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A B S T R A C T

Multi-component fluid mixing by buoyancy-driven circulation is a common engineering process. Buoyancy-
driven flows have been studied extensively using mesh-based Eulerian methods, but challenges remain
especially near the fluid component interface. Smoothed particle hydrodynamics (SPH) is a meshless La-
grangian method able to deal with large deformations and a changing interface between the fluid components.
Herein, an SPH formulation is proposed by employing the Boussinesq approximation to model buoyancy-driven
flows where the temperature evolves by a governing equation, as well as multiple components with variable
viscosities. In addition, a new implementation of an adiabatic boundary condition in SPH is included by
adapting the recently developed modified dynamic boundary condition. The SPH results are compared against
reference solutions for 2-D and 3-D, single and multi-component cases such as a differentially heated cavity and
a cylindrical tank. Agreement is found with reference solutions for differentially heated cavity cases, provided
the ratio of smoothing length to particle size is sufficiently large. Furthermore, the combined volume fraction
- finite time Lyapunov exponent mixing measure gives insight into the relative movement of components at
both a local and global level.
1. Introduction

Many industrial processes take advantage of convective flows for
mixing, maintaining homogeneity or heating. The production of foods,
polymers and glasses all employ knowledge and understanding of
the thermally-driven flows involved. Buoyant convection arises where
there is a difference in density within the fluid, for example due to tem-
perature or concentration, which then induces a flow. This introduces
extra features to the physical processes including natural convection,
flow instabilities and turbulence.

Buoyancy-driven flows have been studied experimentally, analyti-
cally, and/or numerically for decades, including seminal work by GI
Taylor, GK Batchelor and co-workers [1–3], as well as more recent
studies, for example on buoyancy-driven turbulence [4] and exchange
flows [5]. However, despite this progress, there are multiple cases
where different simulation techniques are required such as mesh-based
methods that employ direct numerical simulation [6] and large eddy
simulation [7]. In particular, the flows in differentially-heated cavities
with mixing of different components are used in multiple process
industries (food, chemicals, pharmaceutical drugs and product mixing).
Due to the confinement of the flow and the complex geometries, it
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is rarely possible to obtain accurate measurements of fluid properties
within the container leaving numerical simulation to offer insight into
such buoyancy-driven processes. However, there are still challenges
predicting such buoyancy-driven flows, particularly those involving
rapid phase changes.

The behaviour of buoyancy-driven flows is characterised by the
Rayleigh number,

Ra =
𝑔𝛽
𝜈𝜅

𝛥𝜃𝐿3, (1)

where 𝑔 is acceleration due to gravity, 𝛽 is the coefficient of thermal
expansion, 𝜈 is kinematic viscosity, 𝜅 is thermal diffusivity, 𝛥𝜃 is the
temperature difference and 𝐿 a characteristic length. This can be used
to identify the buoyant flow regime. When changes in the density
can be neglected and the fluid can be assumed to be incompressible
(or weakly compressible), and all other fluid properties are constant
within the range of temperatures applied, a common way of modelling
buoyancy-driven flow is to use the Boussinesq approximation with an
extra body force term. This approach has been used extensively for
simulations (e.g. CFD simulations of laser melting [8]).
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For the simulation of buoyancy-driven flows, mesh-based methods
have been used extensively for predicting mixing [6,7]. To date, Eu-
lerian methods have generally been preferred, since the accuracy of
Lagrangian mesh-based methods is reduced when the mesh is sub-
ject to large deformations [9]. Increasing the resolution to mitigate
against this can lead to an impractically small timestep [9], whilst
re-meshing is highly computationally expensive. Additionally, each re-
mesh introduces an error which contributes to diffusion of the material
properties [9]. Therefore, fixed grid methods are typically preferred,
since they do not suffer issues with deformation, though can be difficult
to apply to complex geometries. Where there are multiple components,
a very high resolution is required to resolve the interface with sufficient
accuracy, e.g. [10]. Alternatively, interface tracking and reconstruction
[11] formulations may be employed, but introduce additional compu-
tational cost. Hybrid methods, involving mapping between an Eulerian
and a Lagrangian grid, aim to combine the benefits of both approaches.
However, the additional layer of computation can introduce instability
and reduce accuracy [9]. Moreover, it is not possible to follow a ma-
terial point precisely nor predict the location of the interface between
difference phases or components.

Meshless methods are able to deal with some of the limitations
of mesh-based methods, and after a period of intense development
are now maturing to challenge the widespread use of mesh-based
schemes. In particular for this work, large deformations do not require
expensive re-meshing, and moving interfaces can be followed without
additional computation or reconstruction, since particles belong to a
particular component phase. Most meshfree methods are Lagrangian,
with computation points moving with the flow [12], but there are also
Eulerian approaches with fixed particles [9]. Hybrid methods, such as
particle in cell [13], also exist, where a background mesh is used along
with particles. Any hybrid meshless-mesh based methods still suffer
from the disadvantages of generating and/or updating a mesh.

Smoothed particle hydrodynamics (SPH) is a Lagrangian discreti-
sation scheme, originally developed in 1977 by Gingold and Mon-
aghan [14] as well as Lucy [15] for astrophysical modelling, but now
used in a number of areas including fluid dynamics [16–19]. As a par-
ticle method, no grid is needed [20] and the particle-based formulation
of SPH makes it particularly well-suited for modelling fluids with a
constantly changing interface between components undergoing large
deformations. It is also well-suited to modelling fragmentation in conti-
nuity of components [16], or a self-intersecting interface [18,19,21–23]
even when high levels of strain are involved [16].

SPH has been applied to a number of mixing processes in industry,
for example in the production of foods, pharmaceuticals or polymers.
These processes tend to be mechanically-driven, since SPH is better
able to manage a moving boundary than a meshed method, and tar-
get homogeneity of the end-product. Robinson and Cleary [24,25]
modelled a two-dimensional twin-cam mixer using single-component
SPH. Comparisons with experiments were made by computing a finite
time Lyapunov exponent field to determine whether the location of
manifolds in the flow agreed with the distribution of tracer dye [25].

A governing equation for temperature was first introduced by Mon-
aghan [20], before Cleary [26] developed a more sophisticated form,
which is commonly used today. Cleary and Monaghan [27] developed
one of the first models for thermal conduction using SPH, improving on
a previous method for thermal conduction in stars [28]. The improve-
ments allowed for variation in the conductivity, whilst maintaining
continuity of the heat flux [27]. The method was demonstrated to
perform well for thermal conduction in solid domains [27].

Similar to other computational techniques, buoyancy-driven flow
is typically modelled in SPH through the Boussinesq approximation
[26,29,30], coupled with the temperature governing equation, includ-
ing in incompressible SPH [31] since the approximation states density
only varies in the Boussinesq term. Leroy et al. [31] found good
agreement with mesh-based methods for Poiseuille flow, but struggled
2

to reproduce the local Nusselt number in regions with high temperature
gradients. This was attributed to the error in SPH gradient approxima-
tions [31]. Related problems were found with the convective flow case
in Section 3.4.

SPH has been used to model heat transfer over longer periods of
time when modelling the growth of semiconductor crystals [32]. In
order to increase the time step size, and therefore reduce computation
time, an implicit time integration scheme was employed [32]. It was
shown that SPH was able to compete with finite volume (FV), both
in terms of results and simulation time [32]. Ng et al. [33] used the
Adami et al. [34] ghost boundary method with a Dirichlet condition for
temperature to model heat transfer through a wall. This was preferred
to a Moving Least Squares (MLS) method with mirroring, which does
not retain its higher order of accuracy once particles are disordered
and is more computationally expensive than SPH [33]. Sikarudi and
Nikseresht [35] also found MLS to be more sensitive to disordered
particles than SPH when modelling heat conduction.

