself. This is where
the model’s capability to generate a coherent and contextually accurate
description of the event will be demonstrated. Essentially, the model’s
response in this section serves as its interpretation and description of
the new event. This stage of the process also gives the chance to fix any
7

mistakes or inconsistencies in the data. The ultimate goal is to have a
dataset with a homogeneous format to give the LLM the best possible
prospects for learning.

Sometimes errors in the data were small and easily fixed. Errors
in this category included repetition of words in the example pieces of
commentary, extra spaces between words that were not needed, and
important information in the wrong cells in the dataset. Other times,
the errors were embedded deep in the dataset’s shortcomings and were
difficult to root out. For example, the European dataset did not have
separate columns for the home and away team’s scores. This posed a
significant challenge, especially given that the sample commentaries
often included the score in their event descriptions. Without addressing

this inconsistency, the model would lack the context for generating
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accurate score information and might even resort to fabricating scores
in its outputs

The solution to this, and other major problems, was to make heavy
use of regular expressions. In this case, a regular expression was used to
extract the home and away team from the example commentary. These
were then included in the prompts in a more beneficial manner for
the LLM as separate score variables. The importance of clean training
data cannot be overstated. It took many rounds of pre-processing and
a few worthless models to get the data into a state where fine-tuning
could take place in a healthy, structured, and consistent way. All of
the code related to pre-processing the data and creating the training
datasets can be found here: https://github.com/Iron-Chef/MascotAI/
tree/main/data_processing.

4. Proposed methodology

The primary aim of this paper is to create a language model ca-
pable of generating natural language descriptions of football match
events that surpass the capabilities of past models. To achieve this,
this paper employs a novel approach: training three distinct models,
each built upon the same base model, but utilising bespoke fine-tuning
methodologies. This strategy is designed to provide a comprehensive
understanding of how language models adapt to varied training envi-
ronments and approaches, thereby identifying the most efficient and
effective fine-tuning methodologies.

This paper also adopts a mixed-methods approach, combining both
quantitative and qualitative research methods [66]. This dual approach
is integral to the objectives, as it allows for a holistic evaluation:
quantitatively assessing the performance capabilities of the different
models through measurable metrics, and qualitatively evaluating their
real-world applicability and effectiveness through human interaction
and subjective judgement.

The above-mentioned objectives are combined under the umbrella
name - LLM-Commentator - which is the final proposed model of this
paper. LLM-Commentator consists of the stages given below:

1. First, a base model that is lightweight, capable, and customisable
will be selected.

• Lightweight: The entirety of LLM-Commentator’s train-
ing operations are confined to consumer-grade hardware
and the choice of a base model needs to reflect this.
An OpenLlama 7B model was chosen for several reasons.
Training rounds are quicker, which means results can be
seen sooner. A smaller model also allows for parallel tasks
to be done on the same computer due to the reduced
strain placed on the GPU. Finally, given the industry’s shift
towards smaller and more efficient LLMs, the focus on a 7B
model aimed to provide insights into the capabilities and
potentialities of contemporary compact models.

• Competent: The model should already have a high level of
base training, empirically validated through academic test-
ing. This maximises the effect of transfer learning during
fine-tuning.

• Tried and tested: Only models with a well-documented
academic and practical track record were considered. This
strategy ensured not only the reliability of our base but
also opened up a reservoir of pre-existing research and
resources.

2. The next step involves sourcing and preparing training data that
accurately represents real-world football match scenarios. The
data is meticulously cleaned and processed to ensure uniformity
and applicability, setting the stage for effective model training.

3. The model trains on this data, using it to generalise the task of
generating descriptions of events in a football. It learns, essen-
tially, to replicate the patterns and styles seen in the training
data.
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4. The fine-tuning process is iterative, taking place over multiple
rounds where the model’s generative capabilities are gradually
enhanced and its understanding of diverse football events is
expanded. Each round involves adjusting the model’s parameters
and introducing new events for the model to learn how to
describe.

5. Throughout this process, rigorous evaluations and testing are
conducted, both during and post-fine-tuning to monitor perfor-
mance improvements and the cumulative impact of the fine-
tuning. This helps analyse not only the model’s technical per-
formance but also its practical utility in real-world scenarios,
adhering to the mixed-methods approach of this study.

The above procedure is repeated three times, with the final goal
being the production of three distinct models, all trained to accomplish
the same task. The process differs for each model in the duration of
fine-tuning, the composition and proportion of training data used, and
the underlying theoretical approaches. These differences are designed
to explore various aspects of model training and performance, pro-
viding a comprehensive understanding of the most effective strategies
for generating natural language descriptions of football matches on
consumer-grade hardware.

Considering all factors, the base model selected for this paper is
OpenLLaMA 7B, a fully open-source version of the original LLaMA
model produced by Meta. This model satisfies the criteria for be-
ing sufficiently lightweight for consumer-grade hardware, while still
maintaining a high level of performance, as verified in academic stud-
ies [15]. There is also an extensive body of research and analysis
available on this model, with many recent LLMs using LLaMA as its
base. Importantly, this version of the model being open-sourced aligns
with this paper’s aim of opening up research and experimentation with
LLMs. We are especially thankful for being granted researcher access
by Meta, which gave us the rights to utilise the official model weights.

In fine-tuning, the primary objective is to expose a base model to
ample training data, shaping it to produce specific patterns, styles,
tones, or domain-specific knowledge [67]. This adjustment involves
modifying the model’s internal parameters, namely its weights and
biases, thereby influencing the recognition of patterns within a neural
network. Weights determine signal strength between neurons, impact-
ing the model’s pattern recognition abilities [68], while biases offer
flexibility in neuron activation, aiding the approximation of complex
functions for natural language generation [69]. The fine-tuned weights
and biases represent learned inclinations that guide the model in gen-
erating natural language descriptions. It is essential to note that the
model operates on probabilistic predictions and lacks true intelligence.
Instead, anticipates the most likely sequence of words [70]. Fine-tuning
aims to enhance the model’s likelihood of predicting the correct contin-
uation of a prompt, ultimately shaping its descriptions of events, such
as those in football. In this paper, we propose three models for fine-
tuning LLMs: (1) The Layered Model (LM), (2) The Mixed Sequentially
Model (MSM), and (3) The Mixed Immediately (MIM) model.

The decision to employ three fine-tuning models – LM, MSM, and
MIM – for football commentary generation stems from considerations
regarding (1) the characteristics of raw football data and (2) the
training aspects of large language models (LLMs). Firstly, raw football
data encompasses various events and shares similarities with natural
language characteristics, such as the processing of emotions. Each
event within this data necessitates careful consideration during the
training process, particularly in the fine-tuning of LLMs, as undertaken
in this study. When deliberating on potential approaches to fine-tuning
LLMs for raw football data, we categorised potential options into three
main strategies: (i) fine-tuning the selected LLM model by sequentially
assigning each event to different layers (LM), (ii) treating all events as a
collective batch and repetitively fine-tuning the model multiple times
(MIM), and (iii) organising events in a cascaded combination across
several layers (MSM). It is worth noting that alternative approaches

https://github.com/Iron-Chef/MascotAI/tree/main/data_processing
https://github.com/Iron-Chef/MascotAI/tree/main/data_processing
https://github.com/Iron-Chef/MascotAI/tree/main/data_processing
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Fig. 2. The layered model (LM) training process flow diagram.
to fine-tuning LLMs may exist beyond the three options proposed in
this paper. However, the authors contend that these three proposed
options adequately fulfil the objectives of this study, and readers are
encouraged to explore and expand upon these strategies further.

