
Adaptive Resilience of Intelligent
Distributed Applications in the

Edge-Cloud Environment
A thesis submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy

Osama Ahmed S Almurshed

April 2024

Cardiff University
School of Computer Science & Informatics

i

Abstract

This thesis navigates the complexities of Internet of Things (IoT) application placement

in hybrid fog-cloud environments to improve Quality of Service (QoS) in IoT applic-

ations. It investigates the optimal distribution of a Service Function Chain (SFC), the

building blocks of an IoT application, across the fog-cloud infrastructure, taking into

account the intricate nature of IoT and fog-cloud environments.

The primary objectives are to define a platform architecture capable of operating IoT

applications efficiently and to model the placement problem comprehensively. These

objectives involve detailing the infrastructure’s current state, execution requirements,

and deployment goals to enable adaptive system management.

The research proposes optimal placement methods for IoT applications, aiming to re-

duce execution time, enhance dependability, and minimise operation costs. It intro-

duces an approach to effectively manage trade-offs through the measurement and ana-

lysis of QoS metrics and requires the implementation of specialised scheduling and

placement strategies. These strategies employ concurrency to accelerate the planning

process and reduce latency, underscoring the need for an algorithm that best corres-

ponds to the specific requirements of the IoT application domain.

The study’s methodology begins with a comprehensive literature review in the area

of IoT application deployment in hybrid fog-cloud environments. The insights gained

inform the development of novel solutions that address the identified limitations, en-

suring the proposal of robust and efficient solutions.

ii

Contents

Abstract i

Contents ii

List of Publications x

List of Figures xi

List of Tables xviii

List of Algorithms xxi

List of Acronyms xxii

Acknowledgements xxvii

1 Introduction 1

1.1 Motivation . 1

1.2 The Challenges of Managing IoT Applications 4

1.2.1 Challenges in Application Layer 5

LIST OF ALGORITHMS iii

1.2.2 Challenges in Infrastructure Layer 6

1.2.3 Challenges in Platform Layer 6

1.2.4 Challenges in Scheduling Algorithm 8

1.3 Research Problems and Objectives 9

1.4 Methodology: An Iterative Process 11

1.5 Thesis Contributions and Organisation 13

2 Background, Context and Survey 17

2.1 Introduction & Background . 17

2.2 Categorisation and Analysis of Existing Approaches 20

2.2.1 IoT Application Domains 20

2.2.2 Optimisation theory & Optimisation Attributes 21

2.2.3 Objectives Functions and Constraints in Optimisation Algorithms 23

2.2.4 Architectural Aspects Impacting the Adaptive Loop 24

2.3 Literature Review’s Statistical Analysis 27

2.3.1 Research Focus Across Various IoT Domains 27

2.3.2 Distribution of Optimisation Objectives in IoT Research . . . 28

2.3.3 Algorithmic Properties Analysis 30

2.3.4 Algorithm Application Across Different Domains: A Compar-

ative Analysis . 32

2.4 Open Issues and Positioning . 34

LIST OF ALGORITHMS iv

3 Modelling Application Placement in Fog-Cloud Environment 36

3.1 Introduction . 36

3.2 Usage Scenario . 38

3.3 Problem Statement . 40

3.4 System Model . 42

3.4.1 Estimating Completion Time 44

3.4.2 Application redundancy and cost 45

3.4.3 Problem Formulation . 46

3.5 Conclusion . 49

4 Toward a Platform that Supports Continuous Adaption 50

4.1 Introduction . 50

4.2 System Overview . 51

4.3 Design & Implementation . 55

4.3.1 Distributed Systems: Data Management 56

4.3.2 Platform Structure & Modules 59

4.3.3 Workflow Sequence . 63

4.4 Simulation . 67

4.4.1 Profiling Systems with Synthetic Data 67

4.4.2 Clock-Based Failure Model 68

4.4.3 Node Performance Degradation 71

4.4.4 Link Quality in Mobile Edge Device 74

4.5 Conclusion . 77

LIST OF ALGORITHMS v

5 Greedy Nominator Heuristic (GNH): Harnessing MapReduce for Func-

tion Placement 78

5.1 Introduction . 78

5.2 Methodology . 79

5.2.1 Scheduling Requirements 79

5.2.2 Evaluation Criteria . 80

5.2.3 Test Environment . 80

5.3 GNH Algorithm . 80

5.3.1 Algorithm Components . 81

5.3.2 Algorithm Workflow . 82

5.4 Evaluation . 84

5.4.1 Speed Performance Evaluation 84

5.4.2 Evaluating GNH’s Optimisation Objectives 86

5.5 Conclusion . 93

6 Enhanced Optimised Greedy Nominator Heuristic (EO-GNH): Enhancing

GNH with Meta-Heuristics 95

6.1 Introduction . 95

6.2 Methodology . 96

6.2.1 Scheduling Requirements 97

6.2.2 Evaluation Criteria . 97

6.2.3 Test Environment . 98

6.3 EO-GNH Algorithm . 99

LIST OF ALGORITHMS vi

6.3.1 Algorithm Components . 99

6.3.2 Algorithm Workflow . 103

6.4 Evaluation . 105

6.4.1 Efficiency Performance Evaluation 105

6.4.2 Evaluating EO-GNH’s Optimisation Objectives 108

6.5 Conclusion . 118

7 Performance Evaluation of Adaptability in Intelligent IoT Applications 119

7.1 Introduction . 119

7.2 Flood-Prepared: Cities’ Adaptation to Surface Water Flooding 120

7.2.1 Application workflow . 122

7.2.2 Application Characteristics & Requirements 124

7.2.3 Experimental Setup . 125

7.2.4 Results . 126

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection . 129

7.3.1 Applications Workflows . 131

7.3.2 Application Characteristics & Requirements 133

7.3.3 Experimental Setup . 135

7.3.4 Results . 137

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 145

7.4.1 Applications Workflows . 147

7.4.2 Application Characteristics & Requirements 148

LIST OF ALGORITHMS vii

7.4.3 Experimental Setup . 149

7.4.4 Results . 150

7.5 Discussion . 157

7.6 Conclusion . 159

8 Conclusions and Future Directions 161

8.1 Introduction . 161

8.2 Resolving Research Questions in IoT Application Placement 162

8.2.1 Modelling the Placement Problem 162

8.2.2 Defining a Platform Architecture 163

8.2.3 Application Placement with Consideration for Multiple Ob-

jectives . 164

8.2.4 Implementing Scheduling and Placement Strategy 165

8.3 Solutions to Challenges . 168

8.3.1 Monitoring Infrastructure Changes and Utility Tools Integration 168

8.3.2 Tackling Unreliability and Failures 168

8.3.3 Fostering Resource Awareness 169

8.3.4 Determining Adaptation Location 169

8.3.5 Promoting Utility Tools Integration 169

8.3.6 Platform Integration and Self-Adaptive Features 169

8.3.7 Evaluating Placement Quality Through Simulations 170

8.3.8 Achieving Resource Accessibility 170

8.3.9 Service Function Chain Graph Design 170

LIST OF ALGORITHMS viii

8.3.10 Decoupling Infrastructure and Application 171

8.3.11 Parallel Programming and Function Placement 171

8.4 Future Work . 171

8.4.1 Enhanced Financial Strategy for Application Management . . 171

8.4.2 Integrating Machine Learning Pipelines in the EO-GNH Oracle 172

8.4.3 Improving Mobility Simulation 172

8.4.4 Incorporation of Reinforcement Learning 173

8.4.5 Managing Uncertainty . 173

8.4.6 Addressing Security in System Scalability 174

8.4.7 Exploring GPU-based Meta-heuristics 174

8.5 Concluding Remarks and Future Prospects 174

A Background and Research Context 176

A.1 Application Areas & Applications Attributes 178

A.1.1 IoT Domains and Applications 178

A.1.2 Application Layer Components 178

A.1.3 Node Capacity and Configuration 179

A.1.4 Network Configuration and Capability 179

A.1.5 Addressing IoT Requirements 183

A.2 Tools Support Distributed Data Analysis 183

A.2.1 Overview of Streaming Data Engines Generations 183

A.2.2 Detailed Analysis of Streaming Data Engines Generations . . 184

LIST OF ALGORITHMS ix

A.2.3 Utilisation and Potential of Streaming Data Engines 185

A.3 Autonomic Control: Phases and Processes 186

A.3.1 The Concept of Adaptive Systems in Autonomic Computing . 186

A.3.2 Roles of the Platform Layer in Adaptive Processes 187

A.4 Search Algorithms for scheduling 188

A.4.1 The Importance of Efficient Scheduling and Informed Search . 188

A.4.2 Structural Components of Optimisation Algorithms 188

A.4.3 Properties of Multi-objectives Optimisation Algorithms 190

B Systematic Review Process 193

B.1 The Choice and Role of Search Engines in the Review 193

B.2 Parameters for Publication Selection 193

B.3 The Role of Natural Language Processing Tools 194

B.4 The Step-by-Step Process of the Survey 194

C Survey Results 196

C.1 Detailed Overview of Optimisation Algorithms 196

C.2 Comprehensive Overview: Table . 199

Bibliography 207

x

List of Publications

• Osama Almurshed, Omer Rana, and Kyle Chard. Greedy nominator heuristic:

Virtual function placement on fog resources. Concurrency and Computation:

Practice and Experience, 2021

• Osama Almurshed, Panos Patros, Victoria Huang, Michael Mayo, Melanie Ooi,

Ryan Chard, Kyle Chard, Omer Rana, Harshaan Nagra, Matt Baughman, et al.

Adaptive edge-cloud environments for rural ai. In 2022 IEEE International Con-

ference on Services Computing (SCC), pages 74-83. IEEE, 2022

• Osama Almurshed, Omer Rana, Yinhao Li, Rajiv Ranjan, Devki Nandan Jha,

Pankesh Patel, Prem Prakash Jayaraman, and Schahram Dustdar. A fault toler-

ant workflow composition and deployment automation iot framework in a multi

cloud edge environment. IEEE Internet Computing, 2021

In this thesis, we have presented only Osama Almurshed’s contributions towards de-

veloping solutions, conducting experiments, designing adaptive platforms, optimising

algorithms, and distributing AI applications in the domain of IoT. Collaborative work

not attributed solely to Osama has not been included in this thesis. The other authors

have generally contributed by offering initial applications, assisting in debugging and

configuration, providing datasets, and helping with manuscript preparation for the

published paper.

xi

List of Figures

1.1 The process of IoT computational offloading across various layers, in-

cluding application, platform, and infrastructure layers 2

1.2 This diagram outlines our iterative research methodology, mapping the

journey from initial problem comprehension to prototype development,

refinement, and final reporting, integrating continuous reviews and ex-

pert advice at each phase . 11

1.3 Thesis structure . 16

2.1 Adaptive platform-based application and infrastructure management . 18

2.2 The relationship between the IoT domain and the papers is depicted by

a bar chart. The percentage represents the proportion of papers in the

survey that cover a specific area of study 27

2.3 A bar graph illustrating the objectives’ relationship to the topic of the

paper The percentage represents the proportion of papers surveyed that

included an explanation of the study’s objectives 29

2.4 Scatter plot representing the use of various algorithms across different

IoT domains. Each point’s size is indicative of the number of papers

utilising the corresponding algorithm for a specific domain 33

List of Figures xii

3.1 Placement of service function chaining graph in fog-cloud infrastruc-

ture . 38

3.2 Redundant deployment of application A in the fog and cloud. Utilising

computer cluster to speed up the analytic and scheduling process . . . 40

3.3 Service function chaining examples in abstract graphs; displays input-

output data dependencies . 42

3.4 The redundancy of functions that run early in the graph has the most

replicas. As the executions move through the service function chain,

the number of replicas goes down. 47

3.5 Relation between the length of the service functions chaining n and

the variable m of MaxReplicasi,j’s formula regardless of whether n

or m is greater, the replicas of function i always decrease through graph

execution. 48

4.1 Service function chaining from the scenario shown in Figure 3.1 is

implemented with Parsl. The executors argument in the function dec-

orator specifies the location that runs the service function. 51

4.2 Pipelining services in a fog-cloud environment with Parsl, the control-

ler manages the execution of the graph according to the setup config-

uration of Parsl’s DataFlow Kernal. Processes execute the service in

the process node, whereas Parsl apps store the service function’s pro-

gramme logic . 52

4.3 Controller supervises the placement process by collecting infrastruc-

ture data and adjusting to system situations. 54

4.4 Summarised UML class diagram for the static structure of the adaptive

platform . 59

List of Figures xiii

4.5 Object-oriented aggregation is used to describe a new implementa-

tion of the relationship between the Deployment components and other

classes (such as SFC, Function, Monitoring, and Location) 60

4.6 Object-oriented inheritance describes a new implementation while pre-

serving the same behavior, allowing reuse Decision-Making logic and

extend it independently. 61

4.7 Object-oriented aggregation is used to describe a new implementation

of the relationship between the Monitoring component and Location . 62

4.8 Object-oriented aggregation is used to describe a new implementation

of the relationship between the Functions and the SFC class 63

4.9 Sequential diagrams illustrate the operation of static optimisation. The

deployment component does not begin deploying the SFC graph until

all services within the graph have been scheduled. 64

4.10 Sequential diagrams illustrate the operation of dynamic optimisation.

The deployment component frequently interacts with the monitoring

and decision-making components to adapt to environmental changes

while deploying the SFC graph. 65

4.11 Topological sort that traverses the SFC graph. Using depth first ap-

proach, each graph node is visited only after all of its dependent nodes

have been visited . 66

4.12 Synthetic SFC requests are generated with this format during the sim-

ulation. 68

4.13 The same virtual function’s execution at a location shows a completion

time for three different arrival times 70

List of Figures xiv

4.14 Four different process nodes, i.e., locations, performance degrades over

time. Here, the scale parameter, λ, is 24 hours according to the Weibull

distribution. 73

5.1 MapReduce performs GNH. Each mapper has a group of locations to

monitor, and each group has its own colour (green, red, and yellow).

The final Max-heap has a variety of node colours due to them coming

from different mappers . 83

5.2 GNH performance . 85

5.3 Heat-map shows applications completion time 89

5.4 Algorithm comparison: completion time in seconds 91

5.5 Average cost – based on the number of locations used 93

5.6 Relation between SFC length and the number of locations used by each

algorithm is shown in the hex-bins chart 93

6.1 SFC redundant deployments solution encoding. The solution encod-

ing’s elements are location IDs, while an array’s indices specify the

function . 101

6.2 Asynchronous MapReduce performs EO-GNH, initiated by the Oracle.

Each mapper is a meta-heuristic selected by the Oracle based on prior

knowledge acquired during the training phase of its decision trees. The

Oracle ranks meta-heuristic algorithms according to their attributes.

The reducer heuristic is manually selected as greedy 102

6.3 The Oracle ranks and selects meta-heuristics, each has a color. Inputs

for the oracle are the number of SFC mappers, population, locations,

and functions. The ranking is based on the makespan (C), the risk (R),

and the number of locations utilised (O) 103

List of Figures xv

6.4 Algorithm comparison: when solving the ZDT1 problem, the colour is

assigned to the time the pareto front was collected 107

6.5 Memory overhead overtime for the distributed algorithms 107

6.6 Boxplot comparison of execution times for placement algorithms, high-

lighting EO-GNH variants against established meta-heuristics. 117

7.1 System overview of the proposed approach with self-healing, self-

configuration, and self-optimisation 121

7.2 Self-healing properties of the system which switches between regular

mode and recovery mode . 122

7.3 Flood-preparation inference workflows 122

7.4 Results of experiments for the system with and without self-healing

The time index is the time of the day in seconds. 126

7.5 For “Self-Healing in Flood Detection”: Box plot comparing execution

times of self-healing (with recovery) and standard (no recovery) ap-

proaches . 128

7.6 Aggregating learned models across robots using federated learning . . 131

7.7 Robot performs a random walk, which affects the quality of the con-

nection to a field-side unit. 132

7.8 Workflows for federated learning online training 132

7.9 Average completion time for federated learning workflows in different

algorithms . 138

7.10 Successful rate for federated learning workflows in different algorithms

. 138

List of Figures xvi

7.11 Average cost based on the number of locations utilised for federated

learning workflows in different algorithms 139

7.12 For “Model Tuning”: Box plot showing execution times for algorithms.

Median and mean (blue dot with 95% CI bars) indicated. EO-GNH

series highlights efficiency gains with added mappers. 141

7.13 For “Model Tuning”: Box plot comparing execution times of Greedy,

Random Placement and Round Robin algorithms. Median and mean

(with 95% CI bars) are highlighted. Shows efficiency comparisons. . . 142

7.14 For “Models Aggregation”: Box plot showing execution times for al-

gorithms. Median and mean values (blue dot with 95% CI bars) are

also indicated. EO-GNH series highlights efficiency gains with added

mappers. 143

7.15 For “Models Aggregation”: Box plot comparing execution times of

Random Placement and Round Robin algorithms. Median and mean

(with 95% CI bars) are highlighted. Shows efficiency comparisons. . . 144

7.16 Temperature control that forecasts temperatures. Sensors are the source

of the feedback loop, from which it gathers data and deduces a pre-

dicted temperature. The set point is updated based on the prediction.

. 146

7.17 Workflow of neural network for energy-saving applications 147

7.18 Performance comparison of various algorithms in a 100 location setup

for the Distributed RNN application 150

7.19 Performance of different mappers within the EO-GNH framework in a

100 location setup for the Distributed RNN application 151

7.20 Comparison of algorithmic approaches in a 1000 location setup for the

Distributed RNN application RNN application 152

List of Figures xvii

7.21 Results of the 1000 location setup under the EO-GNH framework for

the Distributed RNN application . 153

7.22 For “Energy Forecasting”: Box plot showing execution times for al-

gorithms. Median and mean (blue dot with 95% CI bars) indicated.

EO-GNH series highlights efficiency gains with added mappers. . . . 156

7.23 For “Energy Forecasting”: Box plot comparing execution times of

Random Placement and Round Robin algorithms. Median and mean

(with 95% CI bars) are also highlighted. Figure also shows efficiency

comparisons between algorithms. 157

A.1 Adaptive platform-based application and infrastructure management . 177

A.2 Adaptive loop allows the system to be controlled under environmental

changes . 187

A.3 Algorithm components . 189

A.4 Algorithm properties . 192

B.1 Systematic review steps and processes 195

xviii

List of Tables

2.1 Enumeration of algorithm acronyms in investigated academic articles 32

3.1 Resource properties . 43

3.2 Application properties . 43

3.3 Decision outcomes . 44

3.4 Decision support variable and functions 44

4.1 Adaptive component processes and tools 54

4.2 Descriptions of adaptive components 55

4.3 Data types . 56

4.4 Data locality . 57

4.5 Data passing type . 57

4.6 Failure mode definitions . 69

4.7 Weibull distribution parameters . 72

4.8 Parameters and their default values for our Wireless Simulation 75

5.1 The simulation parameters are chosen randomly from these ranges. . . 87

List of Tables xix

5.2 Variety of raspberry pi (RPi) models choose from 88

5.3 Possible virtual machines (VMs) that are chosen from 88

5.4 Maximum computational resource requirements of the generated func-

tions . 88

5.5 Comparing PSO performance - SFC length is 10 90

5.6 Each algorithm’s failure percentage (on average) 92

6.1 Dataset used to train the decision tree was made up of the features

chosen for the decision tree . 100

6.2 List of meta-heuristics utilised by EO-GNH 101

6.3 The simulation parameters are chosen randomly from these ranges . . 109

6.4 Average makespan when there are 800 locations and a population of 20 110

6.5 Successful rate when the number of locations is 800 and the population

size is 20 . 111

6.6 Average location is used, when the number of locations is 800 and the

population is 20 . 112

6.7 Average makspan of EO-GNH with different mappers set up 113

6.8 Average used location by EO-GNH with different mapper number . . 113

6.9 Average makspan of EO-GNH with different mappers set up 114

6.10 Makspan of meta-heuristics . 114

6.11 Successful rate of meta-heuristics 115

6.12 Cost based on meta-heuristics used locations 115

7.1 Compare cost with different adaptive property setups 126

List of Tables xx

7.2 Simulation parameters for temperature forecasting experiments 136

7.3 Simulation parameters . 149

A.1 IoT applications domains . 181

A.2 QoS of IoT applications . 182

A.3 Generational categorisation of data streaming tools 184

C.1 GA algorithm references . 197

C.2 PSO and ACO Algorithm References 198

C.3 Greedy and RB Algorithm References 199

C.4 Summary of Algorithms and their Applications 200

C.5 Survey of Optimisation for scheduling 201

xxi

List of Algorithms

1 Evaluating completion time by integrating a failure model 71

2 Failure model based on Weibull distribution 74

3 Simulation of a random walk . 75

4 Mapper receives L and f i
j and Return MapperResult of size MaxReplicasi,j

. 82

5 Reducer receives MapperResult and Return MAXHEAP of size MaxReplicasi,j

. 83

6 The solution is an array where each index refers to the function (f i
j),

whereas its content is the location id 105

xxii

List of Acronyms

ACO Ant colony Optimisation

AHP Analytic Hierarchy Process

AWS Amason Web Service

CPU Central Processing Unit

CSP Constraint Satisfaction Problem

DP Dynamic Programming

EO-GNH Enhanced Optimised Greedy Nominator Heuristic

FL Fuzzy Logic

FN Fog Node

GA Genetic Algorithm

GCP Google Cloud Platform

GDE3 Generalised Differential Evolution

GNH Greedy Nominator Heuristic

GPS Global Positioning System

GPU Graphics Processing Unit

List of Acronyms xxiii

GSA Gravitational Search Algorithm

HYPE Hypervolume Estimation Algorithm for Multi-Objective Optimisation

IBEA Indicator Based Evolutionary Algorithms

ILP Integer Linear Programming

IoT Internet of Things

KH Krill Herd Algorithm

LO Lyapunov Optimisation

LS Local Search

MA Memetic Algorithm

MOCell Multi-Objective A Cellular Genetic Algorithm

MPA Marine Predators Algorithm

MTBF-clock Mean Time Between Failures Clock

MTBF Mean Time Between Failures

MTTF Mean Time to Failure

MTTR Mean Time to Recover

NFV Network Functions virtualisation

NLP Natural Language Processing

NN Next Neighbourhood Search

NSGA-III Non-Dominated Sorting Genetic Algorithm III

NSGA-II Non-Dominated Sorting Genetic Algorithm II

List of Acronyms xxiv

OMOPSO Optimised Multi-Objective Particle Swarm Optimisation

OOAD Object-Oriented Analysis and Design

PC Personal Computer

PSO Particle Swarm Optimisation

PeSOA Penguins Search Optimisation Algorithm

RAM Central Random Access Memory

RB Rule-Based Algorithm

RPi Raspberry Pi

RP Random Placement Replicated Random Placements

RR Round Robin

Rand Random Placement

SA Simulated Annealing

SBC Single-board computer

SDN Software-Defined Networking

SE Search Economics

SFC Service Function chaining

SMPSO Speed-Constrained Multi-objective Particle Swarm Optimisation

SPEA2 Strength Pareto Evolutionary Algorithm 2

VM Virtual Machine

VNF Virtual Network Function

List of Acronyms xxv

VNS Variable Neighbourhood Search

WOG whale Optimisation Algorithm

ZDT1 Zitzler-Deb-Thiele

Dedication xxvi

To my sons, Ahmed and Abdullah, I hope my academic pursuits
have not weighed heavily on your beautiful souls.

Thanks to you and your mother for your patience.

xxvii

Acknowledgements

With heartfelt gratitude for the blessings bestowed upon me by God throughout my
academic journey, I extend sincere thanks to the individuals and organisations who
significantly contributed to my achievements during my PhD.

First and foremost, I am immensely thankful to my supervisor, Omer Rana, for his
unwavering support, guidance, and the freedom he granted me to explore my ideas.
Even when I enthusiastically ventured beyond the boundaries of this freedom. Omer’s
patience and mentorship have played a pivotal role in shaping my research endeavors.
Grateful for the Saudi Arabian government’s support enabling my research, and to
Prince Sattam bin Abdulaziz University.

I am indebted to Kyle Chard, Souham Meshoul, Abdullah Aljumah, Salman Alotaibi
and Philipp Reinecke for their invaluable advice and insightful comments. Their advice
has significantly facilitated my journey towards a PhD.

I am grateful to the Parsl team at Argonne National Laboratory and The University of
Chicago for their assistance in overcoming research challenges, leading to meaningful
results.

Special recognition goes to Yinhao Li, Panos Patros, Matt Baughman, Harshaan Na-
gra, and Ioan Petri for their exceptional assistance in the development of distributed AI
applications. I would also like to express my gratitude to Rajiv Ranjan, Devki Nandan
Jha, Pankesh Patel, Prem Prakash Jayaraman, Schahram Dustdar, Victoria Huang, Mi-
chael Mayo, Melanie Ooi, Ryan Chard, Ian Foster, Chris Anderson, and Stephen Bur-
roughs for their valuable contributions and support.

I am truly blessed to have a supportive family. My parents, Ahmed and Nawal,
have always believed in me and encouraged me to aim high. To my wife, Norah
Huzaim, I am eternally grateful for her unwavering support, compassion, and meticu-
lous proofreading of my writing. I am immensely proud of my beloved sons, Ahmed
and Abdullah, and I extend my heartfelt wishes for their bright and prosperous future.
I would also like to express my gratitude to my siblings, Ruba, Saleh, Amr, Khloud,
Abdullah, Haneen and Moath, for their constant support and inspiration, especially in
the last year of my PhD.

I sincerely appreciate the support and feedback from Ashish Kaushal, Osama Al-
moghamis and Wafi Bedewi. I am also thankful to my friends and PhD colleagues,
Asmail Muftah, Fahd Alhamazani, Turki Al Lelah, Fahad Alodhyani, and Mohammed
Asiri, for their shared journey and mutual support during the challenging times of the
COVID-19 pandemic. Also, I extend my gratitude to the COMSC-PGR team, particu-
larly Helen Williams and Adam Hammond, for their assistance.

I am profoundly grateful to all mentioned for your contributions and support.

1

Chapter 1

Introduction

1.1 Motivation

Despite its benefits, the cloud computing model often struggles to fulfil two crucial

requirements of many IoT applications: reduced latency and improved data privacy.

This issue arises from the time delay associated with data transfer from IoT devices to

the cloud, which risks data becoming outdated [1]. Also, transmitting sensitive data

to remote cloud servers can raise privacy concerns. Fog computing addresses these

issues by extending the cloud model to process time-sensitive data at the network’s

edge, accelerating application execution while also reducing the need for remote data

transmission, thus enhancing privacy protection.

The merging of fog and cloud models into a hybrid fog-cloud architecture yields an ef-

fective solution. This framework combines rapid application execution with increased

computing capacity, providing IoT applications with efficiency and power. These ad-

vantages encompass reduced latency, enhanced reliability, and improved Quality of

Service (QoS) [2].

Figure 1.1 provides a depiction of the computational offloading process within the

IoT ecosystem, composed of three principal layers: the application, platform, and

infrastructure layers. The application layer incorporates a service functions chain

(SFC) [3], which is essentially a group of sub-applications distributed for execution

across the fog-cloud infrastructure. Usually, users construct their workflow SFC as

1.1 Motivation 2

a directed acyclic graph (DAG), wherein the vertices denote functions and the arcs

represent data flow.

Computational Offloading

Fog
Node2

Fog
Node3

Fog
Node1

Virtual
Machine2

Virtual
Machine1

Cloud
Data-Centre

Fog
Infrastructure

<1ms...

Function1 Function2 Function3 Function4

Function2

User
Device

User
Device

P
la

tf
o

rm

Resource Provisioning

...?

In
fr

as
tr

u
ct

u
re

Function1

Function4
Function3

A
p

p
lic

at
io

n

SFC graph

SFC execution

WAN

LAN

Virtual Machine1 Fog Node1 Fog Node2

Response Time

Figure 1.1: The process of IoT computational offloading across various layers,
including application, platform, and infrastructure layers .

The fundamental layers draw parallels with the structure of Network Functions Vir-

tualisation (NFV), which uses virtualisation to transform network functions into in-

terconnected virtual building blocks, enabling flexible and efficient service delivery.

NFV decouples hardware and software, shifting task management to orchestrator lay-

ers (platform), improving flexibility and efficiency, and enabling application logic via

application and infrastructure orchestration [4]. The infrastructure is the hardware

foundation, the platform orchestrates service functions, and the application represents

the software composition of SFC workflow.

The platform layer, which bridges the application and infrastructure, is responsible for

the execution of service functions within the process nodes of the infrastructure. The

1.1 Motivation 3

designation of these nodes depends on the infrastructure: in fog, they are referred to

as fog nodes (FNs), and in the cloud, they are termed virtual machines (VMs). VMs

function within cloud datacenters that are accessed over the internet via a wide-area

network (WAN). Conversely, FNs are single-board computers (SBCs) situated within

a local area network (LAN). These SBCs incorporate various components, including

a central processing unit (CPU), random access memory (RAM), and sometimes a

graphics processing unit (GPU), serving as nearby computing resources for users.

The scheduling mechanism of the platform is charged with establishing the timing and

location of execution. Nevertheless, determining the ideal execution location or place-

ment for service functions is a complex task. It demands a meticulous evaluation of

the process node states, application QoS, and potential bottlenecks to preclude possible

delays in IoT applications.

IoT devices fall into two categories: those that collect data via sensors and those that

act through actuators. The scheduler, which have been the primary focus of this thesis,

do not operate on IoT devices; instead, they perform task execution at higher levels on

edge/fog nodes and on the cloud, which process data from IoT devices and can produce

actionable outputs.

The scheduler should be designed to manage the unique demands of IoT environments,

focusing on meeting low latency requirements to ensure timely responsiveness to envir-

onmental and sensor data. This scheduler also adjusts to the varied and constrained net-

work conditions typical in IoT settings, ensuring efficient data communication. It op-

erates effectively in a distributed and decentralised system, coordinating tasks among

numerous devices. Moreover, it is highly adaptable to the dynamic nature of the envir-

onments, ensuring the system’s resilience and operational efficiency despite changing

device availability and network conditions.

IoT devices often have restricted computing capabilities and are mostly used for data

collection and action execution through sensors and actuators. To overcome such

limitations, computational offloading and data migration to more capable computing

1.2 The Challenges of Managing IoT Applications 4

resources can be the solution. Fog-cloud infrastructure leverages the computational

power of offloading tasks from IoT devices to more powerful process nodes, such as

fog nodes or cloud instances, to reduce the computational load on the IoT devices. This

Task offloading maintains the energy of IoT devices and ensures data collection for

longer duration while complex processes are handled by much more powerful nodes.

However, while offloading tasks can enhance computational efficiency, it may also in-

crease latency and pose privacy risks. Therefore, there is need for the scheduling pro-

cess that considers latency, risk of data leakage, fault tolerance, network connectivity,

and proper utilisation of resources during the task execution process.

Therefore, a pressing need exists for an advanced scheduling algorithm that concur-

rently considers the requirements of the IoT application and the status of the infra-

structure. This algorithm should equip the platform with the ability to adapt to changes

in the environment, such as partial system failure, ensuring the avoidance of additional

delay. Importantly, the execution time of this algorithm should not add substantially to

the end-to-end latency of the SFC execution process.

The subsequent sections of this chapter are organised as follows: The Section 1.2 ad-

dresses the challenges associated with managing IoT application management. Sub-

sequently, Section 1.3 emphasises the research problems and the thesis’ objective. Sec-

tion 1.4 describes the research methodology, while Section 1.5 summarises the thesis’

contributions and outlines its organisation.

1.2 The Challenges of Managing IoT Applications

The IoT application deployment process in fog-cloud infrastructure faces challenges

in each ecosystem layer: infrastructure, platform, and application. For instance, in-

frastructure components are spread out geographically, and applications have distinct

characteristics. These difficulties, which do not occur in traditional systems, make it

challenging for the platform to manage IoT applications. This includes the scheduling

1.2 The Challenges of Managing IoT Applications 5

challenges encountered in the platform layer. In the following sections, we address

these and other challenges at every layer that affect the underlying IoT applications.

1.2.1 Challenges in Application Layer

Application requirements are described as QoS, such as fast response and low cost

(i.e., reduce the number of resource utilisations for cost-effective operations). Whereas

function requirements are things that govern each function’s execution, such as data

privacy, a complete deadline, hardware acceleration, software package, etc.

Application requirements in the IoT ecosystem have many aspects and can often be

characterised by various QoS metrics. Among these, fast response time and cost-

effectiveness are highly important. Fast response time ensures that IoT applications

can meet the real-time needs of users, a critical aspect in scenarios like emergency

response systems or industrial automation. On the other hand, cost-effectiveness is an-

other comprehensive metric that goes beyond mere financial expenditures. It includes

not only the monetary costs associated with deploying and maintaining IoT solutions

but also the resource utilisation costs, including energy consumption, bandwidth usage,

and other indirect costs related to system maintenance and scalability.

However, function requirements consider the specifics of each service function within

the IoT application. These requirements are not just about ensuring the functional

integrity of the service but also about adhering to specific operational parameters. This

includes ensuring data privacy, a critical aspect as data breaches can have a significant

impact on performance. It also involves ensuring complete deadlines (crucial for time-

sensitive applications), leveraging hardware acceleration for computationally intensive

tasks, and compatibility with necessary software packages, among other factors.

The design of an application’s SFC graph is usually separate from the infrastructure

that runs it. Infrastructure and application decoupling transfer the execution task to the

platform [5]. Therefore, it is important to design the functions of the SFC in a way that

1.2 The Challenges of Managing IoT Applications 6

allows the user to assign requirements for each function so the platform can handle

them.

The first challenge in the application layer is the design of the SFC graph, which divides

the programme logic of the application into functions, each with its own requirements.

The second challenge is enabling parallel programmes and executing the functions’

code on a specific process node, i.e., the act of function placement. This entails build-

ing a dynamic graph that demonstrates data transformations caused by function execu-

tion at particular process nodes.

1.2.2 Challenges in Infrastructure Layer

Infrastructure for IoT applications is geo-distributed by nature, which means that pro-

cess nodes are in different locations and are linked together through wired and wireless

networking. Also, the infrastructure is shared among applications, which means mul-

tiple service functions of one or more applications run on the same infrastructure.

Nodes and networks may be unreliable, and therefore functions may fail or be unable to

meet the applications’ QoS. Also, infrastructure can dynamically change when process

nodes are added or removed. This makes it costly to search for a node that provides a

service, as the activity of nodes and connections must be continuously monitored.

The first challenge in this layer is to keep track of the infrastructure changes in a reas-

onable amount of time to avoid increasing latency. The second challenge is to measure

unreliability and locate node failures to avoid placing functions on unreliable infra-

structure components until they recover.

1.2.3 Challenges in Platform Layer

The platform layer is the intermediate layer that provides resources to the applications.

Thus, it should be aware of the system as a whole and adapt to changes that affect its

1.2 The Challenges of Managing IoT Applications 7

performance [6].

There are two types of resources: utility and application. The utility’s resources are

used to analyse, configure, optimise, and maintain the infrastructure. Whereas the

application resources are the resources that the platform offloads applications to.

The adaptation process relies on utility resources to monitor application resources in

order to be aware of their state, and then plans a schedule to decide when and where

applications are offloaded.

The first challenge for the platform layer is to set up mechanisms for analysis that make

the platform aware without overloading the system’s resources. These mechanisms

have to provide comprehensive information that supports the scheduling process.

The second challenge is determining where the adaptation process occurs, which is

dependent on the type of system control. There are either centralised or decentralised

types of control [7]. The characteristics of the applications govern the control type.

Unreliable wireless networks, for example, require control at the edge device, resulting

in a decentralised system. This setup enhances system resilience and response time by

enabling localised decision-making and processing.

In a centralised setup, a singular control unit is utilised for the decision-making pro-

cess. The control node is responsible for analysing the comprehensive data collected

throughout the network, making strategic decisions about task allocation and resource

management, and assigning tasks to the respective nodes. While this model benefits

from a unified decision-making approach, ensuring consistency and potentially simpler

management, it also raises concerns about single points of failure and the scalability of

the framework. On the other hand, a decentralised control framework distributes the

decision-making process across multiple nodes within the network. This model is par-

ticularly advantageous in scenarios where network reliability is a concern, such as in

environments with unstable wireless connections. This approach is scalable and better

at handling failures, but the distributed nature of the network makes it more complex

1.2 The Challenges of Managing IoT Applications 8

and difficult to utilise within the network.

The third challenge is to integrate utility tools for distributed programming, infrastruc-

ture analysts, and scheduling algorithms to execute IoT applications. This includes

integrating the system with other platforms, such as container technology and data

streaming tools [8].

1.2.4 Challenges in Scheduling Algorithm

The scheduling process is the task of providing a plan that has the time and place to run

an application. It decides placement based on infrastructure monitoring data and the

application’s QoS requirements. Monitoring data are not only useful for having an ini-

tial schedule placement plan but also help in revising the plan in case of infrastructural

changes [5].

QoS requirements necessitate the fastest application execution at the lowest possible

cost and avoid resources that increase application execution time. This also necessit-

ates the scheduling algorithm to use utility resources at full capacity to accelerate the

scheduling process.

The first challenge in scheduling is integrating the scheduling algorithm with the plat-

form and using comprehensive infrastructure information. This also involves determ-

ining when the placement decision should be made and how frequently it should be

revised.

The second challenge is to evaluate the quality of the scheduled placement plan in

light of the conflict between QoS criteria such as performance and cost. For example,

increasing the number of process nodes used to execute an application improves reli-

ability and performance but raises the cost.

The third challenge is finding a way to give the scheduling algorithm full access to

resources. The access should define the execution configuration, which includes par-

1.3 Research Problems and Objectives 9

allel vs. sequential runs, synchronous vs. asynchronous execution, shared-memory vs.

cluster computing, etc.

The fourth challenge is to find a scheduling algorithm that suits the infrastructure and

application characteristics. The scheduling algorithm could perform better in certain

scenarios than others. This is affected by various factors, such as the service functions

hardware requirements and the type of process nodes and the way they are connected.

It is challenging to figure out how to match the best scheduling algorithm to a particular

application.

1.3 Research Problems and Objectives

This thesis focuses on the execution of IoT applications on fog-cloud infrastructure

with the goal of improving multi-QoS metrics. To address the aforementioned chal-

lenges, we aim to achieve the following objectives:

How might we enhance resilience in IoT application placement through a design

process that considers infrastructure state, application requirements, and deploy-

ment objectives? This question addresses the need for a design process that effect-

ively incorporates infrastructure state, application needs, and deployment objectives for

resilient IoT application placement. We aim to develop a model that aids in effective

scheduling and enhances resilience in application placement. This research question is

explored in detail in Chapter 3.

Can we develop an IoT platform that is dynamic and can adapt to changes in IoT

application requirements and changes in system configuration? This question in-

vestigates how to design an adaptable platform architecture that effectively links plat-

form tools with optimisation algorithms for enhanced system management. We focus

1.3 Research Problems and Objectives 10

on how this architecture could adapt to shifts in application requirements and techno-

logical advancements, while also providing methods to evaluate its effectiveness. This

research question is discussed in Chapter 4.

How can we define a strategy that optimises the placement of IoT applications,

balancing multiple QoS metrics within various IoT domains? This question ex-

plores strategies to optimise IoT application placement with the balanced consideration

of multiple QoS metrics across various domains. Our aim is to define a method that

integrates key considerations for placement, manages trade-offs among metrics, and in-

corporates a dual-metric evaluation framework emphasising both solution quality and

speed of convergence. This research question is explored in detail in Chapters 5, 6,

and 7.

How can we develop scheduling strategies that prioritise execution performance,

cost-effective resource utilisation, and promote high resiliency for IoT applica-

tions, taking into account domain-specific characteristics and infrastructure con-

figurations? This question aims to identify and apply optimal scheduling strategies

for IoT applications based on unique domain characteristics and infrastructure config-

urations. Execution performance in this context refers to the expected completion time

of tasks, cost-effective resource utilisation corresponds to the cost aspect and is spe-

cifically concerned with the efficient use of computing resources, and high resiliency

is related to managing failure risks. We aim to develop strategies that are adaptable

to different application domains, account for application and infrastructure character-

istics, and can handle diverse configurations, irrespective of control type. Evaluations

of these strategies, presented in Chapters 6 and 5, using different IoT applications are

discussed in Chapter 7.

1.4 Methodology: An Iterative Process 11

1.4 Methodology: An Iterative Process

Build an Understanding of the
Problem

Conducting a Literature
Review

Consult Experts and
Researchers

Document Initial Findings

Build a Prototype or Concept

Develop the Solution

Test the Solution

Document Test Results

Are results
 comprehensible?

Yes

No

Set a plan to refine the prototype
Analyse the Outcome of the

Prototype Test

Analysis reveals
limitations

Enhancement is
 straightforward

Yes

Yes

No

Start

Report Findings
No

Share Final Results with
Researchers

Submit for Publication
and Add to Thesis

Is there another
 research objective?

Document Final Findings

Yes

End

No

Figure 1.2: This diagram outlines our iterative research methodology, mapping
the journey from initial problem comprehension to prototype development, re-
finement, and final reporting, integrating continuous reviews and expert advice
at each phase.

Our research methodology is based on an iterative approach, involving cycles of sys-

tematic learning, implementation, and refinement. This cycle continuously incorpor-

ates newly acquired information and insights into our work, thereby enhancing our

comprehension and enhancing our output.

Important to this strategy is the consistent participation and contribution of other re-

searchers, whose external perspective and expertise significantly improve our work.

This methodology, shown in Figure 1.2, supports all phases of our research, from ac-

1.4 Methodology: An Iterative Process 12

quiring an understanding of the IoT field to developing applications. In the following

example, illustrate how the methodology helped in determining the research.

Understanding the IoT field and operation platforms Our journey begins with an

in-depth knowledge of the IoT and its applications. A comprehensive literature review

and extensive hands-on experience with the real-time protocol (RTP) and Parsl [9] form

the basis of our knowledge in this field. This phase, guided by the supervisor’s insights

and the assistance of the Parsl team, leads to the essential elements of IoT operation.

By integrating replication, environmental or system feedback, our platform provides

both system resilience and QoS, enhancing SFC for edge-based applications. Designed

to support both real-time and non-real-time applications, our strategy utilises adaptive

transmission and precise SFC execution to enhance performance and reliability, effect-

ively addressing the dynamic demands of edge computing. Chapter 7 highlights our

approach’s ability to handle real-time and non-real-time applications, emphasising its

wide-ranging applicability in edge computing environments.

For example, federated learning updates models with new data through scheduled train-

ing tasks, optimising over time—a non-real-time application (Section 7.3). Addition-

ally, the intelligent cooling system reacts quickly to temperature changes to preserve

food, exemplifying a soft real-time application (Section 7.4). This knowledge is es-

sential for developing the adaptive platform and simulations that facilitate testing the

platform’s adaptability (Chapters 3 and 4).

Development of an adaptive platform With a solid understanding of the IoT eco-

system, we begin the development of an adaptable platform. This platform integrates

monitoring, analysis, deciding, and action (Chapter 4). The iterative refinement of this

platform, which opens the path for an advanced scheduling algorithm, is motivated

by the insights obtained from the comprehensive literature reviews and data from our

prototyping and testing with Parsl.