For thermal boundary conditions, Dirichlet or Neumann boundary
conditions may be used [36]. For a Dirichlet condition, any boundary
particles can simply be given the prescribed boundary value. A straight-
forward way of approximating a homogeneous Neumann condition
(adiabatic for temperature) is to exclude boundary particles from the
SPH summation [27]. However, this truncates the kernel near the
boundary and can lead to problems similar to those outlined above for
dummy particles. Alternatively, the values in the fluid may be reflected
across the boundary whilst keeping the same sign [37]. On the other
hand, using the negative of the fluid value in the boundary gives the
homogeneous Dirichlet condition [37], where the value is zero at the
boundary (for example, no-slip velocity). This method can increase the
accuracy of Laplacian term approximations near the boundary [38].

For a heterogeneous Neumann boundary condition the flux across
the boundary must be prescribed, which is more complicated to imple-
ment in SPH. For example, the unified semi-analytical wall boundary
approach [39] uses an extrapolation onto boundary particles, so that
the segment between these points has the mean value of the flux, to
produce a first-order Neumann boundary condition. Recently, Joubert
et al. [40] applied a gradient correction at the boundary surface in
order to enforce Neumann boundary conditions for pressure and veloc-
ity. Alternatively, Bai et al. [41] developed a new SPH-finite difference
method (FDM) which converts a Neumann condition to a Dirichlet
condition, in order for it to be applied to the SPH part of the method.
Sikarudi and Nikseresht [35] introduce a new boundary method to
implement an adiabatic boundary condition, which ensures no heat flux
through a boundary [35]. The intuitive method of excluding boundary
particles from interpolated values is unable to completely stop heat
transfer due to the incomplete kernel [35].

The previous research emphasises the need for a robust adia-
batic boundary treatment in SPH for application to buoyancy-driven
circulation in confined domains. The open-source SPH solver Dual-
SPHysics [42] is chosen to be adapted for this model for its current
capabilities and the capacity for modification. The DualSPHysics solver
is rigorously validated and widely used in both academia and industry,
providing a highly optimised code that runs on different hardware
including a central processing unit (CPU) or a graphics processing unit
(GPU) [42]. Currently the solver does not include a governing equation
for temperature or any heating effects. A multi-component option
with non-Newtonian components has recently been included [42], as
well as the modified Dynamic Boundary Condition (mDBC) of English
et al. [43]. However, the new mDBC boundary condition is only
applicable to the isothermal Navier–Stokes equations. Therefore a new
adiabatic boundary condition is needed to extend its applicability to
the buoyancy-driven flows considered herein. Introducing new func-
tionality into an existing highly-optimised code presents special coding
challenges. Specifically, introducing new functionality that still exploits
the acceleration of the GPU without making major structural changes

to the code must be achieved with minimal effect on the computational



International Journal of Heat and Mass Transfer 233 (2024) 125904G. Reece et al.

𝜌

𝜌

𝜏
i
f
l

2

u
n
c
o
k
p

o
d
w

a
i

f
v
o
t
c
t
w
u

𝑊

w

[

𝑝

i
i
v
S
t

∇

w
e
c

v

𝜈

T
a

speed. Herein, all modifications have been made to both CPU and GPU
variants of the DualSPHysics code.

The new thermal boundary condition is based on an extension of
the mDBC and is therefore 1st-order consistent as well as being up
to 2nd-order accurate. This has therefore opened new opportunities
for further applications requiring accurate and robust adiabatic SPH
boundary treatments. The paper also presents the first 3-D application
of the mixing measure to a complex geometry (first demonstrated in
2-D in [44]). Finally, the entire simulation has been accelerated on the
GPU version of DualSPHysics, which has not been possible previously
for thermal applications, thereby enabling widespread use.

This paper is structured as follows. The following section will
present the governing equations and SPH methodology, including the
new adiabatic boundary condition, Section 3 will present numerical
results, before conclusions are presented in Section 4. The model is
validated with heat conduction and differentially heated cavity cases,
before being used to investigate convective flow in a cylindrical tank.

2. Numerical methodology

2.1. Governing equations

The physics of the flow are governed by the Navier Stokes equations,
which include conservation of mass, momentum, and energy,

𝐷𝜌
𝐷𝑡

+ 𝜌∇ ⋅ 𝐯 = 0; (2)
𝐷𝐯
𝐷𝑡

= −∇𝑝 + ∇ ⋅ 𝜏 + 𝜌𝐟 ; (3)
𝐷𝑈
𝐷𝑡

= 𝜌�̇� + ∇ ⋅ (𝑘∇𝜃) − ∇ ⋅ (𝐯𝑝) + ∇ ⋅ (𝐯𝜏) + 𝜌𝐟 ⋅ 𝐯. (4)

where 𝐷
𝐷𝑡 is the material derivative, 𝜌 density, 𝐯 velocity, 𝑝 pressure,

is the extra stress tensor, 𝐟 the body force acting on the fluid, 𝑈 the
nternal energy, 𝜃 the temperature and �̇� the rate of heat transfer. The
luid is assumed to be weakly compressible, and the state variables are
inked through an equation of state.

.2. SPH methodology

In the SPH method, particles (which may be irregularly spaced) are
sed to represent a medium. Each particle, which is a computational
ode, has physical properties and interacts with nearby particles, thus
hanging its properties [16]. To facilitate this, a particle has a domain
f influence with radius proportional to the smoothing length (ℎ) of the
ernel (𝑊 ) used. For an arbitrary material property 𝛷, the value at a
oint 𝐫 is computed through the interpolation

⟨𝛷(𝐫)⟩ = ∫𝛺
𝛷(𝐫)𝑊 (𝐫 − 𝐫′, ℎ)𝑑𝐫′ (5)

ver the domain 𝛺. The Wendland kernel [45] is chosen for this work
ue to its high accuracy [46]. It is a fifth-order polynomial function
ith compact support.

To apply to the discretised SPH domain, the function in Eq. (5) is
pproximated as a sum over SPH particles. The value of 𝛷 at particle 𝑖
s then summed over all particles 𝑗 in the domain

⟨𝛷(𝐫𝑖)⟩ =
∑

𝑗

𝑚𝑗

𝜌𝑗
𝛷𝑗𝑊𝑖𝑗 , (6)

where subscripts 𝑖 and 𝑗 denote SPH particle numbers, 𝑚𝑗 is the mass
of particle 𝑗, 𝜌𝑗 its density, and 𝛷𝑗 is the value of 𝛷 at particle 𝑗. The
notation is simplified in a standard way such that 𝑊𝑖𝑗 = 𝑊 (𝐫𝑖 − 𝐫𝑗 , ℎ)
and the relative velocity 𝐯 = 𝐯 − 𝐯 .
3

𝑖𝑗 𝑖 𝑗 t
2.3. SPH formulation

The governing equations in Section 2.1 are therefore written as
𝐷𝜌𝑖
𝐷𝑡

= 𝜌𝑖
∑

𝑗

𝑚𝑗

𝜌𝑗
𝐯𝑖𝑗 ⋅ ∇𝑖𝑊𝑖𝑗 ; (7)