4.1. The layered model (LM)

4.1.1. Hypothesis
An LLM acquires proficiency in a layered fashion, achieving mastery

in discrete areas sequentially. It should focus on learning one type
of event at a time, thereby reducing the cognitive load and potential
confusion that might arise from simultaneous multi-event learning.
Mastery of one event is used as the foundation for learning the next
event, applying the concept of transfer learning.

4.1.2. Experimentation
The model undergoes a series of fine-tuning rounds, each dedicated

to learning how to describe a single event type. Training rounds utilise
all relevant data, before progressing to the next round. The training
continues in this manner until the model has been trained on all events.

4.1.3. The LM details
The Layered Model employs a sequential training approach, where

the base model is fine-tuned on the event datasets constructed during
the pre-processing stage. The model is trained exclusively on one event
dataset at a time, developing a separate level of proficiency in each
domain. By the end of the fine-tuning process, this separately learned
proficiency will form a unified level of competency that will allow the
model to generate descriptions for all events in a football match.

The datasets contain the maximum number of events in their cat-
egory to expose the model to all the possible scenarios that could
take place. For instance, the attempts events dataset contains 228,167
samples, and the model will be trained on every single one. Upon
completion of a training round, this refined model serves as the new
base for learning the next event dataset. In effect, domain-specific
knowledge will be ‘layered’ onto the base model in sequential training
iterations. This layering process is repeated until the model has been
fine-tuned on all event types.

This strategy is predicated on the hypothesis that expertise can
be compartmentalised and that a deep understanding of individual
elements can lead to comprehensive mastery when combined. This is
akin to how a human might learn a new topic, with Ericsson and Char-
ness, two psychologists, describing this technique in human experts as
‘‘deliberate practice’’ [71]. By isolating each event type during training,
the model is expected to develop a robust understanding of the different
types of information needed to describe each event before integrating
them into a cohesive whole. The training process is depicted in Fig. 2.

4.1.4. The LM - problems
This approach, however, is highly susceptible to catastrophic for-
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getting. To counter this, performance will be closely monitored. After
every iteration the model will be tested on the new knowledge it
has learnt, and all of the previous knowledge gained from previous
iterations. Should forgetting occur, ‘rehearsal’ rounds, as first described
by Robins, will be introduced, wherein the model revisits earlier data
to reinforce past learning [72].

The discrepancy in dataset sizes and the complexity of events intro-
duces a novel challenge as we approach the upcoming rehearsal rounds.
One striking observation is the considerable contrast between the size
of the fouls dataset and that of the goals dataset, alongside the notable
difference in the complexity of the samples within each. This scenario
exemplifies what is commonly referred to as an ‘‘imbalanced dataset’’,
a prevalent issue in data science, where crucial data points often tend
to be underrepresented [73].

Table 3 illustrates a comparative analysis delineating the distinc-
tions between two sample prompts drawn from each dataset. Notably,
the goal prompt manifests a richer content structure, encompassing 16
distinct pieces of information, in contrast to the 10 pieces found within
a foul prompt. Moreover, the goal prompt exhibits a significantly more
intricate narrative description.

An inherent risk lies in the potential inefficacy of rehearsal rounds
should all available data be indiscriminately utilised for every event.
Such an approach may inadvertently result in the model disproportion-
ately favouring simpler, more prevalent events, thereby hindering its
ability to discern the nuances of complex events effectively. A com-
plexity scoring system has been implemented to address this concern
wherein each event type is assigned a respective complexity score.
Specifically, attempts and goals are assigned a score of 3, cards receive
a score of 2, while the remaining four event types are assigned scores
of 1 each.

The complexity score of an event is determined based on several fac-
tors, including the number of possible permutations it can undergo, the
volume of individual data points associated with it, and the requisite
level of detail needed in the commentary to depict it accurately. These
complexity scores play a pivotal role in determining the proportional
representation of each event type within the datasets earmarked for
rehearsal rounds. This strategic allocation ensures that the model re-
ceives a balanced exposure to both simple and complex events, thereby
fostering a more comprehensive learning experience.

For instance, a rehearsal round following the third fine-tuning round
would include attempts, goals, and substitution events in a 3:3:1 ratio,
reflecting their complexity scores. The underlying principle is that the
model may require more exposure to complex events like goals to
achieve proficiency when compared to simpler events like fouls. This
methodology is conceptually similar to the way stratified [74] and
weighted [75] sampling techniques are used to address data imbal-
ances, with SMOTE being a famous example of an attempt to solve the
problem of imbalanced datasets [76].

4.1.5. The LM - success
The success of this strategy is measured by the model’s ability to
generate accurate and contextually relevant commentary for each type
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Table 3
Example prompts: (a) Foul, (b) Goal.

{"text":
"### Human: Below is a series of pieces of
information describing an event in a soccer match
paired with an output that describes the event
based on the pieces of information. Acting as an
expert soccer commentator, describe this event in
an informative and engaging manner.
### Event: Foul.
### Time: 39.
### Event Team: Napoli.
### Opponent Team: Sassuolo.
### Player: marek hamsik.
### Assistant: Foul by Marek Hamsik (Napoli)."}

{"text":
"### Human: Below is a series of pieces of
information describing an event in a soccer match
paired with an output that describes the event
based on the pieces of information. Acting as an
expert soccer commentator, describe this event in
an informative and engaging manner.
### Event: Goal.
### Time: 34.
### Home Team: Caen.
### Away Team: Valenciennes.
### Event Team: Caen.
### Opponent Team: Valenciennes.
### Player: gregory proment.
### Assist by: nicolas seube.
### Assist method: Pass.
### Pitch Position: Outside the box.
### Goal Placement: Top right corner.
### Goal Following: Open play.
### Foot: right foot.
### Score: Caen 1, Valenciennes 0.
### Assistant: Goal! Caen 1, Valenciennes 0.
Gregory Proment (Caen) right-footed shot from
outside the box to the top right corner. Assisted
by Nicolas Seube."}

(a) (b)
f event after the training process. It should be able to accurately
redict what the description should be when presented with a prompt
ontaining the details of an event in the football game.

.2. The Mixed Sequentially Model (MSM)

.2.1. Hypothesis
Sequential training of LLMs on domain-specific tasks often leads to

atastrophic forgetting. The use of imbalanced training datasets that
rioritise complex and crucial data types might offer a mitigation strat-
gy. Consistent re-exposure to previous knowledge, coupled with the
ntroduction of new information, could help retain previously learned
nformation. By training LLMs on incrementally imbalanced datasets
hat combine old and new knowledge, there is a potential for the model
o become proficient in describing a wide range of events without
edicated rehearsal rounds.

.2.2. Experimentation
The proposed fine-tuning approach involves sequentially introduc-

ng event types across multiple training rounds. In each round, the
raining datasets will consist of a mix of previously learned events and
ew events. This strategy aims to maintain a balanced focus on learning
oth high-complexity and low-complexity events, utilising the concept
f complexity scores to guide the training process.

.2.3. The MSM details
The Mixed Sequentially Model employs a sequential training process

ith a greater emphasis on knowledge retention. This model iteratively
ayers event data, similar to the Layered Model, but with a key modi-
ication: each iteration integrates a blend of previously learned events
ith the new event data.

The overarching goal of this strategy is to curtail catastrophic
orgetting. By interleaving old data with new, the model is continually
rompted to recall and reinforce prior knowledge, potentially eliminat-
ng the necessity for rehearsal rounds. This method draws inspiration
rom spaced repetition, a cognitive science principle known to enhance
ong-term retention [77].