1.5 Thesis Contributions and Organisation 13

Developing an advanced scheduling algorithm The system’s dynamic nature serves

as inspiration for our method of developing an effective scheduling algorithm. This

results in the development of the Greedy Nominator Heuristic (GNH), which shows

initial promise by outperforming Particle Swarm Optimisation (PSO) (Chapter 5). To

gain insight into the superior performance of our GNH over the PSO, a meta-heuristic

method, we build meta-heuristic prototypes and conduct a comprehensive review of the

academic literature to clarify the distinctive features of these optimisation algorithms.

As we progress and review our method with other researchers, including those from

Prince Noura University, a more advanced version, the Enhanced Optimised Greedy

Nominator Heuristic (EO-GNH), emerges, validating the good use of the iterative

methodology to enhance GNH (Chapter 6).

Implementing intelligent IoT application scenarios In the creation and implement-

ation of Intelligent IoT applications, our methodology proves necessary. Each applic-

ation scenario presents its own set of challenges and learning opportunities, allowing

us to test and improve our EO-GNH scheduling algorithm. As we engage with these

diverse applications, we become aware of their distinctive characteristics and require-

ments, thereby refining EO-GNH. This IoT applications, which has been developed

with researchers from Newcastle University, the University of Waikato, the Univer-

sity of Chicago, and Cardiff University School of Engineering, enables us to develop

robust, intelligent IoT applications that resample scenarios (Chapter 7).

1.5 Thesis Contributions and Organisation

This thesis focuses on intelligent IoT application management at the edge of the in-

ternet, with a key focus on rapid response time, highly available services, and cost-

efficient execution.

The contributions of this thesis are as follows:

1.5 Thesis Contributions and Organisation 14

• Identify the limitations and challenges of existing adaptive strategies for IoT

application frameworks. Analyse and explore how an edge-cloud infrastructure

can be utilised to overcome these challenges, Chapter 2.

• Modelling the IoT application placement problem in fog-cloud infrastructure,

Chapter 3. The problem is defined as an SFC placement with replicated func-

tions to ensure the service’s availability.

• Simulating the infrastructure and application behaviours so that the platform ad-

aptation mechanisms can be tested in an AI application at the edge-cloud in real-

istic simulation setting, in Chapter 4. The simulation modelling node failure,

mobile connection, and application workloads.

• Define a platform for IoT applications deployment in fog-cloud infrastructure,

Chapter 4. The platform provides the tools required for the system to be aware

of environmental changes and adapt to them.

• Developing a parallel optimisation algorithm to solve the placement problem is

described in Chapter 5. The algorithm makes use of utility resources to speed

up the scheduling process.

• Enhancing the distributed scheduling process with state-of-the-art optimisation

algorithms, Chapter 6. Optimisation algorithms are dynamically selected based

on the characteristics of the application and infrastructure.

• Implementing distributed intelligent applications to evaluate the system, Chapter 7.

The scenarios differ in infrastructure and application characteristics. Also, each

application is in a different IoT domain: smart city, smart factory, and precision

agriculture.

Figure 1.3 shows the organisation of thesis chapters. Chapter 2 gives background

information and a literature review on the management of IoT applications in a fog-

cloud environment. Chapter 3 models the placement problem and the objectives of the

1.5 Thesis Contributions and Organisation 15

scheduling process as an optimisation problem. Chapter 4 defines the system architec-

ture that manages the infrastructure and operates the IoT applications.

Chapter 5 introduces a parallel multi-objective optimisation algorithm. The algorithm

utilises the optimisation problem definition in Chapter 3 and builds on top of the

platform in Chapter 4. Chapter 6 enhances the parallel optimisation algorithm with

state-of-the-art multi-objective optimisation approaches. The aim is to improve the al-

gorithms’ suitability for scheduling IoT applications and adaptation to environmental

characteristics.

The proposed adaptive platform and algorithms are evaluated in Chapter 7 using intel-

ligent IoT application scenarios. The application scenarios differ in their environments

and characteristics. Chapter 8 concludes the thesis with a discussion of the results and

future work.

1.5 Thesis Contributions and Organisation 16

Chapter 1
Introduction, Challenges

and Contributions

Chapter 2
 Background, Context and Survey

Chapter 3
 Modelling Application Placement in

Fog-Cloud Environment

Chapter 5
 Greedy Nominator Heuristic: Harnessing

MapReduce for Function Placement

Chapter 6
Enhanced Optimised-GNH: Enhancing

GNH with Meta-Heuristics

Chapter 8
 Conclusions and
Future Directions

Chapter 7
 Performance Evaluation of Adaptability

in Intelligent IoT Applications

Chapter 4
 Toward a Platform that Supports

Continuous Adaption

Figure 1.3: Thesis structure

17

Chapter 2

Background, Context and Survey

2.1 Introduction & Background

This chapter focuses on a literature review of adaptive fog-cloud systems for the IoT

application deployment process, as highlighted in Chapter 1 of this thesis. Understand-

ing the context of IoT applications and fog-cloud computing is crucial to address these

challenges.

The combination of the IoT and AI at the edge is creating new opportunities, trans-

forming various sectors with innovative applications. Various applications such as

smart homes and healthcare are carefully designed to meet the specific needs of their

computing environments. This combination not only makes IoT more extensive but

also brings about several complex challenges and opportunities. The main goal is

the effective execution of application functions on the infrastructure’s process nodes,

while ensuring QoS even as conditions change. The coordination of these applications,

shown in Figure 2.1, clearly shows the complex relationship between the system’s parts

and the fog-cloud infrastructure, ensuring that application processes are managed well.

This emphasises the critical need for a resilient mechanism to handle QoS and guar-

antee continuous functioning, meeting the complex demands of IoT systems with the

resources that are presently accessible [10]. It is evident that effectively managing the

complex interdependencies and requirements of networks and applications necessitates

not only the seamless integration of technical elements but also the implementation of

2.1 Introduction & Background 18

P
la

tf
o

rm
In

fr
as

tr
u

ct
u

re
A

p
p

lic
at

io
n

Process Nodes

Monitor

Network

Decision
Variables

Aggregated
Data

Analyse

System Logs

Optimise

Plan

Schedule

Allocate

Execute

Data Processing Tools Informed Search Algorithms Distributed Data Processing

Rules Reoptimise ReallocateNode

Applications

Quality of Service Dependency Graph

Hardware

Functions Requirements

Packages

Security Deadline

Execution Time

Availability

Cost

Functions Code

Data and Code

Input Data

Networks

Capacity

Memory

CPU

GPU

Storage

Configuration

Functions

Packages

Virtualisation

Operating System

Resources Software

Resource Provisioning

Computational Offloading

Resources

Upstream Speed

Downstream Speed

Round-Trip Time

Signal Quality

Capability

Communication

Protocol

Session

LAN/WAN

Wired/Wireless

Configuration

Figure 2.1: Adaptive platform-based application and infrastructure management.

a strategic resource allocation plan and adherence to environmental conditions. By

placing emphasis on the development of a flexible framework capable of effectively

overseeing QoS, there is a need for an ecosystem that ensures efficiency, capitalising

on the complete capability of current infrastructure and resources to provide consistent

and superior performance [11].

To effectively manage the complex nature of IoT systems, it is essential to have a

methodical approach. This involves regularly monitoring system performance, analys-

ing current statistics, and utilising data streaming tools at the network’s edge. These

tools have evolved to meet the unique needs of IoT by processing specific data more

efficiently and reducing delays, thus enhancing the system’s overall performance.

2.1 Introduction & Background 19

The foundation of this approach is a robust computing framework, ensured by carefully

configured nodes and networks. This setup guarantees smooth communication from

the network’s edge to the node, a critical factor for system reliability.

At the heart of this ecosystem is the platform layer. It orchestrates operations along

with the application layer’s sophisticated needs and the intricate data dependencies of

its components. By optimising the use of node resources, it fine-tunes system exe-

cution and quality of service. This orchestration ensures seamless operations across

different sectors of the ecosystem, making it well coordinated between the infrastruc-

ture component and the application layer.

Building upon the foundational aspects of IoT systems, adaptive systems and mech-

anisms, like the MAPE-K (Monitor, Analyse, Plan, Execute over a shared Knowledge

base) loop, play pivotal roles in enhancing system resilience. These systems are not

just reactive but proactive, constantly monitoring the environment and the system’s per-

formance [12]. They analyse this data to understand and predict trends, plan responses

to these insights, and then execute these plans, all while updating a shared knowledge

base. This ensures that IoT platforms are not static but dynamic entities, capable of

efficiently adapting to changes in infrastructure, applications, and the surrounding en-

vironment. Such adaptability is crucial, especially given the unpredictable nature of

the environments where IoT systems often operate.

The MAPE-K loop [12], as an adaptive mechanism, utilises data generated at edge

layer to guarantee the smooth operation of applications within the given infrastructure.

This loop, embodying the principles of optimisation theory, meticulously analyses the

gathered data to formulate and execute well-informed plans, ensuring the application’s

efficiency and resilience. In this context, data streaming tools are indispensable, fa-

cilitating the seamless distribution and management of data across the infrastructure.

These tools not only enhance the system’s responsiveness but also contribute to the

overall robustness of the IoT ecosystem.

For detailed insights into the optimisation strategies and data streaming engines’ func-

2.2 Categorisation and Analysis of Existing Approaches 20

tionalities, refer Appandex A to the appendix of this thesis. The appendix provides

an overview of the various optimisation approaches and a concise introduction to data

streaming, illustrating their significance in the ecosystems.

This chapter is designed with an aim to provide a review. Categorisation and analysis of

existing Approaches and critical evaluation of Approaches are pivotal in understanding

the landscape of current research (Section 2.2). Then, we will examine the strategies

employed by researchers in this field to get solutions (Section 2.3). We conclude

this chapter with identification of challenges and directions of this thesis, providing a

clear trajectory for future research (Section 2.4). Additionally, we have provided more

details in Appendix A, Appendix B and Appendix C about our approach, protocol, and

tools utilised for conducting this review.

2.2 Categorisation and Analysis of Existing Approaches

2.2.1 IoT Application Domains

Diverse sectors are harnessing the power of connectivity and data. Smart homes in-

tegrate devices for remote management of home features, offering convenience and

savings. Smart cities deploy technologies for enhanced urban living, tackling chal-

lenges like pollution and traffic [13]. Industrial IoT leverages data from machinery for

insightful business decisions, boosting efficiency [14]. Smart Healthcare utilises tech-

nology for patient monitoring and hospital management [15]. Precision agriculture

employs sensors and drones for resource-efficient farming [16]. Lastly, smart vehicles

incorporate technology for improved transport services and automation. Each sector,

uniquely benefiting from IoT, signifies a transformative step towards a more intercon-

nected, efficient world [16].

2.2 Categorisation and Analysis of Existing Approaches 21

2.2.2 Optimisation theory & Optimisation Attributes

Application objectives in IoT systems span various key performance indicators. Ser-

vice availability ensures system resilience against disruptions, maintaining uptime.

Completion Time focuses on efficient resource and schedule management to exped-

ite task execution. Deployment costs encompass both explicit and implicit financial

aspects of service usage and maintenance. Energy consumption prioritises efficiency

in resource usage and optimised functions for sustainability. Data security involves

stringent measures to safeguard information and restrict access. The service scale dy-

namically aligns resources with request volume. Application’s throughput measures

the system’s efficiency in processing workloads over time, influenced by performance

metrics and network factors. These objectives, identified from our observations, set the

stage for an in-depth exploration and optimisation of system performance, a process

briefly overviewed in Section 2.3 and elaborated in detail in the Appendix A.

Efficient scheduling is essential for various applications and systems, involving organ-

ising tasks and allocating resources to ensure optimal utilisation and timely completion.

It involves searching for scheduling solutions out of a set of possible solutions known

as the search space [17].

The search space is the set of all possible solutions to a problem, and optimisation

algorithms aim to identify the best solution within this space. The search space can

be vast and complex, posing challenges to the optimisation process. Informed search

algorithms play a pivotal role in enhancing the scheduling of tasks, leading to better

performance.

Informed search explores the search space using heuristic functions and objective func-

tions to gauge and evaluate their quality based on specific criteria. A heuristic function

is typically employed to drive the search process toward the global optimum, but it will

almost always result in a good approximation [18]. This improves efficiency in finding

the best or near-best solution.

2.2 Categorisation and Analysis of Existing Approaches 22

The structure of an algorithm is defined by several key components that contribute to

its effectiveness and efficiency. Objective functions and constraints define the problem

and the algorithm that optimises the solution. The objective functions are the central

aspect, representing the function that the algorithm aims to optimise by either minim-

ising or maximising its value. Constraints are also essential, imposing conditions or

restrictions that candidate solutions must satisfy to be considered feasible.

Algorithm components are essential steps in optimisation algorithms that guide the

search process towards optimal or near-optimal solutions. They involve selection and

variation mechanisms. Selection prioritises promising solutions based on their qual-

ity, while variation generates new candidate solutions by modifying selected previous

solutions [19]. The combination of these procedures ensures a balance between main-

taining promising solutions and exploring the search space to avoid local optima and

converge to global optima (balance between exploring and exploiting). Heuristics play

a crucial role in this structure, as they optimise solutions for complex problems by util-

ising domain knowledge and insights to create rules or guidelines that guide the search

towards promising areas in the search space. Integrating heuristics into the design of

an algorithm enhances the optimisation process’s effectiveness and efficiency.

The properties of multi-objectives optimisation algorithms significantly impact the

quality of solutions, making it essential to consider them when designing optimisa-

tion methods. Figure A.4 in Appendix A.4.3 summarises the properties.

These properties include preference information, which involves the various types of

preference data provided by a user or decision-maker to the optimisation’s goals, such

as a priori, progressive, or a posteriori preference information, or even no articulated

preference information [20].

Solution evaluation encompasses methods used to assess and compare the quality of

solutions within the search space, employing techniques like scalarisation and Pareto

optimality [21]. In multi-objective optimisation, scalarisation aggregates multiple ob-

jective functions into a single one, while Pareto methods prioritise non-dominated solu-

2.2 Categorisation and Analysis of Existing Approaches 23

tions across all criteria among other explored alternatives. A set of non-dominant solu-

tions offers a variety of potential alternatives, each with its own unique trade-offs; none

of them is better than the other in all objectives [21].

Local and global optima are two important concepts in the field of optimisation. Local

optima refer to the optimal solutions within a limited area or region of the search space,

while global optima refer to the optimal solutions throughout the entire search space.

Noting that a local optimum is not necessarily a global optimum is essential, as other

regions of the search space may contain better solutions [17].

Exploration and exploitation are fundamental to the optimisation process. Explora-

tion is the process of discovering new regions of the search space, which may provide

global optimums by revealing diverse solutions. Exploitation, on the other hand, en-

tails augmenting the currently best-known solutions and refining them to discover local

optima within a particular region of the search space. It is essential to find a balance

between these two strategies; excessive exploitation could cause the algorithm to be-

come trapped in suboptimal solutions, while excessive exploration could prevent the

algorithm from adequately refining promising solutions. Therefore, a successful optim-

isation procedure must navigate carefully between exploration and exploitation [17].

The execution approach pertains to how the optimisation algorithm is carried out, in-

corporating parallelism and serial execution, where parallel algorithms can accelerate

the search process while serial algorithms execute tasks sequentially [22].

Solutions quantity outlines methods used to navigate the search space, categorising

optimisation algorithms based on the number of concurrent solutions, including single

solution-based algorithms (trajectory methods) and population-based algorithms that

operate on a set of solutions simultaneously [19].

2.2.3 Objectives Functions and Constraints in Optimisation Al-

gorithms

2.2 Categorisation and Analysis of Existing Approaches 24

Several critical factors contribute to the overall effectiveness and efficiency of opera-

tions. Service availability ensures uninterrupted operation despite challenges like net-

work or hardware failures. Completion time optimises resource use to expedite pro-

ject execution efficiently. Deployment cost covers both direct expenses and ongoing

maintenance, emphasising resource use efficiency. Energy consumption is minimised

through optimised resources and energy-efficient programming. Data security safe-

guards integrity and restricts access through methods like encryption and access con-

trols. Service scale dynamically adjusts to application demands, optimising resource

distribution. Application throughput measures workload processing speed, focusing

on enhancing efficiency through performance and latency improvements. In multi-

objective optimisation, a model constraint can address particular objectives, such as

reducing node overload [23] or delay via deadline constraints [24, 25, 26]. To avoid

constraint violations, it is important to recognise that delay control can serve as a con-

straint, not an objective. Solutions addressing an objective as a constraint are less likely

to be optimal, particularly if they are independent of the objective function, which does

not use it directly during evaluation and acts as a filtering mechanism.

Sometimes delay is dealt with as a priority problem, which allows the most urgent

tasks to be run before other tasks in the queue. This prevents high waiting times for

latency-sensitive tasks [27, 28].

2.2.4 Architectural Aspects Impacting the Adaptive Loop

Exploring the architectural aspects affecting the adaptive loop highlights the cooper-

ation between various components and strategies. In addition to the optimisation al-

gorithm, several studies describe the integration of adaptive measures, such as rep-

lication, as an important approach for enhancing system resilience and performance

[29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. In edge computing, blockchain emerges

as a robust mechanism for tracking and rewarding node contributions, ensuring the

accuracy and authenticity of processed tasks [41]. Moreover, security tags serve as

2.2 Categorisation and Analysis of Existing Approaches 25

a safeguard, maintaining the confidentiality of IoT devices by harmonising execution

performance with a trust-centric IoT service placement approach [42].

Enhancing system adaptability often involves incorporating additional components.

For instance, the integration of a data-aware module can significantly refine data man-

agement and processing capabilities. This enhancement not only elevates the system’s

proficiency in handling diverse data types but also optimises query times and resource

utilisation [43]. Moreover, adaptability is not confined to structural elements; it also

permeates the algorithmic logic. As highlighted in certain studies [44], algorithms such

as the modified genetic algorithm can dynamically adjust to IoT application scenarios,

striking a balance between energy efficiency and latency, thereby catering to the varied

demands of IoT applications.

The concept of availability is complex and interpreted differently across various stud-

ies. For some, researchers [45], it denotes the capacity to fulfil deadlines, while others,

including Wang et al. [46], Gong et al. [47], Mohamadi et al. [34], and Moallemi et al.

[48], emphasise on aspects like geographical coverage. Similarly, the notion of cost

transcends beyond mere expense reduction; it encompasses broader strategies such as

profit maximisation, a perspective particularly evident in works like that of Wang et al.

[46].

In dynamic settings, certain algorithms inherently possess the capability to address

challenges autonomously, a trait discernible through their operational patterns. This

innate propensity is often similar to a greedy approach, especially in cooperative en-

vironments where decision variables undergo continuous refinement. Although not

always explicitly labelled as such, this approach mirrors the algorithm’s tendency to

opt for the most advantageous choice for each task or function, aligning with the es-

sence of a greedy strategy [31, 49, 50, 51, 52, 53, 54, 55, 40]. In this collaborative

landscape, decisions are collectively shaped by multiple parameters , such as adapt-

ing in real-time to evolving requirements. This collaborative dynamic often employs

a form of parallelism, understood as cooperative interactions between nodes, thereby

2.2 Categorisation and Analysis of Existing Approaches 26

fostering a cohesive decision-making framework often referred to as joint optimisation

[37, 56, 27].

The focus of the matter lies not within the computation, but within the management of

data, particularly its storage and replication. The latency associated with data storage

can be decreased by employing replicas, as demonstrated in studies such as Huang

et al. [40] and Shao et al. [39].

Certain research even utilises data replicas to investigate the optimal locations for in-

stalling these replicas for data-intensive IoT applications within fog computing. iFog-

StorM addresses data storage delay through multiple data replica placements within

Fog computing [28]. Replicas are also leveraged to enhance service availability [34].

In the course of investigating optimisation, we found some studies that have considered

the aspect of software architecture. For instance, [38] adopts a digital signature service

to maintain data integrity, while [43] implements graph databases. Some research, such

as [32], employs system components to monitor backups, utilising both a backup and a

standby instance for fault tolerance, supplemented by heuristic algorithms. Other stud-

ies, like [43], shift their focus towards the design and specification of a data streaming

engine.

2.3 Literature Review’s Statistical Analysis 27

2.3 Literature Review’s Statistical Analysis

2.3.1 Research Focus Across Various IoT Domains

Figure 2.2: The relationship between the IoT domain and the papers is depicted
by a bar chart. The percentage represents the proportion of papers in the survey
that cover a specific area of study.

Figure 2.2 shows the percentage of research papers that concentrate on various IoT do-

mains. In the context of Network Function Virtualisation (NFV) and Software-defined

Networking (SDN), Infrastructure management leads with approximately 30.59%, in-

dicating a strong emphasis on research in this domain. This is followed by unspecified

domains at 28.24%, indicating that a significant number of studies concentrate on gen-

eric IoT technologies. Instead of concentrating on specific domains, these studies put

more emphasis on the development and improvement of the optimisation algorithms

2.3 Literature Review’s Statistical Analysis 28

themselves.

The third-placed industry sector accounts for 16.47% of papers, demonstrating its im-

portance in IoT research. Following this are city applications, or urban IoT, which

account for 15.29%.

Distributed AI and healthcare, with applications including machine learning and deep

learning, are also well-represented, with 8.24% and 7.06% mentions, respectively, in-

dicating the growing significance of AI in IoT and the transformative potential of IoT

technologies in healthcare.

The vehicle domain’s 5.88% share reflects interest in autonomous vehicles and vehicle-

to-vehicle communications, among other topics. Similarly, Robot, Data Analysis, and

Home each have 3.53%, 2.35%, and 2.35% representation, respectively. These indus-

tries are essential because they encompass expansive fields such as home automation,

big data, and robotics, which are integral to the IoT.

Surprisingly agriculture has the lowest representation at 1.18%, which may be attrib-

utable to a lower adoption rate of IoT technologies in this sector or a decreased focus

in academia, despite the potential for a significant impact.

While there is a clear emphasis on infrastructure and industry, the diversity of domains

indicates a broad investigation of IoT technologies across a variety of applications.

However, the underrepresentation of some domains, such as agriculture, may suggest

areas for future investigation.

2.3.2 Distribution of Optimisation Objectives in IoT Research

Figure 2.3 illustrates the proportion of IoT research papers that addressed specific op-

timisation objectives.

Notably, completion time is the leading objective, with approximately 91.76% of pa-

pers addressing it. This highlights how important it is in IoT systems, where efficiency

2.3 Literature Review’s Statistical Analysis 29

Figure 2.3: A bar graph illustrating the objectives’ relationship to the topic of the
paper The percentage represents the proportion of papers surveyed that included
an explanation of the study’s objectives.

and timely completion of tasks are frequently of the highest priority.

Cost is also an important topic, with 80% of papers addressing it. This corresponds

with the shared objective of reducing operational costs or increasing cost effectiveness

in IoT implementations.

The third most prevalent objective is energy, which appears in 43.53% of the papers.

This reflects the industry’s emphasis on energy efficiency, which is essential in IoT

environments where power resources are frequently limited.

Approximately 34.12% of papers address the availability objective, reflecting its im-

portance in assuring reliable and consistent service in IoT systems. This is followed

2.3 Literature Review’s Statistical Analysis 30

by throughput (22,35%), an important measure for IoT systems that often need to pro-

cess large volumes of data. Throughput is usually measured by the amount of data

processed per unit of time.

Load balance (14.12%) and security (12.94%) also appear frequently as objectives in

the papers. These reflect the emphasis placed on optimising resource utilisation and

ensuring data privacy and system security, both of which are crucial aspects of IoT

systems.

Bandwidth and scale are essential aspects of the IoT, particularly in scenarios involving

data-intensive applications or large-scale deployments, despite being less frequently

discussed (each in 4.71% of papers).

Others (3.53%) encompasses a variety of objectives not explicitly enumerated, further

emphasising the diversity of issues and goals that IoT researchers address.

Overall, the data reveals a wide range of IoT research objectives, with a focus on

completion time, cost, and energy efficiency.

2.3.3 Algorithmic Properties Analysis

This part discusses different aspects of algorithmic properties and how each has been

handled in the given data set. These aspects range from the nature of the algorithm’s

process and solution to preferences in multi-objective optimisation and trade-offs between

exploration and exploitation. The section also assesses evaluation methods and the

types of variables involved.

The optimisation algorithms are characterised by several factors: covering process

(parallel or serial), solution quantity (single or population-based), preference (posteri-

ori, progressive, or priori), search (trade-off exploration and exploitation), evaluation

(non-Pareto or Pareto), and adaptiveness (static or dynamically reoptimising schedul-

ing plan).

2.3 Literature Review’s Statistical Analysis 31

Algorithmic process defines the mode of operation of an algorithm, whether it executes

steps sequentially (serial process) or simultaneously (parallel process). The majority of

the papers (74.12%) used a serial process, while 25.88% opted for a parallel process.

The solution aspect refers to how data is manipulated during the search process, whether

it involves multiple entities (population-based) or just one (single). 64.71% of the pa-

pers employed population-based solutions while 35.29% used single solutions.

The algorithm aspect pertains to the logic underpinning the search program, which

is generally connected to a state-of-the-art approach. Among the algorithms, Genetic

Algorithm (GA) was used in 43.53% of the papers, followed by Role-Based (RB) in

21.18% of the papers, and Particle Swarm Optimisation (PSO) in 15.29% of the papers.

The preference element relates to multi-objective optimisation and when to apply trade-

offs between conflicting objectives. 74.12% of the papers used a priori preference,

23.53% used a posteriori preference, while less than 2.35% for a progressive approach.

This is assuming that priori and a posteriori in two separate phases act as progressive.

The balance between exploration (ER) and exploitation (ET) is another important as-

pect of an algorithm’s behaviour. A majority (81.18%) opted for a balanced exploration-

exploitation approach, while 16.47% leaned towards an exploitation-oriented strategy.

Only about 1.18% preferred an exploration approach (one case).

The evaluation aspect refers to the method used to assess trade-offs between objectives.

Most of the papers (74.12%) used non-Pareto evaluation methods, while 25.88% used

Pareto evaluation.

The variables type aspect concerns the frequency of decision variable updates. Does it

the algorithm adapt to environment changes or not. 68.24% of the papers used static

variables while 31.76% used dynamic variables.

2.3 Literature Review’s Statistical Analysis 32

2.3.4 Algorithm Application Across Different Domains: A Com-

parative Analysis

GA: Genetic Algorithm PSO: Particle Swarm Optimisation SA: Simulated Annealing

ACO: Ant Colony Optimisation AHP: Analytic Hierarchy Process MPA: Marine Predators Algorithm

CSP: Constraint Satisfaction Problem WOG: whale Optimisation Algorithm PeSOA: Penguins Search Optimisation

SE: Search Economics KH: Krill Herd algorithm GSA: Gravitational Search Algorithm

VNS: Variable Neighbourhood Search NN: Nearest Neighbourhood Search RB: Role-Based Algorithm

RR: Round Robin FL: Fuzzy Logic DP: Dynamic Programming

MA: Memetic Algorithm LO: Lyapunov Optimisation LS : Local Search

Table 2.1: Enumeration of algorithm acronyms in investigated academic articles

This section quantifies the implementation of various algorithms in a variety of do-

mains to demonstrate their adaptability. Table 2.1 presents a list of acronyms for al-

gorithms used in the survey. The emphasis is on the vast number of papers employing

these algorithms, which provides crucial guidance for future research and practice.

Figure 2.4 displays a scatter plot depicting the diverse algorithm usage across IoT

domains. The size of each point indicates the number of publications utilising the

respective algorithm in a specific domain.

The wide usage of GA across different fields is notable. GA has been applied in twelve

IoT cases, eight industrial cases, and twelve instances involving SDN and NFV. A

detailed breakdown of the applications and corresponding references of the GA in dif-

ferent domains is provided in Table C.1 in Appendix C.1.

The wide usage of ACO and PSO algorithms across different fields is notable. PSO

algorithm is frequently used, with five industrial cases, three IoT instances, and three

infrastructure applications. ACO demonstrates a broad range of applications. Both in-

dustry and generic IoT applications (unspecified domain) report their use in two papers

each. Table C.2 in Appendix C.1 provides a comprehensive analysis of the applications

and references of PSO and ACO in various IoT domain.

Highlighting the unique environment of infrastructure defined by the intricacies of

2.3 Literature Review’s Statistical Analysis 33

Figure 2.4: Scatter plot representing the use of various algorithms across different
IoT domains. Each point’s size is indicative of the number of papers utilising the
corresponding algorithm for a specific domain.

SDN and NFV, there is a particular focus on joint optimisation techniques and al-

gorithms such as DP [29, 30], which are well-suited for managing the complex de-

pendencies inherent in such environments. Algorithms like Tabu Search [49, 57] are

also particularly prevalent in this area and feature in different infrastructure applic-

ations. RB algorithms also boast a large range of applications. Six papers imple-

ment role-based approaches, and city applications alone feature them in six instances.

The algorithms’ versatility is further demonstrated by their use across numerous other

2.4 Open Issues and Positioning 34

domains, potentially due to the simplicity of their application. The applications of

the Greedy and RB algorithms in various domains are outlined in Table C.3 in Ap-

pendix C.2.

While FL and genetic local search algorithms might not be widely used in IoT, they

hold unique roles, with the latter seen as a novelty. The implementation of the FL

algorithm across multiple domains such as image processing, signal processing, and

data analysis can be found in Wu et al. [58].

The LO algorithm diversifies the spectrum further, given its widespread usage in con-

trol theory and electronic engineering [59, 60]. It is noted that it is usual to use greedy

algorithms with congestion in DP, considering their step-by-step decision-making prop-

erty. However, this property is inherent in the programming approach of DP. Notably,

LO [59, 60] and DP [29, 30] have each been applied in two infrastructure cases.

Lastly, the k-means algorithm has been used in one IoT scenario [61] and LS in two

instances [62, 52], though the specific IoT domain of application remains unspecified.

Table C.4 in Appendix C.2 provides a detailed summary of various algorithms along

with their specific applications across different domains. This encompasses the remain-

ing computational strategies not previously discussed, thereby offering a comprehens-

ive overview of algorithm utilisation. Finally, a detailed comparison of optimisation

algorithms is presented in Table C.5 in Appendix C.2.

2.4 Open Issues and Positioning

This section highlights the unresolved challenges and gaps within our research field.

We position our study in the context of existing work, highlighting our contributions

and the potential focus.

The majority of the research predominantly concentrates on the mathematical and the-

oretical aspects of the deployment issue. It does not extensively address the practical

2.4 Open Issues and Positioning 35

and engineering components of the optimisation algorithms that function at the net-

work’s edge.

They allocate less attention to the time involved in the decision-making process for de-

vising a plan for applications at the edge. This time frame frequently impacts the total

completion time, thereby affecting the end-to-end latency. Consequently, it is import-

ant to measure the time utilised by the edge device, such as a single-board computer

like the Raspberry Pi, as this duration adds to the overall end-to-end latency of the

application’s execution.

In many studies, applications are often described as intelligent, even if they do not

include specific algorithms like those from machine learning. Furthermore, it is im-

portant to shift the focus towards AI solutions at the edge, using popular approaches

such as federated learning, model training inference, and distributed machine learn-

ing. This transformation is important for unlocking the full potential of AI within edge

computing frameworks and ensuring its effective management.

The thesis aims to contribute to filling gaps in edge computing and AI, moving from a

theoretical focus to practical optimisation algorithms at the network’s edge. It seeks to

address the decision-making time in edge applications, a factor critical for end-to-end

latency and performance. Also, the thesis suggests a shift towards actual AI solutions,

utilising approaches such as federated learning and distributed machine learning. This

approach is intended to manage AI’s potential within edge computing effectively. The

goal is to have theoretical insights with practical implementations, aiming to advance

the development of robust and intelligent edge computing solutions.

36

Chapter 3

Modelling Application Placement in

Fog-Cloud Environment

3.1 Introduction

In Chapter 2, the foundational context for research on IoT applications and fog-cloud

computing is thoroughly presented. The chapter also examines cutting-edge optimisa-

tion techniques designed to effectively manage IoT environments and explores existing

research limitations. This comprehensive overview provides insights into the state-of-

the-art optimisation strategies, while simultaneously highlighting potential areas for

research progress. The present chapter introduces the formulation of the placement

problem, serving as the initial step towards offering a solution that effectively tackles

the existing research limitations

Integer Linear Programming (ILP) is a mathematical optimisation technique that in-

volves a linear objective function and linear constraints, with decision variables con-

strained to integer values. ILP is particularly suitable for modelling discrete decisions

in practical applications, such as scheduling [63]. This chapter presents examples that

demonstrate the placement problem in a fog-cloud environment, facilitating a better un-

derstanding of the system and guiding the formulation of valid assumptions. Utilising

ILP for problem formulation includes defining decision variables, objective functions,

and constraints that accurately represent the system and its limitations. Decision vari-

3.1 Introduction 37

ables are associated with applications and infrastructure data, while objective functions

guide the analysis and evaluation of decisions. Logically consistent constraints ensure

that the proposed placement solutions are both applicable and realistic.

The chapter focuses on formulating the application deployment problem in the fog-

cloud infrastructure using ILP. The placement problem is defined as an SFC placement

that involves deploying replicas for each function within the fog-cloud infrastructure.

Emphasising the importance of functions occurring early in the SFC, as their successful

completion is crucial to preventing downstream failures. These critical functions are

assigned higher priority in terms of resilience. Moreover, the problem is framed as a

search for resources that optimise delay, risk, and cost, with trade-offs between cost

and performance when deploying replica functions.

The remainder of the chapter is structured as follows: Section 3.2 describes an util-

isation scenario for the SFC in the cloud-fog ecosystem. Section 3.3 introduces the

problem and provides an overview of the system. The system mode is depicted in

Section 3.4. The final section concludes this chapter.

3.2 Usage Scenario 38

3.2 Usage Scenario

preprocessing
Image

DecodingInference

Cloud
DatacenterFog Node3

Start

User
Device

...?
Response Time

Function

Allocate a Function

f1 f2

Data flow from f1 to f2

Fog Node2

Fog Node1

Fog Node4

<1ms...

End

Figure 3.1: Placement of service function chaining graph in fog-cloud infrastruc-
ture .

Figure 3.1 depicts a SFC scenario within a fog computing environment. The figure

illustrates the execution of data flow within a fog-cloud infrastructure for an AI at

the edge application, detailing the operations that carry out inference on an image

dataset. The process begins with preprocessing images at the user device level in the

fog infrastructure, followed by inference, and then response with inference results in

decoding. The functions are allocated and executed across multiple fog nodes (from

Fog Node 1 to Fog Node 4) and a cloud datacenter, emphasising the distributed nature

of processing in fog computing infrastructure. The sequence showcases the interaction

between the user device, fog nodes, and cloud datacenter for task placement in a fog-

cloud environment.

3.2 Usage Scenario 39

As shown in Figure 3.1, the section describes a scenario of application placement in

the Fog-Cloud system. The application is divided into three functions: image pre-

processing, inference, and decoding. Decoding depends on inference and image pre-

processing, while inference, in turn, depends on the image preprocessing function.

Image preprocessing involves enhancing and preparing images for further analytical

processing. Inference entails deriving insights or making predictions, such as identify-

ing objects in an image, using a trained model. Decoding translates the model’s output

data into a human-readable format that people can easily understand and use.

A user device (for example, a smart phone) may request application functions from a

controller Fog Node (FN) in an SFC, and the controller will distributively execute these

functions across the infrastructure. Because the Decoding is dependent on both the

Inference and Preprocessing Image, the application may experience delays if either the

the Inference and Preprocessing Image fails. As a result, Inference and Preprocessing

Image must have greater redundancy than Decoding to reduce redeployment time in

the event of a failure. This is based on the observation that functions that occur earlier

in an SFC are more important because their failure will have an impact downstream

in the SFC pipeline. Greater redundancy at the early stages of the pipeline is likely to

provide greater benefits in terms of avoiding delays at later stages of the SFC.

3.3 Problem Statement 40

3.3 Problem Statement

Controller

Worker

Fog
Node

Fog
NodeFog

Node

Fog
Node

Response

VM

VM

VM
VM

Cloud
Datacenter

Partial
Decision-Making

Request

Worker Worker

User
device

Controller

Fog
Node

Controller

Worker Worker Worker

Mappers

Reducer

MapReduce
cluster

Deployment

Figure 3.2: Redundant deployment of application A in the fog and cloud. Utilising
computer cluster to speed up the analytic and scheduling process.

To reduce latency in real-time applications, fog computing is an intermediate infra-

structure between edge devices and cloud systems. An SFC can be used to represent

the inter-dependencies between service functions in an application (SFC). It is possible

to run SFC service functions from multiple locations. They are prone to failure and fre-

quently fail to meet deadlines. There can be delays, possible data loss, and increased

costs as a result of function relocation to other nodes in the system. This delay is also

is a result of the time required for the process node to recover from a freeze. This

time interval varies from node to node and can be affected by a number of variables,

one of which is the programme itself, which demands a large amount of resources to

execute functions, and the node is unable to handle the request. Based on redundant

deployment and failure tracking of service functions, we design a parallel technique.

3.3 Problem Statement 41

Each function is replicated at several locations, taking into consideration the expected

completion time, the risk of failure, and the cost.

Failure is defined as a task exceeding its pre-established deadline, rather than simply

completing its computation. This deadline is an estimated completion time set before

deployment. The impact of failure is thus measured against this timeline.

Locations are processing nodes in our proposed SFC control architecture that are in

charge of hosting service functions. Cloud-based virtual machines (VMs) or cloud-

based fog nodes are examples of fog nodes (FNs). The controller node, which is in

charge of managing SFC placement, sends service function requests to locations.

Locations respond to requests by carrying out service functions’ execution. Controllers

are responsible for managing communications between locations as well as monitoring

their capacity, availability, and service functions execution operations. However, up-

dating a controller with the current state of the infrastructure and looking for the best

places to deploy functions can be a time-consuming and error-prone process. As a res-

ult, the burden of decision-making is distributed among workers, that assist a controller

in gathering information about the current state of infrastructure and determining op-

timal locations, as illustrated in Figure 3.2. In a distributed computing environment,

worker nodes can be implemented as virtual instances within the main controller, util-

ising lightweight containerisation or parallel processing methodologies. Alternatively,

these nodes can be embodied by fully-functional standalone computers, such as SBC

computers, employing shared-nothing architectures like MapReduce [64]. This is done

by using parallel data processing techniques to fully utilise the controller resources

(Fully utilising the controller’s resources is described in detail in chapters 4, 5, 6 .).

3.4 System Model 42

3.4 System Model

Figure 3.3: Service function chaining examples in abstract graphs; displays input-
output data dependencies .

An IoT application is made up of service functions (SFC). SFCs are typically designed

as directed acyclic graphs (DAGs), with nodes representing functions and arcs repres-

enting data flow direction, and comes in variety of forms, such as Figure 3.3. A DAG

workflow with the input data is sent to the system for processing and execution, which

is the act of placement (as shown in Figure 3.1).

The controller receives an application (i.e., SFC) as a graph A = (F,D), where F is a

set of functions, F = {f 1
1 , f

2
2 . . . f

i
j}, and D is a set of pairs representing dependencies

between functions, D = {(f 1
1 , f

1
2), . . . , (f

i−1
j−1, f

i
j)}. The sequence in A is i, where j is a

function type identifier (ID). The sequence number i and set D indicate the dependency

between SFC functions, in which the function with index i is dependent on the outputs

of functions i − 1 if (f i−1, f i) ∈ D. For example, in Figure 3.1, PC, FW ,and VO

3.4 System Model 43

Symbol Description

L Locations set all locations that are controlled by controller
lk Locations k, lk ∈ L
pk lk’s CPU processing power, instruction per second
mk lk’s available memory, in bytes
wk lk’s available storage, in bytes
dk,j Round-trip transmission time between function fj and location lk
uk lk’s processor usage in percentage
sin
j Input data size of function fj
sout
j Output data size of function fj
zup
k Transmission rate for sending input data from the controller to location lk
zdown
k Transmission rate for receiving output data from location lk at the controller

Table 3.1: Resource properties

Symbol Description

A Application, consist of SFC which is (F,D)
F functions in A which is {f 1

1 , f
2
2 , ..., f

i
j}

D Dependencies between A’s functions, i.e., {(f 1
1 , f

1
1)..., (f

i−1
j−1, f

i
j)}

n is the number of functions in set A
f i
j Service function of i-th in execution and has type j
qj,p The number of instruction needed for fj , integer value
qj,m The memory needed for fj , in bytes
qj,w The storage needed for fj , in bytes

Table 3.2: Application properties

represent functions that have an ordering in their execution: PC and FW need to execute

before VO. The SFC therefore can be specified as:({f 1
1 , f

1
2 , f

2
3}, {(f 1

1 , f
2
3), (f

1
2 , f

2
3)}),

and f 2
3 is dependent on the output of f 1

1 and f 1
2 . Table 3.1 and Table 3.2 summarises

the associated resource and application properties.

Every function has execution requirements, qj,p, qj,m, and qj,w, which represent pro-

cess, memory, and storage, respectively, needed to execute function f i
j . Set L repres-

ents all locations that are registered with the controller, and xi
j,k is an auxiliary variable

that indicates execution of f i
j on lk, where lk ∈ L (i.e., f i

j placed in lk). pk, mk,

wk, and bk are the available resources at location lk (i.e., the process handling capa-

city, memory, storage, and bandwidth respectively). Processor usage and delay (i.e.,

between the controller and lk), are represented as uk and dk, respectively. Table 3.3

summarises decision outcomes and mapping result variables.

3.4 System Model 44

Symbol Description

xj,k Auxiliary variable indicate that f i
j is executed in lk value is 0 or 1

yj,k Auxiliary variable indicate that Tj,k is part of the longest path value is 0 or 1
ok Auxiliary variable indicate that lk is obtained by A value is 0 or 1

Table 3.3: Decision outcomes

Symbol Description

Tj,k Time to send and process fj in lk
E The set of all placed paths of A
Riskj,k Risk of executing fj in location lk
MaxReplicasi,j The maximum possible replicas for f i

j is integer
m Constant adjust maximum possible replica is m + 1 is intege
rk Loss probability, the number of failures per allocations
M The path with longest time elapses in A, M = {T1,1, T2,1, . . . Ti,j},M ∈ E

Table 3.4: Decision support variable and functions

3.4.1 Estimating Completion Time

The system minimises the end-to-end latency by attempting to reduce the delay between

controller fog node and deployment locations. Moreover, it estimates the time to pro-

cess every function at a locations as follows:

The network delay between location lk and the controller, denoted as dk,j , represents

the total time required for transmitting and receiving data for a function of type j

between these two points. This delay comprises the sum of transmission times for both

input and output data. Specifically, dk,j is calculated as dk,j =
sin
j

z
up
k
+

sout
j

zdown
k

, where sin
j

and sout
j are the input and output data sizes of the function, respectively, and zup

k and

zdown
k represent the up and down transmission rates. These rates reflect the speed of

data transmission between the controller and location lk, encapsulating factors such as

the data sizes and inherent network speed.