𝐷𝐯𝑖
𝐷𝑡

= −
∑

𝑗
𝑚𝑗

𝑝𝑗 + 𝑝𝑖
𝜌𝑗𝜌𝑖

∇𝑖𝑊𝑖𝑗 + 𝜈∇2𝐯𝑖 + 𝐟𝑖; (8)

𝐷𝜃𝑖
𝐷𝑡

= 1
𝐶𝑝,𝑖

∑

𝑗

𝑚𝑗

𝜌𝑖𝜌𝑗

4𝑘𝑖𝑘𝑗
𝑘𝑖 + 𝑘𝑗

(𝜃𝑖 − 𝜃𝑗 )
∇𝑖𝑊𝑖𝑗

𝑟𝑖𝑗
. (9)

where 𝐶𝑝,𝑖 is the specific heat capacity at particle 𝑖. The energy equation
ollows the form used by Monaghan [20], where the pressure and
iscous heating terms from Eq. (4) are neglected due to the assumption
f weak compressibility. Temperature is chosen as a material variable
o give to particles, rather than internal energy, for application of initial
onditions and interpretation of results. This is accomplished through
he directly proportional relationship between internal energy and heat,
ith the coefficient specific heat constant. The Wendland kernel [45]
sed in this work is defined as

(𝐫𝐢𝐣, ℎ) =
⎧

⎪

⎨

⎪

⎩

7
4𝜋ℎ2

(

1 − 𝑟𝑖𝑗
2ℎ

)4 ( 2𝑟𝑖𝑗
ℎ + 1

)

𝑟𝑖𝑗 ∈ [0, 2ℎ],

0 otherwise.
(10)

here 𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗 and 𝑟𝑖𝑗 = |𝐫𝑖𝑗 |.
The equation of state commonly known as Tait’s equation is used

16]:

= 𝐵
[(

𝜌
𝜌0

)𝛾
− 1

]

. (11)

Here 𝐵 is a constant, 𝛾 ∈ [1, 7] (chosen to be 7 unless otherwise
specified) is a constant known as the polytropic index of the fluid, and
𝜌0 is the reference density (chosen to be initial density) [47].

2.4. Viscous diffusion

To accommodate interacting particles with different viscosities, a
viscous term is used which takes the average of the two viscosities
involved. In previous work [44], the viscous formulation of Morris
et al. [48] is modified by using the arithmetic mean of both viscosities
involved in the interaction, such that

𝜈∇2𝐯𝑖 =
∑

𝑗
𝑚𝑗

2(𝜈𝑖 + 𝜈𝑗 )
𝜌𝑖 + 𝜌𝑗

(

𝐫𝑖𝑗 ⋅ ∇𝑖𝑊𝑖𝑗

𝐫2𝑖𝑗 + 𝜂2

)

𝐯𝑖𝑗 . (12)

The viscous term in Eq. (8) is equivalent to the stress tensor term
n Eq. (3) for incompressible Newtonian fluids, assuming that viscosity
s constant and independent of other variables. However, for this work
iscosity is not always constant in the whole domain. Note, if the
tokes’ hypothesis is dropped and the bulk viscosity term reinstated
hen

⋅ 𝜏 = 𝜈∇2𝐯 +
(

𝜈 + 𝜆
𝜌

)

∇(∇ ⋅ 𝐯), (13)

here bulk viscosity is equal to 2
3𝜇+𝜆, as determined by Bonet-Avalos

t al. [49] with 𝜇 being the dynamic viscosity and 𝜆 being the second
oefficient of viscosity.

For this work, the constant viscosity is replaced with the average
iscosity of the two interacting particles, as in Eq. (12), so that

∇2𝐯𝑖 =
∑

𝑗
𝑚𝑗

2(𝜈𝑖 + 𝜈𝑗 )
𝜌𝑖 + 𝜌𝑗

(

𝐫𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝐫2𝑖𝑗 + 𝜂2

)

∇𝑖𝑊𝑖𝑗 . (14)

he advantages of using this Monaghan and Gingold [50] operator
bove are considered for the differentially heated cavity case in Sec-
ion 3.2.
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Fig. 1. The adiabatic boundary condition is enforced by reflecting fluid temperatures across the boundary line onto boundary particles. (a) Continuous domain: Sketch of fluid
region 𝛺𝐹 and solid wall boundary region 𝛺𝐵 with boundary location 𝜕𝛺𝐵 . The wall normal 𝐧𝐵 is defined as pointing away from the solid boundary into the fluid region. The
thermal mDBC defines the wall boundary temperature 𝜃𝐵 at a location 𝐫𝐵 as a function of the fluid temperature 𝜃𝐹 at mirror location 𝐫𝐹 using perpendicular distance from 𝜕𝛺𝐵
as 𝜃𝐵 = 𝜃(|(𝐫𝐵 − 𝐫𝜕𝛺𝐵

) ⋅ 𝐧𝐵 |) = 𝜃(|(𝐫𝐹 − 𝐫𝜕𝛺𝐵
) ⋅ 𝐧𝐵 |), (b) Discrete domain: Boundary particle 𝑖 temperature is interpolated at ghost particle 𝑖𝑔 for new adiabatic boundary condition

based on mDBC.
Fig. 2. Diagram of cavity for heat conduction case.

2.5. Thermal buoyancy

For natural convection, the body force acting on the fluid is due to
gravitational acceleration. The Boussinesq approximation states that,
assuming variations in other properties with temperature are small,
changes in fluid density may be neglected in the governing equations,
except in the body force term. The approximation of the body force
is derived from a first-order Taylor series of density as a function of
temperature about a reference temperature 𝜃0. Then the body force
acting on the fluid in the conservation of momentum, Eq. (3), becomes

𝐟𝑖 = −𝐠𝛽(𝜃𝑖 − 𝜃0). (15)

where 𝐠 is the gravity vector. In this way, the momentum equation
and energy equation are coupled. This form is used in many mixing
models [30,33,51,52].

2.6. New adiabatic boundary condition

The fluid is heated by applying a Dirichlet condition to the bound-
ary, such that

𝜃 = 𝜃𝐵 (16)

is constant for some boundary temperature 𝜃 .
4

𝐵

An adiabatic boundary (no heat transfer) can be approximated by
setting the thermal conductivity to

𝑘 = 0 (17)

for the boundary component, so that particles in this component do not
contribute to the temperature evolution in Eq. (9). This is equivalent
to the naturally adiabatic condition of no boundary particles for solids
described by Cleary [26], giving a zeroth order approximation, so is ex-
pected to have similar limitations. This approach introduces additional
truncation error, since the kernels of fluid particles near the boundary
are incomplete when computing a change in temperature. However, the
existing boundary particles are able to contribute to SPH summations
for other variables, so no additional truncation error is introduced here.