The same issue is present in this strategy as with the previously
escribed rehearsal concept; if all available data is used, the model
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may be overwhelmed with the sheer number of low-complexity events
(corners, fouls, etc.) and will be unable to grasp the intricacies of
high-complexity events (goals and attempts).

To address this, the training datasets for this model are all con-
structed as imbalanced datasets. The concept of using complexity scores
to determine the specific ratio of events relative to each other has
been taken further, with every training dataset having a purposefully
disproportionate representation of events. The intention behind this
approach is to ensure that the model spends an appropriate amount
of time learning about each type of event, based on its complexity
and importance. This should help the model develop a more balanced
understanding of both simple and complex events.

Fig. 3 details the distribution of event data across fine-tuning
rounds. New events are sequentially mixed in the training dataset, but
the proportion of each event to the whole, as decided by its complexity
score, is always maintained.

4.2.4. The MSM - problems
Despite its preventative design, this strategy may encounter limi-

tations. Overfitting may occur due to the model being exposed to the
same event for potentially seven iterations. To minimise this risk, and
to give the model the best chance to learn the nuances of each event,
each training dataset will contain randomly selected samples from the
master dataset. For example, the attempt events used in the second fine-
tuning round will not necessarily be the same events used in the first
round.

Moreover, the model may under-fit to foul events, as it will only be
exposed to foul training samples once in the final fine-tuning round,
and at a greatly reduced number compared to the Layered Model. If
this happens, an extra fine-tuning round may be inserted at the end to
give the model a chance to fully grasp the ability to describe fouls.

4.2.5. The MSM - Success
Success for this model would be demonstrated by its ability to

generate accurate descriptions for each event it has been trained on,
without the need for rehearsal rounds during its training process. If
successful, this strategy will prove more efficient than the Layered
Model due to its reduced data consumption and successful mitigation
of catastrophic forgetting. This aligns with the paper’s objectives of
determining optimal approaches to fine-tuning language models on
consumer-grade hardware.
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Fig. 3. The MSM training process flow diagram.
4.3. The Mixed Immediately Model (MIM)

4.3.1. Hypothesis
A sequential training approach may not be necessary for LLMs

when dealing with similar events. The inherent pattern recognition
capabilities of a sophisticated model might enable it to concurrently
learn different but similar event types, given sufficient training time.
This hypothesis is based on the premise that the events used to train
the models in this paper are more similar than different, and the model
could effectively differentiate between these events without the need
for isolated, sequential training.

4.3.2. Experimentation
The training process is built on the continued use of imbalanced

datasets and complexity scores. In each round, the model will train on
a dataset that comprises a blend of all event types from the outset.
The events will maintain their complexity-based ratios, ensuring that
the model is consistently challenged to comprehend low and high-
complexity events proportionally throughout its training. This approach
will test the model’s capacity for simultaneous multi-event learning and
its ability to generalise across a diverse spectrum of training data.

4.3.3. The MIM details
The underpinning principle of this strategy is inspired by the theory

of distributed practice, which suggests that learning is more effec-
tive when exposure to information occurs in multiple, spaced-out ses-
sions [78]. The knowledge needed to be learnt is presented as a single
corpus that is repeatedly looked at until understanding is achieved. This
approach is designed to reduce the total number of iterations required
for the model to assimilate the knowledge by pushing the base model
to learn as many different types of events as possible in as quick a time
as possible.

Fig. 4 illustrates the composition of the training data in each iter-
ation of fine-tuning. To give the model as best a chance as possible
at learning the nuances of each event type, five rounds of fine-tuning
are planned. An evaluation takes place at the end of the fifth round to
determine if the model requires more training time.

This model may exhibit a dip in performance relative to its counter-
parts during the early stages, which can be attributed to the inherent
complexity of learning multiple event types simultaneously. Nonethe-
less, it is hoped that the model will eventually achieve performance
parity with the Layered Model and Mixed Sequentially Model in fewer
iterations.

In direct contrast to the Mixed Sequentially Model, the Mixed Imme-
diately Model proactively tackles the potential drawbacks of integrating
events at later stages of the training process. Integrating all events
from the beginning ensures equitable learning opportunities for each
event category, potentially leading to a more uniform and thorough
proficiency in the event description. Also, unlike the Layered Model,
11
Fig. 4. The MIM training process flow diagram.

there is a negligible chance of catastrophic forgetting in this model’s
fine-tuning. This is because the base-model weights will be updated
with all of the different event types at the same time, leaving no
opportunity for older knowledge to be erased and replaced with new
information.

4.3.4. The MIM - problems
One of the inherent challenges for the model will be its ability

to effectively differentiate between similar football events. Given the
model’s exposure to a diverse array of events simultaneously, there is a
risk that it might struggle to distinguish between events that are closely
related or have overlapping characteristics. For instance, differentiating
between a ‘goal’ and an ‘attempt’ could be challenging, as both involve
shots at the goal but with different outcomes.

It is hoped that the differences in each event type’s prompts (due
to the different pieces of information being needed) will limit this
risk. Performance will have to be closely examined between fine-tuning
rounds to see how the model is evolving. Adjustments, such as tweaking
the proportions of the events, may be made to the training dataset if
the model is found to be struggling with the simultaneous learning of
seven different event types.

Additionally, this model has a heightened risk of over-fitting the
training data as it will be exposed to all of the different types of events
numerous times. To address this, the datasets in each round will consist
of the same ratio of events, but with different samples randomly picked
from the master datasets in each round. This ensures exposure to the
many possible combinations of information that could be present in one
event and reinforces the model’s ability to generalise across different
data points.

4.3.5. The MIM - success
Success for this model is defined by its ability to achieve perfor-

mance parity with the previous two models in generating accurate



Knowledge-Based Systems 300 (2024) 112219A. Cook and O. Karakuş

a
t
e
g
b

t
p
t
t
A
v

descriptions of football events. This achievement would be particu-
larly significant if realised within a shorter time frame, as it would
demonstrate greater efficiency in the training process than the other
two models. Moreover, accomplishing this without any negative im-
pacts from the simultaneous training on multiple event types would
underscore the effectiveness of this approach. If this model meets these
benchmarks, it will substantially enrich our understanding of optimal
fine-tuning practices for modern, locally-run language models, and will
especially benefit our understanding of how to manage imbalanced
training datasets. It will also give a greater understanding of the
potential for fine-tuning small, modern LLMs on a limited amount of
data.

5. Experimental analysis & results

LLM-Commentator with its three candidate fine-tuning models was
experimentally tested under the England and European data sets. To
evaluate the LLM-Commentator models’ learning progression, each it-
eration of the different models underwent a comprehensive testing
regime post-training. This was done by building a suite of tests that
measure the ability of the model to generate descriptions of unseen
events from real football matches. These events were siphoned off the
training dataset randomly at the start of the process, ensuring a rep-
resentative mix of event types to accurately assess model performance
across various scenarios.

Each event had its own test dataset of 100 different examples.
This size was chosen as it provides a statistically significant sample
to confidently assess the model’s performance, balancing thoroughness
with the practicality of testing duration. To ensure valid results, all
hyperparameters were kept the same during training which are given
as:

• Precision: 4-bit NormalFloat (NF4)
• Epochs: 1
• Batch size: 16
• Weight Decay: 0
• Warm-up ratio: 0.03
• Learning rate: 0.0002

Test datasets were created by splitting the event samples into two:
prompt and a reference. A regular expression was used to delineate

he end of the event information (the prompt) and the start of the
vent description (the reference). This method ensures that the model
enerates descriptions based solely on the event information, without
eing influenced by existing or past descriptions.