Process node time is the time that the process node takes to complete the execution of

a function in that node. This information can be obtained by benchmark the applic-

ation on each process node type, which can be either SBC or VM (i.e., f i
j in lk). In

contrast, if we acquire the function’s process instruction, we can accurately estimate

the processing time, presuming we have accurate data on the relevant node’s processor

speed. Thus, processing time of f i
j in lk depends on f i

j processing requirement (qj,p)

3.4 System Model 45

and lk’s processing speed (pk) (i.e., qj,p
pk

). However, it is crucial to consider that several

studies [65, 66, 67, 68] have demonstrated that sustained 100% CPU utilisation can

adversely affect the performance of tasks on the processing node. In this manner, it

must be considered as a constraint (Equation 3.12).

Processing time of f i
j in lk depends on f i

j processing requirement (qj,p) and lk’s pro-

cessing speed (pk). The total time to execute f i
j in lk, (Tj,k), including transmission and

processing as defined:

Tj,k = dk,j +
qj,p
pk

(3.1)

E is the set of all paths in an SFC. A path time in an SFC placement is the sum of all

execution time in the path,
∑

Tj,k where Tj,k ∈ e. e is the sequence of execution times

for services in SFC.

The longest path (M) is measured based on the longest time from the placement of the

first service function to the end of the last service function within all SFC paths. The

longest path is equivalent to the makespan of the SFC and should satisfy constraints in

formula 3.9.

3.4.2 Application redundancy and cost

The controller avoids allocating a function to a location that has a high risk of failure.

The risk of placing a function at a specific location is specified as: Risk of allocating

f i
j in lk, i.e., Riskj,k, is failure/loss probability times the impact of failure (Tj,k). Loss

impact is Tj,k, as it is the time of the first f i
j ’s allocation that failed to complete on

time Tj,k, results in reallocation. Loss probability, i.e., rk, is the number of failures per

allocations, and is derived from historical lk failure data, hence Riskj,k = rk × Tj,k.

Even after calculating the risk, there are chances of reallocating a failed function. Thus,

3.4 System Model 46

the system deploys replicas of the function to avoid losing time in case of failure.

Riskj,k = rk × Tj,k (3.2)

The redundancy of application uses a “funnel-shape” of replicated functions, as il-

lustrated in Figure 3.4. The initially executed functions (i.e., at an early stage in the

SFC) have the maximum replicas, MaxReplicasi,j . This value decreases as we pro-

gress through an application composed of n functions, as illustrated conceptually in

Figure 3.5. The constant m adjusts MaxReplicasi,j , and MaxReplicasi,j does not

exceed m + 1. Formula 3.3 is used to calculate MaxReplicasi,j . The replication

strategy is based on the observation that functions that occur at an early stage of the

SFC should have higher priority (in terms of resilience), as inability to complete these

successfully will cause failure downstream in the SFC. Consequently the number of

replicas follow the funnel shape illustrated in Figure 3.5, where the actual number of

replicas are based on the observed failure rate.

MaxReplicasj,i = 1 + ⌈(1− i

n+ 1
)m⌉ (3.3)

The Cost of deploying application A is controlled by tracking the locations obtained

by A in variable ok, Table 3.4 summarises the decision support variables.

3.4.3 Problem Formulation

The main goal of this paper is to provide SFC placement aiming to minimise overall

application time, deployment cost, and risk of application failure (to maximise avail-

ability). We formulate the optimisation problem as follows:

MIN C and MIN R and MIN O (3.4)

3.4 System Model 47

Figure 3.4: The redundancy of functions that run early in the graph has the most
replicas. As the executions move through the service function chain, the number
of replicas goes down. .

C =
∑
j∈F

∑
k∈L

Tj,k · yj,k · xj,k (3.5)

R =
∑
j∈F

∑
k∈L

Riskj,k · xj,k (3.6)

O =
∑
k∈L

ok (3.7)

Where objective function C (formula 3.5) is the total completion time, and objective

function R (formula 3.6) is the total risk of application A completing successfully.

3.4 System Model 48

Figure 3.5: Relation between the length of the service functions chaining n and the
variable m of MaxReplicasi,j’s formula regardless of whether n or m is greater,
the replicas of function i always decrease through graph execution. .

The number of locations used to execute A, including redundancy, is represented by

objective function O (formula 3.7)

Subject to

MaxReplicai,j ≥
∑
k∈L

xi
j,k, j ∈ F, 1 ≤ i ≤ n (3.8)

∑
Tj,k∈M

Tj,k · yj,k · xj,k ≥
∑

Tj,k∈P

Tj,k · xj,k,M ∈ E,P ∈ E (3.9)

wk − qj,r ≥ 0 (3.10)

mk − qj,m ≥ 0 (3.11)

uk · xi
j,k < 1.0 (3.12)

3.5 Conclusion 49

n ≥ 1 (3.13)

m < |L| (3.14)

3.5 Conclusion

This chapter proposes a method to reduce end-to-end latency by computing processing

time at each location, accounting for network delay and processing node time. The

problem was formulated as an ILP model that incorporates redundant deployment and

prioritises the minimisation of delay, risk, and cost.

A risk assessment formula and a cost reduction method were implemented to enhance

the resilience of the management process. The allocation function prioritises early-

stage service functions while avoiding high-risk locations and utilising replicas to mit-

igate time loss in the event of failures.

Our objective function minimises resource usage across the entire SFC graph, and

constraints set the maximum allowed replicas for individual functions and tasks. This

results in an automated component within the system that manages replicas.

Application deployment costs depend on the resources utilised during the application’s

execution. This chapter established the foundation for comprehending the placement

problem and the ILP techniques employed for resource optimisation. Chapter 5 and

Chapter 6 provide additional information on the related algorithms and techniques.

50

Chapter 4

Toward a Platform that Supports

Continuous Adaption

4.1 Introduction

The current chapter addresses the shortcomings identified in Chapter 2, which does not

sufficiently explore the interplay of problem modelling and engineering aspects in ad-

aptive platform research. It further develops the discussion on the placement problem

from Chapter 3. Also, it examines the essential platform components and engineering

architecture that facilitate efficient management of applications and infrastructure. It

emphasises the role of simulation tools in evaluating scheduling strategies, enhancing

the optimisation of platform management.

An adaptive platform for IoT applications must incorporate four key components. First,

it needs an optimised scheduling planer for application execution, aided by system al-

gorithms or optimisation tools. Second, it should manage placement actions and data-

flow via a distributed processing platform, providing workflow feedback for decision

analysis. Third, it requires efficient monitoring mechanisms to gather, and then cleanse,

system data, including resources like RAM, CPU, and service function state. Finally,

the platform should feature an analysis phase to generate insights from the monitored

data, employing the ILP formula for scheduling optimisation, with the analysis output

guiding the optimisation strategy.

4.2 System Overview 51

The rest of this chapter continues as follows: Section 4.2 explains the environment

and the tools that enable planning and parallel programming. Section 4.3 addresses the

software and data design, focusing on how the programme is structured, how data are

managed, and the adaptive processing workflow. In Section 4.4, simulation approaches

for testing the scheduling and placement algorithm are discussed. These procedures

represent a distributed ecosystem.

4.2 System Overview

An adaptive system is essential in the dynamic world of IoT. Advanced tools and

strategies facilitate adaptability, enabling effective scheduling, placement, monitoring,

and data analysis. This shapes a platform that is responsive to the continuously chan-

ging IoT environment.

Figure 4.1: Service function chaining from the scenario shown in Figure 3.1 is im-
plemented with Parsl. The executors argument in the function decorator specifies
the location that runs the service function. .

4.2 System Overview 52

Tools such as Parsl play an important part in enabling system adaptability through

data streaming processing. Parsl performs SFCs in the infrastructure and produces

informative logs. Parsl’s use of high-level programming languages for scripting SFC,

as depicted in Figure 4.1, enables an accurate representation of the SFC graph and

function logic. The feedback mechanism facilitates infrastructure knowledge building

(see Figure 4.2).

Resource Allocation

Computing Infrastructure

Virtual Functions

SFC
Placement

Process

@app

@app @app@app

Executor Executor

Configuration

Configure Managment

SFC
path

Fog
Node

Fog
Node

Fog
Node

VM
VM

Cloud
Data-Centre

Fog
Infrastructure

Controller

Controller

D
ataF

low
 K

ernel (D
F

K
)

Executor

Process Process Process

R
esource M

onitoring

Figure 4.2: Pipelining services in a fog-cloud environment with Parsl, the con-
troller manages the execution of the graph according to the setup configuration
of Parsl’s DataFlow Kernal. Processes execute the service in the process node,
whereas Parsl apps store the service function’s programme logic .

Parsl [9] is a Python library for parallel programming, which uses Python functions,

termed Parsl apps, as service functions in SFC. Managed by executors, these apps

provide asynchronous, non-blocking functions and return AppFutures for optimised

dataflow, encapsulating the service function logic within the Parsl ecosystem.

Efficient scheduling requires evaluation of infrastructure information and past schedul-

4.2 System Overview 53

ing results. Heuristics, meta-heuristics, optimisation solvers, and libraries such as

jMetalPy [69] can be combined with the ILP model to optimise scheduling. Optim-

isation solvers and meta-heuristics offer different methods for addressing complex

optimisation problems. Optimisation solvers utilise deterministic algorithms to effi-

ciently solve well-structured mathematical problems, including ILP, in order to identify

optimal solutions. Meta-heuristics employ stochastic and iterative methods to solve

problems with large search spaces or complex objective function landscapes. Schedul-

ing optimisation involves solvers that generate optimal schedules within defined con-

straints, while meta-heuristics provide adaptable solutions for dynamic environments

with varying requirements.

The integration of Parsl and optimisation solver, along with their feedback mechan-

isms, facilitates a self-adaptive system that can adapt to changing conditions in the IoT

systems (as shown in Figure 4.3). The system comprises of three components: de-

ployments for executing SFC in the infrastructure, monitoring for providing decision-

making information, and decision-making for analysing and optimising the scheduling

plan using the ILP model. The platform’s adaptability to the IoT environment is fa-

cilitated by its holistic approach. Table 4.1 outline the adaptive platform’s system

structure, data handling, and utility workflow resulting from the integration of these

solutions. Table 4.2 describes each adaptive component.

4.2 System Overview 54

Input
Information

Controller

Online Optimizer

Infrastructure

Decision-Making

Deployment

Resource Monitor

Monitoring QoS

Report Failure

Abstract
workflow graph

Quality of
Service

requirements

Fog Node

Fog Node

Fog Node

Controller

Fog Infrastructure

Virtual
Machine

Virtual
Machine

Cloud Data-Centre

Figure 4.3: Controller supervises the placement process by collecting infrastruc-
ture data and adjusting to system situations. .

Component Adaptive process Tools

Monitoring Sensors and Preservation Stop Watch [70, 71],

Psutil [72], Parsl logs [73]

Decision-making Analysis and Planning Data Cleaning, ILP, Op-

timisation Strategies

(Greedy heuristics [74]

and JmetalPy [69])

Deployment Action and Actors Parsl [73], Brokers (Apache

Kafka [75], Samba [76])

Table 4.1: Adaptive component processes and tools

4.3 Design & Implementation 55

Component Description

Monitoring The monitoring component involves the use of sensors for

data collection and preservation for data storage. Tools like

stop watch and psutil are used for retrieving information on

running processes and system utilisation, while Parsl logs

capture the history of function execution and outcomes.

Decision-making Decision-making involves analysing collected data and

planning for future actions based on the analysis. Data

cleaning ensures the integrity of the analysis, while the ILP

model is used for utility data transformation. Optimisation

strategies such as greedy heuristics and JmetalPy help in

making efficient scheduling decisions.

Deployment Deployment involves executing the actions planned during

the decision-making phase. Parsl is used to execute the

SFCs within the infrastructure. Brokers like Apache Kafka

and Samba hold the data between the different components

of the system, ensuring smooth execution of the actions.

Table 4.2: Descriptions of adaptive components

4.3 Design & Implementation

This section explains the platform’s architecture and implementation in depth. In this

part, data management and software design will be examined in depth. The placement

algorithm and decision-making logic will not be explained in this chapter. The two

chapters, Chapter 5 and Chapter 6, are devoted for the placement algorithms.

4.3 Design & Implementation 56

Data Type Description

Application data The input and output of applications that go through trans-

formations over the course of SFC execution. The trans-

formations can change the type of data.

Function data Data that is generated and consumed by the application’s

functions. Each function accepts a specific type of data and

returns a specific type of data.

Monitoring data Data collected about the system and application state during

the monitoring phase of the adaptation process.

Decision-Making data Data used during the decision-making process, including

the information about the system and application state and

the formulated optimisation strategies.

Deployment data Data generated during the deployment phase, including logs

produced by data streaming tools and observations provided

to the monitor.

Table 4.3: Data types

4.3.1 Distributed Systems: Data Management

The distributed system manages two main types of data: application data and utility

data, and data management is essential for the system’s operation. Application data

includes the input and output of the system’s applications. Utility data are used for

monitoring, decision-making, and deployment during the adaptation process. The data

is characterised by three attributes: type, locality, and passing type (Tables 4.3, 4.4,

4.5 respectively). Type refers to the specific model and structure of data that can be

accepted by system components or applications. Data locality pertains to the physical

location of data in memory or storage. Data passing type refers to how functions handle

data transformation, either by copying the value (pass by value) or by passing the data

address to the next function (pass by reference).

4.3 Design & Implementation 57

Data Locality Description

In-Memory Data is directly stored in the system’s memory for quick ac-

cess and manipulation. Common in application data hand-

ling and utility data generation during adaptation.

Storage Data is stored in a more permanent storage location, such as

a disk drive or distributed file system. This is common for

large datasets that cannot be entirely loaded into memory.

Caching system Data is stored in a caching system for rapid access, redu-

cing the need to access the main storage frequently. This is

useful for data that is accessed frequently.

Network streaming

channel

Data is passed over the network from one function to an-

other. This is common for large data sets or when data needs

to be shared between different parts of the system.

Table 4.4: Data locality

Data Passing Type Description

Pass-by-Value This method involves copying the value of the data and

sending it through the data streaming channel. This is com-

monly used when the data size is small, and the data will

not be modified by the receiving function.

Pass-by-Reference In this case, the system passes the data address to the next

function, which fetches the data. This is more efficient for

large data sets or when the receiving function will modify

the data. Intermediary brokers such as file systems or

streaming tools often facilitate this.

Table 4.5: Data passing type

Data is created and changed during the execution of SFC. The application’s functions

have designated input and output types, and the system transforms data as necessary.

4.3 Design & Implementation 58

For instance, in image processing, an image is converted into an array representing the

image’s pixels. Application data types are typically standard and less complex, leading

to exceptions being logged if errors occur.

Utility data, generated during adaptive processes, enable system adaptations. Initially,

the system collects information about the infrastructure and the QoS of the applica-

tion. These data are then cleaned and prepared for capture by the decision-making

process, which converts them into an optimisation strategy-accepted logical language,

such as ILP modelling language. The decision-making process then produces a solu-

tion, the data of which are encoded. Encoding in heuristics can be complex and user-

defined, like heaps combined with a program-defined type. Meta-heuristics typically

use a standard encoding method, such as an n-array that is not specific to any particular

solution. The deployment action produces two types of data logs: logs generated by

data streaming tools such as Parsl, and logs that are handed over to the monitor for

observation.

The system’s performance is significantly influenced by how data is handled. Optim-

ising data locality and using efficient data passing types can improve system perform-

ance by minimising unnecessary data transfer and transformation. The proper util-

isation of utility data in adaptive processes enables better decision-making and more

efficient deployments. Robust data handling strategies can enhance the system’s flex-

ibility and efficiency.

4.3 Design & Implementation 59

4.3.2 Platform Structure & Modules

Figure 4.4: Summarised UML class diagram for the static structure of the adapt-
ive platform .

Using Object-Oriented Analysis and Design (OOAD) principles to define the adaptive

system architecture results in a modular, extendable, and maintainable design [77]. The

structure, depicted in the UML class diagram (Figure 4.4), leverages encapsulation, in-

heritance, and polymorphism. Interactions between components like Service Function

Chains (SFCs), Function, Monitoring, and Location, all depicted in Figure 4.5, ensure

efficient deployment and control of SFCs.

4.3 Design & Implementation 60

Figure 4.5: Object-oriented aggregation is used to describe a new implementation
of the relationship between the Deployment components and other classes (such as
SFC, Function, Monitoring, and Location).

At the base of the system, an abstract scheduler, detailed in Figure 4.6, lays the found-

ation for decision-making processes, which can include heuristic methods such as

greedy algorithms. The SFC placement problem is encapsulated in the objects rep-

resenting graph ordering (Figure 4.8), facilitating the evolution of the system from a

basic scheduler to a complex decision-making entity.

4.3 Design & Implementation 61

Figure 4.6: Object-oriented inheritance describes a new implementation while
preserving the same behavior, allowing reuse Decision-Making logic and extend it
independently. .

Interaction among system components, including monitoring, deployment, and decision-

making modules, is enabled through method invocation between classes, as elaborated

in Section 4.3.3. The relationship between the Monitoring component and Location

(Figure 4.7), shows how monitoring facilitates performance tracking, further enhan-

cing system responsiveness.

4.3 Design & Implementation 62

Figure 4.7: Object-oriented aggregation is used to describe a new implementation
of the relationship between the Monitoring component and Location.

The Deployment component maintains a placement decision map linking functions

with their execution locations (Figure 4.5). In coordination with Deployment, the Mon-

itoring component oversees the SFC deployment process, providing real-time insights

into individual function operations and overall performance.

Integration with various software tools is made possible due to the system’s adapt-

ability, with precise monitoring, improved decision-making, and efficient deployment

tools enumerated in Table 4.1. The architecture’s details are discussed in the preced-

ing sections, while future sections delve into the roles and interactions of individual

components.

4.3 Design & Implementation 63

Figure 4.8: Object-oriented aggregation is used to describe a new implementation
of the relationship between the Functions and the SFC class.

4.3.3 Workflow Sequence

The operation of adaptive systems is dependent on systematic collaboration. Utilising

OOAD principles optimises system performance primarily through the use of static

and dynamic strategies. Dynamic optimisation allows for adaptability during execu-

tion, whereas static optimisation decouples decision-making and deployment. System

management determines strategy selection based on specific requirements and condi-

tions.

Static optimisation involves deploying the SFC according to an initial schedule. This

strategy uses atomic operations to organise the deployment of SFC across system com-

ponents such as decision-making, deployment, and monitoring. Separate from de-

ployment, the component responsible for decision-making processes SFC placement

requests and sends a deployment plan. During execution, functions follow a predeter-

mined order. Despite its procedural integrity, the separation between planning and ex-

ecution in static optimisation limits its adaptability to dynamic environmental changes.

The original plan is adhered to despite environmental changes. During deployment,

the monitoring component closely monitors the duration of each function’s execution

to ensure that the SFC deployment occurs on time. This is shown in Figure 4.9.

4.3 Design & Implementation 64

Requestor

Requestor

Decision_makings

Decision_makings

Monitoring

Monitoring

Deployment

Deployment

process_node

process_node

1 Request SFC executions

Decide SFC Placement

2 Query resources state

3 Retrieve resources state

4 Decide SFC

5 Pass SFC placement decision

SFC Deployment [Iterate over the SFC]

6 Start i-th stopwatch

7 Deploy the i-th function

8 Return i-th function output

9 Stop i-th stopwatch

10 Update report records

11 Response SFC output

Figure 4.9: Sequential diagrams illustrate the operation of static optimisation.
The deployment component does not begin deploying the SFC graph until all ser-
vices within the graph have been scheduled. .

Dynamic optimisation is a technique utilised by an online optimizer within an adaptive

system to adjust the SFC deployment process in response to real-time environmental

changes. Unlike static optimisation, dynamic optimisation formulates the placement

plan for each function individually, taking into account the current state of the infra-

structure. During the deployment of each function, the deployment and monitoring

components communicate frequently. Upon receiving the execution output, the monit-

oring component ceases operation after measuring the deployment time of each func-

tion. As depicted in Figure 4.10, the deployment status and infrastructure state are

automatically updated following the deployment of each function. This enables auto-

matic adaptation to any infrastructure changes. Dynamic optimisation increases the

system’s adaptability by enhancing its flexibility and responsiveness.

In Figure 4.10, a sequence diagram illustrates the operation of dynamic optimisation in

the context of deploying an SFC. The diagram is divided into three main columns, each

representing a different component of the process: decision-making, monitoring, and

4.3 Design & Implementation 65

deployment. These are the system components. Each step in the sequence is numbered

and connected by arrows that indicate the flow of actions and decisions. In the diagram,

a box signifies an iterative process, specifically during ‘Iteration over the SFC.’ When

remaining functions exist within the SFC, this process requires returning to the second

step in the sequence to execute these functions.

Requestor

Requestor

Decision_makings

Decision_makings

Monitoring

Monitoring

Deployment

Deployment

process_node

process_node

1 Request SFC executions

Deciding and Deploying SFC [Iterate over the SFC]

2 Query resources state

3 Retrieve resources state

4 Decide the i-th function

5 Pass i-th function placement decision

6 Start stopwatch

7 Deploy the function

8 Return function output

9 Stop stopwatch

10 Update report records

11 Response SFC output

Figure 4.10: Sequential diagrams illustrate the operation of dynamic optimisa-
tion. The deployment component frequently interacts with the monitoring and
decision-making components to adapt to environmental changes while deploying
the SFC graph. .

The steps, starting by The requestor initiates the process by requesting SFC execution

for the decision-making component (step 1). The decision-making component queries

the current state of resources (step 2). It then retrieves the state of the resources (step

3). Based on the retrieved information, the decision-making component decides the

i-th function (step 4). The decision on the i-th function placement is then passed on

(step 5). Simultaneously, a stopwatch is started to monitor the deployment time (step

6). The deployment component then deploys the function (step 7). The function output

is returned to the decision-making component (step 8). The stopwatch is stopped (step

4.3 Design & Implementation 66

9). The monitoring component updates the report records with the new data (step 10).

Finally, the decision-making component responds with the SFC output to the requestor

(step 11).

In graph theory, topological sorting can only be applied to DAGs. It refers to the ar-

rangement of nodes (i.e., vertices) in a graph in which each arc moves sequentially

from a preceding node to a succeeding node. Each node is only preceded by its de-

pendent nodes or by nodes that have a directed path leading to the given node. This

method is required for executing the scheduling plan and determining the SFC work-

flow operation sequence, as depicted in Figure 4.11.

User

User

Topological_Sort

Topological_Sort

Visited

Visited

Stack

Stack

Topological_Sort_Util

Topological_Sort_Util

1
Input
adjacent
vertices

2 Initilize Visited

3 Initilize Stack

Visit all vertices (i ... n) [Iterate over graph vertices]

4 Check if i-th vertex is visited

5 Return vertex visiting state

6 Process i-th vertex if unvisited

Depth first traversal [Iterate over graph vertices linked to the i-th]

7 Check if current vertex is visited

8 Return vertex visiting state

Recursive Call

9
Process
next vertex

10
Return next
vertex value

11 Add to visited

12 Add vertex to stack

13 Return the stack in reverse order

14 Return order

Figure 4.11: Topological sort that traverses the SFC graph. Using depth first
approach, each graph node is visited only after all of its dependent nodes have
been visited .

4.4 Simulation 67

Utilising static and dynamic optimisation strategies, as well as topological sorting,

the adaptive system is able to deploy SFCs effectively and respond to environmental

changes. To improve the system’s performance based on environmental conditions and

requirements, the management of the system can choose between static and dynamic

optimisation setup.

4.4 Simulation

A simulation is a computer-generated representation of the behaviour of a system over

time. Models are required for simulations; the model depicts the essential traits or

behaviours of the chosen system or process, while the simulation depicts the model’s

evolution over time. Computers are frequently used to run simulations [78]. To de-

velop discrete-event simulations, it is necessary to represent the arrival of a function

request and its subsequent departure from a process node. Request-Arrival and Output-

Departure are two of the system events. The logic of arrival and departure events in-

cludes the beginning of the function’s execution in the process node. The system states

that are affected by these events include the status of the process node, such as the

resources available and whether or not the node has capacity. In the following, we will

describe some of the simulations that imitate environmental behaviour.

4.4.1 Profiling Systems with Synthetic Data

Synthetic data, generated through computer simulations, serves as a vital tool for evalu-

ating system performance. It models system conditions, providing a practical platform

for testing and fine-tuning decision-making algorithms across a variety of system con-

ditions and IoT application characteristics. This mimics the behaviour of actual applic-

ations and infrastructure drives system decisions, which provides accurate distributed

system behaviour profiles (Figure 4.12).

4.4 Simulation 68

Application Request

ID
Arrival
Time

Service Function Chain

Service Function i

Input CPU
REQ

Memory
REQ

Storage
REQ

Service Function 1

Input CPU
REQ

Memory
REQ

Storage
REQ

...

Location

ID Type (VM or
FN)

CPU Cores CPU
usage

AVL
Memory

AVL
Storage

Delay Failure
Rate

MTTFMTTR ...

Figure 4.12: Synthetic SFC requests are generated with this format during the
simulation. .

Simulated location characteristics (i.e., process node characteristics) include dynamic

computational attributes such as capability, capacity, delay, and available resources,

which are frequently updated to mirror system behavior. This synthetic data is crucial

for understanding each process node’s performance under different conditions.

Function requirements are simulated by generating unique application requests, each

associated with an arrival time and service functions. These requests mimic data

streams directed to a single controller in the fog infrastructure, encapsulating the de-

mands on the process node.

4.4.2 Clock-Based Failure Model

The failure model focuses on processing nodes or locations where the simulation em-

ploys clock mechanisms to generate failure. It is mainly employed to assess platform

decisions based on the occurrence of location failures. The model does not account for

software errors, which may result from imperfect service function implementations.

We adopted a similar approach to those papers that studied failure and modelled it,

with a specific focus on the timing of when failures occur [79, 80]. Table 4.6 provides

4.4 Simulation 69

a comprehensive summary of the failure model employed in this work.

Names Description

Failure A period when a location becomes unresponsive.

Recovery Restoring after freezing, i.e, failure

MTTF The time after recovery to location’s failure

MTTR The restoration period of a location post-failure.

MTBF Period of time between two failures

MTBF-clock A location’s cycle, split into MTTF and MTTR.

Execution time The time to run function in an location

Waiting time The time where functions waits the location to recover

Table 4.6: Failure mode definitions

A location’s failure is defined as the period during which it fails to respond to function

execution. This inactive state causes a further delay until the node recovers, which is

known as the recovery time. Mean Time To Failure (MTTF), which represents the aver-

age time until the next failure, and Mean Time To Recovery (MTTR), which represents

the average time from failure to recovery, are integral parameters associated with this

concept.

Mean Time Between Failures (MTBF) is the average time of MTTF and MTTR events,

MTBF is computed as the sum of MTTF and MTTR. Every location has an MTBF-clock

that measures the local MTBF time. This clock resets to zero after each failure and

begins tracking the subsequent MTBF interval from beginning. It begins by measuring

the MTTF period, then the MTTR period.

While executing a service function within the MTTF period and assuming there are no

interruptions (i.e., the request does not overlap with the MTTR period), the location

is capable of processing the function within the anticipated execution time. However,

if a function occurs during the MTTR period, execution is delayed until the end of

4.4 Simulation 70

the MTTR period. Figure 4.13 illustrates service functions submitted across various

MTBF-clock periods.

Figure 4.13: The same virtual function’s execution at a location shows a comple-
tion time for three different arrival times .

Algorithm 1 (line 2 and 3) calculate the MTBF and the remaining period to the next

cycle, MTBFREMAIN. ARRTIME is the timestamp at which a request arrives. If a

request arrived within MTTF, then the method checks MTTF has sufficient time to ex-

ecute the requested function, EXECTIME, otherwise it is considered a failure (if state-

ment in line 4). The method determines the COMPLETIONTIME of the function (line

6-12). Output of the FINISHINGTIME method determines allocation state, whether a

failure has occurred and the actual finishing time of service functions.

4.4 Simulation 71

Algorithm 1 Evaluating completion time by integrating a failure model
1: method FINISHINGTIME (MTTF, MTTR, EXECTIME, ARRTIME)

2: MTBF = MTTF + MTTR

3: MTBFREMAIN = ARRTIME % MTBF

4: if MTBFREMAIN < MTTF AND |MTTF-MTBFREMAIN|≥ EXECTIME then

5: ALLOCSTAT = TRUE

6: if ALLCSTAT then

7: COMPLETIONTIME = EXECTIME + ARRTIME

8: else

9: if MTTF ≥ EXECTIME then

10: COMPLETIONTIME = ARRTIME + EXECTIME + |MTTF-MTBFREMAIN|

11: else

12: COMPLETIONTIME =∞

13: return ALLCSTAT, COMPLETIONTIME

4.4.3 Node Performance Degradation

In this simulation, the time-dependent reliability of a process node in an IoT applic-

ation is analysed using a model based on a time-dependent failure probability frame-

work. The Weibull distribution [81] is the foundation of this simulation, providing an

adjustable way to evaluate and predict the performance of a node and its potential fail-

ure points over time. Certain aspects, such as delays in service functions caused by

node failures, are factored into the simulation. Table 4.7 lists the simulation’s Weibull

distribution parameters.

4.4 Simulation 72

Parameter Description

Start time Time when a node starts a function

Current time (x) Elapsed time since the Start time

Time-to-failure (λ) Duration until a node’s services fail

Reliability variable (k) Weibull shape parameter indicating reliability

Table 4.7: Weibull distribution parameters

The start time is an essential parameter in this simulation, as it specifies when a node’s

function begins. This commencement could occur either at the outset of a recovery

phase or after its conclusion. The closer a node is to this Start time, the more efficient

it is. As the node moves away from the start time, its service gradually degrades.

Current time (x) measures the duration of the system’s operation. This is the elapsed

time since the start time, providing a dynamic metric for determining the system’s

operational duration.

The simulation includes a time-to-failure parameter (λ) that represents the expected

lifetime before a node’s services are non-operational. The λ parameter characterises

the scale of the Weibull distribution and is defining the life span or scale of the process

node. Its estimation models service disruptions overtime. The higher the value of λ,

the longer we can expect the node to operate without failure.

The degree of dependability during current time is quantified by the reliability variable

(k), which represents the Weibull shape parameter.This variable is a measure of the

node’s dependability over time. A greater k value indicates greater dependability. The

Weibull distribution provides a robust method for evaluating and predicting the node’s

performance and potential failure points over time.

The parameters, such as starting time x, scale λ, and shape k, are utilised to calculate

the probability of failing to complete within the deadline. The probability of failure,

denoted by f(x;λ, k) (utilising Formula 4.1), determines whether a function meets

4.4 Simulation 73

Figure 4.14: Four different process nodes, i.e., locations, performance degrades
over time. Here, the scale parameter, λ, is 24 hours according to the Weibull
distribution. .

its deadline or not, via a random choice mechanism. Figure 4.14 shows the different

probabilities of failures according to the various parameters set up.

The simulation uses a Weibull distribution-based random function that generates fail-

ures. First, the system receives task deployments and assigns them to resources. Next,

a random function decides whether the task fails or succeeds. The placement algorithm

then tracks these outcomes to assess the reliability of the resources. This information

helps the placement algorithm in future deployments, serving as a proactive fault tol-

erance mechanism.

f(x;λ, k) = 1− e−(x/λ)k (4.1)

Algorithm 2 is an organised method for calculating the time it takes for a function to

be completed, using the Weibull failure probability principles. The algorithm starts by

estimating the function’s completion time (line 4), assuming a perfect scenario without

any expected failures. Afterwards, probabilities related to both failure and success

4.4 Simulation 74

Algorithm 2 Failure model based on Weibull distribution
1: method FINISHINGTIME (λ , k , STARTTIME, CURRENTTIME, EXECTIME)
2: ARRTIME = CURRENTTIME

3: x = STARTTIME

4: COMPLETIONTIME = ARRTIME + EXECTIME

5: SUCCESSRATE = 1− e−(x/λ)k

6: FAILURERATE = 1- SUCCESSRATE

7: FIRSTALLCSTAT = RANDOMCHOICE(SUCCESSRATE, FAILURERATE)
8: ALLCSTAT = FIRSTALLCSTAT

9: if SUCCESSRATE > 0 then
10: while ALLCSTAT IS FALSE do
11: COMPLETIONTIME = COMPLETIONTIME + EXECTIME

12: ALLCSTAT = RANDOMCHOICE(SUCCESSRATE, FAILURERATE)
13: else
14: COMPLETIONTIME =∞
15: return FIRSTALLCSTAT, COMPLETIONTIME

scenarios are calculated and revised (line 5 and 6). The algorithm uses probabilities

and a random function to decide the allocation state of the process node (line 7). When

the success probability reaches zero (not satisfying condition in line 9), the node is

considered non-operational and will not generate any results (line 14). If the allocation

state is unsuccessful, more time is added to the completion time (line 11). Then, the

random function is run again to check if the state has become successful (while loop

in line 10). The process iterates until a successful state is achieved (line 10 to 12). The

algorithm returns the placement state and its execution time at a specific location (line

15).

4.4.4 Link Quality in Mobile Edge Device

Mobile edge devices play a role in modern communication systems, enabling data

processing at the edge of networks. To optimise network performance, understand-

ing the dynamics of their communication is essential. In this simulation that models

edge device movement as a stochastic process, providing insights into link quality and

latency variations. We adopted a similar approach to those projects that studied meth-

4.4 Simulation 75

Algorithm 3 Simulation of a random walk
1: method RANDOMWALK (STEPSNUMBER, CURRENTLOCATION)
2: (x, y) = CURRENTLOCATION

3: for 1 ... STEPSNUMBER do
4: (dx, dy) = RANDOMCHOICE([(0, 1), (0, -1), (1, 0), (-1, 0)])
5: x = x + dx
6: y = y + dy
7: CURRENTLOCATION = (x, y)
8: return CURRENTLOCATION

ods on searching efficiency in swarm robots for area exploration [82]

The simulation employs a random walk to model the movement of edge devices. Each

iteration projects the device’s coordinates onto a 2D plane/grid. A random walk starts

by selecting an arbitrary number of steps, with each step allowing movement in north,

south, east, or west directions. This is reflected in Algorithm 3, line 4, where each step

denotes a movement in a single direction and is represented by an increment of one to

the current x or y position Algorithm 3, line 4 to 7).

After calculating the distance between the edge device and fog nodes, This distance

is integral to evaluating the wireless connection quality. The connection quality is

determined not only by distance but also by factors such as frequency, obstacles, and

signal fading. These elements collectively affect the path loss and signal-to-noise ratio

(SNR), which are critical in determining the effective capacity of the wireless link.

Parameter Default Values
Frequency 2.4× 109 Hz
Obstacle Factor 1.0
Bandwidth 106 Hz
Noise Power 10−9 Watts
Data Size 106 bits
Fading Coefficients Rayleigh distribution (scale=1, size=100)

Table 4.8: Parameters and their default values for our Wireless Simulation

The simulation incorporates a detailed model for signal propagation and fading (values

specified in Table 4.8). Path loss is calculated using both the free-space path loss

(FSPL) formula (Equation 4.2) and additional loss due to obstacles, which is a function

4.4 Simulation 76

of distance. The formula for path loss is given by Equation 4.3 [83].

FSPL = 20 log10(Distance) + 20 log10(Frequency)− 20 log10(c) (4.2)

In wireless communication, c represents the speed of light in a vacuum, roughly 3×108

metres per second, essential for signal propagation calculations.

Loss dB = FSPL + Additional Loss (4.3)

Additional Loss = (Adjusted Exponent) · (log10(Distance)) (4.4)

The model also considers Rayleigh fading to simulate the impact of multipath propaga-

tion. The adjusted fading coefficients for path loss are computed as in Equation 4.5 [83].

Adjusted Fading Coeffs = (Fading coefficients) · (Loss Linear) (4.5)

where Loss Linear (Equation 4.6) is defined as:

loss linear = 10−
loss dB
10 (4.6)

Using these parameters, the simulation applies Shannon’s formula, as shown in Equa-

tion 4.7, to estimate the capacity of the wireless link [83].

Capacity = Bandwidth · log2(1 + Average(SNR)) (4.7)

Taking into account the bandwidth of the channel and the average SNR under fading

conditions. The time to send data over the network is then calculated using Equa-

tion 4.8.

Transmission Time =
Data size
Capacity

(4.8)

This approach provides a more realistic estimation of the transmission time in a wire-

4.5 Conclusion 77

less network, considering various environmental and technical factors. The updated

simulation moves beyond a simple distance-based quality metric to a more compre-

hensive model that includes path loss, fading, and SNR, offering a nuanced under-

standing of wireless network performance in different scenarios.

4.5 Conclusion

In conclusion, this chapter offers a comprehensive examination of the software design,

testing procedures, and operational strategies for a platform optimised for real-time

applications in dynamic, distributed environments such as the IoT and Fog-Cloud eco-

systems. The development and implementation of an adaptive control mechanism,

integral to rapid adaptation to the fog-cloud environment’s requirements, are detailed.

The chapter further explores the modification and reuse of a placement component in

compliance with user-defined decision algorithms and defines the management of data

transformations via varied data models and transmission procedures. The importance

of dynamic optimisation in the platform’s operation is underscored, with a focus on the

use of forward dynamic programming techniques for the operation of the SFC graph–

an approach well-suited to real-time, event-based systems.

The chapter also presents a set of tools for evaluating the system’s decision-making

capabilities. These models simulate the ecosystem’s operation, providing essential

knowledge for enhancing platform efficacy and creating a model that assists in the

test-bed environment.

The chapter describes the engineering, development, deployment, and operation of the

adaptive platform. However, the basic logic behind the decision-making process for

SFC placement scheduling requires further exploration. Chapters 5 and 6 focus on

creating scheduling algorithms for SFC placement, further elaborating on this funda-

mental part of the platform.

78

Chapter 5

Greedy Nominator Heuristic (GNH):

Harnessing MapReduce for Function

Placement

5.1 Introduction

Chapter 4 provides an overview of the platform and how it manages the real-time ap-

plications. Also, it highlights the three foundations of controls: monitoring, decision-

making, and deploying. This chapter focuses on decision-making in scheduling. Also,

it extend the decision-making component established in the Chapter 4. A greedy ap-

proach [74] is a natural extension of the platform; since it leverages dynamic program-

ming to traverse the service function graph (SFC)

This chapter provides a fast scheduling algorithm for the SFC placement problem. The

algorithm uses parallel computing to speed up the scheduling process. The main ob-

jectives of the scheduling process are low delay, low cost, and low risk. The scheduling

process analyses the trade-off between the three objectives and decides the placement

plan based on the analyses.

The Method for order preference by similarity to the ideal solution is utilised to do

a trade-off analysis of the placement’s optimisation objective, also known as TOP-

SIS) [84]. The algorithm evaluates function placement to the optimal placement with

5.2 Methodology 79

respect to makespan, risk, and cost. The TOPSIS method is also the heuristic func-

tion [18] of the greedy method, which directs the search for the optimal solution.

The algorithm we propose uses MapReduce to speed up decision variable analysis.

MapReduce is a parallel programming model that divides the analytic workload on

a computing cluster to speed up the analytic process [64]. The scheduling time is

included in the end-to-end latency of the application. Accelerating the analytics speed

the scheduling process, hence reducing the completion time.

The remaining sections of this chapter will be organised as follows: Section 5.2 outline

the research methodology. Section 5.3 is about the algorithm, and the component of the

algorithm will be described in-depth. Section 5.4 put the algorithm’s optimisation per-

formance to the test, comparing it with a state-of-the-art approach. Finally, section 5.5

will bring the chapter to a close.

5.2 Methodology

In this section, we describe the requirements for scheduling process, the criteria for

evaluating solutions, and the evaluation approach.

5.2.1 Scheduling Requirements

The scheduling algorithm must be fast and provide a high-quality placement plan. It

must be built on top of the architectural solution in Chapter 4. Also, it must optimise

the placement based on the problem definition in Chapter 3. The size of the infrastruc-

ture and the hardware that executes the scheduling algorithm affects the time required

to make a placement decision. Therefore, the scheduling algorithm must utilise its

resources to speed up the planning process.

A high-quality placement plan requires the scheduling strategy to be aware of the time,

risk, and cost of the application.

5.3 GNH Algorithm 80

5.2.2 Evaluation Criteria

The evaluation is based on four criteria: scheduling speed, makespan, risk of non-

completion, and cost. Scheduling speed is evaluated across a range of scheduling pro-

cess configurations and decision variable sizes. Then, compare the scheduling with a

state-of-the-art meta-heuristic approach, which is particle swarm optimisation (PSO).

5.2.3 Test Environment

The experimental framework aims to understand and evaluate the performance of the

scheduling algorithm.

The test bed evaluation considers the three criteria of the scheduling algorithm: makespan,

risk of non-completion, and cost; under-simulated unreliability in the infrastructure.

The simulation introduces faults in the system over the course of a day. We use the

tools from Chapter 4, which are synthetic data in section 4.4.1 and a failure model in

section 4.4.2 for the evaluation. Regarding the speed of the scheduling process, we

need to measure the time between the start and the end of the algorithm’s execution.

We use Python time to measure scheduling process time. Since the data location af-

fects the performance of MapReduce, the evaluation is done in a variety of data locality

set-ups, such as main memory and file systems.

5.3 GNH Algorithm

The optimisation algorithm is based on the search for optimal solutions for each func-

tion in an application. The search yielded the discovery of the “optimal deployment

strategy” for the application. GNH employs MapReduce to identify potential loca-

tions for redundant deployments. Workers (i.e., Mappers) loop through the decision

variables. Mappers’ result are sent to the Reducer (i.e., control fog node), whose res-

ults determines the best locations for redundant deployment across the all locations.

5.3 GNH Algorithm 81

The components that enable GNH are detailed in the subsequent section, which is sec-

tion 5.3.1.

5.3.1 Algorithm Components

The parallel model’s execution is synchronisation-based, which means that Reducer

waits for all Mappers to complete tasks before starting to run. Parsl [9] supports a vari-

ety of methods for executing functions and transferring data, including shared memory

and file systems. GNH can utilise both ways to handle data passing between mappers

and the reducer.

A similarity function is used to compare the general solution to an ideal solution [85].

Usually, it is a norm function, for example, Euclidean distance is 2-norm. For all

functions, lideal is the location that has zero execution time and no risk, and no addi-

tional locations obtained by application A, i.e., Oideal, and is also represented as point

(0, 0, Oideal). GNH uses Euclidean Distance (EDj,k), shown in formula 5.1 in the Map-

per to compare lk with lideal
1. A number of other measures may also be used to perform

similarity comparison, such as applying fuzzy metrics that capture a degree of mem-

bership. Our implementation can be generalised and extended to use other measures

also, as the distance measure can be application- and context-dependent.