For a homogeneous Neumann condition (such as an adiabatic
boundary for temperature) the symmetric boundary condition can be
used as shown in Fig. 1. A more accurate approach than Eq. (17) can be
derived by extending the first-order consistent mDBC method, recently
introduced by English et al. [43] for density. The mDBC treatment
is a modification to the DualSPHysics dynamic boundary condition
(DBC) based on the work of Marrone et al. (2011) [53], which reduces
penetration of boundaries as well as allowing for partial slip conditions.
Layers of boundary particles are used, as with DBC, but the physical
boundary is midway between fluid and boundary particles. Boundary
particles are mirrored into the fluid as ghost particles along the bound-
ary normal into the fluid. At corners boundary particles are reflected
onto ghost particles along a line through the vertex. Density and its
gradient are found at a boundary particle 𝑖 for its corresponding ghost
particle 𝑖𝑔 using SPH interpolation over surrounding fluid particles,
along with the first-order consistent correction of Liu and Liu [54].
When there are too few particles within the kernel of the ghost particle,
the correction is not possible and a Shepard filter is used instead.
Density at a boundary particle 𝑖 is then calculated through

𝜌𝑖𝑔 = 𝜌𝑖 + (𝐫𝑖 − 𝐫𝑖𝑔 ) ⋅
⎡

⎢

⎢

⎢

⎣

𝜕𝑥𝜌𝑖
𝜕𝑦𝜌𝑖
𝜕𝑧𝜌𝑖

⎤

⎥

⎥

⎥

⎦

. (18)

Boundary particles are given zero velocity, unless a moving boundary
is specified, as for the DBC method. No-slip boundary conditions are
enforced by setting boundary particle velocities to 𝐯 = (0, 0).

Following the mDBC method for computing normals and ghost
particles, the temperature at a boundary particle 𝑖 is the temperature
interpolated at its corresponding ghost particle 𝑖𝑔 . As with density, the
correction of Liu and Liu [54] is applied to 𝜃𝑖𝑔 as shown in Fig. 1, then

𝜃𝑖 = 𝜃𝑖𝑔 . (19)

This is the same as Eq. (18) without the gradient term. In this way,
temperature is reflected onto boundary particle across the line of the
adiabatic boundary, blocking heat transfer through the boundary.
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Fig. 3. Comparison of isotherms for heat conduction case: SPH model on left, analytical solution on right.
The introduction of the mDBC method [43] has created opportuni-
ties for more accurate boundary conditions for other flow properties.
The new thermal boundary condition in this paper exploits the up
to 2nd-order accuracy and 1st-order consistency of mDBC. Similar
ideas have been explored in [12] who used a zeroth-order correction
and linear extrapolation centred on mapping particles located at the
boundary for vertical walls. However, the approach presented herein
is suitable for general application and ensures 1st-order consistency as
well as avoiding kernel truncation errors. It is demonstrated here that
it allows the simulation of the physical processes of 3-D thermal flows
with linear consistency at the adiabatic walls, with both CPU and GPU
implementations.

2.7. Timestepping and timestep size

Along with the two timestep size criteria included in DualSPHysics
[42] (which account for acceleration, 𝐚, and speed of sound, 𝑐), defined
as

𝑑𝑡𝑓 =
√

ℎ
|𝐚|max

(20)

𝑑𝑡𝑐 =
ℎ

max
{

𝑐, 10|𝐯|max
}

+ ℎ𝜈
, (21)

where 𝜈 is the lower of the viscosities present, the criterion account-
ing for viscous dissipation, added to DualSPHysics by Fourtakas and
Rogers [55], is used

𝑑𝑡𝜈 =
ℎ2

𝜈max𝜆𝑟
, (22)

where 𝜆𝑟 is a relaxation parameter set for each case. For this work,
with each SPH particle having its own viscosity, 𝜈max is taken to be the
maximum viscosity of all particles as interaction forces are computed
in each timestep.

Additionally, a fourth timestep constraint must account for thermal
dissipation when temperature evolution (Eq. (9)) is included in the
model. Cleary [26] introduced the diffusion timestep criterion due to
heat transfer for SPH:

𝑑𝑡𝜃 ≤
0.1𝜌𝐶𝑉 ℎ2

𝑘
, (23)

where the coefficient 0.1 corresponds to a Courant-type number. This
work uses specific heat at constant pressure, rather than constant
volume. Although 𝐶𝑝 > 𝐶𝑉 , the difference is small relative to their
magnitudes so will not have a significant effect on the timestep size.
A thermal time constraint parameter can be defined as

𝛩𝑖 =
𝑘𝑖 (24)
5

𝜌𝑖(𝐶𝑝)𝑖
Since 𝑘, 𝐶𝑝 can vary between components and density varies with time
and between particles, 𝛩max = max𝑖 𝛩𝑖 is computed at each timestep as
𝜈max and the final timestep constraint is

𝑑𝑡𝜃 = 0.1 ℎ2

𝛩max
. (25)

The resultant timestep chosen for each time integration iteration is

𝑑𝑡 = 𝐶0 min{𝑑𝑡𝑓 , 𝑑𝑡𝑐 , 𝑑𝑡𝜈 , 𝑑𝑡𝜃}, (26)

where 𝐶0 is the chosen CFL number. A lower limit to 𝑑𝑡 is typically set
as

𝑑𝑡min ≤ 0.05ℎ
𝑐
, (27)

or may be chosen explicitly, in order to avoid the timestep becoming
prohibitively small.

Multiple components are included in order to be able to simu-
late mixing driven by the convective flow. The non-Newtonian multi-
components code of Fourtakas and Rogers [55] is adapted for com-
ponents of different viscosity. It is also extended to admit boundary
components, so that boundary conditions may be assigned in this way
as a separate component, as for the adiabatic boundary condition.

2.8. Implementation in DualSPHysics

The DualSPHysics code is a highly optimised open-source SPH
code designed to run simulations exploiting the hardware acceleration
provided by graphics processing units (GPUs).

Currently, DualSPHysics admits a single viscosity for a simulation.
Arrays have been added to the code so that each SPH particle may have
its own viscosity and temperature. Both are included as global arrays
within DualSPHysics, so they can be accessed and updated at any point
during the simulation, as well as output to files.

An option flag is added to choose to set multiple components with
different viscosities and thermal properties. When setting up a case,
component parameters and options are assigned within the special
section of the case XML input file. Each component is identified by a
unique number, which is stored along with its component properties.
The same properties can be allocated to boundaries in order to set
boundary conditions.

Initial viscosity and temperature are given to each SPH particle
according to which component they lie in during the initialisation of the
case. If the option flag is selected then the code forks to use particle in-
teraction functions including the modified viscous term in Eq. (12) and
temperature evolution Eq. (9). For each SPH particle, the component
number is found and corresponding component properties are looked
up from the component arrays to be used in the interaction equations.

Extending these modifications to the GPU code was found to speed
up simulations by over 45 times. Further details of the implementation
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in DualSPHysics, with a complete list of component parameter options,
can be found in Section 3.4 of Reece [56].

3. Numerical results and discussion

3.1. Heat conduction validation

Firstly, the ability of the added governing Eq. (9) for temperature to
produce a temperature gradient is demonstrated. The square cavity of
width 𝐿 = 1 m in Fig. 2 is filled by a fluid with constant viscosity.
The fluid is discretised with particle spacing 𝑑𝑝 = 0.02 m, giving
50 particles across the cavity. The Boussinesq approximation is not
included and gravity is set to zero as 𝐠 = 0 m s−2, so the fluid remains
approximately stationary. The speed of sound is then manually set to
𝑐 = 10 m s−1. The right boundary has constant temperature 𝜃𝐻 = 100 K
and the other 3 boundaries are constant at 𝜃𝐶 = 0 K. Initially, the fluid
has a uniform temperature of 𝜃𝐶 with thermal parameters 𝐶𝑝 = 100
J kg−1 K−1, 𝑘 = 2 W m−1 K−1, and has physical parameters of water
𝜌 = 1000 kg m−3, 𝜈 = 10−6 m2 s−1. Its temperature is then governed
by Eq. (9). Boundary particles are given the same parameter values, but
have constant temperature. Density is extrapolated into the boundary
using the mDBC method in Eq. (18). The resulting temperature field is
shown in Fig. 3, where it can be compared with the analytical solution.