Each iteration, after being archived in a HuggingFace repository for
he sake of reproducibility and transparency [79], was systematically
resented with prompts from the test datasets. The iteration’s task was
o generate an accurate description of the event. This then was quan-
itatively and qualitatively compared against the reference description.
nalysis was done with a range of tests that provided a multifaceted
iew of the model’s capabilities:

• Direct comparison: This binary test is a direct comparison be-
tween the generated text and the reference text. If the iteration
generates a description of an event that is identical to the refer-
ence description, one point is awarded. If they are different, no
score is given. Whilst this metric has obvious limitations, it offers
an immediate and straightforward approximation of each model’s
capabilities.

• Rouge Score: This is a collection of metrics that evaluate text
summarising quality by measuring the overlap of individual
words, word pairs, and the longest common sequence between
the generated and reference descriptions [80]. Rouge scores help
display whether the generated description contains the same
essential points as in the reference. It does this by providing three
scores: Rouge-1 (R1), Rouge-2 (R2) and Rouge-L (RL) where un-
igrams (individual words), bigrams (word pairs) and the longest
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common subsequences are awarded, respectively.
At the end of each testing round, the three rouges scores for all one
hundred prompts were averaged out. This gave one Rouge score for
each iteration per test dataset. The final iterations of each model were
subjected to advanced testing to evaluate their performance in generat-
ing accurate and relevant football commentary. This determines which
model can best generate natural language descriptions of events in a
football match, thus signifying which training approach produced the
most capable model. This testing focused on three metrics: precision,
recall, and an F1 score, which are widely held standards in measuring
NLP models [81].

All experiments will be run in a system with the following spec-
ifications: CPU: Intel i9-13900K, GPU: NVIDIA GeFORCE RTX 4090
(24 GB VRAM), and RAM: DDR-5 (64 GB). Python was used as the
primary programming language due to its extensive support for NLP
libraries and ease of integration. All data pre-processing and model
testing was done using Python 3.11. QLoRA was used as the pri-
mary fine-tuning method. Qlora considerably reduced the memory
requirements needed for fine-tuning, thus making this paper possible.
QLoRA is in turn dependent on the following libraries: transform-
ers [82], bitsandbytes [83], accelerate [84], peft [85], PyTorch [86]
and CUDA [87].

5.1. The LM test results

The quantitative performance results for the LLM-Commentator
with the LM fine-tuning are given in Table A.6 and depicted in Fig. 5.
Examining the results in Fig. 5 for DC (solid lines with different
colours), shows that comparison scores are generally high immedi-
ately following training for the first time on new data. For example,
the third iteration (Subs), generated 98 perfect descriptions of sub-
stitution events after being exposed to substitution training data just
once. Rehearsal rounds (indicated in the table by the R:x group of
iterations) proved to be a necessity as the LM suffered from bouts
of catastrophic forgetting at regular intervals. This is most evident
in the fifth iteration’s (Offsides) drastic drop in performance when
describing a substitution event — plummeting from a score of 95 in
the previous iteration to a score of just 6. Implementing a rehearsal
round after this iteration proved successful in re-instilling the model
with the capability to describe substitution events. Performances on
past knowledge usually dipped in each sequential iteration before rising
again due to the effect of a rehearsal round.

The base model initially learned how to describe attempt events
well, but this was followed by a significant decline in performance
over the next two iterations. This trend of worsening performance over
time was reversed with the inclusion of rehearsal rounds. The majority
of the volatility in the model scores occurred in earlier iterations. A
noticeable stabilisation in scores across different datasets was observed
after the second rehearsal round. The first two rehearsal rounds had a
more significant impact compared to the third and fourth, suggesting a
diminishing return in the effectiveness of rehearsal rounds over time.
The final iteration’s (R:4) scores across the different datasets were high.
The final model scored extremely well on low-complexity events and
moderately well on higher-complexity events, indicating the success
criteria for this strategy were met.

Examining Rouge scores in Fig. 5 (dashed-RL, dash-dotted-R2 and
dotted-R1 lines with different colours), we conclude that the Rouge
scores indicate a generally high level of competency across all itera-
tions, and present a more nuanced picture of performance than the
comparison tests. For instance, whilst the comparison test showed a 46-
point drop in the ability to describe ‘Attempt’ events from the first to
the third iteration (from 64 to 18), the R1 and RL scores only dropped
from 0.97 to 0.92. This indicates that, despite some variations from the
reference descriptions, the iterations consistently captured the essential
words and structure of the description in its generated commentary,
and the drop in performance is not as bad as first suggested by the

direct comparison (DC) test scores.
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Fig. 5. The LM results in terms of DC, R1, R2, and RL. (For more details see Table A.6).
The drop in performance of the third iteration’s ability to describe
Attempt events is most pronounced in its R2 score, falling from 0.96 in
the first iteration to 0.86 in the third. This suggests that catastrophic
forgetting had the biggest impact on the third iteration’s ability to
generate the correct bigrams (word pairs) when describing attempts.
Overall, R2 scores were lower than the other two metrics, suggesting
there is more of a challenge for the model in accurately generating the
correct word pairs in its descriptions

Relatively higher R1 and RL scores were common when the model
tested on low-complexity events (such as fouls and corners). This could
be attributed to the simpler linguistic structure and less varied content
of these events. The Rouge scores also corroborate the beneficial impact
of rehearsal rounds on performance when recalling formerly learned
knowledge. Rouge scores for iterations of the model that have just com-
pleted a rehearsal round are higher across the board than iterations that
came before the rehearsal. Most importantly, the Rouge scores show
that when the model incorrectly replicated the reference description, it
was due to small margins of error rather than large mistakes.

5.2. The MSM test results

The quantitative performance results for the LLM-Commentator
with the MSM fine-tuning are given in Table A.7 and depicted in Fig. 6.
The results in Fig. 6 for DC (solid lines with different colours), suggest
that the Mixed Sequentially Model has a capacity for a quicker pace of
learning compared with the Layered Model. This is particularly evident
in its handling of new event types and the performance parity in most
events between both models’ final iterations. The model’s ability to
quickly grasp and accurately describe new data is most apparent in
the sixth (corners) and seventh (fouls) iterations. After just a single
round of exposure, these iterations were able to generate descriptions
of corner and foul events that matched the reference descriptions with
an accuracy of 98% and 100%, respectively.
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However, the model’s performance when describing high-complexity
events (attempts, goals, cards), presents a more varied picture. The first
iteration, for instance, struggled to accurately describe attempt events,
with less than 50% of its outputs matching the reference descriptions.
This is 14% lower than the performance of the first iteration of the
Layered Model when describing attempts. There was a noticeable
plateau in performance across these high-complexity events, with no
significant improvements observed between earlier and later iterations.
A particularly concerning observation is the dramatic drop in the final
iteration’s ability to describe goal events, where the accuracy fell to
less than half of that in previous iterations. This indicates a potential
systemic issue in how this model processes and learns from goal event
data, as the final iteration could not generate descriptions of goal events
that earlier iterations could. This is surprising, as the final iteration,
which should be the strongest model, generated a drastically worse
description of the goal event than all previous iterations. It incorrectly
described the score, the position of the player when they scored, and
the placement of the ball in the net.

Examining Rouge scores in Fig. 6 (dashed-RL, dash-dotted-R2 and
dotted-R1 lines with different colours), we conclude that The Rouge
scores for the MSM reveal a consistent level of proficiency across the
iterations, with softened declines in performance rather than sudden
drops. This suggests that even when the model’s outputs deviated
from the reference descriptions, they remained closely aligned in terms
of linguistic structure and content. Several near-perfect scores when
testing on low-complexity events demonstrate the model’s adeptness at
learning and handling simpler events.