EDj,k =
√
(0− Tj,k)2 + (0−Riskj,k)2 + (Oideal −Ok)2 (5.1)

Max-heap is a complete binary tree that is used to store the Mapper(s) and Reducer

results. The root of the tree has the maximum value in the tree, and the value decreases

as we move to lower levels in the tree. Max-heap is of MaxReplicai,j size, where each

node has key-value pair ⟨key; value⟩ (e.g., ⟨result; lk⟩ in algorithm 4). The key is the

EDj,k result, whereas the location is the value.
1Oideal is simply the number of locations that executed the previous functions in A. Therefore, Ok

in the next function is equal to Oideal or Oideal incremented by one. The incremented value is multiplied
by a weight to have a higher impact on EDj,k

5.3 GNH Algorithm 82

Algorithm 4 Mapper receives L and f i
j and Return MapperResult of size

MaxReplicasi,j

1: class MAPPER

2: method MAP (L; f i
j)

3: count← 0
4: for all lk ∈ L do
5: result← ED(lk, f

i
j)

6: if count < MaxReplicasi,j then
7: INSERT(⟨result; lk⟩)
8: count← count+ 1
9: else

10: if GETMAXRESULT(MaxHeap) > ⟨result; lk⟩ then
11: INSERT(⟨result; lk⟩, MaxHeap)
12: REMOVEMAXRESULT(MaxHeap)
13: MapperResult←MaxHeap

14: return MapperResult

Mappers apply the EDj,k function to all locations, and then store them in Max-heap

of MaxReplicai,j size. Max-heap order is based on the key (i.e., EDj,k result), not

the values (i.e., locations). Every Mapper keeps a local record of the locations they

monitor, and the records are results of monitoring the computing resources and the

network connections linking these locations.

The Reducer receives results from every Mapper, concatenates them, and applies a

Max-heap INSERT then REMOVEMAXRESULT functions to each location in the Map-

pers’ results. Finally, the Mappers’ results are reduced in a single Max-heap that has

the locations (in the value of ⟨key; value⟩ in algorithm 5) to deploy the current func-

tion, i.e., f i
j in the requested application A.

5.3.2 Algorithm Workflow

The system has a controller that plays the role of a reducer, whereas workers in Fig-

ure 3.2 (in Chapter 3) are Mappers. In Figure 5.1, Mappers monitor network perform-

ance and available computing resources at specific locations. Moreover, the system

nominates locations to execute service functions. Whereas, the Reducer chooses from

5.3 GNH Algorithm 83

Algorithm 5 Reducer receives MapperResult and Return MAXHEAP of size
MaxReplicasi,j

1: class REDUCER

2: method REDUCE (MapperResult)
3: count← 0
4: for all ⟨key; value⟩ ∈MapperResult do
5: if count < MaxReplicasi,j then
6: INSERT(⟨key; value⟩, MaxHeap)
7: count← count+ 1
8: else
9: if GETMAXRESULT(MAXHEAP) > ⟨key; value⟩ then

10: INSERT(⟨result; lk⟩, MAXHEAP)
11: REMOVEMAXRESULT(MaxHeap)
12: return MaxHeap

Figure 5.1: MapReduce performs GNH. Each mapper has a group of locations
to monitor, and each group has its own colour (green, red, and yellow). The final
Max-heap has a variety of node colours due to them coming from different map-
pers.

the nominated locations to place redundant function instances. This is achieved by

running MapReduce using Parsl.

Both Mapper and Reducer algorithms 4 and 5 use similar search mechanisms: they

loop through the search space and update Max-heap. However, the difference is that

Mappers apply the EDj,k function (line 5 of algorithm 4), then compare the result

with the worst location within the Max-heap, that is, the peak or root of the tree. Both

5.4 Evaluation 84

algorithms initialise Max-heap tree of MaxReplicasi,j size (lines 2-8 in algorithm 4

and lines 2-7 in algorithm 5). Inside the for loop (line 4 in algorithm 4 and 5) the

new results (result in mapper, and key in reducer) are compared with the peak of the

Max-heap, if the result is less then the peak, then the new result replaces the Max-heap.

5.4 Evaluation

This section evaluates GNH’s decision-making speed and outcomes in a controlled

environment. Subsequent assessments include the algorithm’s execution efficacy and

the quality of its solutions in terms of makespan, risk, and time.

5.4.1 Speed Performance Evaluation

In this section, we assess GNH’s decision-making speed under different control setups,

beginning with the experiment setup and followed by its results.

Experiment Setup

Both the controller and workers (i.e., reducer and mappers) are Raspberry Pi 3 mod-

els B+. The experiments are carried out in various MapReduce setups with varying

mapper numbers and data locality. We tested the algorithm in two infrastructure con-

figuration one with 1,000 locations, and another with 100,000 locations. Since Parsl

allows decisions to be processed in parallel, we evaluate speed with a single service

function. We also considered locality of data, whether they are in a file or in memory.

Results

As can be seen in Figure 5.2, the time to make a decision is not affected by the number

of replicas. This is due to the efficiency of the Max-heap operations which reduce the

5.4 Evaluation 85

time to compare locations.

Figure 5.2: GNH performance

With less than 1,000 location, adding a new mapper to the GNH can increase the per-

formance from 2% to 15%. Moreover, dividing the decision variables into 10 disjoint

sets, in which each mapper has 100 locations, can speed up decisions to about 48%

when data are stored in a file. However, if the data are already in memory it is faster

by about 35%.

When 100,000 locations are considered the decision-making overhead has a more sig-

nificant impact. Every added mapper can boost the performance from 10% to 45 %.

Moreover, 10 mappers in the GNH is faster than single mapper by 88%.

Every time we add a mapper the performance improves by 10-14%. Until we add the

5th mapper the performance exceeds 15%. Addining additional mappers continues

to improve performance. For example, 6 mappers outperform 5 mappers by 20%, 7

mappers outperform 6 mappers by around 25%, and 10 mappers outperform 9 mappers

by 47%.

5.4 Evaluation 86

Loading a file with 1,000 locations to memory takes between 8ms (milliseconds) and

23ms . Therefore, keeping the data in memory can boost the decision-making speed

by up to 40%. However, loading data from files to mappers will not take much time if

there are fewer than 100 locations. On the other hand, with 100,000 locations a single

mapper can take 1.25 seconds to load the locations to memory, dividing them between

10 Mappers reduces it to 100ms.

Files with less than 100 locations are easily loaded in memory with minimal delay.

Therefore, it would be better to divide the locations recorded into files that can be

loaded to the memory concurrently on a separate thread while the mappers do partial

decision.

Another solution can be to make partial decisions within the mappers during the peri-

odical update for all service functions and then ranking them in max-heaps; each max-

heap ranks locations by single service function. The partial decision will be passed

to the reducer which will decide from the pre-processed partial decisions. This solu-

tion saves time, especially with large search space, since the reducer will not wait for

mappers to produce results. However, this solution will need an adjustment to the

MapReduce implementation, for example, the Mapper will only calculate a similarity

function for the time and risk, but the number of locations per application is done by

Reducer.

5.4.2 Evaluating GNH’s Optimisation Objectives

In this section, we evaluated the qualities of GNH solutions in terms of completion

time, failure rate, and cost. During the test, we compared the GNH results with two

approaches: random-based and PSO-based approaches. Redundant deployment was

considered in both approaches. Outlining the experiment setup, followed by the results

of the experiments.

5.4 Evaluation 87

Experiment Setup

In this experiment, 10,000 application requests, uniformly dispersed over 24 hours, are

sent to a fog node controlling 100 locations within an IoT, fog, and cloud ecosystem.

The synthetic data generator (Section 4.4.1) and the MTBF clock (Section 4.4.2) are

used for simulation data and failure timings respectively.

Variable Number/Rangs

Application requests 10,000

SFC length (1-20)

Location 100

FNs 80

VMs 20

FN’s Latency (21 - 50 ms)

VM’s Latency (50 - 300 ms)

FN MTTF (10 - 30 ms)

FN MTTR (5 - 15 ms)

VM MTTF (30 - 300 ms)

VM MTTR (2 - 10 ms)

Table 5.1: The simulation parameters are chosen randomly from these ranges.

To simulate variable connection conditions, a random network delay is introduced.

Specific delay ranges for FNs and VM instances, reflecting the variability in network

conditions, are provided in Table 5.1. Each deployment scenario selects a delay value

from these ranges based on a uniform distribution. The types and hardware capabilities

of FNs and VMs are detailed in Table 5.2 and Table 5.3, respectively.

The GNH method’s evaluation occurs within an infrastructure where nodes experience

frequent failures. Related parameters for this failure model are specified in the MTBF

clock, Table 5.1 (Section 4.4.2 in Chapter 4 for MTBF clock algorithm).

5.4 Evaluation 88

[H] Version CPU Core(s) Memory Storage Network Interface Speed

RPi 3 Model A+ 1.4 GHz 4 256 MB 512 MB 8 GB 16 GB 32 GB 300 Mbps
RPi 1 Model B 700 MHz 1 256 MB 512 MB 8 GB 16 GB 32 GB 100 Mbps
RPi 1 Model B+ 700 MHz 1 256 MB 512 MB 8 GB 16 GB 32 GB 100 Mbps
RPi 2 Model B 900 MHz 4 1 GB 8 GB 16 GB 32 GB 100 Mbps
RPi 3 Model B 1.2 GHz 4 1 GB 8 GB 16 GB 32 GB 100 Mbps 300 Mbps
RPi 3 Model B+ 1.4 GHz 4 1 GB 8 GB 16 GB 32 GB 300 Mbps 1000 Mbps
RPi 4 Model B 1.5 GHz 4 1 GB 2 GB 4 GB 8 GB 16 GB 32 GB 300 Mbps 1000 Mbps
RPi Zero W 1 GHz 1 512 MB 8 GB 16 GB 32 GB 300 Mbps

Table 5.2: Variety of raspberry pi (RPi) models choose from

[H] Version CPU Core(s) Memory Storage Network Interface Speed Max NICs

VM 1 2.35 GHz 3.35 GHz 2 8 GB 50 GB 1000 Mbps 2
VM 2 2.35 GHz 3.35 GHz 4 16 GB 100 GB 2000 Mbps 2
VM 3 2.35 GHz 3.35 GHz 8 32 GB 200 GB 2000 Mbps 4
VM 4 2.35 GHz 3.35 GHz 16 64 GB 400 GB 2000 Mbps 8
VM 5 2.35 GHz 3.35 GHz 32 128 GB 800 GB 16000 Mbps 8

Table 5.3: Possible virtual machines (VMs) that are chosen from

Service requirements Max Value

CPU 2,000,000

Memory 6MB

Storage 5MB

Table 5.4: Maximum computational resource requirements of the generated func-
tions.

We compare the GNH approach with three alternative methods: simple Greedy ap-

proach (no replica), a random allocation approach (Rand) and Particle Swarm Op-

timisation (PSO). The methods are assessed for deploying service functions with and

without replicas, with the exception of the Greedy approach that applies ILP but ex-

cludes MaxReplicai,j . In this context, RPSO refers to the PSO method with two

replicas, while RP denotes the random placement method with a maximum number of

replicas as defined by Formula 3.3 in Chapter 3. PSO was selected for comparison due

to its operational similarity with GNH, as both methods generate a pool of candidate

solutions before choosing the optimal one. The parameters used in these experiments

are detailed in Tables 5.1 and 5.4.

5.4 Evaluation 89

Results

The heatmap in Figure 5.3 shows application completion times. We see that 63.46%

of GNH allocations take less than 100 ms. Whereas 29.33% and 5.31% of applica-

tions finished within 101ms-200ms and 201ms-500ms, respectively. The 29.33% ap-

plications that have longer completion times are due to the application having longer

chained service functions. Around 1.6% of the applications fail to complete with low

delay.

The heatmap shows the Greedy algorithm completes 54.46% of applications in un-

der 100ms, with 29.18% within 101-200 ms, indicating quick task processing. Per-

formance remains acceptable for 8.51% of applications completed between 201-500

ms. However, with replicas, GNH achieves a 63.46% completion rate for tasks under

100ms, bettering the Greedy algorithm’s 54.46%, showcasing more efficient and rapid

task processing capabilities.

Figure 5.3: Heat-map shows applications completion time

Compared to GNH, Particle Swarm Optimisation with Replicas (RPSO) completed

most of its applications within 5001-1100 ms. This is because RPSO takes more time

to decide where to deploy applications; the PSO-based decision-making process takes

200-300 ms before deploying the application (Table 5.5) with 5 particles and 50 itera-

tions.

5.4 Evaluation 90

No Replicas (seconds) With 2 Replicas (seconds)

Iteration 50 100 200 400 50 100 200 400

Particles

5 0.238 0.486 1.002 1.985 0.343 0.611 1.255 2.442

10 0.849 1.698 3.397 6.802 0.972 1.953 3.884 7.665

20 3.110 6.166 12.332 24.717 3.349 6.670 13.323 26.709

40 11.910 23.855 47.010 93.905 12.548 24.900 49.874 99.550

Table 5.5: Comparing PSO performance - SFC length is 10

Particle Swarm Optimisation without replica (PSO) did not perform well compared to

either GNH or RPSO. Around half of the applications failed to complete on time, and

42.46% of the deployed applications completed between 500-1100 ms.

Increasing the number of particles also increases the chances of converging to the

global optimum. However, more particles and iterations will increase execution time,

as shown in Table 5.5. For example, in a Raspberry Pi 3B+, 10 particles with 250

iterations can reduce failure rate. However, it will take between 3.5 to 4.5 seconds to

complete the 250 situations.

Using RP, 76.05% applications completed in less than 200ms. Approximately 16.74%

of applications can be allocated to faster locations, if the RP was aware of location

completion times. Therefore, even though the replica-based strategy mitigates failure,

on its own it will not guarantee an optimal completion time. Finally, since Rand does

not use replicas, it is more prone to failure when compared to GNH and RP. More than

70% of Rand allocations finished in the order of seconds not milliseconds. The Greedy

method, using ILP without MaxReplicai,j , completes 92.15% of workflows in under

500ms, outperforming RP’s reliance on MaxReplicai,j by about 4%.

Figure 5.4 shows the average completion time of applications and their execution time.

GNH on average completes the application request in less than 200ms. Whereas RP

5.4 Evaluation 91

has an average completion time of around 540ms.

Figure 5.4: Algorithm comparison: completion time in seconds

Table 5.6 shows the failure percentage for each algorithm. When using GNH, there is

a 3.15% failure rate, which is the lowest among the presented algorithms. Greedy has

a failure rate of 8.83%, significantly better than most other algorithms listed, yet not as

low as GNH. The failure rate for RP stands at 17.23%, indicating that this percentage

of the allocated applications fail to complete within the expected time. With Rand, we

observe a high failure rate of 75.77%, which means only about 24.23% of the allocated

applications succeed in the expected time. In comparison, PSO has a failure rate of

72.59%, which is a slight enhancement over Rand, increasing the success rate by about

3.18%. RPSO has a failure rate of 45.64%, which represents a significant improvement

over Rand, reducing the failure rate by approximately 30.13%.

5.4 Evaluation 92

Algorithm Failure rate

GNH 3.15%

Greedy 8.83%

RP 17.23%

RPSO 45.64%

PSO 72.59%

Rand 75.77%

Table 5.6: Each algorithm’s failure percentage (on average)

The bar chart data, in Figure 5.5, shows resource utilisation for three categories: RPSO

at 6.79 locations, GNH at 5 locations, and RP at 18.77 locations.

Finally, Figure 5.6 shows the Cost of application deployment for RP, GNH, and RPSO

in hex-bin plots. GNH exhibits a tightly clustered usage of just above five locations per

application. In contrast, RP shows a broader distribution, utilising up to approximately

50 locations for some application sequences. RPSO demonstrates an average use of

locations that is greater than GNH but does not reach the upper distribution levels of

RP. Although RPSO typically uses more than the base number of locations required by

the SFC length, in rare instances, it can reach up to 25 locations per application. This

indicates that while RPSO is generally efficient, certain application deployments may

necessitate a significantly higher number of locations.

GNH varies the number of replicas based on the impact of specific service functions

on the SFC completion time, and replicas are all deployed at the same time. It finds

the replicas by dividing process nodes, and searching each in parallel to speed up the

process. Moreover, the optimal allocation (i.e., local optimum) is guaranteed since

all nodes are covered and ranked. GNH is deterministic, which means with the same

environmental condition and the same input it will generate the same output.

5.5 Conclusion 93

Figure 5.5: Average cost – based on the number of locations used

Figure 5.6: Relation between SFC length and the number of locations used by
each algorithm is shown in the hex-bins chart .

5.5 Conclusion

This chapter describes the Greedy Nominator Heuristic (GNH), a greedy method that

uses the MapReduce paradigm to reduce end-to-end latency across an SFC. Using

the formual from Chapter 3, GNH applies two key strategies: (i) avoiding placement

of functions on unstable computing resources, that is, resources that historically have

demonstrated a high failure rate; and (ii) deploying functions across multiple locations,

using a replication strategy that takes into account the location of the function in the

SFC. Functions that occur at an early stage of the SFC have a greater replication factor,

as successfully executing these functions has an impact on the completion of dependent

functions further down the SFC.

We conducted a simulation-based evaluation of this work using parameters based on

a Raspberry Pi deployment platform. The simulation is used to: (i) dynamically gen-

5.5 Conclusion 94

erate requests and vary the number of functions in an SFC (from 1 to 20); (ii) vary

the availability and failure profile of resources using a clock mechanism that aligns re-

source unavailability with request arrival rate (using Mean-time-to-Failure and Mean-

time-to-Recovery metrics). We create a number of possible simulation scenarios to

compare GNH with two random placement algorithms, one with replicated placement

of functions. On unreliable infrastructure, our results show that with the two strategies

(i.e., redundancy and failure tracking), the system is able to reduce function execu-

tion latency by up to 68.38% compared to a redundancy only strategy. Moreover, the

GNH redundancy is also shown to be cost-effective compared to a random redundant

deployment.

GNH outperforms PSO for application deployment in fog-cloud infrastructure. PSO

performance is less effective than the greedy strategy due to a number of factors, one

of which is that the greedy technique is a dynamic optimisation approach by design.

However, PSO is a static optimisation technique, and without the resetting iteration, it

does not adapt to changes in decision variables. Also, every meta-heuristic algorithm,

such as PSO, must take time to converge to a global optimal solution.

The next chapter (Chapter 6), we will show how the greedy technique and meta-

heuristics can be used together to make a better dynamic optimisation strategy. There-

fore, the scheduling algorithm has the best of both worlds: fast scheduling and high-

quality solutions.

95

Chapter 6

Enhanced Optimised Greedy

Nominator Heuristic (EO-GNH):

Enhancing GNH with Meta-Heuristics

6.1 Introduction

Chapter 5 presents GNH, which is a greedy approach that utilises MapReduce to speed

up the scheduling process. Also, the chapter proves through experiments that GNH

is better than PSO at scheduling application placements. GNH provides a fast local

optimal placement plan. This chapter focuses on enhancing the quality of the schedul-

ing solutions using meta-heuristics. Moreover, the chapter improves the MapReduce

model to overcome meta-heuristic limitations.

The goal of this chapter is to extend GNH using meta-heuristics. The enhanced al-

gorithm is as fast as GNH and provides a better placement plan from the SFC graph.

The solution of the algorithm is non-dominated by other solutions, which means it is

part of the pareto front. The solution outperforms the final solution across all object-

ives. The objectives are low delay, low cost, and low risk.

In scheduling real-time applications, meta-heuristics have to address three primary is-

sues: (i) accelerating convergence to optimal solutions, as demonstrated with PSO in

Chapter 5, (ii) providing a dynamic optimisation strategy that adapts to changes in the

6.2 Methodology 96

environment, and (iii) determining the most suitable meta-heuristic for a given applic-

ation [86] (also covered in the survey results in Chapter 2). To address these issues, we

introduce a parallel model that not only speeds up meta-heuristics to overcome slow

convergence but also adapts to environmental changes. Additionally, we develop a

machine learning solution to assist in selecting the most suitable meta-heuristic for a

specific application.

Asynchronous MapReduce overcomes slowness in meta-heuristics. Each Mapper is a

meta-heuristic, which continuously refines the pareto front. When a function in the

SFC graph is ready to be deployed, the Reducer chooses the best solution out of all

pareto-front approximations provided by Mappers.

Using machine learning to forecast the most stable meta-heuristic for scheduling. The

forecast is based on the features of the application and the infrastructure. The meta-

heuristics are then prioritised based on the forecast results and submitted to mappers to

initiate the scheduling process.

The remainder of this chapter is as follows: Section 6.2 provides research methodo-

logies. Section 6.3 details the algorithm in depth. Section 6.3 evaluates the optimisa-

tion algorithm, compares it to another distributed algorithm, and puts the algorithm to

the test in a simulated environment. Finally, Section 6.5 brings the chapter to a close.

6.2 Methodology

This section describes the research methodology to develop and evaluate the algorithm.

First, it presents the requirements. Second, it sets up the evaluation criteria. Finally, it

highlights the test environment.

6.2 Methodology 97

6.2.1 Scheduling Requirements

The scheduling process must overcome GNH’s limitations: it must escape local op-

tima, provide non-dominant solutions, and be fast regardless of the mapper’s setup.

When re-optimising, the algorithm selects solutions from the pareto front, resulting in

an optimally refined schedule.

Since scheduling involves meta-heuristics, it should be fast and provide solutions bet-

ter than GNH’s. Also, the algorithm’s performance must be analysed to select the

best meta-heuristic. This involves benchmarking meta-heuristics scheduling capability

under different locations and SFC graph configurations.

Meta-heuristics outperform greedy approaches in terms of optimisation objectives out-

come because they can escape from local optima [87]. However, Chapter 5 shows that

meta-heuristics take time to find a good solution, which affects the end-to-end latency

of application execution. Therefore, it is necessary to overcome the slowness of meta-

heuristics. This would provide better results than GNH in terms of scheduling speed

and optimisation objectives.

Chapter 5 shows that the MapReduce technique is applied to accelerate scheduling

by distributing decision variables across Mappers. However, the Reducer awaits the

completion of all Mappers before returning the final results; this is synchronous execu-

tion. Given that meta-heuristics require more time than a greedy method, building an

asynchronous MapReduce would accelerate the procedure. Therefore, the enhanced

scheduling algorithm requires an asynchronous implementation of MapReduce.

6.2.2 Evaluation Criteria

Evaluation considers two aspects: algorithmic execution efficiency and solution qual-

ities. Algorithm efficiency is related to algorithm speed, algorithm memory overhead,

and Pareto front volume . Whereas solutions qualities is related to makespan, risk of

6.2 Methodology 98

non-completion, and cost.

In the algorithmic execution efficacy, comparing the optimisation algorithm with a

state-of-the-art distributed meta-heuristic approach using benchmark objective func-

tions. The distributed meta-heuristic is distributed non-dominated sorting genetic al-

gorithm II (dNSGA-II) [88], and benchmark objective functions is ZDT1 [89]. Peri-

odically, we examine the quantity of non-dominant solutions to assess the quality of

solutions over time.

The solution quality of the EO-GNH algorithm is compared to that of the GNH, Greedy

(with no replica), Round Robin (RR), and Random Placement (Rand) algorithms, fo-

cusing on time, cost, and service availability. RR and Rand serve as the baseline al-

gorithms in this comparison. This approach provides a detailed and precise view of

EO-GNH’s performance against both these standard benchmarks and the informed al-

gorithms such as GNH and Greedy.

6.2.3 Test Environment

During run time, a snapshat of the pareto front and a reading of the memory over-

head are taken periodically to determine the efficiency of the algorithm executed. This

provides a profile of the pareto front size as well as the time and resources utilised

overtime.

The experimental framework observes and evaluates the performance of our scheduling

model. Python time [70] and psutil [72] are two Python modules used to evaluate the

computational efficiency of the algorithm. The time library provides numerous time-

related features that assist in timing the snapshat periods throughout run time. Psutil is

a library of system and process tools that offers information about running processes

and system utilisation.

6.3 EO-GNH Algorithm 99

6.3 EO-GNH Algorithm

The optimisation algorithm searches for solution out of the pareto front. EO-GNH

employs MapReduce and meta-heuristics to identify potential locations for redundant

deployments. Workers (i.e., Mappers) use meta-heuristics to search the decision vari-

ables. Mappers’ results are shared with the Reducer (i.e., control fog node), whose

results determine the best locations for redundant deployment across all. Mappers

provide non-dominant solutions during the execution of the SFC graph. When the time

comes to decide where to place a function, the Mappers results are accessed by the

Reducer to generate a solution.

6.3.1 Algorithm Components

The parallel model’s execution is asynchronisation-based, meaning that Reducer does

not wait for all Mappers to complete their meta-heuristic iterations before starting to

provide placement decisions. The Reducer has access to each iteration result from the

Mappers. Each Mapper has a file to write the current optimal solutions of the meta-

heuristic, and the Reducer has reading access to the Mappers’ shared files. Once a

Mapper produces a solution, regardless of the quality of the solution, the Reducer can

consume it and provide a decision for single-function placement. Parsl [9] is utilised

to enable MapReduce computing.

The Oracle in computer science is software that is queried for answers to specific

questions [90]. The Oracle here has knowledge about match of meta-heuristics and

application/infrastructure configuration. The query results are the best-suited meta-

heuristics based on the objectives preferences, e.g., makespan, cost, and then risk. The

variables of the query are Mappers number, SFC size, locations size, population size,

and criteria preferences. Within the Oracle, decision tree models are used to provide

an approximate answer based on the meta-heuristics’ previous performance. Oracle

has three stages: (i) infer decision trees, (ii) use preference-based sorting, and (iii)

6.3 EO-GNH Algorithm 100

assign meta-heuristics to Mappers. Figure 6.2 shows how the Oracle interacts with the

MapReduce approach.

A decision tree is used to forecast the quality of a meta-heuristic. A tree can be

viewed as a piecewise constant approximation [91]. The forecast result is the approx-

imated objective function output of one meta-heuristic, such as NSGAII. The training

dataset for models is comprised of meta-heuristics benchmark data. Benchmarking

meta-heuristics under different SFC and location size set-ups, which are the selected

features. Features and the output of the benchmark used to train the decision tree. The

benchmark phase is done using a simulation. The simulation with the inputs, i.e., fea-

tures, from table 6.1, then aggregated the output with the inputs creating the dateset to

prepare for the training phase.

Attribute Value

SFC size 5 10 20

Location size 100 500 1000

population/swarm size 10 50 100

Table 6.1: Dataset used to train the decision tree was made up of the features
chosen for the decision tree .

Meta-heuristics are heuristic algorithms that can be used to solve a wide range of

different types of problems. We use some nature-inspired meta-heuristic algorithms,

shown in Table 6.2, from the jMetalPy [69] library. During runtime, algorithms provide

multiple solutions. Each set of solutions is a pareto-front approximation, i.e., the best

front discovered. Usually, meta-heuristics are composed of main loops, with each

iteration in them performing a step. Steps of the main loop where meta-heuristics have

differences. For example, the step contains a simulation of a swarm for PSO-based,

whereas Genetic Algorithm (GA)-based applies genetic operators. In the proposed

parallel model, after each step of the meta-heuristics current discovery, the pareto front

is saved in a shared file.

6.3 EO-GNH Algorithm 101

Algorithm Meta-heuristic bases

GDE3 Genetic Algorithm
HYPE Genetic Algorithm
IBEA Genetic Algorithm
MOCell Genetic Algorithm
NSGAII Genetic Algorithm
OMOPSO Particle Swarm Optimisation
SMPSO Particle Swarm Optimisation

Table 6.2: List of meta-heuristics utilised by EO-GNH

Solution encoding is the method by which the meta-heuristic data handle the data rep-

resentation for the solution. This includes the data’s type and structure. In our system,

the solution encoding is an array of integers, where the value is the location ID and

the indices represent functions in the graph. As shown in Figure 6.1, multiple indices

belong to one function, which holds the redundant placement plan for that function. In

PSO-based algorithms, the solution result is of the float type (a real number), which is

not an integer. We utilised discretisation methods to convert elements of the array into

an integer. The mathematical floor function is used to remove decimal point.

Topological
Sorting

Solution
Encoding

Input
SFC

Graph Output

Figure 6.1: SFC redundant deployments solution encoding. The solution encod-
ing’s elements are location IDs, while an array’s indices specify the function.

Timsort1 is a hybrid, stable sorting algorithm built from merge sort and insertion sort

1Timsort has been the default sorting algorithm in Python since version 2.3.

6.3 EO-GNH Algorithm 102

that is optimised for a wide variety of data types. Used to sort decision tree outputs by

user objectives and preferences, i.e., makespan, cost, and risk.

The greedy approach is employed in EO-GNH, making it an extension of the GNH.

The greedy heuristics (i.e., Reducers) of EO-GNH process the output file of each meta-

heuristic (i.e., Mappers). The planning for the next function deployment happens when

the currently executed function is completed. Refer to Chapter 4, Figure 4.10, for the

steps to ‘iterate over the SFC.’ During this planning, Reducers implement the greedy

approach, utilising the similarity functions described in Formula 5.1 as heuristics.

Greedy

SMPSO

Function Placement Decsion

Monitoring MonitoringMonitoring

Decision variableDecision variable Decision variable

shared
File

Solutions
Solutions Solutions

OMOPSO NSGA-II

Oracle

SFC size

#Resource

Assign
Meta-Heurtistic

Monitoring

Mapper Mapper Mapper

Reducer

Legend

Software
component

Optimization
algorithm

File
systemIndependent

Run

Mappers number

Population size

Figure 6.2: Asynchronous MapReduce performs EO-GNH, initiated by the Or-
acle. Each mapper is a meta-heuristic selected by the Oracle based on prior
knowledge acquired during the training phase of its decision trees. The Oracle
ranks meta-heuristic algorithms according to their attributes. The reducer heur-
istic is manually selected as greedy .

6.3 EO-GNH Algorithm 103

6.3.2 Algorithm Workflow

The EO-GNH’s operational framework is based on Oracle and asynchronous MapRe-

duce mechanisms. The algorithm’s workflow consists of three major phases: (i) con-

tacting the Oracle, (ii) initialising and activating the meta-heuristics, and (iii) operating

the application while simultaneously adapting to changes. The following sections will

elaborate on these essential phases, which form the process’s foundation.

The Oracle Workflow

The Oracle is designed to identify the optimal meta-heuristics for running an applic-

ation, given the parameters of the underlying infrastructure. As illustrated in Fig-

ure 6.3, the query is formed from various attributes, including the controller’s capacity,

algorithm parameters, location data, the SFC graph, and user objective preferences.

These user preferences guide the prioritisation of the output.

Decision Trees output Ranked
Meta-Heuristics

Selected
Meta-Heuristics

Attreibutes

Process
output

Process
input

Legend

D
ec

is
io

n
Tr

ee
s

GDE3: 19.04s, %2, #7.18

HYPE: 19.03s, %2, #7.13

IBEA: 19.03s, %1, #7.06

MOCell: 19.03s, %0, #7.01

NSGAII: 19.03s, %0, #6.94

OMOPSO: 19.03s, %0, #6.90

SMPSO: 19.03s, %0, #6.85

MOCell

IBEA

HYPE

GDE3

SMPSO

OMOPSO

NSGAII

SMPSO

OMOPSO

NSGAII

R
ed

uc
e

to
 M

ap
pe

r's
 n

um
be

r

R
an

ke
d

by
 p

re
fe

re
nc

e#mappers:
3

#population:
20

#locations:
800

SFC size:
 12

Data flow

P
ro

ce
ss

Data flow

Decision tree

Data acociated to a
meta-heuristic

Sort by:
C, R, O

Figure 6.3: The Oracle ranks and selects meta-heuristics, each has a color. Inputs
for the oracle are the number of SFC mappers, population, locations, and func-
tions. The ranking is based on the makespan (C), the risk (R), and the number of
locations utilised (O) .

To estimate the expected results of each meta-heuristic, decision tree models are used.

6.3 EO-GNH Algorithm 104

These models generate predictions on key factors like makespan, risk, and cost. Sub-

sequently, the meta-heuristics are evaluated and ranked in alignment with user prefer-

ences. Lastly, the highest-ranked meta-heuristics are assigned to the available mappers,

thus concluding the process.

Meta-heuristic Workflow

Contrasting with the Mappers in GNH, EO-GNH makes decisions involving the en-

tirety of the SFC graph, as represented in Figure 6.1. This decision-making process

is detailed in Algorithm 6, which demonstrates how the Mapper initiates the meta-

heuristic (line 3), proceeding to enter the main cycle.

Within each cycle, the decision variables undergo an update (lines 5-7), leading to a

concurrent adjustment of the current objective values (outputs of the objective func-

tions). The Step procedure utilises the previous solution, in conjunction with locations

and the SFC, to carry out a singular step.

This method subsequently yields a new solution, saved within a shared file accessible

to the Reducer (lines 9-10). The algorithm halts once the execution of the SFC is

concluded (indicated by the NOTCOMPLETED value in line 4 becoming False)

The Step method, referenced in line 8, incorporates operations specific to meta-heuristics.

For derivative algorithms stemming from PSO, operations are enacted in this order: (i)

velocity update, (ii) position update, (iii) objectives evaluation, (iv) global best update,

and (v) particle best update.

On the other hand, GA-based procedures involve: (i) selection, (ii) crossover, (iii)

mutation, (iv) objectives evaluation, and (v) replacement. Notably, in the GA de-

rivation, the replacement process updates the solution while preserving the superior

offspring, further enhancing the evolutionary progress.

6.4 Evaluation 105

Algorithm 6 The solution is an array where each index refers to the function (f i
j),

whereas its content is the location id

1: class MAPPER

2: method MAP (L;SFC)
3: solution← INITSOLUTION(L;SFC)
4: while NOTCOMPLETED do
5: if IsDecisionVariableChanges(L;SFC): then
6: DecisionV ariable← UPDATEDECISIONVARIABLE(L; SFC)
7: solution← UPDATESOLUTION(solution)

8: solution← STEP(L;SFC; solution)
9: MapperResult← SOLUTION

10: solution← UPDATESHAREDFILE(MapperResult)

6.4 Evaluation

This section evaluates the EO-GNH’s performance. First, this section evaluates effi-

ciency performance. Efficiency performance focuses on the parallel model running the

meta-heuristics. Second, it assesses the quality of the solutions provided.

6.4.1 Efficiency Performance Evaluation

In this section, we conduct an evaluation of EO-GNH’s performance in comparison

with the distributed Non-dominated Sorting Genetic Algorithm II (dNSGAII) [88].

Notably, both of these algorithms operate asynchronously. Moreover, instances of NS-

GAII have been utilised within the EO-GNH framework as Mappers and Reducers,

enabling us to assess the number of non-dominated solutions they produce.

Setup Experiment

In this assessment, we explore parallel optimisation strategies using ZDT1, a synthetic

test problem, as a benchmark [89]. Both algorithms utilise Python tools that facil-

itate parallelism. Specifically, EO-GNH employs Parsl [73], while dNSGAII utilises

Apache Dask [92]. To optimise the extraction of non-dominant solutions, the EO-GNH

6.4 Evaluation 106

reducer is configured to gather the Pareto fronts from the mappers. Additionally, peri-

odic snapshots of the Pareto front are taken to evaluate the algorithms’ performance

over time.

The experiment is conducted on Google’s cloud servers, within a Jupyter notebook

environment (i.e., Google’s Colaboratory). The virtual machine used is equipped with

a single-core Intel(R) Xeon(R) CPU operating at 2300 MHz, coupled with 12 GB of

RAM, and operates without a GPU. Both Dask and Parsl are designed to maximise util-

isation of two cores; Dask accomplishes this directly, while Parsl assigns an executor

to each core.

dNSGAII implements NSGAII operators, such as selection and reproduction, asyn-

chronously. Each stage of the dNSGAII collects the outcomes of the completed opera-

tion, passing them onto the subsequent one - for instance, delivering selection results to

the reproduction process. Despite the asynchronous nature of dNSGAII, its iterations

maintain synchronisation.

Contrarily, EO-GNH deploys each NSGAII as an independent algorithm, with workers

operating asynchronously while a master node regularly collates the current solutions.

When the system has additional resources, EO-GNH scales up, deploying more in-

stances of NSGAII to enhance performance outcomes.

Results

Ten seconds into the operation, EO-GNH is observed to amass a larger number of solu-

tions that can be utilised by the controller. Additionally, the quality of the Pareto front

approximated by EO-GNH presents significant advantages, as depicted in Figure 6.4.

Notably, EO-GNH manages to match the 10-second performance of dNSGAII within

just two seconds.

6.4 Evaluation 107

Figure 6.4: Algorithm comparison: when solving the ZDT1 problem, the colour is
assigned to the time the pareto front was collected .

However, despite the asynchronous nature of dNSGAII, its iterations are synchronous.

This operational characteristic results in fewer non-dominant solutions being captured,

as demonstrated in Figure 6.4. Further, the deployment of NSGAII operations is often

subjected to delays due to queue waiting time.

In contrast, EO-GNH operates multiple instances of NSGAII across two different pro-

cesses, thereby reducing the likelihood of a process being left idle waiting for CPU

time. This strategic implementation results in more efficient utilisation of computa-

tional resources and helps to drive improved performance.

EO-GNH dNSGAII

Figure 6.5: Memory overhead overtime for the distributed algorithms

Figure 6.5 displays the memory overhead associated with running the algorithms over

6.4 Evaluation 108

time, measured in seconds. Interestingly, there are observable differences in the memory

usage patterns of EO-GNH and dNSGAII.

Initially, EO-GNH’s memory usage saw a sharp increase from 0 to 60MB in less than

a second. Conversely, dNSGAII demonstrated a slower rate of memory consumption,

taking around 2 seconds to reach the same level of 60MB.

Following this initial phase, the EO-GNH’s memory usage presented fluctuations between

100MB and 110MB. This pattern was sustained throughout the duration of the al-

gorithm’s iterations. On the other hand, dNSGAII’s memory consumption exhibited

a different behaviour, displaying a more gradual increase from 120MB to 140MB

after the third second. This level of memory usage was then maintained consistently

throughout the remaining iterations.

During a single run, it appears that both EO-GNH and dNSGAII utilised a fixed amount

of memory. For EO-GNH, there is a possibility that the memory overhead may increase

if more instances of NSGAII are added. In contrast, dNSGAII’s memory usage would

likely remain stable unless additional computing cores are incorporated, a scenario that

Dask can handle effectively.

In essence, EO-GNH leverages Parsl to add an extra degree of flexibility, allowing it to

dynamically use more resources when available. Conversely, dNSGAII is designed to

utilise all available resources from the outset, thereby maintaining a constant memory

usage regardless of additional resources.

6.4.2 Evaluating EO-GNH’s Optimisation Objectives

Setup Experiment

In this experimental setup, we evaluate the GNH and EO-GNH algorithms within a fog

infrastructure comprising Fog Nodes (FNs), simulated by Raspberry Pi 4B units. The

scenario involves handling 4000 application execution requests across 800 locations.

6.4 Evaluation 109

Variables Number/Ranges

Application requests 4000
SFC sizes (4, 8, 12, 16)
SFC types 400
Packet sizes (1KB - 1MB)
population/ swarm size 20
FNs 800
MTTR (5- 15s)
MTTF (10 - 30s)

Table 6.3: The simulation parameters are chosen randomly from these ranges

The experiment simulates 4000 application requests dynamically invoked. These re-

quests operate within the constraints defined in Table 6.3. To emulate the variability of

resource availability and failure profiles, we employ a clock mechanism. This mechan-

ism alternates between simulating a failure event with a Mean Time to Repair (MTTR)

and regular resource operations characterised by a Mean Time to Failure (MTTF).

For a comprehensive performance overview, we compare GNH and EO-GNH with

random placement (RP), a simple Greedy algorithm, and Round-Robin load balan-

cing (RR). Furthermore, the study evaluates the performance of various meta-heuristics

serving as Mappers. These meta-heuristics include GDE3, HYPE, IBEA, MOCell, NS-

GAII, OMOPSO, and SMPSO. This comparison allows us to examine the effectiveness

and efficiency of these methods under different configurations involving 1, 2, 3, and 4

Mappers.

We generate application request arrival times and workflow compositions as records.

Each workflow deployment is subject to a user-defined deadline, which defines the

expected completion time.

During the evaluation phase, we compare the anticipated and actual completion times

to deployed states. A workflow deployment that does not meet its deadline is marked

as a failure. We randomly select a failure model parameter for each FN, based on the

clock mechanism described in Section 4.4.2. The link delay is estimated based on the

packet size and a randomly assigned quality variable that affects transmission time.

6.4 Evaluation 110

We uniformly distribute application requests throughout a single day to emulate data

streams generated by infrastructure controllers. This approach closely replicates the

production of data streams.

Results

This section provides a detailed analysis of the simulation results, comparing the EO-

GNH with the GNH and benchmark algorithms. The focus lies on studying EO-GNH’s

performance across different configurations with Mapper numbers ranging from 1 to

4. Additionally, we examine the EO-GNH’s functioning with varied Mappers setups.

SFC size EO-GNH-2 GNH Greedy Rand RR

4 5.21 5.23 6.70 12.80 13.67

8 12.87 12.90 15.09 27.77 25.96

12 19.03 19.04 22.33 41.59 41.97

16 27.16 27.21 32.59 56.95 56.90

Table 6.4: Average makespan when there are 800 locations and a population of 20
.

Table 6.4 reveals that EO-GNH-2 (i.e., EO-GNH with 2 mappers) consistently out-

performs the other algorithms across all SFC sizes. For SFCs of size 4, EO-GNH-2

completes tasks in an average of 5.21 seconds, which is slightly quicker than GNH at

5.23 seconds, and significantly faster than the Greedy, Rand, and RR methods, which

require 6.70, 12.80, and 13.67 seconds, respectively.

This trend continues as the SFC size increases. For SFCs of size 8, EO-GNH-2’s aver-

age makespan is 12.87 seconds, outperforming GNH (12.90 seconds), Greedy (15.09

seconds), Rand (27.77 seconds), and RR (25.96 seconds).

At an SFC size of 12, EO-GNH-2 remains the fastest with an average makespan of

19.03 seconds, slightly quicker than GNH’s 19.04 seconds, and significantly faster

6.4 Evaluation 111

than Greedy (22.33 seconds), Rand (41.59 seconds), and RR (41.97 seconds).

For SFCs of size 16, EO-GNH-2’s superior performance continues, recording an av-

erage makespan of 27.16 seconds. This result beats GNH’s 27.21 seconds, Greedy’s

32.59 seconds, and significantly outperforms Rand’s 56.95 seconds and RR’s 56.90

seconds.

SFC size EO-GNH-2 GNH Greedy Rand RR

4 %100 %98 %64 %16 %14

8 %100 %97 %39 %3 %4

12 %100 %97 %23 % ≈ 0 % ≈ 0

16 %100 %90 %3 % ≈ 0 % ≈ 0

Table 6.5: Successful rate when the number of locations is 800 and the population
size is 20 .

The success rate is a crucial performance indicator, demonstrating the reliability and

effectiveness of each algorithm. Table 6.5 shows the successful execution rate of vari-

ous algorithms.

In Table 6.5, regardless of the SFC size, EO-GNH-2 exhibits a 100% success rate. This

implies that it can consistently and reliably complete all tasks, offering a significant

advantage over the other algorithms.

For SFCs of size 4, GNH and Greedy have respectable success rates of 98% and 64%

respectively. However, the success rates of the Rand and RR algorithms are signi-

ficantly lower, at 16% and 14%, respectively. As the SFC size increases to 8, the

performance gap between EO-GNH-2 and the other algorithms becomes even more

noticeable.

The success rates of GNH and Greedy drop to 97% and 39%, respectively. Moreover,

Rand and RR see their success rates plummet to 3% and 4%, respectively. At an SFC

6.4 Evaluation 112

size of 12, GNH manages to maintain a 97% success rate, but Greedy’s success rate

falls drastically to 23%. Both Rand and RR’s success rates fall to approximately 0%.