An analytical solution is found from the two-dimensional diffusion
equation for temperature,

𝜕𝜃
𝜕𝑡

= 𝑘
𝐶𝑝𝜌

∇2𝜃 = 𝑘
𝐶𝑝𝜌

(

𝜕2𝜃
𝜕𝑥2

+ 𝜕2𝜃
𝜕𝑧2

)

(28)

on the domain 𝑥 ∈ [0, 𝐿], 𝑧 ∈ [0, 𝐿], with inhomogeneous boundary
conditions

𝜃(0, 𝑧, 𝑡) = 0;

𝜃(𝐿, 𝑧, 𝑡) = 𝜃𝐻 = 100;

𝜃(𝑥, 0, 𝑡) = 𝜃(𝑥, 𝐿, 𝑡) = 𝜃𝐶 = 0.

Looking for steady state solution for this Dirichlet problem by separa-
tion of variables, the global solution is

𝜃(𝑥, 𝑧) =
∞
∑

𝑛=1

2𝜃𝐻
𝑛𝜋 sinh(𝑛𝜋)

(1 − (−1)𝑛) sin
( 𝑛𝜋
𝐿

𝑧
)

sinh
( 𝑛𝜋
𝐿

𝑥
)

. (29)

Since for even 𝑛, (1 − (−1)𝑛) = 0; and for odd 𝑛, (1 − (−1)𝑛) = 2 the
solution can be rewritten as

𝜃(𝑥, 𝑧) =
4𝜃𝐻
𝜋

∞
∑

𝑛=1

1
(2𝑛 − 1) sinh((2𝑛 − 1)𝜋)

sin
(

(2𝑛 − 1)𝜋
𝐿

𝑧
)

sinh
(

(2𝑛 − 1)𝜋
𝐿

𝑥
)

.

(30)

This is particularly useful numerically where the solution must be ap-
proximated as a finite sum. When computing the solution numerically,
and since sinh(𝑥) is not bounded, a finite sum must be used where 𝑁
approximates infinity. 𝑁 = 100 was found to be adequate in MATLAB.

It can be seen in Fig. 3 that the results of this SPH model compare
well with the analytical solution found. The error is quantified with an
𝐿2 norm as

𝐿2(𝜃) =

√

√

√

√

1


∑ (𝜃analytical − 𝜃SPH)2

𝜃2𝐻
(31)

where  is the total particle number, and point-wise error is ap-
proximately constant throughout the fluid domain. Fig. 4 shows the
particle convergence plot for this case. It can be seen that initially
the convergence rate is between first and second order before the
error starts to saturate as the interparticle distance 𝑑𝑝 decreases. This
convergence behaviour is typical for cases with stationary particles
[57].
6

Fig. 4. Particle convergence of 𝐿2(𝜃) norm with interparticle spacing 𝑑𝑝 for the heat
conduction case.

Fig. 5. Diagram of differentially heated cavity flow.

3.2. Differentially heated cavity

For this test case, the geometry is again a two-dimensional square
cavity, but with the top and bottom boundary conditions being adia-
batic as in Fig. 5. The literature [58,59] has the fluid filling the cavity
as air at room temperature, with 𝑃𝑟 = 0.71, and 𝑅𝑎 ranging from 103 to
108 (all within the region of laminar flow [59]). In this work, the fluid
is taken to be air at 𝜃 = 20 ◦C and 𝑅𝑎 = 105 chosen for comparison
with data in the literature. The values used can be seen in Table 1.
Following Barakos et al. [60], the temperature difference is fixed whilst
the cavity width 𝐿 is varied to set 𝑅𝑎. To ensure that the temperature
difference between boundaries is large enough to have a significant
effect on the flow, and any velocities are orders of magnitude larger
than the size of errors, it is chosen to be 𝜃𝐻 − 𝜃𝐶 = 20 K with 𝜃𝐻 =
303 K. This means that the cavity width must be 𝐿 = 0.0386 m to
maintain chosen characteristic values. Note that the commonly-used
density reinitialisation and diffusion techniques [16,61] are not used
in this approach.

Fluid is initially stationary and starts with uniform temperature
𝜃(𝑡 = 0) = 293 K, which is also set as the reference temperature (𝜃 ) in
0
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Fig. 6. Temperature (𝜃∗) and vertical velocity (𝑣∗𝑧) along horizontal mid-line for 𝑑𝑝 = 0.00025 m at 𝑡∗ = 0.5 for 2-D differentially-heated cavity.
Table 1
Parameter values for differentially heated
cavity flow.

Parameter Value

𝜈 1.506 × 10−5 m2 s−1

𝜌 1.204 kg m−3

𝐶𝑝 1.006 × 103 J kg−1 K−1

𝑘 0.02587 W m−1 K−1

𝛽 3.43 × 10−3 K−1

𝑔 −9.81 m s−2

Table 2
Simulation parameters for differentially heated cavity case.
ℎ 2𝑑𝑝
𝑐 12|𝐯|max
CFL number 0.1
Viscous term Monaghan and Gingold [50] operator with arithmetic mean
Particle shifting type Full
Shifting coefficient −2
Density diffusion type None

Fig. 7. Convergence of 𝜃∗ and 𝑣∗𝑧 with increasing resolution, for ℎ = 2.5𝑑𝑝, for the 2-D
differentially heated cavity case.

the Boussinesq term. Unlike the previous case in Section 3.1, a realistic
gravitational acceleration is included in the Boussinesq term (Eq. (15)).

The key non-dimensional parameters for this case are the Prandtl
number

𝑃𝑟 =
𝜈𝜌𝐶𝑝 , (32)
7

𝑘

Fig. 8. Isotherms for 𝑅𝑎 = 105 for differentially heated cavity with new mDBC adiabatic
boundary condition at 𝑡∗ = 0.5.

Fig. 9. Nusselt number at hot wall of differentially heated cavity for 𝑅𝑎 = 105. Results
with new mDBC adiabatic boundary condition at 𝑡∗ = 0.5 in blue; with ◦ Massarotti
et al.[62], □ Manzari [63], ⋅ Wan et al. DSC, − Wan el al. FEM. [59].

which gives a ratio of viscous to thermal diffusion, and the Rayleigh
number

𝑅𝑎 =
𝑔𝛽𝐿3(𝜃𝐻 − 𝜃𝐶 )𝐶𝑝 , (33)
𝜈𝑘
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Fig. 10. Average Nusselt number at hot wall for differentially heated cavity. Plotted
from 𝑡∗ = 0.01 onwards since there is a discontinuity in temperature at the boundary
for initial conditions.

Table 3
Runtime for two and three dimensions for differentially heated cavity
case (to 4 significant figures) with CFL number 0.1, smoothing length
ℎ = 2.0𝑑𝑝, particle spacing 0.00025 m for 60 s.
Dimensions Number of fluid particles Runtime [s]

2 23 716 32 330
3 474 320 443 700

which characterises natural convection in the flow. A higher Rayleigh
number indicates that buoyancy forces are more important to the flow
than viscous forces.