R1 scores were consistently high across all datasets. This indicates
a strong ability of each iteration to correctly generate the right vocabu-
lary for each event. This is most evidenced by the perfect scores gained
by later iterations when describing corners and fouls.

The R2 scores also reflect a high level of proficiency across the
iterations. However, a slight decline in scores for high-complexity
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Fig. 6. The MSM results in terms of DC, R1, R2, and RL. (For more details see Table A.7).
events suggests challenges in maintaining the same level of accuracy
when dealing with more intricate descriptions. For example, R2 is the
only metric that shows that the final iteration struggled to describe
goal events, receiving an average score of 0.91 when describing 100
events. This suggests that the final iteration was commonly incorrectly
sequencing the correct word pairs together, generating descriptions that
were in a different lexical order than the reference description.

RL scores follow the same trend of high competency across the
different iterations as R1. This shows that most iterations are excellent
at getting both the details of the description, and the larger grammatical
structure and syntax identical to the reference description

5.3. The MIM test results

The quantitative performance results for the LLM-Commentator
with the MIM fine-tuning are given in Table A.8 and depicted in Fig. 7.
This model was expected to perform poorly in earlier iterations and
slowly improve over each round of fine-tuning. Examining the results
in Fig. 7 for DC (solid lines with different colours), we can see that
the model performed strongly from the very first iteration. Whilst the
first iteration did struggle to describe attempt and foul events, test
scores for these two events climbed in every subsequent iteration. The
poor performance of the first iteration on foul events can probably be
attributed to underfitting, as the generated descriptions show signs of
the model being confused as to which event to describe.

Performances for all iterations started high and remained high.
There are no symptoms of overfitting or catastrophic forgetting as seen
in the results of the other two models. However, the model did exhibit
signs of a plateau in learning, particularly when dealing with high-
complexity events like goals. The performance in these areas remained
stable across iterations, exhibiting little improvement or decline. This
observation could indicate a ceiling in the model’s learning capacity for
these types of events.
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Overall, the results of the Mixed Immediately Model vindicate its
training strategy. It reached parity in performance across the different
events in a shorter amount of time and with a much more straightfor-
ward training approach. The final iteration of the model is on par with
the Layered and Mixed Sequentially model, despite using vastly fewer
data than the former and going through fewer fine-tuning rounds than
both. The comparison scores indicate that the model coped very well
with the demands of simulating multi-event learning.

Examining Rouge scores in Fig. 7 (dashed-RL, dash-dotted-R2 and
dotted-R1 lines with different colours), we conclude that the Rouge
scores corroborate the results from the comparison tests. On the whole,
the model outperformed expectations with its strong performances
from the first iteration, and performances following the first iteration
remained very stable. For most test datasets, the model maintained high
R1 scores from the first iteration, with scores generally ranging from
0.96 to 1.0. This consistency is a strong indicator of each iteration’s
ability to correctly capture the target vocabulary for each event during
training. The R2 and RL scores were also high, suggesting that the
model was not only choosing the correct words but also placing them
in an order that closely mirrors the reference texts.

A key observation from the Rouge scores is the disparity in the
first and second iterations’ performance when describing foul events.
The performance of the first iteration on fouls was the lowest out of
any event for all three scores. However, the second iteration scored
perfectly on each Rouge test when describing foul events. In the span
of just one training round, the model went from performing worst when
describing foul events to describing them perfectly. The Rouge scores
collectively suggest that the model is highly effective in generating text
that is lexically similar to the reference material and maintains the
original texts’ structural and sequential integrity. That it did so from
the very first fine-tuning round is a testament to the effectiveness of
the training strategy.
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Fig. 7. The MIM results in terms of DC, R1, R2, and RL. (For more details see Table A.8).
Table 4
Model comparison after the final iteration.

Model Acronym TP FP FN Precision Recall F1

Layered LM 0.61 0.11 0.00 0.84 1.00 0.92
Mixed Sequentially MSM 0.54 0.18 0.00 0.75 1.00 0.85
Mixed Immediately MIM 0.60 0.12 0.00 0.83 1.00 0.91

5.4. Final comparison

This subsection presents a comparison study of all three proposed
fine-tuning techniques for commentary generation via the
LLM-Commentary method in terms of precision, recall and F1 scores.
The total number of true positives, false positives, false negatives, the
precision, recall, and F1 score for each of the final iterations are given
in Table 4.

Examining Rouge scores in Table 4, we conclude that the Layered
Model achieved the highest F1 score of 0.92, indicating a strong balance
between its precision and recall capability. This was followed closely
by the Mixed Immediately Model with a score of 0.91. The Mixed
Sequentially performed the worst, with an F1 score of 0.85. This was
due to its lower precision score when compared against the other two
models. All models had a perfect recall score, with none of them failing
to generate a description of a single event.

Furthermore, a comprehensive evaluation of the fine-tuning models
is conducted, considering their advantages and disadvantages, as well
as the findings derived from the experimental investigation described
earlier. These findings are summarised in Table 5. The performance
analysis indicates that the initial fine-tuning model based on LM ex-
hibits superior performance with a decreased computational burden
due to the implementation of deliberate practice. Nonetheless, it is
15
prone to experiencing catastrophic forgetting of multiple events, as
anticipated. This issue is addressed by incorporating rehearsal rounds,
resulting in a greater number of iterations and mitigating the aforemen-
tioned challenge.

The use of the MSM, as opposed to the LM, aims to prevent catas-
trophic forgetting through a step-by-step training method. While the
MSM eliminates the need for rehearsal rounds, it has led to overfitting
in certain instances and underfitting in events trained later in the
sequence. Consequently, this has resulted in lower performance metrics
compared to the LM, despite requiring fewer iterations to train. Cur-
rently, the MIM has surpassed the MSM in effectiveness. By employing a
non-isolated event training approach, the MIM achieves faster learning
and performance better than MSM and is comparable to the simpler LM
model. Unlike the LM, the MIM does not exhibit catastrophic forgetting,
although it shows signs of a learning plateau, particularly in complex
events such as Goals.

ROUGE scores demonstrate a more consistent yet detailed rep-
resentation of results across all three proposed fine-tuning models.
In contrast to direct comparison metrics, the R1, R2, and RL scores
exhibited smaller fluctuations, while also showcasing improvements
in fine-tuning for uni-grams, bi-grams, and L-grams. Despite achieving
comparable performance levels for single-word predictions and overall
sentence reconstructions, challenges arose specifically with word pairs
(bi-grams) as indicated by the R2 scores. This suggests that the models
are more susceptible to combining incorrect word pairs while maintain-
ing the overall structural integrity. An illustration of this challenge is
provided below:

Goal! Stuttgart 3, Schalke 0. Shinji Okazaki
(Stuttgart) left-footed shot
from outside the box to the top left (right) corner.
Assisted by Zdravko Kuzmanovic following a set-piece

situation.
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Table 5
Overall comparison between the proposed fine-tuning models.