When dealing with the largest SFC size of 16, EO-GNH-2 remains consistent with a

100% success rate. In contrast, GNH sees its success rate drop to 90%, and Greedy’s

success rate plummets to a mere 3%. Again, Rand and RR fail to register a measurable

success rate, hovering at approximately 0%.

SFC size EO-GNH-2 GNH Greedy Rand RR

4 4.59 5.36 1.53 3.99 4.0

8 5.54 6.14 2.04 7.96 8.0

12 6.83 7.38 2.72 11.93 12.0

16 8.54 9.01 3.76 15.87 16.0

Table 6.6: Average location is used, when the number of locations is 800 and the
population is 20 .

The efficient use of locations can contribute to the effective management of resources

and network load, as well as overall system performance and responsiveness. Table

6.6 illustrates the average number of locations utilised by various algorithms.

For an SFC size of 4, EO-GNH-2 has an average usage of 4.59 locations, which is

the lowest among all algorithms, apart from Greedy, which uses only 1.53 locations

on average. This low usage could be attributed to the Greedy algorithm’s simplified

approach, but it might not necessarily indicate better overall performance or a more

balanced system load. In comparison, the GNH, Rand, and RR algorithms use more

locations, with averages of 5.36, 3.99, and 4.0 respectively.

With an SFC size of 8, the EO-GNH-2 algorithm continues to be more efficient in

terms of location usage, averaging at 5.54 locations. Again, the Greedy algorithm uses

fewer locations, with an average of 2.04, while GNH, Rand, and RR use 6.14, 7.96,

and 8.0 locations respectively.

6.4 Evaluation 113

In the scenarios with SFC sizes 12 and 16, the pattern continues. For size 12, EO-

GNH-2 uses 6.83 locations on average, compared to GNH (7.38), Greedy (2.72), Rand

(11.93), and RR (12.0). For size 16, EO-GNH-2 uses 8.54 locations on average, com-

pared to GNH (9.01), Greedy (3.76), Rand (15.87), and RR (16.0).

SFC size EO-GNH-1 EO-GNH-2 EO-GNH-3 EO-GNH-4

4 5.21 5.21 5.21 5.21

8 12.87 12.87 12.87 12.87

12 19.03 19.03 19.03 19.03

16 27.16 27.16 27.16 27.16

Table 6.7: Average makspan of EO-GNH with different mappers set up

Tables 6.8 and 6.9 collectively present a comprehensive overview of the EO-GNH al-

gorithm’s performance, considering a range of mapper configurations. Our analysis

centres on two key metrics: the average makespan, which quantifies the total dura-

tion of task completion, and the average count of utilised locations, observed across a

variety of SFC sizes.

SFC size EO-GNH-1 EO-GNH-2 EO-GNH-3 EO-GNH-4

4 4.60 4.59 4.59 4.58

8 5.56 5.54 5.53 5.53

12 6.84 6.83 6.82 6.82

16 8.53 8.54 8.53 8.53

Table 6.8: Average used location by EO-GNH with different mapper number

In considering Table 6.9, it is evident that the average makespan of EO-GNH remains

consistent, irrespective of the quantity of mappers deployed for all SFC sizes. Specific-

ally, for SFC sizes of 4, 8, 12, and 16, the makespan is 5.21, 12.87, 19.03, and 27.16

seconds respectively, regardless of whether 1, 2, 3, or 4 mappers are utilised. This

6.4 Evaluation 114

indicates that the total duration of task completion within the EO-GNH configuration

is not affected by the number of mappers.

SFC size EO-GNH-1 EO-GNH-2 EO-GNH-3 EO-GNH-4

4 5.21 5.21 5.21 5.21

8 12.87 12.87 12.87 12.87

12 19.03 19.03 19.03 19.03

16 27.16 27.16 27.16 27.16

Table 6.9: Average makspan of EO-GNH with different mappers set up

Shifting our focus to Table 6.8, it becomes apparent that the average quantity of util-

ised locations experiences a slight variation dependent on the number of mappers im-

plemented, though the alteration is not significantly impactful. For an SFC size of 4,

the average quantity of utilised locations declines from 4.60 with a single mapper to

4.58 with four mappers. Similarly, for an SFC size of 8, the number drops from 5.56

to 5.53 as the quantity of mappers rises from one to four. This pattern is consistent for

SFC sizes 12 and 16, displaying a minor decrease in utilised locations as the quantity

of mappers increases.

Moreover, an examination of the success rates corresponding to the different mapper

configurations reveals that all setups sustain a 100% success rate, with one exception.

This anomaly is identified in the setup with a single mapper when deploying SFCs

comprising 16 functions, which documents a marginally lower success rate of 99%.

SFC size GDE3 HYPE IBEA MOCell NSGAII OMOPSO SMPSO

4 5.21 5.21 5.21 5.21 5.21 5.21 5.21

8 12.88 12.87 12.87 12.87 12.87 12.87 12.87

12 19.04 19.03 19.03 19.03 19.03 19.03 19.03

16 27.20 27.19 27.18 27.17 27.17 27.17 27.17

Table 6.10: Makspan of meta-heuristics

6.4 Evaluation 115

Tables 6.10, 6.11, and 6.12 demonstrate the comparative performance of various meta-

heuristics, including GDE3, HYPE, IBEA, MOCell, NSGAII, OMOPSO, and SMPSO,

across a variety of measures: the makespan, success rate, and the cost based on the

number of used locations, respectively.

SFC size GDE3 HYPE IBEA MOCell NSGAII OMOPSO SMPSO

4 %100 %100 %100 %100 %100 %100 %100

8 %99 %99 %100 %100 %100 %100 %100

12 %98 %98 %99 %100 %100 %100 %100

16 %92 %95 %96 %97 %97 %99 %99

Table 6.11: Successful rate of meta-heuristics

Table 6.10 illustrates the average makespan across different SFC sizes for all seven

meta-heuristics. Across all SFC sizes, the makespan results are nearly identical. For

SFC sizes of 4, 8, 12, and 16, the makespan falls in the ranges of 5.21, 12.87-12.88,

19.03-19.04, and 27.17-27.20 seconds respectively, with the variation between the

heuristics being extremely marginal.

SFC size GDE3 HYPE IBEA MOCell NSGAII OMOPSO SMPSO

4 5.11 4.92 4.79 4.70 4.65 4.62 4.61

8 5.95 5.88 5.78 5.69 5.64 5.61 5.58

12 7.18 7.13 7.06 7.01 6.94 6.90 6.85

16 8.66 8.57 8.53 8.44 8.45 8.45 8.49

Table 6.12: Cost based on meta-heuristics used locations

In Table 6.11, we see the success rates for the seven meta-heuristics. For an SFC size

of 4, all algorithms maintain a 100% success rate. As the SFC size increases, there is a

slight decline in the success rate for GDE3, HYPE, IBEA, and even for MOCell when

6.4 Evaluation 116

the SFC size reaches 16. However, the decline is very modest, and all the algorithms

maintain a high success rate, with all achieving at least 92% for an SFC size of 16.

Table 6.12 presents the cost based on the number of used locations for the meta-

heuristics. Here, a clear pattern emerges: as the SFC size increases, so does the average

number of used locations for all the algorithms. Interestingly, with an increase in the

SFC size, a consistent downward trend in the number of used locations can be ob-

served for all heuristics. This might imply a more efficient usage of locations as the

complexity of the task (represented by the SFC size) increases.

Our enhanced framework (which improves on the findings mentioned in Chapter 5) ad-

opts a dual-layer search approach similar to GNH by integrating asynchronous MapRe-

duce with meta-heuristics to accelerate performance. Our framework addresses the

slow convergence issue of meta-heuristic approaches like PSO. After every iteration, it

dynamically updates the best solutions on the Pareto front, in contrast to the traditional

scalarisation method used by greedy approaches. The framework delivers fair results

across various meta-heuristic algorithms (such as GD3, HYPE) even without relying

on an oracle (shown in Figure 6.6). The asynchronous approach significantly reduces

decision-making time, addressing the latency issues identified earlier, making it an

effective solution for optimisation challenges where latency is a critical performance

factor.

In a direct comparison of execution times, the EO-GNH variants, particularly EO-

GNH-4, with an average of 29.55 seconds, significantly excel over baseline algorithms

like Random Placement (61.53 seconds) and Round Robin (60.08 seconds), reducing

the time by around 32 seconds. Against GNH, which averages 29.60 seconds, EO-

GNH-4 achieves a slight yet effective improvement of about 0.05 seconds. Among

advanced meta-heuristics, EO-GNH-4 maintains a lead, outperforming SMPSO and

OMOPSO, both averaging around 29.56 seconds, by approximately 0.01 seconds. This

comparison highlights the efficiency of EO-GNH-4 in optimising execution times com-

pared to both basic and more complex algorithms.

6.4 Evaluation 117

Figure 6.6: Boxplot comparison of execution times for placement algorithms,
highlighting EO-GNH variants against established meta-heuristics..

The EO-GNH series demonstrates superior performance in managing requests exceed-

ing 35 seconds, outshining both traditional and other meta-heuristic algorithms. Tradi-

tional approaches like Random Placement and Round Robin yield high delay rates of

over 98%, whereas the Greedy algorithm reduces this to 44.63%. EO-GNH-3, how-

ever, significantly lowers delays to 7.6%, outperforming efficient alternatives such as

GNH, GDE3, and HYPE. This efficiency makes EO-GNH-3 a prime choice for hand-

ling time-sensitive requests. In comparison to other meta-heuristics like GDE3 (8.1%),

HYPE (8.0667%), IBEA (8.0%), MOCell (7.9%), NSGAII (7.7667%), OMOPSO

(7.7%), and SMPSO (7.7%), EO-GNH’s marginal advantage becomes crucial in scen-

arios demanding optimal time management and minimal processing delays.

The current experiment demonstrates that the addition of mappers will not have a dir-

ect impact on performance. However, Chapter 7 examines the framework with a IoT

application scenarios and provides a detailed description of how the integration of map-

pers can be utilised to enhance the performance of the framework.

6.5 Conclusion 118

6.5 Conclusion

This chapter describes the Enhanced Optimized-Greedy Nominator Heuristic (EO-

GNH), an optimisation algorithm that uses asynchronous MapReduce to overcome

GNH limitations. EO-GNH applies two key strategies: (i) selecting the most suitable

meta-heuristics for scheduling an application; and (ii) running the greedy approach

with meta-heuristics to speed up scheduling and increase placement quality. Regard-

less of the number of Mapprer, scheduling is fast and provides high-quality placements.

The oracle of EO-GNH evaluates and ranks the meta-heuristic algorithms based on

their historical performance. Resulting in the best match between the meta-heuristics

and the application.

We implemented asynchronous MapReduce to speed up the execution of meta-heuristics.

We compared the proposed parallel model with state-of-the-art distributed meta-heuristics.

The result showed that asynchronous MapReduce efficiently provides high-volume

non-dominant solutions.

We conducted a simulation-based evaluation. The simulation is used to: (i) dynamic-

ally generate requests and vary the number of functions in an SFC (4 to 16) and the

function execution time (from 0.5 to 2 seconds); (ii) vary the availability and failure

profile of resources using a clock mechanism that aligns resource unavailability with

request arrival rate (using Mean-time-to-Failure and Mean-time-to-Recovery metrics).

We create a number of possible simulation scenarios to compare EO-GNH with GNH,

simple greedy scheduler, random placement, and round robin. On unreliable infra-

structure, our results show that with the meta-heuristics, the system is able to have

100% availability of the services, whereas GNH has 95.5%.

In the next chapter (Chapter 7), we will evaluate GNH and EO-GNH in a different

scenarios. The scenarios are in different environments to test the scheduling quality of

the algorithms.

119

Chapter 7

Performance Evaluation of

Adaptability in Intelligent IoT

Applications

7.1 Introduction

This chapter aims to comprehensively evaluate the system and scheduling approach in-

troduced in chapters 4, 5, and 6, with an emphasis on their performance and efficiency

in computational environments.

We define real-world intelligent IoT application as an IoT application that demon-

strates genuine intelligence by leveraging machine learning and AI inference to go

beyond data collection and storage to enable real-time processing, analysis, and pro-

active decision-making.

The evaluation employs three unique IoT applications: a machine learning-driven flood

prediction model in a smart city (Section 7.2), federated learning in agriculture with

a focus on data privacy (Section 7.3), and a time-series forecasting model in a smart

factory for optimising cooling performance (Section 7.4).

The objective is to examine the system’s operation in a variety of scenarios, analysing

its adaptability, capacity for integration, and the efficacy of the proposed scheduling

7.2 Flood-Prepared: Cities’ Adaptation to Surface Water Flooding 120

approach under varying application demands. This chapter represents an important

stage in the process of assessing the viability and adaptability of our system within the

dynamic landscape of intelligent IoT applications.

This chapter is divided into five sections. The first three sections (following the cur-

rent section) each examine a distinct intelligent IoT application. For each application,

we systematically examine the application components, identify specific requirements

and characteristics, describe the experimental setup, and discuss the outcomes. This

uniform structure enables a comprehensive, cross-situational analysis of our system,

demonstrating its adaptability and efficacy in real-world IoT applications. In Sec-

tion 7.5, we discuss how the solution can be generalised to many IoT applications.

Finally, the Section 7.6 serves as the conclusion for this chapter.

7.2 Flood-Prepared: Cities’ Adaptation to Surface Wa-

ter Flooding

As cities embrace digital technologies, the IoT has become crucial in managing surface

water flooding [93]. Through real-time monitoring of drainage systems, IoT can help

mitigate flood risks. However, ensuring the reliability of these systems is a challenge,

as disruptions could worsen flood situations. Therefore, it is imperative to develop

fault-tolerant IoT models to enhance urban resilience against flooding, minimising the

effects of potential system failures during such emergencies [94].

In real-time IoT applications such as surface water flood prediction and management,

the stakes are high. The unpredictable nature of heavy rainfall and the significant im-

pact of floods necessitate reliable, responsive IoT systems. Traditional fault tolerance

approaches, such as redundancy and reactive recovery, often fall short due to limita-

tions in scalability and adaptability. Further, operating within strict QoS criteria and

budgetary constraints add layers of complexity [94].

7.2 Flood-Prepared: Cities’ Adaptation to Surface Water Flooding 121

Set up

Fog
Node

Fog
Node

Fog
Node

Fog
Node

Multi-Cloud

Fog

VM

VM

VM

GCP

Self-Configuration Self-optimisation

Self-healing

Monitor

Fog-Cloud infrastructure

Workflow Composition

Deploy

Access Tokens

Access Tokens

Configure

VM

Start/ Stop Re-configure

Report
Failure

Backup
information

Input

Output

Action
using tools

System
Message

Input/Output Autonomic
component

Legend

Figure 7.1: System overview of the proposed approach with self-healing, self-
configuration, and self-optimisation .

A unique aspect of our methodology is the integration of self-adaptive software mech-

anisms: self-optimisation and self-healing. These elements permit the system to adjust

and recover autonomously upon detection of failures. The self-optimisation compon-

ent manages IoT application deployments continuously, identifying intolerable errors

in the primary resource group. The self-healing component corrects system failures,

deactivating failed resources, enabling backup resources, and initiating failed resource

recovery 7.1.

We introduce a comprehensive, dynamic IoT fault-tolerance model based on the self-

adaptive mechanisms discussed previously. This model combines proactive (self-optimisation

with GNH) and reactive (self-healing) strategies for use in real-time scenarios like flood

management. The model consists of a controller and a resource pool at its core. The

7.2 Flood-Prepared: Cities’ Adaptation to Surface Water Flooding 122

Switch
Modes

VM

VMFog Node

 Primary Resources

Fog Node

Fog Node

VM

Fog Node VM

VM

VM

VM

VM

Backup Resources

Monitor Start/Stop

Deploy Recover

Controller

Resource pool

Primary Resources

Fog Node VMVM

VM

VM

VMVM

VMVM

Backup Resources

Regular mode

Resource pool

Recovery mode

Legend Turned On

Turned Off

Temporal Infrastructure

Self-optimization Self-healing

Figure 7.2: Self-healing properties of the system which switches between regular
mode and recovery mode .

Rainfall modelCorrelator HiPMIES Flood impact model

Figure 7.3: Flood-preparation inference workflows

controller manages the resource pool, switching between regular and recovery modes

based on system performance and failure detection, as shown in Figure 7.2.

By integrating proactive and reactive fault-tolerance mechanisms, we ensure system re-

liability and efficient flood management while reducing operational costs. This strategy

anticipates and responds immediately to potential failures, thereby avoiding costly

downtime. This model’s robustness supports its suitability for flood anticipation ap-

plications, thereby enhancing urban infrastructure’s resilience and effectiveness.

7.2.1 Application workflow

Correlator: the correlator, an essential part of the workflow, reduces data format in-

consistencies between models, thereby increasing the pipeline’s effectiveness. It con-

7.2 Flood-Prepared: Cities’ Adaptation to Surface Water Flooding 123

sumes data from Apache Kafka, processes it concurrently, and converts it to a unified

format for subsequent models using a multi-threaded approach. The ability to handle

large volumes of real-time data and easy interoperability are ensured. Figure 7.3 shows

the flood-preparation inference workflows.

Rainfall model: A spatiotemporal neural network forecasts rainfall by generating a

spatial field of rainfall intensity, enhancing real-time surface water flood predictions.

Using physical analytic principles coupled with statistical analytics, this model predicts

rainfall distribution across a city ahead of actual events, offering a proactive approach

to city-scale flood management [93].

HiPIMS: HiPIMS (High-Performance Integrated hydrodynamic Modelling System)

is a 2-dimensional flood model that predicts complex flow dynamics during flooding

events. HiPIMS accurately replicates urban overland flows by using depth-averaged

shallow water equations and a Godunov-type finite volume scheme [95], while ac-

counting for friction and infiltration rates. A distinguishing feature is the generation

of comprehensive surface water flood maps with a 2 metres spatial resolution, which

enables proactive measures and strategic planning for potential flood scenarios. Large-

scale simulations and real-time forecasting are optimised with GPU for efficiency [93].

Flood impact model: The model is a Convolutional Neural Network (CNN) to es-

timate vehicle counts at specific locations in order to predict the impact of flooding on

urban traffic in real time. It employs techniques for very short-term weather forecast-

ing to extend these predictions to the entire road network. The system employs surface

water depths derived from flood models to identify roads that are impassable due to

flooding, with a 300 millimetres threshold. It also takes into account speed reductions

and congestion caused by water depths below 300 millimetres assuring comprehensive

real-time analyses of the effects of flooding [93].

7.2 Flood-Prepared: Cities’ Adaptation to Surface Water Flooding 124

7.2.2 Application Characteristics & Requirements

System integration flexibility: This refers to the adaptability and compatibility re-

quired when combining separate systems into a single entity. This includes interoper-

ability, which is the communication capability of system components or self-adaptive

components to exchange messages and data that are comprehensible [96].. In addition,

portability incorporates the capacity to transfer and reuse software components, such

as VM/container, across multiple platforms without compatibility concerns [96]. This

flexibility may necessitate infrastructure modifications during application execution in

distributed systems in order to meet QoS requirements or manage operational costs in

the event of a failure.

Big data constraints: Managing big data requirements necessitates a system that

can effectively handle vast data volumes. A particular challenge arises when using

Python, due to its garbage collection mechanism. This process frees memory from

unused Python objects, but it can cause memory fragmentation, thereby increasing

memory usage [97]. Additionally, Python’s method of allocating new memory to pools

of objects (known as arenas) before releasing other memory fragments may gradually

increase memory consumption and degrade overall performance.

Applications objectives trade-offs: Applications objectives trade-offs refer to bal-

ancing conflicting goals in a system, often seen in mission-critical applications where

performance, dependability, and cost need to be balanced. High throughput activities

may increase system overhead and reduce reliability, while enhancing dependability

can raise costs. This balance becomes more crucial when self-configuration and self-

healing components are incorporated into a self-optimisation system, underscoring the

need for managing trade-offs to maintain performance, improve reliability, and control

costs.

7.2 Flood-Prepared: Cities’ Adaptation to Surface Water Flooding 125

7.2.3 Experimental Setup

This experiment is conducted in a Fog-Cloud environment, utilising Amazon Web Ser-

vice (AWS) and Google Cloud Platform (GCP). The infrastructure incorporates three

GPU nodes (GCP-GPU), all based in the GCP cloud, forming part of an overall system

of eight computing nodes divided into primary and backup roles.

HIPIMS, requires a GPU instance with an NVIDIA Tesla P100 to execute CUDA pro-

grams. All other functionalities can run on all computing nodes.

The fog infrastructure, located in Cardiff, UK, hosts the controller and Kafka server. It

consists of a commodity machine and a Raspberry Pi 4B. The commodity machine has

a 6-core CPU and 32 GB of memory. In contrast, the Raspberry Pi 4B, with 4 cores

and 4 GB of memory, acts as the controller and runs various virtual instance tasks.

This setup utilises GCP instances, GPU and CPU nodes, situated in the europe-west1-

b zone in Brussels, Belgium. It includes 4 GCP-GPU nodes, all of the n1-standard-4

type with 64 vCPUs, 240 GB of memory, and 50GB of storage, 2 of which are primary

resources, while the other 2 serves as a backup. Additionally, there are 2 e2-medium

GCP-CPU nodes, each equipped with 2 vCPUs and 4 GB of memory. One of these

CPU nodes is a primary resource, and the other functions as a backup. The average

round trip time (RTT) for a 14B Python object from the fog to either GCP-CPU or

GCP-GPU nodes is approximately 99 ms (± 24.8).

The AWS resource includes one t2.micro instance, located in London, UK. It has 1

vCPU, 1 GB memory, and a 15 GB disk, serving as a backup. The RTT between AWS

and the fog is approximately 93 ms (± 4.73).

This experiment makes use of the node performance degradation simulation, which

is elaborated in Chapter 4, Section 4.4.3. In the parameters for the experiment, we

establish a constant value for λ at 86400 seconds, while k is varied from 0.5 to 0.8

across different resources. Specifically, the Raspberry Pi 4B and the AWS instance are

assigned a k value of 0.5. The Commodity machine and GCP’s e2-medium have a k

7.2 Flood-Prepared: Cities’ Adaptation to Surface Water Flooding 126

of 0.75, and the GPU nodes are assigned the highest value at 0.8. This varying k setup

allows for an evaluation of system performance under different resource conditions.

7.2.4 Results

0 20 40
time index

500

1000

1500

2000

to
ta

l e
xe

cu
tio

n
tim

e
(s

)

Without Recovery
With Recovery

(a) Total execution time comparison

0 20000400006000080000
time index

0.0

0.2

0.4

0.6

0.8

1.0

fa
ilu

re
 ra

te

Without Recovery
With Recovery

(b) Failure rate comparison

Figure 7.4: Results of experiments for the system with and without self-healing
The time index is the time of the day in seconds. .

The system features a self-healing mechanism enabling it to recover from failures over

time, as depicted in Figure 7.4b. The failure rate consistently decreases, demonstrat-

ing the continuous effectiveness of the self-healing mechanism. In contrast, a system

without self-healing, given the same conditions, would likely experience an increasing

failure rate over time, with problems accumulating and compounding.

Metric AWS GCP-CPU GCP-GPU GCP-GPU Total

Price per Hour $0.0116 $0.04 $2.3460 $2.3460 $4.7436

Uptime per day (minutes) 18.36 7.54 59.17 60.97 146.04

Bill with self-healing (month) $0.11 $0.15 $69.40 $71.52 $141.18

Bill without self-healing (month) $8.35 $28.80 $1,689.12 $1,689.12 $3,415.39

Decrease backup cost by 98.72% 99.48% 95.89% 95.77% 95.87%

Table 7.1: Compare cost with different adaptive property setups

Typically, the continuity of service demands costly and resource-intensive backup

7.2 Flood-Prepared: Cities’ Adaptation to Surface Water Flooding 127

strategies. However, self-healing systems offer a more resilient and dependable op-

eration by autonomously identifying and resolving potential failures, thereby reducing

outage and maintenance costs.

Table 7.1 presents a cost comparison for systems with and without self-healing mech-

anisms across different cloud computing platforms. The cost metrics are derived from

price per hour and uptime per day (in minutes). The stark cost savings achieved through

self-healing application implementation are evident across all platforms. For example,

on AWS, operating the system with self-healing costs just $0.11 per month, compared

to $8.35 per month without it, representing a 98.72% cost reduction.

Figure 7.4a underscores the critical role of the GNH algorithm in managing execu-

tion time, both in scenarios with and without self-healing. GNH primarily optimises

resource allocation and task scheduling to efficiently utilise resources and minimise

overall execution time. It significantly contributes to quicker task completion even in

systems lacking self-healing.

The role of GNH becomes even more crucial in self-healing situations, where the sys-

tem must handle potential failures and initiate recovery procedures. Execution times

with self-healing are comparable to those without, testifying to GNH’s effectiveness

under fault conditions.

Overall, GNH forms the foundation of efficient task execution in both self-healing and

non-self-healing scenarios, underscoring the importance of such intelligent, adaptive

algorithms in the design of resilient and reliable IoT systems.

Statistical Variation of the Performance

Figure 7.5 shows ten trials of the experiment, which capture the statistical variance

in performance. This experiment compares two approaches: one with self-healing

(recovery) and the other without. The primary focus of this comparison was on their

execution rates. The ‘No Recovery Approach’ exhibited a minimum execution rate

7.2 Flood-Prepared: Cities’ Adaptation to Surface Water Flooding 128

Figure 7.5: For “Self-Healing in Flood Detection”: Box plot comparing execution
times of self-healing (with recovery) and standard (no recovery) approaches.

of 982.57, a maximum of 1283.13, a mean of 1056.89, and a median of 1042.78. Its

first and third quartiles were 983.05 and 1103.07, respectively, with an interquartile

range (IQR) of 120.03 and a 95% confidence interval (CI) of ±7.89. Conversely, the

‘Recovery Approach’ had similar minimum and median rates but a slightly higher

mean execution rate of 1071.80 and a maximum rate of 1283.64. The first and third

quartiles for this approach were 983.09 and 1162.69, with a larger IQR of 179.60 and

a 95% CI of ±8.48.

Both approaches displayed similar minimum and median execution rates. However,

the recovery approach not only had a marginally higher mean execution rate but also

exhibited greater variability, as indicated by its larger IQR. Additionally, the error rates

calculated show a marginally lower rate for the recovery approach (16.50%) compared

to the no-recovery approach (17.63%). These metrics suggest that the recovery ap-

proach, while offering a slightly better average performance, also involves more vari-

ability in execution times.

This increased variability in the recovery approach is likely due to the added time for

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 129

recovery processes. The recovery approach presumably involves additional steps for

self-healing, which can vary in duration based on the complexity of the required re-

covery. This variation contributes to a broader range of execution times. The type

and severity of issues, the system’s state, and the efficiency of the recovery process

can cause inconsistent invocations or varying time durations for recovery mechanisms.

With the recovery process in play, execution times may vary significantly, ranging from

highly efficient (with little to no recovery needed) to instances requiring substantial re-

covery efforts. Additionally, the added complexity of recovery processes likely results

in a broader range of behaviours and outcomes, explaining the increased IQR.

The larger IQR in the recovery approach suggests that the inclusion of recovery times

contributes to greater variability in execution rates, a trade-off for the added resilience

provided by the self-healing capabilities of the system. While it is true that the self-

healing approach can add more time to the execution, with an average increase of

approximately 14.91 seconds, this additional time could significantly reduce the overall

costs associated with GPU nodes. This consideration is crucial when evaluating the

effectiveness and efficiency of such systems, particularly in scenarios where balancing

performance with resource management and cost-effectiveness is essential.

7.3 Federated Learning in Rural Areas: for Autonom-

ous Weed Detection

Precision agriculture is an innovative approach that leverages data collection and ana-

lysis technology, providing significant potential to enhance farming efficiency and food

production outcomes [98]. A variety of technologies, such as specialised sensors and

satellite-based data, are used to improve farm management. This includes soil and

crop knowledge, fertiliser distribution, guidance for farm vehicles and machinery, and

product traceability from “farm to fork”. A pivotal application within precision agri-

culture is automated weed control. This approach can potentially boost farm output by

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 130

accurately identifying specific weeds, thereby reducing labour costs and potentially de-

creasing pesticide use. The importance of this application lies in its capacity to reduce

agricultural losses, augment productivity, and enhance the environmental sustainability

of farming practices.

Addressing privacy and confidentiality concerns in precision agriculture, this research

leverages federated learning as an alternative to traditional machine learning meth-

ods [99], like those used in autonomous weed spraying. federated learning creates

a model using locally sourced data, eliminating the need to transfer data to a central

server and thereby enhancing data security. Furthermore, the importance of model

training in a fog infrastructure lies in its ability to process data close to its source,

enabling efficient, real-time responses, while mitigating some privacy issues — a par-

ticularly crucial feature for applications such as precision agriculture.

Rural areas present a unique set of challenges for precision agriculture, mainly due

to limited network infrastructure. The implementation of traditional machine learning

algorithms can be difficult, which could potentially affect the reliability of the network

and availability of services. Thus, this research aims to find a solution that can operate

effectively within this constrained network infrastructure, ensuring consistent and ef-

fective precision agriculture practices. The goal is to ensure that even in less developed

areas, agriculture can benefit from the latest technological advancements without com-

promising on network reliability or service availability.

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 131

Images Images Images Images

Local Model
Local Model Local Model

Intermediate Model

Global Model

Figure 7.6: Aggregating learned models across robots using federated learning

This research deploys federated learning-equipped mobile robots to address existing

challenges. Serving as edge devices, these robots optimise field coverage and data col-

lection via a random walk, contributing to a global model without sharing raw data

(Figure 7.6). Moreover, the autonomous robots’ trajectories are determined by a trun-

cated random walk approach to ensure efficient field coverage and task accuracy [82].

Importantly, the robot’s distance from computing resources affects data communica-

tion quality, symbolising network latency in mobile edge devices (Figure 7.7).

7.3.1 Applications Workflows

Image pre-processing: Pre-processing is an essential workflow phase for prepar-

ing images for machine learning models. It modifies colour modes, resizes images,

transforms image data into an appropriate format, and scales pixel values. The pre-

processed images and their corresponding labels (for testing and validation only) are

saved for use in subsequent phases of the pipeline. This phase ensures that the data fed

into the model is consistent, appropriately scaled, and in a format compatible with the

model. Figure 7.8 shows the workflows for federated learning and online training.

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 132

Figure 7.7: Robot performs a random walk, which affects the quality of the con-
nection to a field-side unit. .

Model Tuning
Image for Training
Pre_processing

Local Model

Global Model

Image for Validation
Pre_processing

Aggregate
models

Compare
Accuracy

Validation

Validation

Figure 7.8: Workflows for federated learning online training

Model tuning: In the workflow, model optimisation entails enhancing the perform-

ance of an existing machine learning model, specifically a neural network. On a new

set of data, the model is fine-tuned by adjusting its weights to better suit the data. The

updated model weights are stored separately for future use, facilitating future tasks

involving fine-tuning or prediction. This task is essential for enhancing model per-

formance and guaranteeing its adaptability to new or changing data.

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 133

Model aggregation: This step in the workflow involves combining the weights of

multiple trained models to create a single, aggregate model. It takes in multiple sets of

model weights, computes their average, and saves these averaged weights. This results

in a new model that captures the collective knowledge of all input models, enhancing

the overall prediction performance and robustness. This step is particularly beneficial

in distributed learning scenarios, such as federated learning, where models are trained

on different datasets or devices and their knowledge is centrally aggregated.

Validation: The model validation step in the workflow is concerned with assessing

the performance of the trained machine learning model on unseen data. It loads the

model, its weights, and a new set of image data and labels. The model’s performance

is evaluated on this new data, with metrics such as loss and accuracy calculated. This

step is vital for understanding how well the model generalises to new data and for

identifying any overfitting or underfitting issues. The validation results, along with

the filename of the model’s weights, are returned for further analysis or use in the

workflow.

Comparing accuracy: This involves comparing the performance of different models

to determine the most accurate one. The function takes as input the validation results of

two models, comparing their accuracies. If the accuracies are equal, it then compares

the loss function values of the models. The function returns the weights file address of

the more accurate model (or the one with lower loss in case of equal accuracies). The

idea is to retain the best model after each iteration or comparison, leading to continual

improvement of the overall model performance over time.

7.3.2 Application Characteristics & Requirements

For AI to be useful in rural regions, a platform must be stable and flexible enough to

accommodate changes in system behavior. A list of necessary features for rural AI

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 134

applications is outlined below.

Operation during system failure: This requires that applications continue to ex-

ecute despite intermittent network and computational resource disruptions. It requires

fault tolerance, which ensures the system’s continued functionality by excluding the

assignment of tasks to faulty components. The task scheduler is a crucial component

of this process, and it should be designed to minimise the use of resources that are

more prone to failure. By doing so, the system will be better equipped to continue

functioning and accomplish its intended purpose under challenging circumstances.

Adapt to rural areas conditions: Software systems must be able to operate un-

der the challenging conditions frequently encountered in rural areas. These regions

may experience unpredictable internet disruptions at any time, necessitating a reli-

able mechanism to maintain connectivity with externally hosted services. In addition,

regardless of the condition of the local infrastructure, it is essential to ensure that the

service quality remains within a predetermined acceptable range. This necessitates that

the system be equipped with features that enable it to adapt and maintain performance

under less-than-ideal conditions.

Mobility and edge devices: Mobility has a significant impact on application exe-

cution performance and the type of data that can be communicated over a wireless

network. In particular, the location of mobile edge devices, such as robotics, can in-

fluence the data types, sizes, and latency that a network can support. This implies that

the design of the application and network must take into consideration the unique chal-

lenges posed by mobile devices, such as variable data types, varying data sizes, and

potential latency issues.

Managing complexities in federated learning workflows: Different federated learn-

ing workflows may have varying computational demands. For instance, a workflow

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 135

function with a comparatively longer execution time may require more reliable com-

puting resources. This is to avoid resource reallocation that could result in delays in

task completion. Additionally, the outcome of one workflow could be scheduled as

the input for another process within federated learning, particularly if the workflows

are interdependent. This highlights the need for a system that is capable of efficiently

managing these diverse and often complex workflow requirements, ensuring optimal

performance and task completion times.

Safeguarding data privacy The edge network must be equipped with the capacity

to uphold data privacy effectively. Given that a single application failure can im-

pact the execution speed of other applications negatively, adherence to data privacy

requirements during transitions between service instances is essential. Moreover, for

enhanced data security and efficiency, it is advantageous to process data within a secure

Local Area Network (LAN) rather than on a cloud instance located in a data centre of

a cloud provider. Using a LAN network minimises data exposure through the Wide

Area Network (WAN) and the internet, further safeguarding data privacy.

7.3.3 Experimental Setup

The experiment’s setup initiates with GHN and EO-GNH being evaluated on a Rasp-

berry Pi 4B model referred to as a field-side unit (FSU). FSUs are units situated within

the field and, importantly, each robot in this setup acts as a standalone controller. These

robots not only execute tasks but also make critical decisions about which functions

they should perform and which ones need to be delegated to the FSUs. The robots’

location within the agricultural field significantly affects the overall workflow due to

varying distances between the mobile robot and FSUs, which are shared resources

among the robots.

The experiment simulation generates 3000 application requests to train a local model

and 300 to aggregate local models into a global model dynamically. This process is

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 136

constrained by parameters contained in Table 7.2. The simulation mimics resource

availability and failure profile variability through a clock mechanism, reflecting (i) a

failure event with Mean Time to Repair (MTTR) and (ii) regular resource operation

with Mean Time to Failure (MTTF).

Variable Number/Ranges

Field-side units (RPi) 100

Robots (RPi) 10

MTTF (250 - 500 s)

MTTR (20 - 100 s)

Random walk steps (1 - 10 steps)

Table 7.2: Simulation parameters for temperature forecasting experiments

The simulation continues by comparing GHN and EO-GNH to random placement

(RP), a simple Greedy algorithm, and Round-Robin load balancing (RR), for a compre-

hensive performance overview. Application request arrival times and workflow com-

positions are generated as records, with each workflow deployment constrained by a

user-defined deadline, i.e., the expected completion time.

The evaluation phase involves comparing expected and actual completion times to de-

ployed states. If a workflow deployment misses its deadline, it is considered a failure.

A failure model parameter for each FSU is randomly selected based on the clock mech-

anism from Section 4.4.2. Furthermore, the experiment incorporates a random walk

and wireless simulation as per Section 4.4.4 to enhance the realism of the simulation

environment.

Following each function’s placement, a random walk is performed, with the robot mov-

ing steps ranging from 1 to 10, representing a shift in the robot’s operational environ-

ment. This step necessitates regular updates to the failure rate records, assessing the

system’s resilience and adaptability.

Application requests are distributed uniformly throughout a single day to simulate the

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 137

data streams generated by infrastructure controllers (robots). This setup mimics the

actual production of data streams.

Following the function placement, a random walk procedure takes place. The robot

makes a movement with step lengths ranging from 1 to 10. This randomness emulates

the uncertainty and variability of real-world operations, having a significant impact on

the experiment’s performance.

This random walk is not merely a physical move; it also represents a shift in the oper-

ational environment for the robot. Such changes can influence the overall performance

and efficiency of the system. Notably, this variability in the robot’s movement ne-

cessitates frequent updates to the failure rate records, a crucial factor in assessing the

system’s robustness and adaptability to changing conditions.

7.3.4 Results

In the Tuning Model workflow, RP and RR methods have average completion times

of 224.98 and 225.5 seconds respectively, with a success rate of around 38%, 37%,

respectively and usage of two locations (Figure 7.9). The Greedy method reduces

completion time to 214.8 seconds and increases success to 55%, using slightly over

one location. However, GNH and EO-GNH variants outperform these, reducing com-

pletion times to 159.3 and 152.38-153.35 seconds, respectively, and achieving success

rates of 97% and 100%. These methods use about 4.38 to 5.6 locations.

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 138

Figure 7.9: Average completion time for federated learning workflows in different
algorithms.

In the Global Model Aggregation workflow, RP and RR underperform, with comple-

tion times around 81.08, and 84.71 seconds respectively and success rates below 36%,

using close to 5 locations. The Greedy method improves on this with a 63.18-second

completion time and 77% success rate, using just over one location. The GNH and

EO-GNH variants excel with completion times around 54 seconds and a 100% success

rate, using around 4.43 to 4.81 locations.

In terms of reliability, EO-GNH and GNH demonstrate superior performance, success-

fully completing most of their requests ahead of schedule, as demonstrated in Fig-

ure 7.10. The simple Greedy method achieves a 77% success rate but is outperformed

by EO-GNH and GNH. Notably, RR and RP result in the highest number of requests

completed after the deadline, highlighting their lower reliability.

Figure 7.10: Successful rate for federated learning workflows in different al-
gorithms .

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 139

EO-GNH and GNH distinguish themselves by strategically selecting multiple FSUs

to handle requests, ensuring that a failure in one does not halt the operation. This

strategy of redundancy results in a lower failure rate and higher reliability. Notably, all

global model aggregation requests are completed earlier than expected, and only 3%

of GNH’s Tuning Models requests exceed their expected completion times.

Resource utilisation plays a vital role in cost and efficiency, as seen in Figure 7.11.

GNH minimises resource usage by deploying an average of 4.81 FSUs. In comparison,

RP, due to occasional reuse of resources, averages at 4.99 units. The Greedy algorithm

uses 1.51 FSUs on average, which is the least costly manner to run a workflow.

Figure 7.11: Average cost based on the number of locations utilised for federated
learning workflows in different algorithms .

As depicted in Figure 7.9, the EO-GNHs and GNH algorithms optimise completion

time effectively. GNH significantly outpaces the Greedy method in both tuning model

execution (by 55.5 seconds) and global model aggregation (by 9.28 seconds). Com-

pared to RR and RP, EO-GNHs and GNH can save up to 73.12 seconds for model

tuning and 29 seconds for model aggregation. This represents a significant savings in

terms of time. This results in a considerable reduction in time.

Increasing the number of mappers employed by the EO-GNH algorithm enhances the

service availability rate. Specifically, using three mappers (EO-GNH-3) presents an

optimal balance between low decision-making costs and high availability, resulting in

zero failures. For Global Model Aggregation, EO-GNH-2 performs slightly faster than

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 140

EO-GNH-3, offering potential time and cost savings.

Statistical Variation of the Performance

Tuning Model Figure 7.12 summarises the performance of various optimisation al-

gorithms in Model Tuning, focusing on their statistical behaviour in a minimisation

problem. The execution times of the GNH algorithm vary between 134.02s and 310.79s.

Its average (mean) performance is 159.30s, with a median of 154.05s. This algorithm

shows a considerable (IQR) of 26.87s, indicating a wider dispersion of values. In con-

trast, the GDE3 algorithm exhibits a slightly narrower range, with a mean of 157.78s

and a median of 152.75s. Both HYPE and IBEA demonstrate tighter clusters in per-

formance, as reflected in their lower IQRs of 24.81s and 23.99s, respectively. The MO-

Cell and NSGAII algorithms show even more concentrated execution times, with IQRs

of 22.99s and 22.32s, respectively. These figures suggest that these algorithms have

more consistent performance, with most of their execution times clustering around the

mean of approximately 154 seconds.

OMOPSO and SMPSO maintain this trend of narrow IQRs at 21.48s and 21.36s, re-

spectively, with mean values just above 153s, signifying consistent performance. The

EO GNH series, iterating from 1 to 4, consistently shows a median performance around

149s and decreasing IQRs, which suggests a refinement in algorithmic efficiency with

each successive version. The 95% confidence intervals for these algorithms are relat-

ively tight, all below 0.77s, indicating precise estimates of the mean execution times

and underscoring the reliability of these algorithms in solving the considered minim-

isation task.

Figure 7.13 illustrates the performance disparities among three placement algorithms

during Model Tuning, specifically in terms of their execution time statistics. In this

context, Model Tuning refers to the process of adjusting the parameters or configur-

ations of these algorithms to optimise their performance. Random Placement, one of

these algorithms, demonstrates the broadest range of execution times, from approxim-

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 141

Figure 7.12: For “Model Tuning”: Box plot showing execution times for al-
gorithms. Median and mean (blue dot with 95% CI bars) indicated. EO-GNH
series highlights efficiency gains with added mappers. .

ately 134.05s to 491.30s, with an average time of 224.98s and a median of 208.16s.

This broad range indicates a considerable spread in data, as evidenced by an IQR of

86.61s, the largest among the three algorithms. The Round Robin algorithm shows a

slightly less varied range, with execution times from around 134.16s to 476.14s, a mean

slightly higher than Random Placement at 225.50s, and a median of 212.41s. Its IQR

of 85.48s is marginally less than that of Random Placement, suggesting a somewhat

tighter clustering of execution times.