Boundary conditions for density and velocity are imposed using
mDBC, as described in Eq. (18). The boundaries are given the same
parameters as the fluid in Table 1, but are stationary and not governed
by Eq. (9) so do not need a value for thermal expansion coefficient,
𝛽. Instead, left and right boundaries are held at constant temperatures
𝜃𝐻 and 𝜃𝐶 respectively by assigning corresponding boundary particles
these temperatures. Top and bottom boundaries are adiabatic, that is
𝜕𝜃
𝜕𝑧 = 0, and are given the same initial temperature as the fluid. This is
achieved using the new adiabatic boundary method in Eq. (19) based
on mDBC. Following the timestep constraint of Wan et al. [59],

𝑑𝑡 ≤ min
{

4𝑃𝑟
(|𝑣𝑥| + |𝑣𝑧|)2

,
𝑃 𝑟(𝑑𝑝)2

2

}

= 1.42 × 10−6, (34)

the initial timestep size is chosen to be 𝑑𝑡 = 1.5 × 10−6 s.
A kernel smoothing length of ℎ = 2𝑑𝑝 was found to be required

for flow to remain in motion at steady state, demonstrating that the
number of neighbouring particles is key to running this case success-
fully. For smaller ℎ, numerical dissipation dominates and results in the
temperature profile diffusing itself. This results in a reduction of the
particle velocities such that fluid stops moving, and all heat transfer
is by conduction rather than convection. Simulation parameters used
for the successful differentially heated cavity cases are summarised in
Table 2. Contributions to numerical dissipation come from the timestep,
shifting (all particle types with coefficient 𝐷 = −2 [66]) and the viscous
term (no density diffusion is applied), as well as the SPH approximation
error. The timestep constraints for viscosity and temperature (Eqs. (22)
and (25)) are both included and the simulation is run with a CFL
number of 0.1 and speed of sound 𝑐 = 12|𝐯|max. The viscous term
is approximated with the Monaghan and Gingold operator, using the
arithmetic mean in Eq. (14).

Results are compared with those of Wan et al. [59], who use a high
order discrete singular convolution scheme, for 𝑅𝑎 = 105 at the highest
resolution (161 × 161 mesh points). The SPH model is first run with a
8

Table 4
Mixing measures, with global measures below line.

Mixing measure Definition

Volume fraction of phase 𝐴 at point 𝑖 𝐹𝐴
𝑖 =

∑

𝑗∈𝐽
𝑉 2
𝑗 𝑊𝑖𝑗

∑

𝑗∈𝐽
𝑉 2
𝑗 𝑊𝑖𝑗

,

Finite time Lyapunov exponent at time 𝑇 [64] 𝛬𝑖(𝑇 ) =
ln(𝑑max (𝐫𝑖 (𝑡=0),𝑇 ))

𝑇

𝑑max(𝐫𝑖(𝑡 = 0), 𝑇 ) = max𝑗
{

𝑟𝑖𝑗 (𝑡=𝑇 )
𝑟𝑖𝑗 (𝑡=0)

}

Robinson’s local mixing measure [24] 𝑀𝑖 = (
√

2 + 1)

⎛

⎜

⎜

⎜

⎝

𝐹𝐴
𝑖

𝐹𝐴 +
1−𝐹𝐴

𝑖
1−𝐹𝐴

√

(

𝐹𝐴
𝑖

𝐹𝐴

)2

+
(

1−𝐹𝐴
𝑖

1−𝐹𝐴

)2
− 1

⎞

⎟

⎟

⎟

⎠

New mixing measure [44] 𝑀 = 𝛬 ⋅ 𝐹 ∈ [0, 1]

𝛬𝑖 =
𝛬𝑖

max
𝑗

𝛬𝑗

𝐹
𝐴
𝑖 =

{ 𝐹𝐴
𝑖

𝐹𝐴 if 𝐹𝐴
𝑖 ≤ 𝐹𝐴

1−𝐹𝐴
𝑖

1−𝐹𝐴 if 𝐹𝐴
𝑖 > 𝐹𝐴

Mixing entropy [65] 𝑆∗
𝐴 ∶= 𝑆−𝑆

𝑆max−𝑆

𝑆𝐴 = −
∑𝑁

𝑗=1 𝐹
𝐴
𝑗 log(𝐹𝐴

𝑗 )

𝑆𝐴 = 𝑆𝐴(𝑡 = 0)

New mixing measure [44] 𝑀
𝐺
= 1

𝑁

∑𝑁
𝑗=1 𝑀 𝑗

particle spacing of 𝑑𝑝 = 0.0005 m, which means there are approximately
77 × 77 fluid particles. Non-dimensionalised variables, denoted by ∗,
are used for comparison and computed through [59]

𝐫∗ = 𝐫
𝐿
;

𝐯∗ =
𝐯𝐿𝜌𝐶𝑃

𝑘
;

𝜃∗ =
𝜃 − 𝜃𝐶
𝜃𝐻 − 𝜃𝐶

;

𝑡∗ = 𝑡𝑘
𝐿2𝜌𝐶𝑝

.

For 𝐿 = 0.0386 m, the horizontal line through the centre of the cavity
lies at 𝑟𝑧 = 𝐿

2 = 0.0193 m. Values for temperature and vertical velocity
are computed at equally spaced points along this line using the SPH
interpolation (Eq. (6)) of output data. Measurements are taken at time
𝑡∗ = 0.5, which corresponds to 𝑡 = 34.88 s, when Wan et al. [59] found
the flow has reached a steady state.

Results for temperature and vertical velocity component can be seen
in Fig. 6 respectively, interpolated from output data and plotted with
the benchmark data of Wan et al. [59]. Due to the different bound-
ary approaches for temperature and velocity, when plotting results,
boundary particles are included in the SPH summation for temperature,
but only fluid particles are included (with a kernel correction) when
computing velocity. The condition for no-slip boundaries is achieved
in the current version of mDBC by setting 𝐯 = 0 m s−1 for boundary
particles. The same approach is used for no-slip DBC and is known
to produce poor velocity gradients near walls. This results in non-
zero velocity at the wall when boundary particles are included in the
summation, and may contribute to the decrease in flow velocity found
for smaller smoothing lengths.

A convergence study is undertaken with fixed ℎ = 2.5𝑑𝑝 for varying
resolution by changing particle spacing 𝑑𝑝. Error is computed through
the 𝐿2 norms over 𝑁 data points along the horizontal centre line

𝐿2(𝜃∗) =

√

√

√

√

√

∑𝑁
𝑖=1(𝜃

∗
SPH − 𝜃∗ref)

2

∑𝑁
𝑖=1(𝜃

∗
ref)

2
(35)

𝐿2(𝑣∗𝑧) =

√

√

√

√

∑𝑁
𝑖=1((𝑣∗𝑧)SPH − (𝑣∗𝑧)ref)2

∑𝑁
𝑖=1(𝑣∗𝑧)

2
ref

(36)

where subscript ‘ref’ denotes the value in the literature. A larger
smoothing length is chosen than previously to allow the simulation to
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Fig. 11. Temperature (𝜃∗, left) and vertical velocity component (𝑣∗𝑧 , right) plots along a horizontal line through the centre of the cavity for the quasi-2D case, compared with the
results of Wan et al. [59]. CFL number 0.1, ℎ = 2.0𝑑𝑝, 10 particles in periodic dimension.

Fig. 12. Temperature (𝜃∗, left) and vertical velocity component (𝑣∗𝑧 , right) plots along a horizontal line through the centre of the cavity for the quasi-2D case, compared with the
results of Wan et al. [59]. CFL number 0.2, ℎ = 1.5𝑑𝑝, 20 particles in periodic dimension.