LM MSM MIM

Reason to use Learn an event at a time Consistent re-exposure to
previous knowledge

Sequential training but no
isolated events

Reduce cognitive load Previous knowledge + new
event

Needs for fewer iterations

Remove multi-task learning
problems

Reduced catastrophic
forgetting risk

The classical ML training
procedure

Deliberate practice [71] No need for rehersal rounds No catastrophic forgetting
No need for rehersal rounds

Drawbacks Catastrophic forgetting Overfitting Struggle to distinguish
between closely related events

Needs for rehearsal rounds
[72]

Needs for extra fine-tuning
rounds

Risk of overfitting

Longer to fine-tune Lastly added event under-fits
Weaker for imbalanced data

Findings Catastrophic forgetting
experienced

Faster learning (simple events
- corners) compared to LM

Poor performance at earlier
iterations

Rehearsal rounds proved
necessity

Lower performance (complex
events - attempts) in earlier
stages

Struggle to discriminate fouls
and attempts

Single words and general
structure saved

Un-explained drop in Goals
performance at the last
iteration

Signs of a plateau in learning
(Goals)

Similar performance to LM
and MSM with fewer data and
iterations

R scores showed nuanced performance visualisation
For instance, in a commentary of this nature, the anticipated result
s the identification of the ‘‘left corner’’ as the accurate area of the goal.
owever, across several iterations, all models consistently label it as the

‘right corner’’, leading to fluctuating R2 values, while R1 and RL are
ot significantly impacted by this discrepancy.

. Discussions

.1. The LM - discussion

The Layered Model learning strategy, designed to instil domain-
pecific knowledge in a series of discrete training rounds, demonstrated
uperior performance in generating accurate and contextually relevant
ommentary for various types of events. Test results indicated that the
ayered Model outperformed the other two models in most comparison
nd ROUGE tests, particularly excelling in recall and precision in its fi-
al iteration. However, a significant drawback emerged as this training
ethod proved highly susceptible to catastrophic forgetting. The model

ended to forget how to describe events, particularly evident during
he fine-tuning process with the third iteration. The incorporation of

rehearsal round mitigated some issues, but catastrophic forgetting
ersisted with the introduction of new events, highlighting a challenge
hat warrants further consideration in model refinement.

Rehearsal rounds prove effective in reducing catastrophic forgetting
n neural network iterations, but their impact appears to be transient,
ossibly due to limitations in the base model’s architecture for re-
aining long-term knowledge across diverse domains. To address this,
mplementing adaptive learning techniques, as discussed in Gururan-
an et al.’s study [88], where models focus training on areas they
re prone to forgetting, could offer a more lasting solution. Notably,
he comparison test, though simple, highlights catastrophic forgetting
ore strongly than the Layered Model’s ROUGE scores, suggesting a
eed for more comprehensive evaluation methods. The persistence of
atastrophic forgetting in fine-tuning, a longstanding issue in neural
etwork research, challenges the expectation that advancements in
odel architecture over decades would reduce its impact. Catastrophic

orgetting was first documented by McCloskey and Cohen in 1989 and
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emains an obstacle. [89].
6.2. The MSM - discussion

The Mixed Sequentially Model, designed to mitigate catastrophic
forgetting, successfully integrated old knowledge with new, achieving
comparable performance to the Layered Model with fewer training
rounds. This success stemmed from the model’s ability to balance
the data points in the training datasets, thus preventing the exclusive
influence of recent data on weights and avoiding catastrophic forget-
ting. The continuous adjustment of weights accommodated both old
and new information, aligning with the model’s fine-tuning strategy.
Additionally, the model’s proficiency in generating descriptions of low-
complexity events, despite exposure to fewer samples (see Fig. 8(a)),
underscored the effectiveness of categorising events by complexity
and addressing dataset imbalances. Notably, for generating simplistic
linguistic patterns, the study found that the quantity of training samples
did not significantly impact the Language Model’s performance.

The Layered Model encountered foul events 267,229 times during
training, while the Mixed Sequentially model experienced foul events
only 9000 times. Despite the significant difference in exposure, the
Mixed Sequentially model consistently generated flawless descriptions
of foul events, aligning with the ’Few-shot’ approach to language model
fine-tuning. This suggests that for certain tasks, proficiency can be
achieved with a limited, high-quality dataset and minimal training
rounds [10]. However, the Mixed Sequentially model’s subpar perfor-
mance in describing goal events prompts further investigation. Unlike
other event types, the model, from the second iteration onwards, consis-
tently trained on the same 27,000 goal event samples. This potentially
led the model to overfit the training data. Using the samples in every
fine-tuning round was a necessity due to the limited size of the goal
events dataset (27,757 goal event samples – only 3.6% of all data – see
Fig. 8(b)) when compared to the total number of events.

This overfitting resulted in a diminished ability to describe goal
events in the final iteration, emphasising the importance of a diverse
and balanced training dataset. Although the success criteria were not
fully met, the model successfully avoided catastrophic forgetting. The
overfitting issue observed in the final iteration was primarily attributed
to the constrained training data. Recommendations for future work
include exploring strategies to increase sample diversity or employing

data augmentation techniques to mitigate overfitting, particularly when



Knowledge-Based Systems 300 (2024) 112219A. Cook and O. Karakuş
Fig. 8. The MSM discussion supportive plots. (a) The total number of foul events the Layered Model and Mixed Sequentially Model were exposed to during training, (b) The
proportion of each event type in the source dataset. The small number of goal events meant that the same events were reused many times during training, potentially leading the
model to over-fit.
dealing with limited data for specific event types. Despite the noted
limitation, this does not entirely dismiss the fine-tuning strategy. Its
potential may be realised with a more expansive training dataset.

6.3. The MIM - discussion

The fine-tuning strategy for the model was an experimental ini-
tiative aimed at dynamically pushing the base model’s limits, with
limited expectations of success. The model, exposed to all event types
simultaneously, demonstrated a quick adaptability and learning capac-
ity under chaotic fine-tuning conditions. Despite slightly lower scores
in describing attempts or goal events compared to a layered model
in the first iteration, the gap was surprisingly narrow, challenging
the assumption that sequential, isolated training rounds are necessary
for teaching a language model to generate football commentary. The
results suggest that grouping similar tasks, as in multi-task learning,
allows the model to develop a comprehensive understanding of train-
ing data, and to leverage its knowledge across different event types.
The significance of complexity scores in distinguishing high and low-
complexity events may be overstated, suggesting that modern language
models may not heavily differentiate between them in the context of
football commentary.

Another takeaway from this training strategy is the general trend
of plateauing in the model’s performances when describing high-
complexity events. Whilst scores were good, they did not match the
heights that the model set when describing low-complexity events. This
suggests one of three things. There may be a limit to the effectiveness
of the training strategy, there may be a limit to the capabilities of the
base model, or, perhaps the most likely factor, the training data is not
as clean as was previously thought.

Combining back through the 767,843-row dataset does reveal some
anomalies that were not caught in the pre-processing stage. For exam-
ple, the card training dataset was found to contain erroneous reference
descriptions:

### Assistant: Booking. Booking Ashley Westwood
(Aston Villa) is shown the yellow card.

When looking through the descriptions of events the model gen-
erated for the tests, it was found to have repeated these anomalous
linguistic patterns. This suggests that unclean data may have played a
prominent role in the model’s performance plateaus. An example of this
is given below:

EXPECTED ANSWER: . Ben Mee (Burnley) is shown the yellow
card for a bad foul.

PREDICTED ANSWER: . Booking Ben Mee (Burnley) is
shown the yellow card for a bad foul.
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Because of the small number of such anomalous training samples,
this finding does not completely explain why the model’s abilities to
describe certain events plateaued. But it did play a role, and it is
interesting to see that the model is sensitive enough to recall patterns
it was exposed to during training, even if was only for a small number
of times.