In the context of Model Tuning, the Greedy algorithm, while having a wider range,

demonstrates improved performance with execution times ranging from 134.04s to

440.46s. It has a lower average time of 214.80s, and a median of 199.13s, indicating

more central tendencies compared to the other two algorithms within the Model Tuning

workflow. The Greedy algorithm’s IQR of 76.01s is the smallest among the three,

suggesting a tighter concentration of values. The 95% confidence intervals for these

algorithms are relatively large, all above 2.30s, pointing to less precision in the mean

estimation with broader data dispersion. However, the Greedy algorithm stands out

with slightly more precision in its mean estimation, as evidenced by its 95% confidence

interval of 2.33s. While this interval is somewhat higher, in the context of a lower

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 142

Figure 7.13: For “Model Tuning”: Box plot comparing execution times of Greedy,
Random Placement and Round Robin algorithms. Median and mean (with 95%
CI bars) are highlighted. Shows efficiency comparisons..

mean, it indicates a more efficient performance in the minimisation problem tackled

through Model Tuning.

Models Aggregation Figure 7.14 reflects the tightly clustered performance met-

rics of several optimisation algorithms within the models aggregation workflow, each

demonstrating efficiency in a minimisation context. The GNH algorithm, as part of

this workflow, shows a moderate range of execution times with a minimum of around

49.09s and a maximum of 65.64s, while maintaining an average of 53.90s and a median

close to 53.14s. Similarly, the GDE3 algorithm follows closely, exhibiting a slightly

narrower range and a mean of 53.56s, indicating consistent execution times within the

same workflow. The HYPE algorithm extends the maximum execution time slightly

more but maintains a competitive average of 53.87s, further illustrating the consistency

and efficiency of these algorithms in the context of the models aggregation workflow.

Within the models aggregations workflow, the IBEA algorithm presents a wider range

yet manages to keep its mean at 53.77s with a median marginally lower, suggesting bal-

anced performance. MOCell and NSGAII report similar behaviours with tight IQRs

and means just above 53.50s, indicative of their stable nature in solving the problem.

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 143

Figure 7.14: For “Models Aggregation”: Box plot showing execution times for
algorithms. Median and mean values (blue dot with 95% CI bars) are also indic-
ated. EO-GNH series highlights efficiency gains with added mappers..

OMOPSO expands the range further but still delivers a mean of 53.68s, while SMPSO

maintains this pattern with a mean of 53.72s, demonstrating the efficiency and consist-

ency of these algorithms in the context of the models aggregations workflow.

The EO GNH with different setups, executing models aggregations workflow, en-

compassing iterations from 1 to 4, displays a consistent median around 53.00s and

slightly increasing IQRs. Despite the increasing IQRs, this still indicates a refinement

in performance with each successive version. The 95% confidence intervals for all al-

gorithms are modest, varying from around 0.36s to 0.38s. This provides confidence in

the stability of the mean execution times and underscores the algorithms’ effectiveness

in consistently achieving near-optimal solutions as part of the models aggregations

workflow.

Figure 7.15 provides a detailed analysis of the performance of three distinct place-

ment algorithms within the models aggregations workflow, displaying varied execution

time ranges and central tendencies. The Random Placement algorithm, as part of this

7.3 Federated Learning in Rural Areas: for Autonomous Weed Detection 144

Figure 7.15: For “Models Aggregation”: Box plot comparing execution times of
Random Placement and Round Robin algorithms. Median and mean (with 95%
CI bars) are highlighted. Shows efficiency comparisons..

workflow, exhibits a wide range of execution times, with a minimum of approximately

50.43s and a maximum of 201.10s. This results in a mean time of 81.08s and a median

significantly lower at 69.32s. The variation between the mean and median, coupled

with a substantial IQR of 34.62s, points to a diverse distribution of execution times

within the context of the models aggregation workflow.

The Round Robin algorithm running the models aggregation workflow demonstrates

an expanded range from around 49.08s to 182.78s, with a mean of 84.71s and a median

of 73.21s, higher than Random Placement. The IQR of 42.92s is the largest among the

three, indicating a greater spread of execution times and less consistent performance

compared to the other algorithms.

In contrast, the Greedy approach running models aggreagation workflow presents a

notably tighter performance range, with a minimum and maximum between 49.33s

and 145.23s. It achieves a mean of 63.18 and a median of 61.22s, both markedly lower

than those of the other two algorithms. The IQR of 10.43s is significantly smaller,

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 145

suggesting a more concentrated and consistent set of execution times. The CI of 1.35s

for the Greedy algorithm is considerably smaller than those of Random Placement and

Round Robin, which have CIs of 3.01s and 3.26s, respectively. This indicates a higher

precision in the Greedy algorithm’s performance, making it a more efficient choice for

solving the minimisation problem at hand.

7.4 Intelligent Cooling System: Cooling Fish Processing

Facility

The complexities of food production, coupled with stringent regulations set by food

authorities, create challenges for the food industry, particularly in maintaining safety

and quality standards. A common practise within this sector is the use of climate-

controlled storage, such as refrigerated and frozen rooms, to preserve regular food

batches [100].

However, with the advancement of technology, there is an opportunity to significantly

improve efficiency and quality assurance in these facilities. Specifically, an IoT tem-

perature monitoring system (Figure 7.16) can be deployed. This system offers an auto-

mated solution to monitor and manage product quality, preserve required storage tem-

peratures, and ensure regulatory compliance through real-time monitoring of facility

temperatures.

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 146

*

Forecast Temp.
 Recurrent neural networks

(RNN)

Current
Temperature

Approximate
Temperature

No

WaitRelease

Cooling
Set Point

Change Yes

Block

Temperature
Sensor

Figure 7.16: Temperature control that forecasts temperatures. Sensors are the
source of the feedback loop, from which it gathers data and deduces a predicted
temperature. The set point is updated based on the prediction. .

In the pursuit of operational efficiency, AI and Recurrent Neural Networks (RNNs)

are important. RNNs, known for their capability in handling time series forecasting,

provide invaluable insights by predicting future temperatures based on collected sensor

data, enabling the system to adapt the temperature setpoint accordingly. This reduces

energy waste, contributing to substantial cost savings.

With this scenario in mind, the research will focus on a specific application case study

of an efficient, smart energy cluster in a food processing facility. The facility stands

to make significant energy savings through the incorporation of an RNN designed for

energy conservation. This RNN predicts room temperature and energy consumption,

auto-adjusts the temperature setpoint, and, as a result, produces accurate energy usage

and temperature forecasts.

The implementation of the RNN within the facility is strategically distributed into vari-

ous service functions, as illustrated in Figure 7.17. This distribution represents an in-

novative and efficient workflow management. The RNN architecture incorporates a

pre-processing layer responsible for preparing and processing the incoming data. Fol-

lowing this is a hidden layer that performs complex computations and carries the main

predictive responsibility. The output layers deliver the predicted values for energy us-

age and temperature. This structured workflow demonstrates a robust and effective

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 147

utilisation of advanced AI technology in the facility.

Input Layer

X1

X2

X3

X4

X5

Scaling
Features

Energy
Ahead

Temperature
Ahead

Hidden Layer

Output Layers

Figure 7.17: Workflow of neural network for energy-saving applications

7.4.1 Applications Workflows

Scaling features: This phase is a important component of the pre-processing that

prepares the input data for the RNN. It is designed to accept multiple inputs, such

as the current readings of the chamber’s set points, power, and capacity, as well as

the current season. The procedure entails transforming these separate inputs into a

standard scale that is compatible with the neural network. Each input variable receives

a specific formula that maps its value to a predetermined scale. This step guarantees

that all input data is normalised and in a format that the RNN can effectively process,

thereby enhancing the model’s capacity to learn and make precise predictions.

Neurons X1 to X5 : These are neurons in the RNN layer of neural networks, po-

sitioned in the middle, where the function applies weights to inputs and guides them

through an activation function as the output. Hyperbolic Tangent (Tanh) activation is

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 148

used by the neurons. The Scaling Features function output is multiplied by the weight

of the neurons, and the sum of the multiplied values is sent to the Tanh activations

funciton. Each neurons output is result of the following calculation Tanh(
n∑

i=1

Ii · wi)

where i is the index of the inputs of the neurons, and n is the input size.

Energy ahead and temperature Ahead : Both operate provide energy and temper-

ature’s forecasts. Each function has layers which are output layer, unscaling layer, and

bounding layer, connected in the order listed. The output layer is the sum of the Xj

layers outputs multiplied by the output layer’s weights, calculated by the following

formula:
5∑

j=1

Oj · wj where Oj is the outputs of neuron Xj . The output Layer results

is scaled, the unscaling layer produce the output to the original units, kWh for energy

and celsius degrees for temperature. The unscaling layer is calculation based on stat-

istics on the outputs layer’s results, such as minimum and maximum values. Finally,

the Bounding layer ensures that the output is within valid value boundaries.

7.4.2 Application Characteristics & Requirements

High availability in forecasting: Due to its inherent structure, a distributed approach

can offer high availability in temperature controller services, which are beneficial in

limiting single points of failure. Nonetheless, managing this distribution effectively is

critical to prevent infrastructure congestion. Adding replication of tasks could serve

as an additional safety measure. However, there needs to be a balance between main-

taining enough replicas for high availability and reducing congestion in the system.

Therefore, the strategic management of task replication becomes critical in maintain-

ing high availability while mitigating system congestion.

Concurrency: Employing multiple fog nodes can effectively speed up RNN infer-

ence through concurrent execution. By allowing tasks to run in parallel, we can avoid

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 149

the delays associated with waiting for independent tasks to finish before others can

begin. Without parallel execution, any delay in one task would hold up the progress

of others, even if they are not interdependent. Therefore, enabling concurrency in the

distributed system is of significant importance in this context.

7.4.3 Experimental Setup

In this experimental setup, GNH and EO-GNH algorithms are assessed within a fog

infrastructure, designated as Fog Nodes (FNs), modelled by Raspberry Pi 4B units.

The simulation incorporates one thousand requests for executing RNN inference. Two

distinct configurations are deployed, involving 100 and 1000 locations respectively.

This process is constrained by the parameters in Table 7.3.

Variable Number/Ranges

Fog Nodes (FN) (100, 1000)

Controller 1

MTTF (250 - 500 s)

MTTR (20 - 100 s)

Table 7.3: Simulation parameters

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 150

7.4.4 Results

Figure 7.18: Performance comparison of various algorithms in a 100 location
setup for the Distributed RNN application.

Figure 7.18 shows the results of the 100 location setup, highlighting the performance

of various algorithms in this context.

Rand and RR utilised a significant number of locations, approximately 7.72 and 8,

respectively, but they also had the longest completion times, approximately 11.94 and

11.35 seconds. Their success rates were remarkably low at just 6% for both.

On the other hand, the Greedy algorithm used fewer locations (on average around

1.37), and also achieved a much quicker completion time of 3.34 seconds, with a sig-

nificantly higher success rate of 73%. The GNH algorithm managed to reduce the

completion time further to 2.02 seconds, using around 5.1 locations, and achieved a

high success rate of 98%.

All versions of the EO-GNH algorithm, utilising mappers from 1 to 4, demonstrated

the best performance. They achieved the highest success rate of 100% and comple-

tion times of approximately 2 seconds. The number of locations utilised decreased

marginally from EO-GNH 1 to EO-GNH 4, averaging around 4.5 locations.

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 151

Performance of different mappers within the EO-GNH framework in a 100 location

setup for the distributed RNN application. Each mapper runs a single meta-heuristic

and utilises a greedy approach for the Reducer.

Figure 7.19: Performance of different mappers within the EO-GNH framework
in a 100 location setup for the Distributed RNN application.

Figure 7.19 shows the results of the 100 location setup with the implementation of

different mappers within the EO-GNH framework, each running single meta-heuristic

(Mapper) and utilising greedy approaches for the Reducer. GDE3 used approximately

5.04 locations, resulting in a completion time of 2.02 seconds, and achieved a high

success rate of 99%. HYPE slightly reduced the locations to 4.95 and the completion

time to 2.01 seconds, also with a 99% success rate. IBEA improved the efficiency

further, utilising 4.87 locations and maintaining a completion time of 2.01 seconds and

a success rate of 99%. MOCell was able to reduce the number of locations to 4.77 and

the completion time to 2.0 seconds. It too achieved a 99% success rate.

NSGAII, OMOPSO, and SMPSO all reached the optimum success rate of 100%.

NSGAII utilised approximately 4.7 locations and a completion time of 2.0 seconds.

OMOPSO reduced the locations slightly to 4.63, while SMPSO used even fewer at

4.58 locations. Both maintained a completion time of 2.0 seconds.

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 152

Summarising the results from the 100 location setup, all the mappers within the EO-

GNH framework displayed high success rates and efficient use of locations. However,

NSGAII, OMOPSO, and SMPSO achieved the optimum success rate of 100% with

reduced locations and minimal completion times, demonstrating superior performance

under these conditions.

Figure 7.20: Comparison of algorithmic approaches in a 1000 location setup for
the Distributed RNN application RNN application.

Figure 7.20 gives the results from a 1000 location setup using a variety of algorithmic

approaches.

The Rand algorithm acquired approximately 7.97 locations, with a high completion

time of 12.9 seconds and a notably low success rate of 3%. The RR algorithm per-

formed slightly better, utilising 8 locations with a shorter completion time of 11.6

seconds and achieving a slightly higher success rate of 5%.

The Greedy algorithm made a significant leap in performance. It only required 1.48

locations, drastically reduced the completion time to 3.55 seconds and achieved a suc-

cess rate of 71%. GNH showed further improvement, using approximately 5.27 loca-

tions but dramatically reducing the completion time to 2.01 seconds and achieving an

impressively high success rate of 99%.

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 153

The four configurations of EO-GNH (1 to 4) demonstrated superior performance. EO-

GNH-1 used 4.26 locations and had a completion time of 1.99 seconds, with a perfect

success rate of 100%. EO-GNH-2 and EO-GNH-3 demonstrated identical perform-

ance, both utilising 4.24 locations with a completion time of 1.99 seconds and main-

taining the 100% success rate. EO-GNH-4 showed very similar performance, with

4.23 locations used and a slightly increased completion time of 2.0 seconds but also

with a perfect success rate.

Figure 7.21: Results of the 1000 location setup under the EO-GNH framework
for the Distributed RNN application.

Figure 7.21 presents the results of the 1000 location setup under the EO-GNH frame-

work with one mapper running single meta-heuristics and reducers employing greedy

approaches. Each meta-heuristic shows differences in obtained locations and comple-

tion times, but they all exhibit a 100% application success rate.

The GDE3 meta-heuristic obtained 4.88 locations with a completion time of 2.01

seconds. This is the highest location utilisation among the mappers, but it does not

reflect a slower performance as the completion time remains competitive.

The HYPE meta-heuristic decreased the obtained locations to 4.63, while slightly redu-

cing the completion time to 2.0 seconds, aligning with the ideal trend of lower location

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 154

utilisation and faster completion. The IBEA meta-heuristic further reduced location

utilisation to 4.5 with an identical completion time to HYPE at 2.0 seconds, indicating

a comparable but slightly more efficient performance.

MOCell used 4.41 locations, maintaining the same completion time of 2.0 seconds,

suggesting minor improvement in location efficiency while maintaining speed. NS-

GAII showed continued improvement, reducing locations to 4.34 with a slightly faster

completion time of 1.99 seconds, marking the first mapper to break the 2-second bar-

rier.

The OMOPSO meta-heuristic followed closely, using 4.3 locations and matching NS-

GAII’s completion time of 1.99 seconds. Finally, the SMPSO meta-heuristic utilised

the fewest locations at 4.27, but slightly increased the completion time to 2.01 seconds.

Summarising the results from the 1000 location setup, all meta-heuristics delivered

a 100% application success rate. However, variations in the obtained locations and

completion times provide important metrics for comparative analysis. While GDE3

utilised the most locations, SMPSO was the most efficient, even though it showed a

slight increase in completion time. This data provides a useful comparison of the trade-

off between location utilisation and time efficiency among different meta-heuristics

within the EO-GNH framework.

In conclusion, both the 100 and 1000 location setups indicate that the EO-GNH al-

gorithms are consistently reliable with an optimal success rate of 100%. These al-

gorithms also exhibit rapid completion times, roughly around 2.0 units, which out-

performs other methods such as Random Placement and Round Robin. Nonetheless,

a slight reduction in the number of obtained locations is observed as the setup size

expands, particularly in the Mapper cases.

The GNH method presents a well-rounded performance, achieving a high success rate

(98% - 99%) coupled with modest completion times (2.02 - 2.01 seconds), and a com-

mendable count of obtained locations (5.1 - 5.27).

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 155

A specific note is to be made for the 1000 location setup, wherein the Mapper segment

utilises various meta-heuristics. Each of these methods reaches an exceptional success

rate of 100%. GDE3 is prominent among these for securing the highest number of

locations at 4.88. Meanwhile, the completion times remain relatively uniform for these

approaches, approximately around the 2.0 seconds.

The data thus highlights a balance in algorithm performance. While certain methods

excel in specific measures such as obtained locations or success rate, a comprehens-

ive performance across all measures is demonstrated by others like the EO-GNH and

selected meta-heuristics.

Statistical Variation of the Performance

This section studies the performance of the RNN-based refrigeration cooling sys-

tem within an RNN-based workflow. The execution times for various placement al-

gorithms, as illustrated in Figure 7.22, show notable uniformity in their performance.

This is evidenced by patterns indicating tight clustering of data and high precision

in measurements. Within the RNN-based workflow, the Greedy algorithm exhibits a

broader spectrum of execution times, indicated by its IQR being approximately 1.095s

and a 95% CI pointing to a moderate level of variability, with average execution times

around 3.766s. Conversely, algorithms such as GNH, GDE3, HYPE, IBEA, MOCell,

NSGAII, OMOPSO, and SMPSO demonstrate more narrow IQRs, suggesting a more

compact distribution of their execution times, with average values generally hovering

around 2.00s. This pattern reflects stable performance across these algorithms within

the RNN-based workflow, underscored by their low Standard Error of the Mean (SEM)

values, ranging approximately from 0.015s to 0.020s, indicating high precision in their

average execution times.

Upon evaluating the EO-GNH algorithm within the RNN-based workflow with vary-

ing numbers of mappers, there is an observed gradual reduction in average execu-

tion time as more mappers are included, hinting at enhanced efficiency. This trend

7.4 Intelligent Cooling System: Cooling Fish Processing Facility 156

Figure 7.22: For “Energy Forecasting”: Box plot showing execution times for
algorithms. Median and mean (blue dot with 95% CI bars) indicated. EO-GNH
series highlights efficiency gains with added mappers..

is depicted across four different EO-GNH configurations, with mean execution times

slightly declining from EO-GNH-1 to EO-GNH-4. All configurations maintain av-

erage times under 2.0s, exhibiting close 95% CIs and small SEMs. These findings

underscore the algorithm’s consistent ability to attain near-optimal solutions within the

RNN-based workflow, emphasising its effectiveness in addressing the minimisation

challenge presented.

Figure 7.23 shows that within the RNN-based workflow, the Random Placement al-

gorithm displays a broad spectrum of execution times, ranging from 1.84s to 37.75s,

with an average time of around 12.14s and a median slightly lower at 11.74s. This

range, evidenced by an IQR of 8.56s, indicates a wide variability in its performance.

In comparison, the Round Robin algorithm, also part of the RNN-based workflow and

showing a diverse range of execution times, has a slightly better average of around

11.78s and a median of 11.38s. Its IQR is marginally narrower at 8.72s, coupled with

a 95% CI of 0.38s, suggesting a more consistent grouping of sample means than the

Random Placement. This points towards a more stable yet still varied performance

profile within the RNN-based workflow.

7.5 Discussion 157

Figure 7.23: For “Energy Forecasting”: Box plot comparing execution times of
Random Placement and Round Robin algorithms. Median and mean (with 95%
CI bars) are also highlighted. Figure also shows efficiency comparisons between
algorithms..

7.5 Discussion

We have explored the robustness, adaptability, and generalisability of our proposed

solutions, GNH and EO-GNH, across diverse IoT applications, with a specific em-

phasis on effectiveness and efficiency in terms of execution time, cost, and risk man-

agement. These solutions were assessed across a wide range of scenarios, each with

varying degrees of complexity, data flow, and resource constraints, including agricul-

ture, factory operations, and smart cities.

We prioritised developing a system characterised by seamless integration, efficient

data management, application diversity, and robust system failure resilience. Seam-

less integration was ensured through self-optimisation components with self-healing

and self-configuration capabilities. Efficient data management was achieved via fed-

erated learning within the fog infrastructure, safeguarding data privacy. Application

diversity was confirmed by testing our solution in three different scenarios: smart city,

precision agriculture, and smart factory. We defined ‘success rate’ as the application’s

ability to complete execution within the expected time without any failure or delay,

7.5 Discussion 158

which underscores our approach’s adaptability across various conditions. Despite the

infrastructure’s state, the system shows failure resilience by maintaining a high success

rate for deploying the application, most of the time achieving 100% service availability.

In assessing performance, we employed a dual-metric approach focusing on solution

quality and convergence speed. For solution quality, we focused on execution time,

cost, and the risk of not completing on time. In terms of convergence speed, we found

that in both EO-GNH and GNH, the convergence time had a minimal impact on the

completion time.

Our system, operated by GNH and EO-GNH, demonstrated superior results when com-

pared to baseline approaches such as Round Robin and Random Placement, as well as

a basic greedy approach. This further reinforces the potential of our solution for broad

application across various IoT scenarios.

In the field of optimisation, We discovered the need to transition away from a one-size-

fits-all strategy, leading us to propose an approach that provides algorithms tailored to

specific applications. While GNH was effective in certain contexts, it did not consist-

ently yield optimal results across all applications. This was particularly evident in the

federated learning Workflow, where GNH showed varying success rates for model tun-

ing (96%) and model aggregation (100%). In cases where GNH fell short, EO-GNH

showcased its adaptability by selecting the most appropriate meta-heuristics to achieve

a 100% success rate, resulting in improved execution time.

EO-GNH excels in its adaptability, leveraging the characteristics of the workflow and

infrastructure to compose an optimal strategy for the task at hand. This resulted in

a significant performance improvement in our model tuning workflow, achieving a

success rate of 100%.

In both agricultural and factory settings, our solution maintained a 100% deployment

success rate, often completing execution ahead of schedule. This robustness suggests

that our solution could be effectively applied to different AI running at the edge.

7.6 Conclusion 159

Finally, our system’s consistent performance across a wide range of conditions, its

adaptability in algorithm selection, its robust and modifiable design, and its ability to

meet diverse application requirements underscore its potential for broad application in

the IoT field. The system’s capacity to optimise operations based on each scenario’s

specific needs showcases its flexibility and potential for widespread adoption.

7.6 Conclusion

In the context of intelligent IoT applications, this chapter evaluates the implementation

and performance of the system and scheduling approach discussed in chapters 4, 5,

and 6. The primary objective is to examine the system’s functionality across a variety

of complex scenarios and evaluate its efficacy, adaptability, and viability with respect

to the proposed scheduling approach.

In the smart city scenario, our system pairs seamlessly with an adaptive setup to en-

hance an expensive-to-run application. It successfully minimises the cost of running

GPU-accommodating cloud instances, ensuring service continuity. GNH’s efficacy is

showcased in its rapid and reliable deployment of essential IoT applications, demon-

strating resilience across diverse infrastructural circumstances.

In the context of agriculture, autonomous robots develop machine learning models

collaboratively. Our system operates effectively under a decentralised control architec-

ture, demonstrating its adaptability with individual controllers and shared fog nodes.

EO-GNH outperforms GNH in federated learning deployment and decision-making,

especially when more mappers are integrated. This scenario suggests the possibility of

optimising resource use versus outcomes and offers opportunities for the improvement

of decision-making strategies.

EO-GNH excels in deploying a temperature forecasting model within a smart fact-

ory environment, illustrating its proficiency in managing concurrent applications. Re-

gardless of the scale, even up to 1000 locations, EO-GNH quickly identifies optimal

7.6 Conclusion 160

solutions. This capability is the result of a balanced approach to exploration and ex-

ploitation, a strategy that consistently yields high-quality results.

In conclusion, the chapter provides valuable insights into the performance of the sys-

tem across a variety of applications. The findings highlight the adaptability of the sys-

tem, the superiority of EO-GNH over GNH, and the potential for additional decision-

making and scheduling strategy refinement. Future research could concentrate on op-

timising the EO-GNH oracle to better balance exploration and exploitation capabilities

in accordance with the deployment requirements of IoT applications.

161

Chapter 8

Conclusions and Future Directions

8.1 Introduction

In this concluding chapter of the thesis, we provide a summary of our work and de-

scribe how we addressed complex challenges and research questions in IoT application

management. We evaluate the contribution of our motivations, methodology, and key

findings to the body of knowledge in this field. In particular, we have addressed IoT

infrastructure and application decoupling, parallel programming, function placement,

platform integration, and evaluation of placement quality.

In addition, we will investigate potential future research paths. As is typical in re-

search, our investigation has uncovered new questions and methods for investigation.

In order to continue advancing our understanding of IoT application management, we

will identify areas for future research.

This final chapter not only provides a comprehensive summary of our work, but it also

lays the groundwork for future research in this field.

8.2 Resolving Research Questions in IoT Application Placement 162

8.2 Resolving Research Questions in IoT Application

Placement

This section provides clear responses to the research questions presented in Chapter 1,

encompassing key areas of the IoT system including application placement, infrastruc-

ture optimisation, platform integration, and scheduling strategies. The subsequent sub-

sections look into each of these topics, providing detailed responses to the previously

outlined research questions.

8.2.1 Modelling the Placement Problem

The first research question was centred on accurately modelling the placement problem

in IoT applications, especially considering the complexities of a fog-cloud infrastruc-

ture. To address this, we employed integer linear programming (ILP), a method known

for its ability to handle complex combinatorial optimisation problems, which we de-

tailed in Chapter 3.

Our ILP model is not merely a mathematical abstraction of the placement problem.

Instead, it provides a comprehensive perspective, encapsulating the infrastructure state,

precise execution requirements, and deployment objectives. This holistic approach

makes the model versatile and adaptable, suitable for various scenarios, and enables an

improved scheduling and placement process.

Further, this model also incorporates a risk assessment formula and a cost reduction

method to enhance the resilience of the management process. This is particularly im-

portant in dynamic IoT environments. A significant feature of our model is its al-

location function, which favours early-stage service functions and strategically avoids

high-risk locations while effectively utilising replicas to compensate for potential time

losses in the event of failures.

8.2 Resolving Research Questions in IoT Application Placement 163

Moreover, the model acknowledges that the costs of application deployment are dir-

ectly related to the resources used during the application’s execution. It incorporates

these aspects to give a holistic understanding of the placement problem and the applic-

ation of ILP techniques for resource optimisation.

By setting a solid foundation and providing a reliable roadmap for the optimisation al-

gorithm, this model has proven its value by outperforming intelligent programmes with

limited replicas in real-world testing and serving as a flexible framework for managing

a wide array of IoT applications.

8.2.2 Defining a Platform Architecture

The second part of our research question was to define a platform architecture capable

of effectively managing and operating IoT applications. As described in Chapter 4,

we responded by developing an innovative platform based on a fog-cloud infrastruc-

ture. This platform includes an extensive toolkit for defining, monitoring, analysing,

scheduling, and executing applications, making it a comprehensive solution for man-

aging IoT applications.

A unique feature of this platform is its capacity to link platform tools with optimisation

algorithms, enabling adaptive system management. This adaptability is particularly

beneficial in the dynamic IoT environment, where changes in application requirements

or infrastructure state can demand alterations to the placement strategy.

The architecture of the platform also supports customisation, allowing it to align with

user-defined decision-making algorithms. It handles data transformations across vari-

ous data models and transmission procedures and emphasises the importance of dy-

namic optimisation in platform operations.

Furthermore, it utilises forward dynamic programming techniques for managing the

Service Function Chain (SFC) graph–an approach especially suited for real-time, event-

based systems. The platform’s architecture is thus designed to be robust, versatile,

8.2 Resolving Research Questions in IoT Application Placement 164

and dynamic, meeting the immediate needs of managing IoT applications while also

providing the flexibility to adapt and grow in response to future challenges.

For a comprehensive understanding of the decision-making process for SFC place-

ment scheduling, we focused on creating scheduling algorithms for SFC placement in

Chapters 5 and 6. The aim was to provide a detailed insight into the decision-making

component of the platform.

8.2.3 Application Placement with Consideration for Multiple Ob-

jectives

This section of our thesis addresses the second research question, which involves the

development of a strategy for IoT application placement that accounts for multiple

objectives. To achieve this, we have introduced two novel approaches: the Greedy

Nominator Heuristic (GNH) and the Enhanced Optimized-Greedy Nominator Heur-

istic (EO-GNH).

The GNH strategy, detailed in Chapter 5, is a greedy method that leverages the MapRe-

duce paradigm to reduce end-to-end latency across a SFC. It accomplishes this by ad-

hering to two strategies. First, GNH avoids deploying functions on unstable computing

resources, i.e., those with a historically high failure rate. Second, it employs a replica-

tion strategy that takes into account the function’s position in the SFC when deploying

functions across multiple locations. Consequently, functions that appear earlier in the

SFC get higher replication due to their direct impact on the execution of dependent

downstream functions.

To enhance efficiency in multi-objective optimisation, GNH uses scalarisation, a pro-

cess that consolidates several objective functions into one. Despite this advantage,

GNH does not guarantee pareto front solutions – a drawback EO-GNH was designed

to overcome.

8.2 Resolving Research Questions in IoT Application Placement 165

EO-GNH, discussed in Chapter 6, is an optimisation algorithm that employs asyn-

chronous MapReduce and parallel meta-heuristics to address GNH’s limitations. It

prioritises optimisation times, thereby enhancing the final outcome. The algorithm

integrates the best-suited meta-heuristics for application scheduling and runs concur-

rently with the greedy approach, speeding up scheduling and improving placement

quality.

In contrast to GNH, EO-GNH provides non-dominant solutions from the Pareto front,

offering a more effective approach to multi-objective optimisation. This feature aids in

identifying trade-offs among given solutions. Furthermore, unlike GNH which applies

scalarisation in two phases, EO-GNH uses it once to extract one solution from the non-

dominant ones. Combining this with meta-heuristics and a greedy approach leads to a

more dynamic and responsive optimisation process.

While both GNH and EO-GNH contribute to efficient IoT application management,

they have distinct capabilities and advantages due to their design differences. For in-

stance, EO-GNH surpasses GNH in avoiding local optima and outperforms it in main-

taining service availability on infrastructure with unreliable nodes. Specifically, EO-

GNH achieves 100% service availability, compared to GNH’s 95.5%. Thus, EO-GNH

not only addresses GNH’s limitations but also enhances the process of multi-objective

optimisation, demonstrating the potential for further improvements in IoT application

management.

8.2.4 Implementing Scheduling and Placement Strategy

The important objective of this research, which was addressed in Chapters 4, 5 and 6,

was to devise and implement an effective scheduling and placement strategy that can

optimise IoT applications running in fog-cloud environments. The strategy needed to

be adaptive, leveraging dynamic programming and parallel computing for decision-

making, while also factoring in the distinct characteristics of different applications and

8.2 Resolving Research Questions in IoT Application Placement 166

the available infrastructure.

Chapter 4 concentrated on the decision-making aspect of scheduling, extending the

decision-making component established earlier. The proposed strategy employed a

greedy approach, utilising dynamic programming to traverse the SFC. This approach,

built on the platform’s dynamic nature, effectively examined the system’s varying

states and determined the optimal solution at each decision point.

Chapter 5 furthered this strategy by presenting the GNH, which utilises the parallel

computing model MapReduce to accelerate the scheduling process. This enhanced

method broke down the decision variable analysis into smaller, manageable tasks and

executed them simultaneously, dramatically reducing the time required to determine

an optimal placement plan.

Chapter 6 addressed the limitations of the MapReduce model and enhanced it using

meta-heuristics. In parallel to this, a machine learning solution was developed that

selects the most suitable meta-heuristic for an application based on its unique char-

acteristics. This approach tackled two major issues simultaneously: accelerating the

convergence to optimal solutions and choosing the most suitable meta-heuristic for a

specific application.

Furthermore, an asynchronous version of MapReduce was introduced to handle the

slowness of meta-heuristics. Each Mapper in this model continuously refines the pareto

front, and a Reducer selects the best solution out of all pareto-front approximations

provided by Mappers.

Chapter 7 demonstrated the versatility and efficacy of the proposed strategy by ap-

plying it to different IoT application domains, such as flood prediction in smart cities,

temperature regulation in fish factories, and on-field weed identification in rural areas.

The results confirmed that the proposed method can readily be combined with exist-

ing system parts to create a new, more flexible platform. The effectiveness of GNH

in managing computationally intensive processes and working in harmony with other

8.2 Resolving Research Questions in IoT Application Placement 167

systems was particularly notable. Implementing the proposed scheduling and place-

ment strategy in real-world AI applications showcased its adaptability, robustness, and

effectiveness in diverse scenarios.

The first application demonstrated how the system effectively adapted to a compu-

tationally intensive and expensive-to-run application. This showcased the strategy’s

ability to integrate with other adaptive systems to add new capabilities while managing

costs efficiently. The reliable platform controlled the infrastructure under varying cir-

cumstances, while the GNH ensured rapid and dependable deployment of essential IoT

applications.

The second scenario involved autonomous mobile robots working together to develop

machine learning models. This application presented a decentralised control architec-

ture, with each robot operating its own controllers and sharing fog nodes with other

controllers. The strategy managed this decentralised structure efficiently, illustrating

its adaptability to varying infrastructure layouts.

In the mobility simulation, the strategy’s performance was evaluated using a feder-

ated learning deployment. The EO-GNH outperformed the GNH in all configura-

tions. Adding more mappers improved decision-making and scheduling performance,

although the improvements were minor. This experience suggested the possibility of a

balance between the consumption of more resources for better outcomes and reducing

the computational cost of decision-making. The EO-GNH’s Oracle could be enhanced

to determine the number of mappers, providing users with more control over resource

allocation.

The successful deployment of the temperature forecasting application further under-

scored the effectiveness of EO-GNH’s strategy. It outperformed GNH by delivering

faster average completion times, even as the number of locations increased from 100

to 1000. This case brought to light the exploration and exploitation features of the

mapper-level meta-heuristics and reducer-level greedy approach, respectively. It be-

came evident that this configuration of exploration and exploitation is suitable for a

8.3 Solutions to Challenges 168

variety of decision-making scenarios

8.3 Solutions to Challenges

This section presents the solutions to the issues identified in Chapter 1 across the vari-

ous IoT system layers. We develop comprehensive solutions for significant problems

in the application, infrastructure, platform, and scheduling layers.In the following sub-

sections, the particulars of each solution that correspond to the previously outlined

obstacles are discussed in depth.

8.3.1 Monitoring Infrastructure Changes and Utility Tools Integ-

ration

In managing the IoT infrastructure, we adopt an Object-Oriented Analysis and Design

(OOAD) approach to effectively analyse and design complex systems. This approach

is applied to monitor changes in infrastructure and integrate utility tools. It establishes

new connections between various components and processes data for efficient decision-

making, thereby improving the performance of the IoT infrastructure.

8.3.2 Tackling Unreliability and Failures

Our risk management approach addresses the challenges of unreliability and failures

within IoT infrastructures. Monitoring task completion rates helps prevent function

allocation to high-risk locations. Furthermore, a replication strategy provides redund-

ancy for the application, effectively balancing the cost and performance of deploying

replica functions, thereby mitigating the risk of failures.

8.3 Solutions to Challenges 169

8.3.3 Fostering Resource Awareness

We maintain consistent resource awareness across the system through effective monit-

oring, decision-making, and deployment components. Monitoring anticipates potential

changes, decision-making analyses data and plans actions, while deployment shows

real-time resource awareness during execution. This comprehensive resource aware-

ness contributes to efficient management of dynamic IoT infrastructure.

8.3.4 Determining Adaptation Location

Our system excels at identifying the ideal location for the adaptation process, a critical

factor determined by the system control type. This is achieved using the ILP model and

OOAD principles. Real-world scenarios provide tangible examples of both centralised

and decentralised control structures, illustrating the system’s robustness and resilience

in managing IoT infrastructure challenges.

8.3.5 Promoting Utility Tools Integration

The challenge of integrating utility tools is addressed using OOAD principles. This

modular approach ensures seamless integration with various tools and future adapt-

ability. The system’s adaptability, facilitated by refined monitoring, decision-making,

and deployment tools, enables integration with various software tools while effectively

managing data transformations across different models and procedures.

8.3.6 Platform Integration and Self-Adaptive Features

We achieve integration with the IoT platform by combining Parsl with an optimisa-

tion tools, creating a responsive self-adaptive system to changing IoT conditions. The

system components include deployments, monitoring, and decision-making, ensuring

8.3 Solutions to Challenges 170

the platform’s adaptability to dynamic IoT environments. Our approach also facilitates

the seamless integration of the decision-making component with other self-adaptive

elements, resulting in a self-configurable, self-optimized, and self-healing system.

8.3.7 Evaluating Placement Quality Through Simulations

Simulations form a significant part of our research, providing a means to evaluate

scheduling algorithms and understand complex IoT dynamics. Our custom simulation

tools replicate real-world conditions, allowing for thorough testing of decision-making

algorithms and balancing Quality of Service (QoS) metrics such as performance and

cost.

8.3.8 Achieving Resource Accessibility

Resource accessibility is a critical requirement in complex computational tasks. We

address this by employing Parsl [9], which manages resources effectively and rapidly

executes decision-making and optimisation algorithms. Parsl also adjusts to various

configurations, optimising resource use, and emphasising scalability. Thus, we provide

a solution for effective resource control, utilisation, and scalability, even with resource

expansion.

8.3.9 Service Function Chain Graph Design

The design of the SFC graph is crucial in IoT applications. We utilise Python’s dec-

orator pattern and functional programming within Parsl to manage this challenge ef-

fectively. An amalgamation of OOAD principles with functional programming creates

distributed operators for task graph management, enhancing code readability and main-

tainability.

8.4 Future Work 171

8.3.10 Decoupling Infrastructure and Application

Our work successfully decouples infrastructure and application by creating utility func-

tions serving adaptive system components. The SFC graph is managed independently

of infrastructure issues, simplifying debugging and ensuring smoother system opera-

tion. This decoupling enhances system flexibility and robustness.

8.3.11 Parallel Programming and Function Placement

We address the challenge of parallel programming and function placement

using the SFC graph encapsulated in Parsl apps and stored in the Python data model.

The execute function of the deployment component with Parsl facilitates parallel task

execution, improving resource utilisation, efficiency, and throughput. This effective

use of advanced programming techniques results in adaptable, efficient, and resilient

IoT systems.

8.4 Future Work

Future research and development opportunities in the field of IoT application deploy-

ment in fog-cloud environments are numerous. Several opportunities exist to improve

the efficacy, adaptability, and strength of our strategy, building on the conclusions of

this thesis. The sections that follow describe these potential research paths along with

their respective objectives and anticipated outcomes, which aim to continue advancing

this field toward greater efficiency and dependability.

8.4.1 Enhanced Financial Strategy for Application Management

8.4 Future Work 172

In order to design a sustainable, cost-effective system for managing applications in

edge-cloud infrastructures, our future direction involves developing a sophisticated

financial strategy for IoT applications. This will require extending the MaxReplicas

approach to consider the financial cost of running various types of applications, par-

ticularly those requiring high computational power, such as GPU-tagged tasks. By

incorporating a more comprehensive economic strategy, we can achieve a better bal-

ance between cost and performance, which is crucial for the system’s scalability and

sustainability.

8.4.2 Integrating Machine Learning Pipelines in the EO-GNH Or-

acle

We realised that the current EO-GNH oracle would benefit from the integration of a

machine learning pipeline (i.e., automated machine learning). This would involve

the development of a mechanism for the oracle to construct and process new machine

learning models from operational data. Future work would entail not only establishing

the pipeline but also ensuring that the models can be updated based on new incoming

data. This would lead to continuous learning and improvement for the oracle, enhan-

cing the accuracy and efficiency of predictions over time.

8.4.3 Improving Mobility Simulation

Random walk approach has limitations, such as the reduced effectiveness of a ran-

dom walk in certain spatial configurations and challenges in creating the optimal field

coverage potentially requiring customised strategies for different scenarios [101]. En-

hancing this model by integrating a mechanism for collecting and utilising information

to inform the robot’s movements could significantly improve efficiency. Our mobility

simulation currently lacks the capability to accurately simulate vehicle-to-vehicle in-

teractions. As future work, the simulation model should be improved to accommodate

8.4 Future Work 173

different movement patterns and speeds of various types of vehicles. This enhancement

will better mimic real-world conditions, resulting in more accurate and useful simula-

tions for testing and development purposes. We aim to refine our models by incor-

porating realistic mobility patterns, focusing on geographical and behavioural factors.

This enhancement will improve our simulations’ relevance and predictive accuracy,

ultimately benefiting mobile edge device operations.

8.4.4 Incorporation of Reinforcement Learning

With the rising trend of self-supervised and agent-based learning, we plan to explore

the potential of reinforcement learning, temporal difference learning, and the Markov

decision process in our future work. Implementing these methods as optimisation al-

gorithms could significantly enhance the system’s adaptability and performance. Fur-

thermore, the application of reinforcement learning in risk management could allow

the system to assess and respond to risks more effectively.

8.4.5 Managing Uncertainty

Real-world environments where IoT applications can be deployed are dynamic and

unpredictable. Anomalies, outliers, or sudden operational changes can significantly

affect system performance and reliability. Developing mechanisms to handle these un-

certainties ensures the system remains resilient and maintains performance standards

during the execution phase of tasks. Therefore, we also plan to focus on the develop-

ment of mechanisms for managing uncertainty in our future work. This will involve the

creation of algorithms or processes to detect anomalies, outliers, and sudden changes

in the operational environment. Such capabilities will improve the system’s resilience

and adaptability in the face of real-world uncertainties.

8.5 Concluding Remarks and Future Prospects 174

8.4.6 Addressing Security in System Scalability

As the system scales to accommodate a growing number of edge devices, it is crit-

ical to address security concerns. Future work in this area will involve exploring safe

and secure methods for sharing computational resources at the fog layers. This will

require the development of a robust mechanism for establishing a trust chain in the

infrastructure.

8.4.7 Exploring GPU-based Meta-heuristics

Using GPUs for running meta-heuristics is promising aspect because GPUs offer paral-

lel processing capabilities, significantly accelerating computations. This is particularly

beneficial for complex and time-intensive tasks in meta-heuristic algorithms, leading

to faster solution finding and improved performance in handling large-scale and com-

putationally demanding problems. The parallel processing capabilities of GPUs could

be harnessed to reduce execution time and improve the quality of solutions in complex

optimisation problems. Future efforts would also involve extending libraries to support

GPU programming, enabling a wider range of meta-heuristics to be implemented on

GPUs.

8.5 Concluding Remarks and Future Prospects

In this thesis, we have made significant advancements in the field of IoT application

placement in fog-cloud environments, a challenging project requiring the application of

complex algorithms and an in-depth understanding of system behaviour. Recognising

the rapidly changing IoT landscape, we view our progress as a stepping stone on a

much longer journey, not a final destination.

The future research directions stated previously highlight the vast number of upcoming

opportunities. Integration of machine learning pipelines and reinforcement learning,

8.5 Concluding Remarks and Future Prospects 175

refinement of application financial management, and strengthening of the security as-

pects of scalable systems are just a few of the many areas requiring additional research.