Fig. 13. Temperature (𝜃∗, left) and vertical velocity component (𝑣∗𝑧 , right) plots along a horizontal line through the centre of the cavity for the quasi-2D case, compared with the
results of Wan et al. [59]. CFL number 0.1, ℎ = 2.0𝑑𝑝, 20 particles in periodic dimension.
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run successfully at the coarsest resolution. However, the flow becomes
stationary before reaching the correct steady state for this largest
particle spacing. Fig. 7 shows that the velocity is converging at between
first and second order before the rate of convergence begins to decrease.
Since the ratio ℎ

𝑑𝑝 remains constant for all resolutions, a plateau is
found as resolution is increased as the limiting discretisation error is
reached [57].

Although the size of the error in temperature is smaller than for
velocity, due to the no-slip boundary method, the limit of convergence
is reached at a larger particle spacing and the error increases with the
finest resolution. The limit is reached sooner since the computation of
temperature involves the approximation of a second order gradient,
which introduces an extra error. Wan et al. [59] also found that tem-
perature converged faster with time than velocity, in agreement with
these results. A coarsest resolution of 𝑑𝑝 = 0.0005 m was found for cir-
culation to develop successfully and be sustained, without dissipation
dominating the flow.

Fig. 8 shows the new adiabatic boundary condition from Eq. (19) is
effective, and compares well to the isotherms found by Wan et al. [59].
Isotherms are normal to the adiabatic boundaries as they approach,
since there is no change in temperature through them.

The Nusselt number, defined as

𝑁𝑢 =
|

|

|

|

|

𝜕𝜃∗

𝜕𝑟∗𝑥

|

|

|

|

|𝑟𝑧∈wall(𝜃𝐻 )
(37)

is shown in Fig. 9. The gradient is calculated using a second order
forward finite difference, which matches the best possible order of
accuracy of the SPH method, with 𝛥𝑥 = 𝑑𝑝. There is overall agreement,
however the maximum value of the Nusselt number is slightly overpre-
dicted at the base the domain. The mean Nu at the hot wall is plotted
against time in Fig. 10 where it is clear that the solution reaches steady
state by 𝑡∗ = 0.3.

3.3. Quasi-2D differentially heated cavity

To validate the code in three dimensions, a quasi-2D case is run by
extending the domain into the third lateral dimension (the 𝑦 direction)
using periodic boundaries. In this 3-D domain, the width of the 𝑦-
direction is set to be sufficiently small such that behaviour of the
solution is effectively 2-D at the same time as being wide enough for
a particle’s kernel not to overlap with itself. Any slice of the 𝑥 − 𝑧
plane can therefore be compared to the previous two dimensional
cases. The case is run as previously, by specifying the number of
particles in the lateral periodic 𝑦−dimension such that periodicity is
achieved without particles’ kernels interacting with themselves in order
to prevent unphysical periodic effects. Hence, with an ℎ∕𝑑𝑝 = 2.5
a minimum of 10 particles is required in the 𝑦−dimension. A finer
resolution of 𝑑𝑝 = 0.00025 m is used, since the simulation is more
sensitive to numerical dissipation with the extra dimension included
and does not run successfully for 𝑑𝑝 = 0.0005 m since this leads
to unphysical overlapping of kernels in the periodic 𝑦 direction. The
results in Fig. 11 show the comparison of temperature and velocity with
the benchmark literature data.

Increasing the depth in the 𝑦−dimension to 20 SPH particles signif-
icantly increases runtime by more than 13 times, as can be seen for
an example case in Table 3. In order to mitigate this, the smoothing
length is set to ℎ = 1.5𝑑𝑝 to maintain approximately the same number
of neighbours as the 2D case, and the CFL number is increased from 0.1
to 0.2. The results in Fig. 12 are poorer because of these compromises,
but this demonstrates the capability of running the case with a smaller
smoothing length as a result of the extra dimension increasing particle
numbers within the kernel. It is possible that the difference is also
due to 3D effects, which accumulate with time. Although results are
close for this smaller smoothing length, the exponential part of the
temperature curve is not captured in Fig. 12.
10
Fig. 14. Three-dimensional cylindrical tank with a single fluid component.

Thus, it is clear that a large smoothing length, ℎ, is required in
three dimensions, as well as two dimensions, in order to get accurate
results. The smoothing length ℎ = 2.0𝑑𝑝, as was successful for two
dimensions, is chosen, but the domain is extended to 20 particles in
the periodic dimension. This larger smoothing length gives significantly
better results, in Fig. 13, than the previous ℎ. Increasing the number of
neighbours in this way is shown to improve results and get very close to
the benchmark solution of Wan et al. [59]. To reduce runtime without
impacting accuracy, it may be possible to increase the CFL number,
since the simulation is stable.

3.4. Convective flow in a cylindrical tank

3.4.1. Single-component 3-D convective flow
A case of flow within a cylindrical tank, where the curved surface

is heated, is proposed. Initially, a single component fluid completely
fills the tank. As can be seen in Fig. 14, the top and bottom boundaries
are adiabatic. This is enforced by the new mDBC adiabatic boundary
condition for temperature, defined in Eq. (19). Boundary conditions for
density and velocity are enforced using DBC, as particles were found to
escape through the boundaries when using mDBC. The number of fluid
particles penetrating the boundary is significantly reduced when using
the DBC, suggesting a correction needs to be made to the mDBC method
to take account of the difference in volume when extrapolating density
into a concave boundary. The curved boundary is held at constant
temperature 𝜃𝐻 , heating the fluid inside the container. The fluid has
a uniform initial temperature of 𝜃𝐶 .

Beginning with the parameters used in Section 3.2, where the fluid
is air with a constant viscosity of 𝜈 = 1.506×10−5 m2 s−1, and also setting
𝐻 = 2𝑅 = 0.0386 m, a similar Rayleigh number (𝑅𝑎 = 105) is expected.
The temperatures are also chosen to be the same, with 𝜃𝐶 = 283 K and
𝜃𝐻 = 303 K. All boundaries have the same thermal properties as the
fluid and the initial particle spacing is chosen to be 𝑑𝑝 = 0.001 m.

Density diffusion is included to reduce accumulation of numerical
error from pressure fluctuations, and particle shifting has typical coef-
ficient 𝐷 = −2 to maintain a uniform particle distribution. This work
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Fig. 15. Density in 𝑥 = 0 and 𝑦 = 0 planes at 𝑡 = 45 s for single component cylindrical tank.

Fig. 16. Temperature in 𝑥 = 0 and 𝑦 = 0 planes at 𝑡 = 45 s for single component cylindrical tank.

Fig. 17. Velocity in 𝑥 = 0 and 𝑦 = 0 planes at 𝑡 = 45 s for single component cylindrical tank.



International Journal of Heat and Mass Transfer 233 (2024) 125904

12

G. Reece et al.

Fig. 18. Density in 𝑥 = 0 and 𝑦 = 0 planes at 𝑡 = 45 s for single component cylindrical tank but increased viscosity.

Fig. 19. Temperature in 𝑥 = 0 and 𝑦 = 0 planes at 𝑡 = 45 s for single component cylindrical tank but increased viscosity.