In the final iteration, the Mixed Sequentially Model did not exhibit
overfitting on goal events, in contrast to previous instances, potentially
due to a shorter training period. For further investigation, the model
could be exposed to two additional fine-tuning rounds to assess its
susceptibility to overfitting on goal event data. Despite this, the model
successfully met its predetermined criteria by achieving performance
parity with the other models in fewer training rounds. The simultane-
ous multi-event learning emphasis in the Mixed Immediately Model,
which is shown here to be effective, presents broader applications for
LLM training, particularly in scenarios requiring simultaneous learning
of diverse, yet related, data, such as in multi-lingual translation models
or interdisciplinary subject understanding.

6.4. Collective discussion of fine-tuning models

All models achieved a perfect recall score, which reveals some key
insights. Primarily, it underscores the models’ capability to comprehen-
sively cover the total sum of events in a football match. This suggests
a high level of effectiveness in providing exhaustive coverage of match
occurrences for all models.

Additionally, the perfect recall score implies a training dataset char-
acterised by both variety and diversity. The imperfections of the dataset
have been examined in previous sections, but, despite its flaws, it
equipped the models with the necessary breadth to accurately describe
a wide array of potential events in a football match.

Also, the recall scores demonstrate the models’ high sensitivity, as
they successfully detected and generated descriptions for every single
event they were trained on. However, this brings to light a critical
limitation: the models’ proficiency in detecting events is confined to
those included in their training data. Given the unpredictable nature of
football, the models’ performance in response to untrained or unfore-
seen events remains uncertain. This limitation underscores the need for
further model training and adaptation to encompass a broader range of
possible match events.

7. Conclusions

7.1. Summary & remarks

In conclusion, this study delves into NLP research by exploring its
application in generating live commentary for football matches. Three
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Fig. 9. The total number of samples each model was exposed to during the fine-tuning
process. The Layered Model was exposed to more samples than the other two models
combined.

distinct training strategies – LM, MSM, and MIM – were employed, each
tailored to address unique challenges encountered in the fine-tuning
process, such as catastrophic forgetting, overfitting, and underfitting.
These strategies varied in the composition and proportions of their
training datasets. The evaluation of these models centred on their
ability to generate coherent and precise descriptions of unseen football
events. Notably, the MIM approach demonstrated remarkable efficiency
in learning and adeptness in managing a challenging workload. This
highlights the promising potential of simultaneous multi-task learning
when utilising compact, open-source language models.

Furthermore, the study underscores the practicality of leverag-
ing consumer-grade hardware for fine-tuning language models with
specialised knowledge. It emphasises the importance of adopting cus-
tomised training approaches and ensuring well-balanced datasets. These
findings not only offer practical insights into the utilisation of the
new wave of language models but also contribute significantly to NLP
applications in sports journalism. They pave the way for broader access
to large language models and serve as a valuable resource for future
endeavours in this domain.

In summary, the remarks drawn from the deployment of three
different training strategies in this paper are as follows:

1. The LM is the most proficient in generating descriptions of
in-game football events, primarily due to its slightly superior
precision compared to the other two models. This advantage
in precision is likely attributable to the model’s exposure to a
significantly larger training sample during its fine-tuning process
(see Fig. 9), encompassing over one million events. This allowed
it to be exposed to the full range of possible event permutations
multiple times during its fine-tuning.

(a) The LM fine-tuning strategy produced the most capable
final iteration, doing so at a significant cost in terms of
data and time resources.

(b) The LM took eleven rounds of training to reach pro-
ficiency, compared to the MSM’s seven and the MIM’s
five.

(c) The LM was exposed to vastly more samples in each
category to end up winning by the slimmest of margins.
The amount of data it was exposed to is not proportional
to the scale of its victory in the final evaluation.

(d) A single training round for the LM took a considerably
longer amount of time than the other two models due to
the much larger amount of data used in each round.
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(e) The LM was continuously plagued with catastrophic for-
getting that impeded the progress of the fine-tuning pro-
cess.

2. The MIM fine-tuning strategy produced the most efficient final
results, achieving almost parity with considerably less resource
expenditure.

3. The MSM fine-tuning strategy produced the worst final results,
highlighting the importance of data diversity in model training.

4. Our study underscores the practicality of employing consumer-
grade hardware for fine-tuning language models in sports jour-
nalism through various avenues. Firstly, by leveraging readily
available and cost-effective hardware, such as standard laptops
or desktops, our approach ensures accessibility to a wider range
of users within the sports media landscape, including individual
journalists and smaller organisations. Secondly, we demonstrate
that despite potential hardware limitations, careful optimisation
of model architectures and training strategies enables competi-
tive performance levels comparable to more resource-intensive
setups. These findings underscore the feasibility and scalability
of our approach, offering tangible benefits in terms of efficiency,
affordability, and real-world applicability for enhancing sports
journalism workflows.

7.2. Limitations

All three models developed in the study share similar limitations
and shortcomings. The initial objective of the paper was to refine a
Language Learning Model (LLM) to generate football commentary in
a manner reminiscent of human commentators. However, it became
apparent early in the study that this goal was unattainable due to the
severe shortage of appropriate data. There exists a notable absence
of datasets that combine raw match data with instances of human
commentator descriptions. Without sufficient training data, it is impos-
sible to instruct an LLM to replicate the emotive and vivid descriptions
characteristic of human commentators. Consequently, while the models
are capable of generating accurate commentary, they fall short of
producing engaging commentary.

Although the models can accurately describe events they were
trained on, they are entirely incapable of describing events they have
not encountered. Football matches can be unpredictable, with occur-
rences such as pitch invasions, match abandonment, or a manager’s
expulsion, all of which the models would be unable to depict. Once
again, this limitation stems from a lack of relevant data, extending even
to relatively common events like own goals. An illustrative example of
this scenario is provided below:

{"input":
"### Event: Pitch invasion.
### Time: 89.
### Home Team: Liverpool.
### Away Team: Man Utd.
### Game Abandoned?: Yes
### Assistant: Pitch invasion"}

{"output":
"### Assistant: Pitch invasion by Liverpool. Man Utd
won the toss and chose to play."}

The LLM-based automated commentary systems can better adapt
to the unpredictability of football matches via careful data-curation
perspectives. For example, techniques like Human-in-the-loop Systems
(integrating human supervision or feedback mechanisms), or Data gen-
eration/augmentation (artificially introducing instances of pitch inva-
sions, match abandonment, or managerial expulsions into the training
data) can be options to provide more comprehensive and realistic
commentary, even in the presence of rare events.
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Fig. 10. A model writes conditional logic that can check for hypothetical offsides in Java when prompted to describe an offside event.
Bender et al. famously characterised LLMs as ‘‘stochastic parrots’’,
suggesting that they generate natural language based on probability
rather than meaning (Bender et al. 2021). This study confirms this ob-
servation to a large extent. Despite maintaining consistent conditions,
each model generated by this project consistently produces perplexing
output, even when it would typically generate accurate descriptions.
While the three models developed in this project do not exhibit a higher
likelihood of generating nonsensical descriptions compared to other
LLMs, there remains the possibility that these models might opt to
write Java code instead of describing an offside event, as illustrated
in Fig. 10.

In addition to the limitations already discussed, it is important to
acknowledge the challenge of real-time implementation of the aimed
automated commentary system. Despite the potential benefits of pro-
viding real-time commentary, particularly for engaging fans during
live football matches, our current system faces constraints that hinder
its immediate applicability in this context. One significant barrier is
the difficulty in obtaining real-time data from sources such as Opta,
especially for minor league teams, which were the primary focus of our
study. The lack of access to timely and accurate data poses a substantial
obstacle to achieving real-time functionality, limiting the practical
applicability of our system in live match scenarios. As such, while our
system demonstrates promising capabilities in generating automated
commentary from historical data, its real-time implementation remains
a goal for future research efforts.