We continually aim for innovation and examine existing models with an alternative

viewpoint. We seek optimal placement solutions within the dynamic complexity of IoT

applications. With the ultimate aim of creating more efficient, resilient, and adaptable

systems, the current insights serve as a basis for further IoT research.

176

Appendix A

Background and Research Context

The system’s main goal is to execute application functions on the infrastructure’s pro-

cess nodes. Under a dynamic infrastructure, an application’s execution must meet

QoS. The platform builds infrastructure-related knowledge to facilitate management

decisions that satisfy QoS requirements. Figure A.1 gives an overview of the system

components and illustrates how the system manages the applications operations in fog-

cloud infrastructure.

An application is built from functions that have dependencies between them, and each

function has its own requirements. Functions requirements can be software or hard-

ware, such as packages or GPU. Alternately, it can be policy-based, such as level of

privacy or execution deadline. QoS is defined as objectives that have quantifiable meas-

ures of performance. The source code of functions, or its executable program, has to be

present when acting on input data. The programme is mostly embedded in the process

node, and data is sent via network to be processed.

Infrastructure components are either process nodes or network components, and their

characteristics affect the execution QoS. Infrastructure resources vary in network cap-

ability and node capacity and have different resource configurations. Node capacity

is the available computing resources, such as memory or process type, whereas net-

work capability is about transmission quality metrics. Node configuration is related

to the software components that enable the application’s execution. Communication

configuration is about the arrangement that allows the communication to reach nodes.

8.5 Concluding Remarks and Future Prospects 177

P
la

tf
o

rm
In

fr
as

tr
u

ct
u

re
A

p
p

lic
at

io
n

Process Nodes

Monitor

Network

Decision
Variables

Aggregated
Data

Analyse

System Logs

Optimise

Plan

Schedule

Allocate

Execute

Data Processing Tools Informed Search Algorithms Distributed Data Processing

Rules Reoptimise ReallocateNode

Applications

Quality of Service Dependency Graph

Hardware

Functions Requirements

Packages

Security Deadline

Execution Time

Availability

Cost

Functions Code

Data and Code

Input Data

Networks

Capacity

Memory

CPU

GPU

Storage

Configuration

Functions

Packages

Virtualisation

Operating System

Resources Software

Resource Provisioning

Computational Offloading

Resources

Upstream Speed

Downstream Speed

Round-Trip Time

Signal Quality

Capability

Communication

Protocol

Session

LAN/WAN

Wired/Wireless

Configuration

Figure A.1: Adaptive platform-based application and infrastructure management
.

The platform manages the offloading process by building knowledge to execute ap-

plications. Then it uses analysis tools to create decision variables from the preliminary

process system log. The decision variables are used by an algorithm to search for an

optimal scheduling plan. Finally, the distributed data processing tools are utilised to

allocate applications’ functions in the process node for execution.

The following sections detail the characteristics of the IoT domains, adaptive plat-

forms, and search algorithms.

A.1 Application Areas & Applications Attributes 178

A.1 Application Areas & Applications Attributes

A.1.1 IoT Domains and Applications

IoT solutions provide smart applications in many domains. Every IoT domain has a

computing environment that shapes the application and infrastructure design and con-

figuration [102]. IoT domains include smart homes, industrial IoT, smart healthcare,

precision agriculture, etc. The role of IoT in various applications domains are shown

in Table A.1.

The technology and the aim of an application govern its QoS, dependency design, func-

tion requirements, data type, and code base [103, 104, 105]. For instance, applications

that collect and transmit data require a robust network and a location to store data,

whereas machine learning applications require a GPU and a large amount of memory.

A.1.2 Application Layer Components

The components of the application layer allow the platform layer to orchestrate applic-

ation executions. The code of the functions focuses on the transformations that apply

to the input data in order to produce the desired output.

To execute a function in a process node, the node must have the minimum requirements

to run the function. Searching for resources to execute functions depends on the char-

acteristics of the infrastructure, which vary from one domain to another. Therefore,

setting up QoS requirements as high-level goals that guide the orchestration of the ap-

plications. These variations and the associated Quality of Service (QoS) requirements

for each domain will be explored in more detail in Section C. Table A.2 defines the

objectives of applications.

A.1 Application Areas & Applications Attributes 179

A.1.3 Node Capacity and Configuration

In function execution, node capacity and configuration are crucial factors because they

can affect the performance and dependability of the functions operating on the plat-

form. Capacity refers to the available computing resources, such as memory and the

CPU.

The configuration of process nodes refers to the setup required to execute a function.

Function is the main component and programming language, and the software pack-

ages ensure services are running and producing the desired output. The type of vir-

tualisation technology that runs each function controls the allocated node resources.

Virtualisation components, such as containers, manage communication with the op-

erating system kernel to request computing resources and to provide a consistent and

dependable runtime environment.

A.1.4 Network Configuration and Capability

Network configuration and capability are essential for optimising the performance of

the functions. The maximum data transfer rate between the edge and the process node

is referred to as the upstream or downstream speed. Round-trip time is the time it takes

for a request to be sent from an edge device to a processing node and for a response to

be sent back to the edge device.

This can be affected by many factors, such as the strength of the wireless signal

between the edge device and gateway, which indicates how stable the connection is.

The configuration of the network affects the performance of the network. While wire-

less connections are more flexible and convenient, they are subject to interference and

signal degradation. Whereas wired connections are faster and more stable, they are

less convenient for mobile devices.

In a LAN, WiFi networks are the most common type of connection between devices

A.1 Application Areas & Applications Attributes 180

within range of an access point or gateway router. The communication protocol, such

as HTTPS and SSH, has conventions that govern the way that data is exchanged

between devices over a network. Protocols impact the performance and security of

function executions.

The network session types, which are stateful and stateless, define the session’s in-

formation maintained about the application’s executions. In the stateful session, the

platform remembers information about function executions and is usually addressed

by the protocol.

A.1 Application Areas & Applications Attributes 181

Application Description

Smart homes

Devices in a smart home are linked together, letting the user

remotely control home features like home security, temper-

ature, lighting, and a home theater. Smart home techno-

logy provides homeowners with convenience and cost sav-

ings [106].

Smart cities

These cities are equipped with devices such as surveillance

cameras, automated transportation, and environmental mon-

itoring. Smart cities are capable of resolving major issues

that affect people, such as pollution, water flooding, and

traffic monitoring [13].

Industrial IoT

Applying real-time analysis of data generated by industrial

machinery. Smart machines communicate their findings

with businesses to make better and faster decisions, such

as in energy management and increased production and effi-

ciency [14].

Smart healthcare

Uses wearables, smart rooms, and smart gadgets to enhance

the convenience of patients and healthcare workers. Monit-

oring and analysing patients’ information, including glucose

level, heart rate, blood pressure, etc. Support hospital opera-

tions, such as scheduling nurses and facilities [15].

Precision agriculture

Increasing agricultural production while lowering operating

costs. To optimise resource use, it uses sensors, and cameras

that monitor and analyse crop and soil health, and environ-

ment. Also, Robots and drones cover areas perform farming

task [98].

Smart vehicle

vehicles equipped with sensors, actuators, cameras, and GPS

to log user activity. Monitoring and analysing support for

transport automation aims to enhance driver experiences,

vehicle maintenance, traffic management, and business as-

sistance [16].

Table A.1: IoT applications domains

A.1 Application Areas & Applications Attributes 182

Objective Description

Service availability

The percentage of time that a service function is available

and accessible upon request. The system must be able to

continue functioning in the face of disruptions such as net-

work outages, hardware failures, and software bugs.

Completion time

Determine the optimal schedule and resource allocation

needed to complete a project within a given timeframe. In-

volving allocating resources to execute the functions, with

the aim of avoiding bottlenecks and completing execution as

quickly as possible.

Deployment cost

The explicit cost is the money spent per usage of the service.

Whereas implicit cost is the ongoing expense required to run

the application. This includes the maintenance and wear on

resources. Therefore, the system should avoid using capacity

that greatly exceeds the required resources.

Energy consumption

Energy efficiency allocation can be optimised using efficient

resources and optimised functions. Functions could have two

versions of the program, one of which is optimised to reduce

energy consumption.

Data security

The measures to protect data and ensure only authorised ac-

cess to data. Applying data encryption, access controls, and

incident response secures the application’s execution.

Service scale

Automatically adjusts the resources required based on the

volume of application requests. Invoking the process nodes

or its virtual resources to handle the workload.

Application’s

throughput

The rate at which the platform processes application work-

loads in time units. This is affected by various measures,

such as function performance, function concurrency, net-

work latency, and data streaming processing tools.

Table A.2: QoS of IoT applications

A.2 Tools Support Distributed Data Analysis 183

A.1.5 Addressing IoT Requirements

Addressing the diverse requirements of IoT applications across various domains is crit-

ical for ensuring optimal performance and dependability of the system. Each domain’s

requirements encompass specific computing environments, robust network connec-

tions, adequate data storage solutions, appropriate node capacity and configuration,

virtualisation technologies, and suitable communication protocols.

Furthermore, considering infrastructure configuration and employing suitable data stream-

ing tools and frameworks can significantly impact the processing of dynamic data gen-

erated by IoT applications. The adoption of high-level programming abstractions and

the implementation of adaptive approaches integrated with streaming data engines en-

able effective resource management and monitoring.

By addressing these requirements, IoT applications can achieve success in their de-

ployment and operation across diverse application areas.

A.2 Tools Support Distributed Data Analysis

A.2.1 Overview of Streaming Data Engines Generations

The processing of dynamic data is an important and evolving field, and one of the key

technologies that has emerged to handle this is streaming data engines. In a review

conducted by de Assuncao et al. [8], multiple generations of data stream processing

frameworks were examined and categorised into four distinct generations.

These generations are extensions to traditional database management systems, distrib-

uted execution, user-defined functions, and highly distributed edge-cloud computing.

Each subsequent generation builds on the strengths of the previous one while address-

ing its limitations.

A.2 Tools Support Distributed Data Analysis 184

In Table A.3, examples of data streaming tools categorised by generations are presen-

ted.

Generation Examples

Extensions to traditional DBMS
NiagaraCQ [107], Aurora [108],

STREAM [109]

Distributed execution Medusa [110], Borealis [111]

User-defined functions

Apache Storm [112], Twitter’s Heron [113],

Apache S4 [114], Apache Flink [115], Spark

Streaming [116], Apache Oozie [117], Apache

Azkaban [118], Apache Airflow [119]

Highly distributed service func-

tions

Amazon Lambda, Google Cloud Functions,

Azure Functions, Node-RED [120], Open-

Whisk [121], OpenFaaS [122]

Table A.3: Generational categorisation of data streaming tools

A.2.2 Detailed Analysis of Streaming Data Engines Generations

The first generation of streaming data engines involves the extension of traditional

database management systems. In this approach, data is stored on storage media and

SQL-like languages are used to query unbounded data streams. Relational operations

such as joins, aggregations, filtering, and analytics can be performed on table compon-

ents.

The second generation involves distributed execution using parallel distributed compu-

tation, which allows for more efficient processing of large amounts of data. However,

it has struggled with load balance and resource management.

The third generation of streaming data engines involves user-defined functions that op-

erate on the dependency chain for tasks in graphs and starts user-defined functions to

process incoming data streams. This approach allows for more flexibility in processing

A.2 Tools Support Distributed Data Analysis 185

data and performing complex operations. However, it lacks high-level programming

abstractions and is not suitable for IoT applications because it depends on batch pro-

cessing.

Finally, the fourth generation of streaming data engines is highly distributed edge-cloud

computing. This approach is responsible for processing service function graphs (SFCs)

which define the workflow of IoT applications and require low-latency processing.

It introduces the need for high-level programming abstractions to make it easier for

developers to create and deploy stream processing applications on highly distributed

infrastructures.

A.2.3 Utilisation and Potential of Streaming Data Engines

The tools mentioned serve as a layer of software that facilitates the execution process

and impacts the user’s static configuration. However, despite their benefits, these tools

and concepts currently lack decision-makers with a comprehensive understanding of

infrastructural problems necessary for effective planning. Nonetheless, they enable

monitoring and scheduling through the use of a baseline load balancer algorithm. As

technology advances, these features can be used in an adaptive approach integrated

with streaming data engines to effectively process dynamic data.

These tools facilitate our upcoming discussion on autonomic control and its phases.

The planning phase, which is managed by the optimisation algorithm within the ad-

aptive loop, enhances platform planning, while data streaming tools handle resource

utilisation.

A.3 Autonomic Control: Phases and Processes 186

A.3 Autonomic Control: Phases and Processes

A.3.1 The Concept of Adaptive Systems in Autonomic Computing

In system control, a closed-loop process lies at the heart of adaptive systems [6]. This

loop is known as the MAPE-K loop in the context of autonomic computing [12] and is

also referred to as adaptation management [123]. It includes a series of procedures for

implementing and accumulating observations, analysing them to plan modifications,

and implementing adjustments. The autonomic control can be summarised into four

phases: data collection, analysis, plan, and action [124].

Typically, the system manager is in charge of these phases. If we divide the system

into two parts - the platform and the managed (infrastructure and applications) - the

platform is then the component that adapts to changes in the managed and its sur-

roundings [125]. Figure A.2 shows the adaptive process and how the system acquires

knowledge about the managed components in order to operate the system optimally.

A.3 Autonomic Control: Phases and Processes 187

Monitor Execute

PlanAnalyse

Knowledge

Managed element

Adaptive Loop

Autonomic manager

Manages
Monitors

Figure A.2: Adaptive loop allows the system to be controlled under environmental
changes .

A.3.2 Roles of the Platform Layer in Adaptive Processes

The platform layer in Figure A.1 serves as the managerial component that governs

all adaptive processes in the system. The processes start with data collection, which

involves monitoring the system components and tracking their state history to detect

and respond to environmental changes through preparation or reaction.

Following data collection is the analysis phase, where the collected data is cleansed and

encoded, and decision variables are determined. Subsequently, the decision-making

process employs a strategy or algorithm to generate decisions based on the collected

and analysed data.

During the decision-making and planning phase, the system determines whether to dy-

A.4 Search Algorithms for scheduling 188

namically optimise or reoptimise in response to changes in the environment, or whether

to adhere to the initial optimisation decision. Finally, during the acting phase, the sys-

tem utilises data streaming tools to allocate or reallocate functions, thereby deploying

the applications.

A.4 Search Algorithms for scheduling

A.4.1 The Importance of Efficient Scheduling and Informed Search

Efficient scheduling is essential for various applications and systems, involving organ-

ising tasks and allocating resources to ensure optimal utilisation and timely completion.

It involves searching for scheduling solutions out of a set of possible solutions known

as the search space [17].

The search space is the set of all possible solutions to a problem, and optimisation

algorithms aim to identify the best solution within this space. The search space can

be vast and complex, posing challenges to the optimisation process. Informed search

algorithms play a pivotal role in enhancing the scheduling of tasks, leading to better

performance.

Informed search explores the search space using heuristic functions and objective func-

tions to gauge and evaluate their quality based on specific criteria. A heuristic function

is typically employed to drive the search process toward the global optimum, but it will

almost always result in a good approximation [18]. This improves efficiency in finding

the best or near-best solution.

A.4.2 Structural Components of Optimisation Algorithms

The structure of an algorithm is defined by several key components that contribute to

its effectiveness and efficiency. Figure A.3 summarises the structure of optimisation

A.4 Search Algorithms for scheduling 189

algorithms.

Optimisation Components
├── Objective Functions
│ ├── Minimisation
│ └── Maximisation
├── Constraints
│ ├── Equality
│ ├── Inequality
│ ├── Linear
│ └── Non-linear
├── Heuristics Functions
│ ├── Problem-specific (Heuristics)
│ └── Domain-independent (Meta-Heuristics)
└── Algorithm Procedures
 ├── Initialisation
 ├── Selection
 ├── Variation
 └── Termination

Figure A.3: Algorithm components

Objective functions and constraints define the problem and the algorithm that optimises

the solution. The objective functions are the central aspect, representing the function

that the algorithm aims to optimise by either minimising or maximising its value. Con-

straints are also essential, imposing conditions or restrictions that candidate solutions

must satisfy to be considered feasible.

Algorithm procedures are essential steps in optimisation algorithms that guide the

search process towards optimal or near-optimal solutions. They involve selection and

variation mechanisms. Selection prioritises promising solutions based on their qual-

ity, while variation generates new candidate solutions by modifying selected previous

solutions [19]. The combination of these procedures ensures a balance between main-

taining promising solutions and exploring the search space to avoid local optima and

converge to global optima (balance between exploring and exploiting). Heuristics play

A.4 Search Algorithms for scheduling 190

a crucial role in this structure, as they optimise solutions for complex problems by util-

ising domain knowledge and insights to create rules or guidelines that guide the search

towards promising areas in the search space. Integrating heuristics into the design of

an algorithm enhances the optimisation process’s effectiveness and efficiency.

A.4.3 Properties of Multi-objectives Optimisation Algorithms

The properties of multi-objectives optimisation algorithms significantly impact the

quality of solutions, making it essential to consider them when designing optimisa-

tion methods. Figure A.4 summarises the properties.

These properties include preference information, which involves the various types of

preference data provided by a user or decision-maker to the optimisation’s goals, such

as a priori, progressive, or a posteriori preference information, or even no articulated

preference information [20].

Solution evaluation encompasses methods used to assess and compare the quality of

solutions within the search space, employing techniques like scalarisation and Pareto

optimality [21]. In multi-objective optimisation, scalarisation aggregates multiple ob-

jective functions into a single one, while Pareto methods prioritise non-dominated solu-

tions across all criteria among other explored alternatives. A set of non-dominant solu-

tions offers a variety of potential alternatives, each with its own unique trade-offs; none

of them is better than the other in all objectives [21].

Local and global optima are two important concepts in the field of optimisation.Local

optima refer to the optimal solutions within a limited area or region of the search

space, while global optima refer to the optimal solutions throughout the entire search

space.Noting that a local optimum is not necessarily a global optimum is essential, as

other regions of the search space may contain better solutions [17].

Exploration and exploitation are fundamental to the optimisation process.Exploration

is the process of discovering new regions of the search space, which may provide

A.4 Search Algorithms for scheduling 191

global optimums by revealing diverse solutions. Exploitation, on the other hand, en-

tails augmenting the currently best-known solutions and refining them to discover local

optima within a particular region of the search space. It is essential to find a balance

between these two strategies; excessive exploitation could cause the algorithm to be-

come trapped in suboptimal solutions, while excessive exploration could prevent the

algorithm from adequately refining promising solutions. Therefore, a successful optim-

isation procedure must navigate carefully between exploration and exploitation [17].

The execution approach pertains to how the optimisation algorithm is carried out, in-

corporating parallelism and serial execution, where parallel algorithms can accelerate

the search process while serial algorithms execute tasks sequentially [22].

Solutions quantity outlines methods used to navigate the search space, categorising

optimisation algorithms based on the number of concurrent solutions, including single

solution-based algorithms (trajectory methods) and population-based algorithms that

operate on a set of solutions simultaneously [19].

A.4 Search Algorithms for scheduling 192

Optimisation Algorithm Properties
├── Preference Information
│ ├── A priori Preference Information
│ ├── Progressive Preference Information
│ ├── A posteriori Preference Information
│ └── No Articulation of Preference Information
├── Solution Evaluation
│ ├── Scalarisation
│ │ ├── Weighted Sum Method
│ │ └── Technique for Order of Preference by
│ │ Similarity to Ideal Solution
│ └── Pareto Optimality
│ ├── posteriori Non-dominant Solutions
│ └── Progressive Optimisation
├── Exploring and refining a solution trade-off
│ ├── Exploration (Diversification)
│ └── Exploitation (Intensification)
├── Execution Approach
│ ├── Parallelism
│ │ ├── Synchronous Parallelism
│ │ ├── Asynchronous Parallelism
│ │ ├── Shared-Memory
│ │ └── Shared-Nothing
│ └── Serial Execution
└── Solutions Quantity

├── Single Solution-based Algorithms
└── Population-based Algorithms

Figure A.4: Algorithm properties

193

Appendix B

Systematic Review Process

B.1 The Choice and Role of Search Engines in the Re-

view

The systematic review is based on a semi-automatic technique where key extraction

and topic modelling tools were utilised along with several search engines. We employ

a web of science search engine during the investigation.

We pick this search engine since it permits search over numerous scientific bodies such

as IEEE, AMC and Springer. Also, the web of science allows readers to readily access

a citation tree, where the citation link between works may be accessed with simplicity.

B.2 Parameters for Publication Selection

Explore publications published between January 2016 and March 2022. Keywords in-

clude synonyms for optimising the placement of IoT application activities in edge, fog

and cloud contexts utilising meta-heuristics and heuristics-based techniques. IoT, Fog,

Edge, Cloud, offloading, placement, deployments, meta-heuristics, heuristics, optim-

isations, search, smart city, smart factory, etc. are examples of keywords.

This survey did not include articles that were unrelated to work scheduling or em-

ployed a purely machine learning methodology (papers that use a hybrid approach

B.4 The Step-by-Step Process of the Survey 194

were included).

B.3 The Role of Natural Language Processing Tools

We implement a search engine based on text indexing, keyword extraction, and subject

classification using a variety of NLP tools. Natural Language Toolkit (NLTK) [126]

builds an index-based search engine with classification, tokenisation, stemming, and

labelling capabilities. Keyword extraction is handled by two unsupervised methods,

YAKE [127] and RaKUn [128], with YAKE being a corpus-independent tool and

RaKUn utilising graph-based language representations to perform rank-based extrac-

tion quickly. In addition, NLTK’s stemming indexing capability manages repetitive

words, thereby improving search precision. These methods are not employed individu-

ally. Instead, they collectively contribute to the final assessment, supplying valuable

insights even when the authors of the paper have not expressly stated certain informa-

tion.

B.4 The Step-by-Step Process of the Survey

The process of conducting a systematic review involves multiple phases. Initially,

search engines are used to locate research papers based on particular keywords. These

articles’ titles and abstracts are then stored in a structured database for simple access

and organisation.

In the second phase, abstracts of these publications are filtered using Natural Language

Processing (NLP) tools. This stage functions to eliminate irrelevant articles while re-

taining potential candidate papers for further review. The selected documents are then

converted from PDF to text using Apache Tika. This preparation phase is essential

because it prepares the textual data for use with NLP tools.

B.4 The Step-by-Step Process of the Survey 195

NLP tools

Research sites

...

Search
Engine

web-of-science

Search Engine
indexing based

1) Titles &
Abstractions

Initial
Paper
Data

2) NLP
analyse

Filtration
Report

Keywords
Extraction

YAKE and RaKUn

Repetitive
words

Stemming indexing
based Papers

PDF

Papers
Text

6) Store

7) Convert to text

Summary
Reports

8) store

3) Save

4) Analyze

User

5) Download

9) NLP
analyse

10) Save

11) Analyze

12) Filling forms

Classification13) save

14) Query

0) Query

YAKE!

NLTK

NLTK

JSON

Figure B.1: Systematic review steps and processes

The processed text is then analysed with NLP tools, which, along with a comprehensive

reading of the papers, helps in their categorisation. The content of each document is

systematically classified and summarised using a form template. The procedure for

conducting a systematic review is illustrated in Figure B.1.

196

Appendix C

Survey Results

C.1 Detailed Overview of Optimisation Algorithms

Table C.1 (GA Algorithm References): Presents applications of the Genetic Algorithm

(GA) in different fields such as Vehicle, Infrastructure, Industry, City, etc., listing the

referenced papers for each application type.

C.1 Detailed Overview of Optimisation Algorithms 197

Application Type Referenced Papers

Vehicle [29], [34]

Infrastructure [29], [129], [130], [33], [131], [132], [133], [56], [134],

[54], [47], [135]

Industry [130], [136], [38], [54], [137], [47], [135], [25]

City [42], [28], [48], [55]

Home [138]

Healthcare [139]

DNN [140]

Robot [136], [137]

Unspecified Domain [36], [141], [37], [56], [142], [143], [134], [144], [44],

[145], [43], [146], [62]

Image processing [58]

Signal processing [58]

Data analysis [58]

Agriculture [147]

Information retrieval [43]

Table C.1: GA algorithm references

Table C.2 (PSO and ACO Algorithm References): Details the applications of the

Particle Swarm Optimisation (PSO) and Ant Colony Optimisation (ACO) algorithms

across different sectors, again referencing relevant papers.

C.1 Detailed Overview of Optimisation Algorithms 198

Algorithm Application Type Referenced Papers

PS
O

Infrastructure [131], [56], [46]

Industry [38], [148], [39], [149], [150]

City [151], [46]

Home [138]

DNN [140]

Robot [150]

Unspecified Domain [56], [152], [153]

Image Processing [46]

A
C

O

Vehicle [154]

Industry [35], [149]

City [151]

Home [138]

Healthcare [139]

DNN [35]

Unspecified Domain [45], [155]

Table C.2: PSO and ACO Algorithm References

Table C.3 (Greedy and RB Algorithm References): Shows the use of Greedy al-

gorithms and Rule-Based (RB) algorithms in various contexts like Infrastructure, In-

dustry, City, and IoT, with citations for each application.

C.2 Comprehensive Overview: Table 199

Algorithm Application Type Referenced Papers

G
re

ed
y

Infrastructure [31], [49], [40], [51], [53], [54]

Industry [54]

City [50], [53], [55]

General IoT [40], [52]

R
B

Vehicle [156], [157]

Infrastructure [32], [158], [159], [41], [160], [53]

Industry [41]

City [156], [160], [161], [53]

Healthcare [162], [163], [164]

DNN [165], [166]

General IoT [167], [168], [169], [52]

Table C.3: Greedy and RB Algorithm References

Table C.4 (Summary of Algorithms and their Applications): This table summarises dif-

ferent algorithms like Neural Networks (NN), Constraint Satisfaction Problem (CSP),

Simulated Annealing (SA), etc., and their applications in fields such as City, Home,

Vehicle, etc., providing references for each algorithm-application pair.

C.2 Comprehensive Overview: Table

Table C.5 presents a comprehensive overview of various properties related to the op-

timisation algorithms, covering process (parallel or serial), solution quantity (single or

population-based), preference (posteriori, progressive, or priori), search (trade-off ex-

ploration and exploitation), evaluation (non-Pareto or Pareto), and adaptiveness (static

or dynamically reoptimising scheduling plan).

C.2 Comprehensive Overview: Table 200

Application Algorithm Referenced Papers

City
NN Memari et al. [57]
CSP Kamal et al. [156], Naas et al. [161]
Relaxation Bolettieri et al. [170]
GP Naas et al. [161]

Home NN Memari et al. [57]
Vehicle CSP Kamal et al. [156]
DNN CSP Hadidi et al. [166]

General IoT

SA Najafizadeh et al. [171]
AHP Morkevicius et al. [152]
MPA Abdel-Basset et al. [172]
WOA Paul Martin et al. [173]
MA Sami and Mourad [62]
GSA Karamoozian et al. [26]
SE Tsai [61]

Healthcare
Gradient Zhao [174]
PeSOA Benamer et al. [164]
FF Lin et al. [175]

Infrastructure
SE Tsai [61]
KH Yang et al. [27]

ML Gradient Zhao [174]

Table C.4: Summary of Algorithms and their Applications

C.2 Comprehensive Overview: Table 201

Ta
bl

e
C

.5
:S

ur
ve

y
of

O
pt

im
is

at
io

n
fo

rs
ch

ed
ul

in
g

Pa
pe

r
Pr

oc
es

s
So

lu
tio

n
A

lg
or

ith
m

Pr
ef

er
en

ce
Se

ar
ch

E
va

lu
at

e
A

da
pt

e

O
ue

dr
ao

go
et

al
.[

29
]

Se
ri

al
Po

pu
la

tio
n

G
A

,D
P

Pr
io

ri
,P

os
te

ri
or

i
B

al
an

ce
d

Pa
re

to
St

at
ic

H
ua

ng
et

al
.[

30
]

Se
ri

al
Si

ng
le

D
P

Pr
io

ri
E

xp
lo

ita
tio

n
N

on
-P

ar
et

o
St

at
ic

Q
u

et
al

.[
31

]
Pa

ra
lle

l
Si

ng
le

G
re

ed
y

Pr
io

ri
E

xp
lo

ita
tio

n
N

on
-P

ar
et

o
D

yn
am

ic

M
ou

ra
di

an
et

al
.[

49
]

Se
ri

al
Si

ng
le

G
re

ed
y,

Ta
bu

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

D
yn

am
ic

G
am

al
et

al
.[

12
9]

Se
ri

al
Po

pu
la

tio
n

G
A

Pr
io

ri
B

al
an

ce
d

Pa
re

to
St

at
ic

Y
an

g
et

al
.[

32
]

Pa
ra

lle
l

Si
ng

le
R

B
Pr

io
ri

E
xp

lo
ra

tio
n

N
on

-P
ar

et
o

D
yn

am
ic

To
ut

et
al

.[
13

0]
Se

ri
al

Po
pu

la
tio

n
G

A
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

M
em

ar
ie

ta
l.

[5
7]

Se
ri

al
Si

ng
le

Ta
bu

,N
N

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

K
ha

le
el

an
d

Z
hu

[1
58

]
Se

ri
al

Si
ng

le
R

B
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

de
Fr

ei
ta

s
B

ez
er

ra
et

al
.[

33
]

Se
ri

al
Po

pu
la

tio
n

G
A

Po
st

er
io

ri
B

al
an

ce
d

Pa
re

to
St

at
ic

Z
ha

ng
et

al
.[

15
9]

Se
ri

al
Si

ng
le

R
B

Pr
io

ri
E

xp
lo

ita
tio

n
N

on
-P

ar
et

o
D

yn
am

ic

K
am

al
et

al
.[

15
6]

Pa
ra

lle
l

Si
ng

le
R

B
,C

SP
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

Y
ad

av
et

al
.[

13
1]

Se
ri

al
Po

pu
la

tio
n

G
A

,P
SO

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

M
is

hr
a

et
al

.[
14

8]
Se

ri
al

Po
pu

la
tio

n
PS

O
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

G
ho

sh
an

d
Si

m
m

ha
n

[1
32

]
Se

ri
al

Po
pu

la
tio

n
G

A
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
D

yn
am

ic

G
u

et
al

.[
16

2]
Pa

ra
lle

l
Si

ng
le

R
B

,
Pr

io
ri

E
xp

lo
ita

tio
n

N
on

-P
ar

et
o

D
yn

am
ic

C.2 Comprehensive Overview: Table 202

Ta
bl

e
C

.5
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

Pa
pe

r
Pr

oc
es

s
So

lu
tio

n
A

lg
or

ith
m

Pr
ef

er
en

ce
Se

ar
ch

E
va

lu
at

e
A

da
pt

e

C
he

n
et

al
.[

14
0]

Se
ri

al
Po

pu
la

tio
n

G
A

,P
SO

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

M
oh

am
ad

ie
ta

l.
[3

4]
Se

ri
al

Po
pu

la
tio

n
G

A
Pr

og
re

ss
iv

e
B

al
an

ce
d

Pa
re

to
D

yn
am

ic

H
ua

ng
et

al
.[

35
]

Pa
ra

lle
l

Po
pu

la
tio

n
A

C
O

Po
st

er
io

ri
B

al
an

ce
d

Pa
re

to
St

at
ic

X
ie

et
al

.[
13

6]
Se

ri
al

Po
pu

la
tio

n
G

A
Po

st
er

io
ri

B
al

an
ce

d
Pa

re
to

St
at

ic

Ta
gh

iz
ad

eh
et

al
.[

36
]

Pa
ra

lle
l

Si
ng

le
G

A
Po

st
er

io
ri

B
al

an
ce

d
Pa

re
to

St
at

ic

Pe
ng

et
al

.[
14

1]
Pa

ra
lle

l
Po

pu
la

tio
n

G
A

Po
st

er
io

ri
B

al
an

ce
d

Pa
re

to
St

at
ic

N
aj

afi
za

de
h

et
al

.[
17

1]
Se

ri
al

Po
pu

la
tio

n
SA

,
Po

st
er

io
ri

B
al

an
ce

d
Pa

re
to

St
at

ic

M
or

ke
vi

ci
us

et
al

.[
15

2]
Se

ri
al

Po
pu

la
tio

n
PS

O
,A

H
P

Po
st

er
io

ri
B

al
an

ce
d

Pa
re

to
St

at
ic

M
ai

a
et

al
.[

37
]

Pa
ra

lle
l

Po
pu

la
tio

n
G

A
Po

st
er

io
ri

B
al

an
ce

d
Pa

re
to

St
at

ic

H
ao

et
al

.[
13

3]
Se

ri
al

Si
ng

le
G

A
Po

st
er

io
ri

B
al

an
ce

d
Pa

re
to

St
at

ic

A
bd

el
-B

as
se

te
ta

l.
[1

72
]

Se
ri

al
Po

pu
la

tio
n

M
PA

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

Sh
ah

ry
ar

ie
ta

l.
[5

6]
Pa

ra
lle

l
Po

pu
la

tio
n

G
A

,P
SO

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

B
ol

et
tie

ri
et

al
.[

17
0]

Se
ri

al
Si

ng
le

R
el

ax
at

io
n

Pr
io

ri
E

xp
lo

ita
tio

n
N

on
-P

ar
et

o
St

at
ic

A
bu

ru
kb

a
et

al
.[

14
2]

Se
ri

al
Po

pu
la

tio
n

G
A

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

D
yn

am
ic

W
u

et
al

.[
58

]
Se

ri
al

Po
pu

la
tio

n
G

A
,F

L
Po

st
er

io
ri

B
al

an
ce

d
Pa

re
to

St
at

ic

N
at

es
ha

an
d

G
ud

de
ti

[1
43

]
Se

ri
al

Po
pu

la
tio

n
G

A
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

A
yo

ub
ie

ta
l.

[1
34

]
Pa

ra
lle

l
Po

pu
la

tio
n

G
A

Po
st

er
io

ri
B

al
an

ce
d

Pa
re

to
D

yn
am

ic

C.2 Comprehensive Overview: Table 203

Ta
bl

e
C

.5
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

Pa
pe

r
Pr

oc
es

s
So

lu
tio

n
A

lg
or

ith
m

Pr
ef

er
en

ce
Se

ar
ch

E
va

lu
at

e
A

da
pt

e

E
yc

ke
rm

an
et

al
.[

15
4]

Se
ri

al
Po

pu
la

tio
n

A
C

O
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
D

yn
am

ic

Z
ha

o
[1

74
]

Pa
ra

lle
l

Si
ng

le
G

ra
di

en
t

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

D
yn

am
ic

A
bd

el
m

on
ee

m
et

al
.[

16
3]

Se
ri

al
Si

ng
le

R
B

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

D
yn

am
ic

A
bu

ru
kb

a
et

al
.[

14
4]

Se
ri

al
Po

pu
la

tio
n

G
A

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

D
yn

am
ic

Fa
ng

et
al

.[
14

7]
Se

ri
al

Po
pu

la
tio

n
G

A
Po

st
er

io
ri

B
al

an
ce

d
Pa

re
to

D
yn

am
ic

Pa
ul

M
ar

tin
et

al
.[

17
3]

Se
ri

al
Po

pu
la

tio
n

W
O

A
Po

st
er

io
ri

B
al

an
ce

d
Pa

re
to

St
at

ic

Ja
va

nm
ar

di
et

al
.[

16
5]

Se
ri

al
Si

ng
le

R
B

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

H
ad

id
ie

ta
l.

[1
66

]
Se

ri
al

Si
ng

le
R

B
,C

SP
Pr

io
ri

E
xp

lo
ita

tio
n

N
on

-P
ar

et
o

St
at

ic

Sa
m

ia
nd

M
ou

ra
d

[6
2]

Se
ri

al
Po

pu
la

tio
n

M
A

,G
A

,L
S

Po
st

er
io

ri
E

xp
lo

ita
tio

n
N

on
-P

ar
et

o
St

at
ic

C
ui

et
al

.[
41

]
Se

ri
al

Si
ng

le
R

B
Pr

io
ri

E
xp

lo
ita

tio
n

N
on

-P
ar

et
o

St
at

ic

X
u

et
al

.[
42

]
Se

ri
al

Po
pu

la
tio

n
G

A
Po

st
er

io
ri

B
al

an
ce

d
Pa

re
to

St
at

ic

B
en

am
er

et
al

.[
16

4]
Se

ri
al

Si
ng

le
R

B
,P

es
oa

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

D
yn

am
ic

G
ao

et
al

.[
59

]
Se

ri
al

Si
ng

le
L

O
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
D

yn
am

ic

H
ua

ng
et

al
.[

28
]

Pa
ra

lle
l

Po
pu

la
tio

n
G

A
Po

st
er

io
ri

B
al

an
ce

d
Pa

re
to

St
at

ic

H
us

se
in

an
d

M
ou

sa
[1

51
]

Se
ri

al
Po

pu
la

tio
n

PS
O

,A
C

O
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

V
ijo

uy
eh

et
al

.[
16

0]
Pa

ra
lle

l
Si

ng
le

R
B

Pr
io

ri
E

xp
lo

ita
tio

n
N

on
-P

ar
et

o
D

yn
am

ic

W
an

g
et

al
.[

46
]

Se
ri

al
Po

pu
la

tio
n

PS
O

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

C.2 Comprehensive Overview: Table 204

Ta
bl

e
C

.5
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

Pa
pe

r
Pr

oc
es

s
So

lu
tio

n
A

lg
or

ith
m

Pr
ef

er
en

ce
Se

ar
ch

E
va

lu
at

e
A

da
pt

e

H
ua

ng
et

al
.[

40
]

Se
ri

al
Si

ng
le

G
re

ed
y

Pr
io

ri
E

xp
lo

ita
tio

n
N

on
-P

ar
et

o
St

at
ic

Fa
n

et
al

.[
45

]
Se

ri
al

Po
pu

la
tio

n
A

C
O

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

C
ui

et
al

.[
44

]
Pa

ra
lle

l
Si

ng
le

G
A

Po
st

er
io

ri
B

al
an

ce
d

Pa
re

to
St

at
ic

Y
ou

se
fp

ou
re

ta
l.

[5
0]

Se
ri

al
Si

ng
le

G
re

ed
y

Pr
io

ri
E

xp
lo

ita
tio

n
N

on
-P

ar
et

o
D

yn
am

ic

N
gu

ye
n

et
al

.[
14

5]
Se

ri
al

Po
pu

la
tio

n
G

A
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

M
is

ra
an

d
Sa

ha
[5

1]
Se

ri
al

Si
ng

le
G

re
ed

y
Pr

io
ri

E
xp

lo
ita

tio
n

N
on

-P
ar

et
o

D
yn

am
ic

H
aj

ee
ra

nd
D

as
gu

pt
a

[4
3]

Se
ri

al
Po

pu
la

tio
n

G
A

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

Sh
ao

et
al

.[
38

]
Se

ri
al

Po
pu

la
tio

n
G

A
,P

SO
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

Sh
ao

et
al

.[
39

]
Pa

ra
lle

l
Po

pu
la

tio
n

PS
O

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

D
yn

am
ic

D
je

m
ai

et
al

.[
15

3]
Se

ri
al

Po
pu

la
tio

n
PS

O
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

K
ar

am
oo

zi
an

et
al

.[
26

]
Se

ri
al

Po
pu

la
tio

n
G

SA
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

M
oa

lle
m

ie
ta

l.
[4

8]
Pa

ra
lle

l
Po

pu
la

tio
n

G
A

Po
st

er
io

ri
B

al
an

ce
d

Pa
re

to
St

at
ic

W
u

an
d

W
an

g
[5

2]
Se

ri
al

Po
pu

la
tio

n
G

re
ed

y,
R

B
,L

S
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

G
ra

va
lo

s
et

al
.[

53
]

Pa
ra

lle
l

Si
ng

le
G

re
ed

y,
R

B
Pr

io
ri

E
xp

lo
ita

tio
n

N
on

-P
ar

et
o

St
at

ic

A
sh

ok
et

al
.[

15
7]

Pa
ra

lle
l

Si
ng

le
R

B
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
D

yn
am

ic

T
sa

i[
61

]
Pa

ra
lle

l
Po

pu
la

tio
n

L
S,

SE
,K

-m
ea

ns
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
D

yn
am

ic

N
aa

s
et

al
.[

16
1]

Se
ri

al
Po

pu
la

tio
n

R
B

,C
SP

,G
P

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

C.2 Comprehensive Overview: Table 205

Ta
bl

e
C

.5
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

Pa
pe

r
Pr

oc
es

s
So

lu
tio

n
A

lg
or

ith
m

Pr
ef

er
en

ce
Se

ar
ch

E
va

lu
at

e
A

da
pt

e

Y
an

g
et

al
.[

27
]

Pa
ra

lle
l

Po
pu

la
tio

n
K

H
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
D

yn
am

ic

Sk
ar

la
te

ta
l.

[5
4]

Se
ri

al
Po

pu
la

tio
n

G
A

,G
re

ed
y

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

Ly
u

et
al

.[
60

]
Se

ri
al

Si
ng

le
L

O
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
D

yn
am

ic

Fa
n

et
al

.[
15

5]
Pa

ra
lle

l
Po

pu
la

tio
n

A
C

O
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
D

yn
am

ic

N
aa

s
et

al
.[

16
7]

Se
ri

al
Si

ng
le

R
B

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

R
ah

ba
ri

et
al

.[
13

8]
Se

ri
al

Po
pu

la
tio

n
G

A
,P

SO
,A

C
O

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

R
ul

lo
et

al
.[

16
8]

Se
ri

al
Si

ng
le

R
B

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

Ph
am

an
d

H
uh

[1
69

]
Se

ri
al

Si
ng

le
R

B
Pr

io
ri

E
xp

lo
ita

tio
n

N
on

-P
ar

et
o

St
at

ic

K
ua

ng
et

al
.[

55
]

Se
ri

al
Po

pu
la

tio
n

G
A

,G
re

ed
y

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

A
fr

in
et

al
.[

13
7]

Se
ri

al
Po

pu
la

tio
n

G
A

Po
st

er
io

ri
B

al
an

ce
d

Pa
re

to
St

at
ic

W
an

g
an

d
L

i[
14

9]
Se

ri
al

Po
pu

la
tio

n
PS

O
,A

C
O

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

W
an

et
al

.[
15

0]
Se

ri
al

Po
pu

la
tio

n
PS

O
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
D

yn
am

ic

G
on

g
et

al
.[

47
]

Pa
ra

lle
l

Po
pu

la
tio

n
G

A
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
D

yn
am

ic

K
au

re
ta

l.
[1

35
]

Se
ri

al
Po

pu
la

tio
n

G
A

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

Ta
ng

et
al

.[
25

]
Se

ri
al

Po
pu

la
tio

n
G

A
Pr

io
ri

B
al

an
ce

d
N

on
-P

ar
et

o
St

at
ic

Su
n

et
al

.[
14

6]
Se

ri
al

Po
pu

la
tio

n
G

A
Po

st
er

io
ri

B
al

an
ce

d
Pa

re
to

St
at

ic

L
in

et
al

.[
17

5]
Se

ri
al

Po
pu

la
tio

n
FF

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

C.2 Comprehensive Overview: Table 206

Ta
bl

e
C

.5
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

Pa
pe

r
Pr

oc
es

s
So

lu
tio

n
A

lg
or

ith
m

Pr
ef

er
en

ce
Se

ar
ch

E
va

lu
at

e
A

da
pt

e

Y
u

et
al

.[
13

9]
Se

ri
al

Po
pu

la
tio

n
G

A
,A

C
O

Pr
io

ri
B

al
an

ce
d

N
on

-P
ar

et
o

St
at

ic

207

Bibliography

[1] Fog Computing. the internet of things: Extend the cloud to where the things are.
Cisco White Paper, 2015.