7.3. Further research questions for proposed models

The research conducted in this project opens several avenues for
further investigation, each with the potential to advance our under-
standing and capabilities in NLP and AI language model training. The
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fine-tuning strategies used in this project still have the potential to be
explored.

Optimising the Layered Model Strategy: The LM strategy de-
mands a lot of data. Future research could investigate the effects of
capping the number of training samples in a Layered Model. This would
address questions such as: Can a similar level of proficiency be achieved
with less data? What is the optimal balance between the quantity of
training data and model performance?

Enhancing the Mixed Sequentially Model Strategy: The MSM
showed promise, but its performance could potentially be improved
with a richer dataset. The overfitting suffered as its final iteration
crippled the performance level of this model in the final evaluation.
Research could focus on expanding the variety and number of goal
events in the source datasets, or methods to achieve better fine-tuning
results when faced with a scarcity of data. Key questions include: How
does the diversity and volume of data impact the model’s ability to
learn complex tasks? Is there a threshold for the number of events that
optimises learning without leading to overfitting?

Scaling the Mixed Immediately Model Strategy: The most cap-
tivating field of study regarding the MIM lies in its ability to engage
in simultaneous multi-event learning. Subsequent research endeavours
could explore augmenting the number of events employed in each
training iteration. This prompts inquiries such as: What is the upper
limit of events that can be inclusively integrated without diminishing
the model’s efficacy? How does the model’s learning process adjust to
a heightened diversity of concurrent inputs?

7.4. Future directions

The findings in this paper have broader implications beyond foot-
ball commentary generation. For instance, in real-world scenarios like
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Table A.6
The LM quantitative performance results.

Attempts Goals Subs Offsides Cards Corners Fouls

DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL

Attempts 64 0.97 0.96 0.97 – – – – – – – – – – – – – – – – – – – – – – – –
Goals 23 0.92 0.87 0.92 67 0.98 0.97 0.98 – – – – – – – – – – – – – – – – – – – –
Subs 18 0.92 0.86 0.92 53 0.95 0.93 0.95 98 1.00 1.00 1.00 – – – – – – – – – – – – – – – –
R: 1 71 0.94 0.96 0.97 70 0.95 0.97 0.98 95 0.99 0.99 0.99 – – – – – – – – – – – – – – – –
Offsides 67 0.98 0.97 0.98 65 0.94 0.93 0.94 6 0.57 0.41 0.57 85 0.99 0.98 0.99 – – – – – – – – – – – –
R: 2 70 0.98 0.96 0.98 70 0.98 0.97 0.98 94 0.99 0.98 0.99 88 0.99 0.98 0.99 – – – – – – – – – – – –
Cards 69 0.95 0.96 0.98 65 0.92 0.94 0.96 84 0.95 0.92 0.95 73 0.96 0.95 0.94 72 0.96 0.94 0.96 – – – – – – – –
Corners 73 0.98 0.97 0.98 63 0.97 0.95 0.97 87 0.98 0.97 0.98 88 0.97 0.96 0.97 72 0.96 0.96 0.96 99 1.00 1.00 1.00 – – – –
R: 3 72 0.98 0.96 0.98 70 0.98 0.90 0.98 94 0.99 0.99 0.99 88 0.99 0.98 0.99 72 0.96 0.94 0.96 99 1.00 1.00 1.00 – – – –
Fouls 65 0.97 0.95 0.97 63 0.97 0.96 0.97 96 1.00 0.99 1.00 77 0.92 0.89 0.90 73 0.96 0.94 0.96 99 1.00 1.00 1.00 99 1.00 1.00 1.00
R: 4 73 0.98 0.96 0.98 70 0.99 0.97 0.99 93 0.99 0.98 0.99 86 0.96 0.98 0.96 74 1.00 0.94 1.00 99 1.00 1.00 1.00 100 1.00 1.00 1.00
Table A.7
The MSM quantitative performance results.

Attempts Goals Subs Offsides Cards Corners Fouls

DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL

Attempts 49 0.97 0.94 0.96 – – – – – – – – – – – – – – – – – – – – – – – –
Goals 65 0.98 0.96 0.98 70 0.98 0.97 0.97 – – – – – – – – – – – – – – – – – – – –
Subs 66 0.98 0.96 0.98 69 0.98 0.96 0.98 78 0.98 0.96 0.98 – – – – – – – – – – – – – – – –
Offsides 63 0.97 0.95 0.97 73 0.98 0.97 0.98 85 0.98 0.97 0.98 88 0.99 0.98 0.99 – – – – – – – – – – – –
Cards 71 0.98 0.96 0.98 65 0.97 0.96 0.97 86 0.98 0.98 0.98 85 0.97 0.98 0.99 72 0.96 0.93 0.96 – – – – – – – –
Corners 71 0.96 0.96 0.98 70 0.97 0.97 0.97 92 0.98 0.98 0.99 88 0.99 0.99 0.99 71 0.96 0.93 0.96 98 1.00 1.00 1.00 – – – –
Fouls 70 0.98 0.97 0.98 32 0.94 0.91 0.94 90 0.98 0.97 0.98 88 0.99 0.98 0.99 72 0.96 0.94 0.96 98 1.00 1.00 1.00 100 1.00 1.00 1.00
Table A.8
The MIM quantitative performance results.

Attempts Goals Subs Offsides Cards Corners Fouls

DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL DC R1 R2 RL

One 59 0.97 0.95 0.97 62 0.97 0.95 0.97 81 0.98 0.95 0.98 73 0.98 0.97 0.98 75 0.96 0.94 0.96 99 1.00 1.00 1.00 54 0.83 0.78 0.83
Two 64 0.97 0.95 0.97 61 0.97 0.96 0.97 88 0.99 0.98 0.99 87 0.99 0.98 0.99 68 0.96 0.93 0.96 99 1.00 1.00 1.00 98 1.00 1.00 1.00
Three 68 0.98 0.96 0.98 66 0.97 0.97 0.97 96 1.00 0.99 1.00 83 0.98 0.98 0.98 72 0.96 0.94 0.96 99 1.00 1.00 1.00 98 1.00 0.99 1.00
Four 71 0.98 0.96 0.98 66 0.98 0.97 0.98 94 0.99 0.99 0.99 87 0.99 0.98 0.99 69 0.96 0.93 0.96 99 1.00 1.00 1.00 100 1.00 1.00 1.00
Five 73 0.98 0.97 0.98 63 0.97 0.96 0.97 94 0.99 0.98 0.99 86 0.99 0.98 0.99 71 0.96 0.94 0.96 99 1.00 1.00 1.00 100 1.00 1.00 1.00
automated news reporting, social media content moderation, or even
interactive entertainment, the efficiency and adaptability of LLMs are
paramount. The insights gained from this research could guide the de-
velopment of more resource-efficient models in these areas, balancing
the need for precision with practical constraints.

Moreover, this research opens avenues for future exploration in the
field of LLMs, particularly in understanding the balance between data
diversity, training efficiency, and model accuracy. As LLMs continue to
evolve, the lessons learned here could inform researchers and enthusi-
asts how to fine-tune a model that is capable of handling a wider array
of tasks with greater efficiency and effectiveness.

While this paper’s quest for the most proficient model for generating
football match commentary has yielded valuable insight, it also high-
lights the dynamic nature of machine learning and the ongoing need to
balance various factors for optimal model fine-tuning and performance.
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