[2] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca, Edmundo
Madeira, Marilia Curado, Leandro Villas, Luiz DaSilva, Craig Lee, and Omer
Rana. The internet of things, fog and cloud continuum: Integration and chal-
lenges. Internet of Things, 3:134–155, 2018.

[3] Paul Quinn and A Beliveau. Service function chaining (sfc) architecture. draft-

quinn-sfc-arch-04 (work in progress), 2014.

[4] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in nfv: A com-
prehensive survey. IEEE Transactions on Network and Service Management, 13
(3):518–532, 2016.

[5] Paul Quinn and Tom Nadeau. Problem statement for service function chaining.
Technical report, 2015.

[6] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM transactions on autonomous and adaptive systems

(TAAS), 4(2):1–42, 2009.

[7] Mohamed Boucadair et al. Service function chaining (sfc) control plane com-
ponents & requirements. Work in Progress, draft-ietf-sfc-control-plane-08,
2016.

[8] Marcos Dias de Assuncao, Alexandre da Silva Veith, and Rajkumar Buyya.
Distributed data stream processing and edge computing: A survey on resource
elasticity and future directions. Journal of Network and Computer Applications,
103:1–17, 2018.

Bibliography 208

[9] Yadu N Babuji, Kyle Chard, Ian T Foster, Daniel S Katz, Mike Wilde, Anna
Woodard, and Justin M Wozniak. Parsl: Scalable parallel scripting in python.
In IWSG, 2018.

[10] Christian Berger, Philipp Eichhammer, Hans P Reiser, Jörg Domaschka, Franz J
Hauck, and Gerhard Habiger. A survey on resilience in the iot: Taxonomy, clas-
sification, and discussion of resilience mechanisms. ACM Computing Surveys

(CSUR), 54(7):1–39, 2021.

[11] Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé. Integ-
ration of cloud computing and internet of things: a survey. Future generation

computer systems, 56:684–700, 2016.

[12] Jeffrey O Kephart and David M Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[13] Saber Talari, Miadreza Shafie-Khah, Pierluigi Siano, Vincenzo Loia, Aurelio
Tommasetti, and João PS Catalão. A review of smart cities based on the internet
of things concept. Energies, 10(4):421, 2017.

[14] Muhammad Bilal, Lukumon O Oyedele, Junaid Qadir, Kamran Munir,
Saheed O Ajayi, Olugbenga O Akinade, Hakeem A Owolabi, Hafiz A Alaka,
and Maruf Pasha. Big data in the construction industry: A review of present
status, opportunities, and future trends. Advanced engineering informatics, 30
(3):500–521, 2016.

[15] Farzad Samie, Lars Bauer, and Jörg Henkel. Iot technologies for embedded
computing: A survey. In Proceedings of the Eleventh IEEE/ACM/IFIP Interna-

tional Conference on Hardware/Software Codesign and System Synthesis, pages
1–10, 2016.

[16] Fangchun Yang, Jinglin Li, Tao Lei, and Shangguang Wang. Architecture and
key technologies for internet of vehicles: a survey. Journal of Communications

and Information Networks, 2(2):1–17, 2017.

[17] David Meignan, Sigrid Knust, Jean-Marc Frayret, Gilles Pesant, and Nicolas
Gaud. A review and taxonomy of interactive optimization methods in operations
research. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(3):1–43,
2015.

Bibliography 209

[18] Judea Pearl. Heuristics: intelligent search strategies for computer problem solv-
ing. 1984.

[19] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM computing surveys (CSUR), 35(3):
268–308, 2003.

[20] Ching-Lai Hwang, Sudhakar R Paidy, Kwangsun Yoon, and Abu Syed Md
Masud. Mathematical programming with multiple objectives: A tutorial. Com-

puters & Operations Research, 7(1-2):5–31, 1980.

[21] Nyoman Gunantara. A review of multi-objective optimization: Methods and its
applications. Cogent Engineering, 5(1):1502242, 2018.

[22] Enrique Alba. Parallel metaheuristics: a new class of algorithms. John Wiley
& Sons, 2005.

[23] Claudia Canali and Riccardo Lancellotti. Gasp: genetic algorithms for service
placement in fog computing systems. Algorithms, 12(10):201, 2019.

[24] Claudia Canali and Riccardo Lancellotti. A fog computing service placement
for smart cities based on genetic algorithms. In CLOSER, pages 81–89, 2019.

[25] Chaogang Tang, Xianglin Wei, Shuo Xiao, Wei Chen, Weidong Fang, Wux-
iong Zhang, and Mingyang Hao. A mobile cloud based scheduling strategy for
industrial internet of things. IEEE Access, 6:7262–7275, 2018.

[26] Amir Karamoozian, Abdelhakim Hafid, and El Mostapha Aboulhamid. On the
fog-cloud cooperation: How fog computing can address latency concerns of iot
applications. In 2019 Fourth International Conference on Fog and Mobile Edge

Computing (FMEC), pages 166–172. IEEE, 2019.

[27] Yibo Yang, Yongkui Ma, Wei Xiang, Xuemai Gu, and Honglin Zhao. Joint op-
timization of energy consumption and packet scheduling for mobile edge com-
puting in cyber-physical networks. IEEE Access, 6:15576–15586, 2018.

[28] Hualong Huang, Kai Peng, and Xiaolong Xu. Collaborative computation of-
floading for smart cities in mobile edge computing. In 2020 IEEE 13th Interna-

tional Conference on Cloud Computing (CLOUD), pages 176–183. IEEE, 2020.

Bibliography 210

[29] Clovis Anicet Ouedraogo, Samir Medjiah, Christophe Chassot, Khalil Drira,
and Jose Aguilar. A cost-effective approach for end-to-end qos management
in nfv-enabled iot platforms. IEEE internet of things journal, 8(5):3885–3903,
2020.

[30] Meitian Huang, Weifa Liang, Xiaojun Shen, Yu Ma, and Haibin Kan.
Reliability-aware virtualized network function services provisioning in mobile
edge computing. IEEE Transactions on Mobile Computing, 19(11):2699–2713,
2019.

[31] Long Qu, Chadi Assi, Maurice J Khabbaz, and Yinghua Ye. Reliability-aware
service function chaining with function decomposition and multipath routing.
IEEE Transactions on Network and Service Management, 17(2):835–848, 2019.

[32] Binxu Yang, Zichuan Xu, Wei Koong Chai, Weifa Liang, Daphné Tuncer, Alex
Galis, and George Pavlou. Algorithms for fault-tolerant placement of stateful
virtualized network functions. In 2018 IEEE International Conference on Com-

munications (ICC), pages 1–7. IEEE, 2018.

[33] Diego de Freitas Bezerra, Guto Leoni Santos, Glauco Gonçalves, André Mor-
eira, Leylane Graziele Ferreira da Silva, Élisson da Silva Rocha, Maria Valéria
Marquezini, Judith Kelner, Djamel Sadok, Amardeep Mehta, et al. Optimiz-
ing nfv placement for distributing micro-data centers in cellular networks. The

Journal of Supercomputing, pages 1–25, 2021.

[34] Houssem Eddine Mohamadi, Nadjia Kara, and Mohand Lagha. Efficient al-
gorithms for decision making and coverage deployment of connected multi-low-
altitude platforms. Expert Systems with Applications, 184:115529, 2021.

[35] Tiansheng Huang, Weiwei Lin, Chennian Xiong, Rui Pan, and Jingxuan Huang.
An ant colony optimization-based multiobjective service replicas placement
strategy for fog computing. IEEE Transactions on Cybernetics, 2020.

[36] Jaber Taghizadeh, Mostafa Ghobaei-Arani, and Ali Shahidinejad. A
metaheuristic-based data replica placement approach for data-intensive iot ap-
plications in the fog computing environment. Software: Practice and Experi-

ence, 2021.

Bibliography 211

[37] Adyson M Maia, Yacine Ghamri-Doudane, Dario Vieira, and Miguel Franklin
de Castro. An improved multi-objective genetic algorithm with heuristic initial-
ization for service placement and load distribution in edge computing. Computer

Networks, 194:108146, 2021.

[38] Yanling Shao, Chunlin Li, Zhao Fu, Leyue Jia, and Youlong Luo. Cost-effective
replication management and scheduling in edge computing. Journal of Network

and Computer Applications, 129:46–61, 2019.

[39] Yanling Shao, Chunlin Li, and Hengliang Tang. A data replica placement
strategy for iot workflows in collaborative edge and cloud environments. Com-

puter Networks, 148:46–59, 2019.

[40] Tiansheng Huang, Weiwei Lin, Yin Li, LiGang He, and ShaoLiang Peng.
A latency-aware multiple data replicas placement strategy for fog computing.
Journal of Signal Processing Systems, 91(10):1191–1204, 2019.

[41] Laizhong Cui, Shu Yang, Ziteng Chen, Yi Pan, Zhong Ming, and Mingwei
Xu. A decentralized and trusted edge computing platform for internet of things.
IEEE Internet of Things Journal, 7(5):3910–3922, 2019.

[42] Xiaolong Xu, Xihua Liu, Zhanyang Xu, Fei Dai, Xuyun Zhang, and Lianyong
Qi. Trust-oriented iot service placement for smart cities in edge computing.
IEEE Internet of Things Journal, 7(5):4084–4091, 2019.

[43] Mustafa Hajeer and Dipankar Dasgupta. Handling big data using a data-aware
hdfs and evolutionary clustering technique. IEEE Transactions on Big Data, 5
(2):134–147, 2017.

[44] Laizhong Cui, Chong Xu, Shu Yang, Joshua Zhexue Huang, Jianqiang Li,
Xizhao Wang, Zhong Ming, and Nan Lu. Joint optimization of energy con-
sumption and latency in mobile edge computing for internet of things. IEEE

Internet of Things Journal, 6(3):4791–4803, 2018.

[45] Jianhua Fan, Xianglin Wei, Tongxiang Wang, Tian Lan, and Suresh Sub-
ramaniam. Churn-resilient task scheduling in a tiered iot infrastructure. China

Communications, 16(8):162–175, 2019.

[46] Xiaohui Wang, Hao Zhang, and Haoran Gu. Solving optimal camera placement
problems in iot using lh-rpso. IEEE Access, 8:40881–40891, 2019.

Bibliography 212

[47] Xu Gong, David Plets, Emmeric Tanghe, Toon De Pessemier, Luc Martens,
and Wout Joseph. An efficient genetic algorithm for large-scale transmit power
control of dense and robust wireless networks in harsh industrial environments.
Applied Soft Computing, 65:243–259, 2018.

[48] Raheleh Moallemi, Arash Bozorgchenani, and Daniele Tarchi. An evolutionary-
based algorithm for smart-living applications placement in fog networks. In
2019 IEEE Globecom Workshops (GC Wkshps), pages 1–6. IEEE, 2019.

[49] Carla Mouradian, Somayeh Kianpisheh, Mohammad Abu-Lebdeh, Fereshteh
Ebrahimnezhad, Narjes Tahghigh Jahromi, and Roch H Glitho. Application
component placement in nfv-based hybrid cloud/fog systems with mobile fog
nodes. IEEE Journal on Selected Areas in Communications, 37(5):1130–1143,
2019.

[50] Ashkan Yousefpour, Ashish Patil, Genya Ishigaki, Inwoong Kim, Xi Wang,
Hakki C Cankaya, Qiong Zhang, Weisheng Xie, and Jason P Jue. Fogplan:
A lightweight qos-aware dynamic fog service provisioning framework. IEEE

Internet of Things Journal, 6(3):5080–5096, 2019.

[51] Sudip Misra and Niloy Saha. Detour: Dynamic task offloading in software-
defined fog for iot applications. IEEE Journal on Selected Areas in Communic-

ations, 37(5):1159–1166, 2019.

[52] Chu-ge Wu and Ling Wang. A deadline-aware estimation of distribution al-
gorithm for resource scheduling in fog computing systems. In 2019 IEEE Con-

gress on Evolutionary Computation (CEC), pages 660–666. IEEE, 2019.

[53] Ilias Gravalos, Prodromos Makris, Kostas Christodoulopoulos, and Em-
manouel A Varvarigos. Efficient network planning for internet of things with
qos constraints. IEEE Internet of Things Journal, 5(5):3823–3836, 2018.

[54] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and Philipp
Leitner. Optimized iot service placement in the fog. Service Oriented Comput-

ing and Applications, 11(4):427–443, 2017.

[55] Li Kuang, Tao Gong, Shuyin OuYang, Honghao Gao, and Shuiguang Deng.
Offloading decision methods for multiple users with structured tasks in edge

Bibliography 213

computing for smart cities. Future Generation Computer Systems, 105:717–
729, 2020.

[56] Om-Kolsoom Shahryari, Hossein Pedram, Vahid Khajehvand, and Mehdi De-
hghan TakhtFooladi. Energy and task completion time trade-off for task of-
floading in fog-enabled iot networks. Pervasive and Mobile Computing, 74:
101395, 2021.

[57] Pedram Memari, Seyedeh Samira Mohammadi, Fariborz Jolai, and Reza
Tavakkoli-Moghaddam. A latency-aware task scheduling algorithm for alloc-
ating virtual machines in a cost-effective and time-sensitive fog-cloud architec-
ture. The Journal of Supercomputing, pages 1–30, 2021.

[58] Chu-ge Wu, Wei Li, Ling Wang, and Albert Y Zomaya. An evolutionary fuzzy
scheduler for multi-objective resource allocation in fog computing. Future Gen-

eration Computer Systems, 117:498–509, 2021.

[59] Xin Gao, Xi Huang, Simeng Bian, Ziyu Shao, and Yang Yang. Pora: Predictive
offloading and resource allocation in dynamic fog computing systems. IEEE

Internet of Things Journal, 7(1):72–87, 2019.

[60] Xinchen Lyu, Wei Ni, Hui Tian, Ren Ping Liu, Xin Wang, Georgios B Gianna-
kis, and Arogyaswami Paulraj. Optimal schedule of mobile edge computing for
internet of things using partial information. IEEE Journal on Selected Areas in

Communications, 35(11):2606–2615, 2017.

[61] Chun-Wei Tsai. Seira: An effective algorithm for iot resource allocation prob-
lem. Computer Communications, 119:156–166, 2018.

[62] Hani Sami and Azzam Mourad. Dynamic on-demand fog formation offering
on-the-fly iot service deployment. IEEE Transactions on Network and Service

Management, 17(2):1026–1039, 2020.

[63] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization:

algorithms and complexity. Courier Corporation, 1998.

[64] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

Bibliography 214

[65] Dabiah Ahmed Alboaneen, Huaglory Tianfield, and Yan Zhang. Glowworm
swarm optimisation algorithm for virtual machine placement in cloud comput-
ing. In 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing,

Advanced and Trusted Computing, Scalable Computing and Communications,

Cloud and Big Data Computing, Internet of People, and Smart World Congress

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pages 808–814. IEEE, 2016.

[66] Filip De Turck. Efficient resource allocation through integer linear program-
ming: a detailed example. arXiv preprint arXiv:2009.13178, 2020.

[67] Fengjunjie Pan, Jianjie Lin, Markus Rickert, and Alois Knoll. Resource alloca-
tion in software-defined vehicles: Ilp model formulation and solver evaluation.
In 2022 IEEE 25th International Conference on Intelligent Transportation Sys-

tems (ITSC), pages 2577–2584. IEEE, 2022.

[68] Ashish Kaushal, Osama Almurshed, Areej Alabbas, Nitin Auluck, and Omer
Rana. An edge-cloud infrastructure for weed detection in precision agricul-
ture. In 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Comput-

ing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud

and Big Data Computing, Intl Conf on Cyber Science and Technology Con-

gress (DASC/PiCom/CBDCom/CyberSciTech), pages 0269–0276, 2023. doi:
10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361387.

[69] Antonio Benitez-Hidalgo, Antonio J Nebro, Jose Garcia-Nieto, Izaskun Oregi,
and Javier Del Ser. jmetalpy: A python framework for multi-objective optim-
ization with metaheuristics. Swarm and Evolutionary Computation, 51:100598,
2019.

[70] Guido van Rossum. time - time access and conversions, 2023. URL https:

//docs.python.org/3/library/time.html.

[71] Guido van Rossum. timeit. URL https://docs.python.org/3/library/

timeit.html.

[72] Giampaolo Rodia. psutil. URL https://github.com/giampaolo/psutil.

[73] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin M Wozniak, Ian Foster, et al. Parsl:

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://github.com/giampaolo/psutil

Bibliography 215

Pervasive parallel programming in python. In Proceedings of the 28th Interna-

tional Symposium on High-Performance Parallel and Distributed Computing,
pages 25–36, 2019.

[74] Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive search
procedures. Journal of global optimization, 6(2):109–133, 1995.

[75] Apache Software Foundation. Apache kafka. Apache Software Foundation,
2011. URL https://kafka.apache.org/.

[76] Andrew Tridgell and The Samba Team. Samba: A file and print server for unix.
USENIX Conference on File and Storage Technologies, 1992. URL https:

//www.samba.org/.

[77] Grady Booch, Robert A Maksimchuk, Michael W Engle, Bobbi J Young, Jim
Connallen, and Kelli A Houston. Object-oriented analysis and design with ap-
plications. ACM SIGSOFT software engineering notes, 33(5):29–29, 2008.

[78] Jerry Banks. Discrete event system simulation. Pearson Education India, 2005.

[79] Josip Zilic, Atakan Aral, and Ivona Brandic. Efpo: Energy efficient and failure
predictive edge offloading. In Proceedings of the 12th IEEE/ACM International

Conference on Utility and Cloud Computing, pages 165–175, 2019.

[80] Jie Sun, Tianyu Wo, Xudong Liu, Rui Cheng, Xudong Mou, Xiaohui Guo,
Haibin Cai, and Rajkumar Buyya. Cloudsimsfc: Simulating service function
chains in multi-domain service networks. Simulation Modelling Practice and

Theory, 120:102597, 2022.

[81] Horst Rinne. The Weibull distribution: a handbook. CRC press, 2008.

[82] Bao Pang, Yong Song, Chengjin Zhang, and Runtao Yang. Effect of random
walk methods on searching efficiency in swarm robots for area exploration. Ap-

plied Intelligence, 51(7):5189–5199, 2021.

[83] Andreas F Molisch. Wireless communications, volume 34. John Wiley & Sons,
2012.

[84] FP Hwang, Shu-Jen Chen, and Ching-Lai Hwang. Fuzzy multiple attribute de-

cision making: Methods and applications. Springer Berlin/Heidelberg, 1992.

https://kafka.apache.org/
https://www.samba.org/
https://www.samba.org/

Bibliography 216

[85] Milan Zeleny. Compromise programming. Multiple criteria decision making,
1973.

[86] David H Wolpert, William G Macready, et al. No free lunch theorems for search.
Technical report, Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995.

[87] Absalom E Ezugwu, Verosha Pillay, Divyan Hirasen, Kershen Sivanarain, and
Melvin Govender. A comparative study of meta-heuristic optimization al-
gorithms for 0–1 knapsack problem: Some initial results. IEEE Access, 7:
43979–44001, 2019.

[88] Juan J Durillo, Antonio J Nebro, Francisco Luna, and Enrique Alba. A study
of master-slave approaches to parallelize nsga-ii. In 2008 IEEE international

symposium on parallel and distributed processing, pages 1–8. IEEE, 2008.

[89] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobject-
ive evolutionary algorithms: Empirical results. Evolutionary computation, 8(2):
173–195, 2000.

[90] Alan Mathison Turing. Systems of logic based on ordinals. Proceedings of the

London Mathematical Society, Series 2, 45:161–228, 1939.

[91] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[92] Dask Development Team. Dask: Library for dynamic task scheduling, 2016.

[93] SL Barr, S Johnson, X Ming, M Peppa, N Dong, Z Wen, C Robson, L Smith,
P James, D Wilkinson, et al. Flood-prepared: A nowcasting system for real-time
impact adaption to surface water flooding in cities. ISPRS Annals of the Photo-

grammetry, Remote Sensing and Spatial Information Sciences, 6:9–15, 2020.

[94] Jose Manuel Sanchez Vilchez, Imen Grida Ben Yahia, and Noël Crespi. Self-
healing mechanisms for software defined networks. 2014.

[95] Srinivas Chippada, Clint N Dawson, Monica L Martínez, and Mary F Wheeler.
A godunov-type finite volume method for the system of shallow water equations.

Bibliography 217

Computer methods in applied mechanics and engineering, 151(1-2):105–129,
1998.

[96] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.
Addison-Wesley Professional, 2003.

[97] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam, 1995.

[98] Fabrizio Balducci, Donato Impedovo, and Giuseppe Pirlo. Machine learning
applications on agricultural datasets for smart farm enhancement. Machines, 6
(3):38, 2018.

[99] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu.
Federated learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning, 13(3):1–207, 2019.

[100] Ateyah Alzahrani, Ioan Petri, and Yacine Rezgui. Analysis and simulation of
smart energy clusters and energy value chain for fish processing industries. En-

ergy Reports, 6:534–540, 2020.

[101] Cristina Dimidov, Giuseppe Oriolo, and Vito Trianni. Random walks in swarm
robotics: an experiment with kilobots. In International conference on swarm

intelligence, pages 185–196. Springer, 2016.

[102] Ritika Lohiya and Ankit Thakkar. Application domains, evaluation data sets,
and research challenges of iot: A systematic review. IEEE Internet of Things

Journal, 8(11):8774–8798, 2020.

[103] Serverless faqs - amazon web services. URL https://aws.amazon.com/

serverless/faqs/. Accessed: 2023-06-17.

[104] Technical requirements for kubernetes | apache openwhisk, . URL
https://github.com/apache/openwhisk-deploy-kube/blob/master/

docs/k8s-technical-requirements.md. Accessed: 2023-06-17.

[105] Federated function as a service | funcx. URL https://funcx.org/. Accessed:
2023-06-17.

https://aws.amazon.com/serverless/faqs/
https://aws.amazon.com/serverless/faqs/
https://github.com/apache/openwhisk-deploy-kube/blob/master/docs/k8s-technical-requirements.md
https://github.com/apache/openwhisk-deploy-kube/blob/master/docs/k8s-technical-requirements.md
https://funcx.org/

Bibliography 218

[106] Biljana L Risteska Stojkoska and Kire V Trivodaliev. A review of internet of
things for smart home: Challenges and solutions. Journal of cleaner production,
140:1454–1464, 2017.

[107] Jianjun Chen, David J DeWitt, Feng Tian, and Yuan Wang. Niagaracq: A scal-
able continuous query system for internet databases. In Proceedings of the 2000

ACM SIGMOD international conference on Management of data, pages 379–
390, 2000.

[108] Daniel J Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Con-
vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Au-
rora: a new model and architecture for data stream management. the VLDB

Journal, 12(2):120–139, 2003.

[109] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar,
Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. Stream:
The stanford data stream management system. In Data Stream Management,
pages 317–336. Springer, 2016.

[110] Magdalena Balazinska, Hari Balakrishnan, and Michael Stonebraker. Contract-
based load management in federated distributed systems. In NSDI, volume 4,
pages 15–15, 2004.

[111] Yanif Ahmad, Bradley Berg, Ugur Cetintemel, Mark Humphrey, Jeong-Hyon
Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil, Alexander
Rasin, Nesime Tatbul, et al. Distributed operation in the borealis stream pro-
cessing engine. In Proceedings of the 2005 ACM SIGMOD international con-

ference on Management of data, pages 882–884, 2005.

[112] Matthew Jankowski, Peter Pathirana, and Sean Allen. Storm Applied: Strategies

for real-time event processing. Simon and Schuster, 2015.

[113] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth
Taneja. Twitter heron: Stream processing at scale. In Proceedings of the 2015

ACM SIGMOD international conference on Management of data, pages 239–
250, 2015.

Bibliography 219

[114] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Dis-
tributed stream computing platform. In 2010 IEEE International Conference on

Data Mining Workshops, pages 170–177. IEEE, 2010.

[115] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Har-
idi, and Kostas Tzoumas. Apache flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering, 36(4), 2015.

[116] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A {Fault-Tolerant} abstraction for {In-Memory} cluster
computing. In 9th USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI 12), pages 15–28, 2012.

[117] Oozie - Apache Oozie Workflow Scheduler for Hadoop — oozie.apache.org.
https://oozie.apache.org/, . [Accessed 22-Sep-2022].

[118] Azkaban — azkaban.github.io. https://azkaban.github.io/. [Accessed 22-
Sep-2022].

[119] Apache Airflow. https://airflow.apache.org/, . [Accessed 22-Sep-2022].

[120] Node-RED — nodered.org. https://nodered.org/. [Accessed 22-Sep-2022].

[121] Openwhisk. https://openwhisk.apache.org/, . Accessed: April 25, 2023.

[122] OpenFaaS. Serverless functions made simple. https://github.com/

openfaas/faas, 2016. Accessed: April 25, 2023.

[123] Peyman Oreizy, Michael M Gorlick, Richard N Taylor, Dennis Heimhigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S Rosenblum, and
Alexander L Wolf. An architecture-based approach to self-adaptive software.
IEEE Intelligent Systems and Their Applications, 14(3):54–62, 1999.

[124] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gaïti, Erol
Gelenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and
Franco Zambonelli. A survey of autonomic communications. ACM Transac-

tions on Autonomous and Adaptive Systems (TAAS), 1(2):223–259, 2006.

https://oozie.apache.org/
https://azkaban.github.io/
https://airflow.apache.org/
https://nodered.org/
https://openwhisk.apache.org/
https://github.com/openfaas/faas
https://github.com/openfaas/faas

Bibliography 220

[125] Danny Weyns, Sam Malek, and Jesper Andersson. Forms: Unifying reference
model for formal specification of distributed self-adaptive systems. ACM Trans-

actions on Autonomous and Adaptive Systems (TAAS), 7(1):1–61, 2012.

[126] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with

Python: analyzing text with the natural language toolkit. " O’Reilly Media,
Inc.", 2009.

[127] LIAAD. Yake!, 2023. URL https://liaad.github.io/yake/. [Online; ac-
cessed 17-June-2023].

[128] SkBlaz. Rakun, 2023. URL https://github.com/SkBlaz/rakun. [Online;
accessed 17-June-2023].

[129] Mahmoud Gamal, Saber Jafarizadeh, Mehran Abolhasan, Justin Lipman, and
Wei Ni. Mapping and scheduling for non-uniform arrival of virtual network
function (vnf) requests. In 2019 IEEE 90th Vehicular Technology Conference

(VTC2019-Fall), pages 1–6. IEEE, 2019.

[130] Hanine Tout, Azzam Mourad, Nadjia Kara, and Chamseddine Talhi. Multi-
persona mobility: Joint cost-effective and resource-aware mobile-edge compu-
tation offloading. IEEE/ACM Transactions on Networking, 2021.

[131] Vinita Yadav, BV Natesha, and Ram Mohana Reddy Guddeti. Ga-pso: service
allocation in fog computing environment using hybrid bio-inspired algorithm.
In TENCON 2019-2019 IEEE Region 10 Conference (TENCON), pages 1280–
1285. IEEE, 2019.

[132] Rajrup Ghosh and Yogesh Simmhan. Distributed scheduling of event analytics
across edge and cloud. ACM Transactions on Cyber-Physical Systems, 2(4):
1–28, 2018.

[133] Huizhen Hao, Jie Zhang, and Qing Gu. Optimal iot service offloading with
uncertainty in sdn-based mobile edge computing. Mobile Networks and Applic-

ations, pages 1–10, 2021.

[134] Masoumeh Ayoubi, Mohammadreza Ramezanpour, and Reihaneh Khorsand.
An autonomous iot service placement methodology in fog computing. Software:

Practice and Experience, 51(5):1097–1120, 2021.

https://liaad.github.io/yake/
https://github.com/SkBlaz/rakun

Bibliography 221

[135] Kuljeet Kaur, Sahil Garg, Gagangeet Singh Aujla, Neeraj Kumar, Joel JPC
Rodrigues, and Mohsen Guizani. Edge computing in the industrial internet
of things environment: Software-defined-networks-based edge-cloud interplay.
IEEE communications magazine, 56(2):44–51, 2018.

[136] Xingju Xie, Xiaojun Wu, and Qiao Hu. Bi-objective optimization for industrial
robotics workflow resource allocation in an edge–cloud environment. Applied

Sciences, 11(21):10066, 2021.

[137] Mahbuba Afrin, Jiong Jin, Ashfaqur Rahman, Yu-Chu Tian, and Ambarish
Kulkarni. Multi-objective resource allocation for edge cloud based robotic
workflow in smart factory. Future Generation Computer Systems, 97:119–130,
2019.

[138] Dadmehr Rahbari, Sabihe Kabirzadeh, and Mohsen Nickray. A security aware
scheduling in fog computing by hyper heuristic algorithm. In 2017 3rd Iranian

Conference on Intelligent Systems and Signal Processing (ICSPIS), pages 87–
92. Ieee, 2017.

[139] Jiuhong Yu, Mengfei Wang, JH Yu, and Seyedeh Maryam Arefzadeh. A new
approach for task managing in the fog-based medical cyber-physical systems
using a hybrid algorithm. Circuit World, 2021.

[140] Xing Chen, Jianshan Zhang, Bing Lin, Zheyi Chen, Katinka Wolter, and Geyong
Min. Energy-efficient offloading for dnn-based smart iot systems in cloud-edge
environments. IEEE Transactions on Parallel and Distributed Systems, 33(3):
683–697, 2021.

[141] Guang Peng, Huaming Wu, Han Wu, and Katinka Wolter. Constrained multi-
objective optimization for iot-enabled computation offloading in collaborative
edge and cloud computing. IEEE Internet of Things Journal, 2021.

[142] Raafat O Aburukba, Taha Landolsi, and Dalia Omer. A heuristic schedul-
ing approach for fog-cloud computing environment with stationary iot devices.
Journal of Network and Computer Applications, 180:102994, 2021.

[143] BV Natesha and Ram Mohana Reddy Guddeti. Adopting elitism-based genetic
algorithm for minimizing multi-objective problems of iot service placement in

Bibliography 222

fog computing environment. Journal of Network and Computer Applications,
178:102972, 2021.

[144] Raafat O Aburukba, Mazin AliKarrar, Taha Landolsi, and Khaled El-Fakih.
Scheduling internet of things requests to minimize latency in hybrid fog–cloud
computing. Future Generation Computer Systems, 111:539–551, 2020.

[145] Binh Minh Nguyen, Huynh Thi Thanh Binh, Bao Do Son, et al. Evolutionary
algorithms to optimize task scheduling problem for the iot based bag-of-tasks
application in cloud–fog computing environment. Applied Sciences, 9(9):1730,
2019.

[146] Yan Sun, Fuhong Lin, and Haitao Xu. Multi-objective optimization of resource
scheduling in fog computing using an improved nsga-ii. Wireless Personal Com-

munications, 102(2):1369–1385, 2018.

[147] Shun-shun Fang, Zheng-yi Chai, and Ya-lun Li. Dynamic multi-objective evolu-
tionary algorithm for iot services. Applied Intelligence, 51(3):1177–1200, 2021.

[148] Sambit Kumar Mishra, Deepak Puthal, Joel JPC Rodrigues, Bibhudatta Sahoo,
and Eryk Dutkiewicz. Sustainable service allocation using a metaheuristic tech-
nique in a fog server for industrial applications. IEEE Transactions on Industrial

Informatics, 14(10):4497–4506, 2018.

[149] Juan Wang and Di Li. Task scheduling based on a hybrid heuristic algorithm for
smart production line with fog computing. Sensors, 19(5):1023, 2019.

[150] Jiafu Wan, Baotong Chen, Shiyong Wang, Min Xia, Di Li, and Chengliang Liu.
Fog computing for energy-aware load balancing and scheduling in smart factory.
IEEE Transactions on Industrial Informatics, 14(10):4548–4556, 2018.

[151] Mohamed K Hussein and Mohamed H Mousa. Efficient task offloading for
iot-based applications in fog computing using ant colony optimization. IEEE

Access, 8:37191–37201, 2020.

[152] Nerijus Morkevicius, Algimantas Venčkauskas, Nerijus Šatkauskas, and Jev-
genijus Toldinas. Method for dynamic service orchestration in fog computing.
Electronics, 10(15):1796, 2021.

Bibliography 223

[153] Tanissia Djemai, Patricia Stolf, Thierry Monteil, and Jean-Marc Pierson. A
discrete particle swarm optimization approach for energy-efficient iot services
placement over fog infrastructures. In 2019 18th International Symposium on

Parallel and Distributed Computing (ISPDC), pages 32–40. IEEE, 2019.

[154] Reinout Eyckerman, Siegfried Mercelis, Johann Marquez-Barja, and Peter
Hellinckx. Requirements for distributed task placement in the fog. Internet

of Things, 12:100237, 2020.

[155] Jianhua Fan, Xianglin Wei, Tongxiang Wang, Tian Lan, and Suresh Sub-
ramaniam. Deadline-aware task scheduling in a tiered iot infrastructure. In
GLOBECOM 2017-2017 IEEE Global Communications Conference, pages 1–
7. IEEE, 2017.

[156] Muhammad Babar Kamal, Nadeem Javaid, Syed Aon Ali Naqvi, Hanan Butt,
Talha Saif, and Muhammad Daud Kamal. Heuristic min-conflicts optimizing
technique for load balancing on fog computing. In International Conference

on Intelligent Networking and Collaborative Systems, pages 207–219. Springer,
2018.

[157] Ashwin Ashok, Peter Steenkiste, and Fan Bai. Vehicular cloud computing
through dynamic computation offloading. Computer Communications, 120:
125–137, 2018.

[158] Mustafa I Khaleel and Michelle M Zhu. Adaptive virtual machine migration
based on performance-to-power ratio in fog-enabled cloud data centers. The

Journal of Supercomputing, pages 1–40, 2021.

[159] Qing Zhang, Xiaoyong Lin, Yongsheng Hao, and Jie Cao. Energy-aware
scheduling in edge computing based on energy internet. IEEE Access, 8:
229052–229065, 2020.

[160] Lyla Naghipour Vijouyeh, Masoud Sabaei, José Santos, Tim Wauters, Bruno
Volckaert, and Filip De Turck. Efficient application deployment in fog-enabled
infrastructures. In 2020 16th International Conference on Network and Service

Management (CNSM), pages 1–9. IEEE, 2020.

[161] Mohammed Islam Naas, Laurent Lemarchand, Jalil Boukhobza, and Philippe
Raipin. A graph partitioning-based heuristic for runtime iot data placement

Bibliography 224

strategies in a fog infrastructure. In Proceedings of the 33rd Annual ACM Sym-

posium on Applied Computing, pages 767–774, 2018.

[162] Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. Cost effi-
cient resource management in fog computing supported medical cyber-physical
system. IEEE Transactions on Emerging Topics in Computing, 5(1):108–119,
2015.

[163] Randa M Abdelmoneem, Abderrahim Benslimane, and Eman Shaaban.
Mobility-aware task scheduling in cloud-fog iot-based healthcare architectures.
Computer Networks, 179:107348, 2020.

[164] Amira Rayane Benamer, Hana Teyeb, and Nejib Ben Hadj-Alouane. Penguin
search aware proactive application placement. In International Conference on

Algorithms and Architectures for Parallel Processing, pages 229–244. Springer,
2019.

[165] Saeed Javanmardi, Mohammad Shojafar, Valerio Persico, and Antonio Pescapè.
Fpfts: a joint fuzzy particle swarm optimization mobility-aware approach to fog
task scheduling algorithm for internet of things devices. Software: Practice and

Experience, 51(12):2519–2539, 2021.

[166] Ramyad Hadidi, Jiashen Cao, Michael S Ryoo, and Hyesoon Kim. Toward
collaborative inferencing of deep neural networks on internet-of-things devices.
IEEE Internet of Things Journal, 7(6):4950–4960, 2020.

[167] Mohammed Islam Naas, Philippe Raipin Parvedy, Jalil Boukhobza, and Laurent
Lemarchand. ifogstor: an iot data placement strategy for fog infrastructure. In
2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC),
pages 97–104. IEEE, 2017.

[168] Antonino Rullo, Edoardo Serra, Elisa Bertino, and Jorge Lobo. Shortfall-based
optimal placement of security resources for mobile iot scenarios. In European

Symposium on Research in Computer Security, pages 419–436. Springer, 2017.

[169] Xuan-Qui Pham and Eui-Nam Huh. Towards task scheduling in a cloud-fog
computing system. In 2016 18th Asia-Pacific network operations and manage-

ment symposium (APNOMS), pages 1–4. IEEE, 2016.

Bibliography 225

[170] Simone Bolettieri, Raffaele Bruno, and Enzo Mingozzi. Application-aware re-
source allocation and data management for mec-assisted iot service providers.
Journal of Network and Computer Applications, 181:103020, 2021.

[171] Abbas Najafizadeh, Afshin Salajegheh, Amir Masoud Rahmani, and Amir
Sahafi. Multi-objective task scheduling in cloud-fog computing using goal pro-
gramming approach. Cluster Computing, pages 1–25, 2021.

[172] Mohamed Abdel-Basset, Reda Mohamed, Mohamed Elhoseny, Ali Kashif
Bashir, Alireza Jolfaei, and Neeraj Kumar. Energy-aware marine predators
algorithm for task scheduling in iot-based fog computing applications. IEEE

Transactions on Industrial Informatics, 17(7):5068–5076, 2020.

[173] John Paul Martin, A Kandasamy, and K Chandrasekaran. Crew: Cost and re-
liability aware eagle-whale optimiser for service placement in fog. Software:

Practice and Experience, 50(12):2337–2360, 2020.

[174] Liang Zhao. Privacy-preserving distributed analytics in fog-enabled iot systems.
Sensors, 20(21):6153, 2020.

[175] Kai Lin, Sameer Pankaj, and Di Wang. Task offloading and resource alloca-
tion for edge-of-things computing on smart healthcare systems. Computers &

Electrical Engineering, 72:348–360, 2018.

	Abstract
	Contents
	List of Publications
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Acknowledgements
	Introduction
	Motivation
	The Challenges of Managing IoT Applications
	Challenges in Application Layer
	Challenges in Infrastructure Layer
	Challenges in Platform Layer
	Challenges in Scheduling Algorithm

	Research Problems and Objectives
	Methodology: An Iterative Process
	Thesis Contributions and Organisation

	Background, Context and Survey
	Introduction & Background
	Categorisation and Analysis of Existing Approaches
	IoT Application Domains
	 Optimisation theory & Optimisation Attributes
	Objectives Functions and Constraints in Optimisation Algorithms
	Architectural Aspects Impacting the Adaptive Loop

	Literature Review's Statistical Analysis
	Research Focus Across Various IoT Domains
	Distribution of Optimisation Objectives in IoT Research
	Algorithmic Properties Analysis
	Algorithm Application Across Different Domains: A Comparative Analysis

	Open Issues and Positioning

	Modelling Application Placement in Fog-Cloud Environment
	Introduction
	Usage Scenario
	Problem Statement
	System Model
	Estimating Completion Time
	Application redundancy and cost
	Problem Formulation

	Conclusion

	Toward a Platform that Supports Continuous Adaption
	Introduction
	System Overview
	Design & Implementation
	Distributed Systems: Data Management
	Platform Structure & Modules
	 Workflow Sequence

	Simulation
	Profiling Systems with Synthetic Data
	Clock-Based Failure Model
	Node Performance Degradation
	Link Quality in Mobile Edge Device

	Conclusion

	Greedy Nominator Heuristic (GNH): Harnessing MapReduce for Function Placement
	Introduction
	Methodology
	Scheduling Requirements
	Evaluation Criteria
	Test Environment

	GNH Algorithm
	Algorithm Components
	Algorithm Workflow

	Evaluation
	Speed Performance Evaluation
	Evaluating GNH's Optimisation Objectives

	Conclusion

	Enhanced Optimised Greedy Nominator Heuristic (EO-GNH): Enhancing GNH with Meta-Heuristics
	Introduction
	Methodology
	Scheduling Requirements
	Evaluation Criteria
	Test Environment

	EO-GNH Algorithm
	Algorithm Components
	Algorithm Workflow

	Evaluation
	Efficiency Performance Evaluation
	Evaluating EO-GNH's Optimisation Objectives

	Conclusion

	Performance Evaluation of Adaptability in Intelligent IoT Applications
	Introduction
	Flood-Prepared: Cities' Adaptation to Surface Water Flooding
	Application workflow
	Application Characteristics & Requirements
	Experimental Setup
	Results

	Federated Learning in Rural Areas: for Autonomous Weed Detection
	Applications Workflows
	Application Characteristics & Requirements
	Experimental Setup
	Results

	Intelligent Cooling System: Cooling Fish Processing Facility
	Applications Workflows
	Application Characteristics & Requirements
	Experimental Setup
	Results

	Discussion
	Conclusion

	Conclusions and Future Directions
	Introduction
	Resolving Research Questions in IoT Application Placement
	Modelling the Placement Problem
	Defining a Platform Architecture
	Application Placement with Consideration for Multiple Objectives
	Implementing Scheduling and Placement Strategy

	Solutions to Challenges
	Monitoring Infrastructure Changes and Utility Tools Integration
	Tackling Unreliability and Failures
	Fostering Resource Awareness
	Determining Adaptation Location
	Promoting Utility Tools Integration
	Platform Integration and Self-Adaptive Features
	Evaluating Placement Quality Through Simulations
	Achieving Resource Accessibility
	Service Function Chain Graph Design
	Decoupling Infrastructure and Application
	Parallel Programming and Function Placement

	Future Work
	Enhanced Financial Strategy for Application Management
	Integrating Machine Learning Pipelines in the EO-GNH Oracle
	Improving Mobility Simulation
	Incorporation of Reinforcement Learning
	Managing Uncertainty
	Addressing Security in System Scalability
	Exploring GPU-based Meta-heuristics

	Concluding Remarks and Future Prospects

	Background and Research Context
	Application Areas & Applications Attributes
	IoT Domains and Applications
	Application Layer Components
	Node Capacity and Configuration
	Network Configuration and Capability
	Addressing IoT Requirements

	Tools Support Distributed Data Analysis
	Overview of Streaming Data Engines Generations
	Detailed Analysis of Streaming Data Engines Generations
	Utilisation and Potential of Streaming Data Engines

	Autonomic Control: Phases and Processes
	The Concept of Adaptive Systems in Autonomic Computing
	Roles of the Platform Layer in Adaptive Processes

	Search Algorithms for scheduling
	The Importance of Efficient Scheduling and Informed Search
	Structural Components of Optimisation Algorithms
	Properties of Multi-objectives Optimisation Algorithms

	Systematic Review Process
	The Choice and Role of Search Engines in the Review
	Parameters for Publication Selection
	The Role of Natural Language Processing Tools
	The Step-by-Step Process of the Survey

	Survey Results
	Detailed Overview of Optimisation Algorithms
	Comprehensive Overview: Table

	Bibliography