Fig. 20. Velocity in 𝑥 = 0 and 𝑦 = 0 planes at 𝑡 = 45 s for single component cylindrical tank but increased viscosity.
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Fig. 21. Thee-dimensional vitrification case with two fluid components.

uses the shifting term of Skillen et al.[66],

𝛿𝐫𝑖 = −𝐷ℎ|𝐯𝑖|𝑑𝑡
∑

𝑗

𝑚𝑗

𝜌𝑗
∇𝑖𝑊𝑖𝑗 . (38)

The density diffusion term of Fourtakas et al. [67], included in Du-
alSPHysics v5.0, is used for this case with density diffusion term

𝛿ℎ𝑐
∑

𝑗
2
𝑚𝑗

𝜌𝑗
(𝜌𝑖𝑗 − 𝜌𝐻𝑖𝑗 )

𝐫𝑖𝑗
𝑟2𝑖𝑗

⋅ ∇𝑖𝑊𝑖𝑗 . (39)

The variables at 45 s in planes 𝑥 = 0 and 𝑦 = 0 are displayed in
Figs. 15–17, where properties have been interpolated to a regular grid
of spacing equal to the initial interparticle distance. It can be seen in
Fig. 16 that heating is clearly taking place via conduction from the
curved wall where temperatures are increased and convection of the
fluid resulting in heat transferring towards the centre of the tank at
the top. However, the density in Fig. 15 is not radially symmetric
as expected, with velocity in Fig. 17 behaving similarly. No relevant
literature could be found to determine whether this is an appearance
of circulation cells due to a physical instability. Later, around 60 s,
particles are lost when pre-defined density limits are exceeded.

Increasing the constant viscosity from 𝜈 = 1.506 × 10−5 m2 s−1 to
𝜈 = 10−4 m2 s−1 to avoid the density pattern found previously results
in a symmetric density as well as velocities clearly following convec-
tive flow, as seen in Figs. 18–20. This results in heating throughout
the cavity and evidence of recirculation, with all particles having an
increased temperature at 45 s. A single fluid component within the
heated cylindrical tank exhibits radially symmetric circulation due to
buoyancy-driven flow.

3.4.2. Multi-component 3-D convective flow
Mixing of components is investigated by splitting the fluid within

the cavity horizontally into two fluid components of equal height. This
is shown in Fig. 21, where boundary conditions remain as before.

Starting from the previous case with dimensions 𝐻 = 2𝑅 = 0.0386
m, each phase has a constant viscosity. The top fluid component is
chosen to have 𝜈 = 2 × 10−4 m2 s−1 and the bottom 𝜈 = 10−4
13

1 2
m2 s−1. Other fluid properties are the same as for the previous single-
component case. Both temperature and density are radially symmetric
in Figs. 22 and 23, but temperature has almost reached 𝜃𝐻 everywhere
by 60 s. Since viscosity is constant in each fluid component, Fig. 24
shows clear movement of and mixing between components caused by
convective flow. This is confirmed by the velocity field in Fig. 25.

Previous work by the authors [44] evaluated multiple numerical
measures of mixing and proposed a new measure that can quantify both
local composition and movement within the mixture. A summary of the
measures assessed [44] is shown in Table 4. The new measure combines
volume fraction and finite time Lyapunov exponent to illustrate and
quantify both the degree of mixing at a point, as well as how well-
mixed the components are at that location. Here, the measures are
applied to gain insight into mixing taking place within the cavity. The
finite-time Lyapunov exponent (FTLE) in Fig. 26 shows convective flow
and circulation, whilst mixing between components is seen in the other
measures. The interface between components is highlighted, and large
areas of each isolated component fluid shown. Both mixing entropy
(both components) and the global mixing measure in Fig. 27 show
mixing increasing with time. By 120 s the rate of increase is slowing,
but a steady state has not yet been reached.

The three-dimensional mixing behaviour can be seen by plotting an
isosurface of the combined mixing measure, as in Fig. 28. The mixing
measure is computed for all points in the three-dimensional region
where SPH particles were at time 𝑡 = 0 s, showing convective flow
driven by the heated wall. Investigating a range of isosurface values
shows that fluid initially at the centre of the tank has relatively high
VF-FTLE values and therefore good mixing, with the lowest levels of
mixing occurring towards the bottom of the tank.

3.4.3. Multi-component 2-D convective flow
Assuming radial symmetry of flow and variables within the tank,

a two-dimensional plane at 𝑦 = 0 is simulated, as shown in Fig. 29
with 𝜈1 = 2 × 10−4 m2 s−1, 𝜈2 = 10−4 m2 s−1. Running two-dimensional
simulations allows a general understanding of a large number of cases
to be obtained by taking advantage of the shorter runtime whilst
providing insight into the flow behaviour. The results at 300 s in Fig. 30
show the same flow behaviours, in particular the circulation caused by
heating at both side walls and symmetry of density and temperature.
Particles are still lost, but fewer at 7% over 300 s.

The effect of this circulation on mixing between components is
demonstrated in Fig. 31. The volume fraction (VF) clearly shows that
the convection is causing circulation and mixing of component fluid,
although there are still regions of separate components at 300 s. The
FTLE is fairly constant for all times, consisting of the two circulating
cells. Robinson’s measure shows clearly the interface between com-
ponents, whereas the new mixing measure has more variation at the
interface depending on where it lies on areas of high circulation. The
flow behaviour closely resembles the three-dimensional case, justifying
the use of two-dimensional simulations in preliminary investigations.

4. Conclusions

This paper has presented a new implementation of an adiabatic SPH
boundary condition with buoyancy to simulate buoyancy-driven circu-
lation in multi-component flows. The temperature equation (Eq. (9))
and Boussinesq approximation (Eq. (15)) are added to simulate
buoyancy-driven flow in the differentially heated cavity case in Sec-
tion 3.2. The Dirichlet boundary condition for temperature, discussed
in Section 2.3, is found to be adequate for heating. However, the
new higher order adiabatic boundary condition, based on the mDBC
method, is established to be superior to the more simple method of
excluding boundary contributions. The thermal mDBC approach has
been validated against a range of test cases, specifically different

types of differentially-heated cavities, where it is shown to produce
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Fig. 22. Density in 𝑥 = 0 and 𝑦 = 0 planes at 60 s for two-component cylindrical tank.

Fig. 23. Temperature in 𝑥 = 0 and 𝑦 = 0 planes at 60 s for two-component cylindrical tank.

Fig. 24. Viscosity in 𝑥 = 0 and 𝑦 = 0 planes at 60 s for two-component cylindrical tank.
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Fig. 25. Velocity in 𝑥 = 0 and 𝑦 = 0 planes at 60 s for two-component cylindrical tank.

Fig. 26. Mixing measures at 120 s for three-dimensional two-component cylindrical tank.
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Fig. 27. Global mixing measures plotted against time for three-dimensional two-component cylindrical tank.
Fig. 28. Isosurface of new VF-FTLE mixing measure 𝑀 at value 0.01 for convective
flow in a cylindrical tank.

satisfactory agreement with reference solutions as long as the ratio of
the smoothing length to particle size is sufficiently large.

The cases in Section 3.4 demonstrate buoyancy-driven circulation
within a cylindrical tank heated at the curved wall. When two fluid
components are present, the flow causes gradual mixing between the
components. The mixing measure combining the volume fraction (VF)
and finite time Lyapunov exponent (FTLE) allows us to see in detail the
mixing in a 3-D cylindrical tank providing more detailed insight into
mixing than using either the velocity field or just the VF or FTLE alone.
Local mixing measures show the movement of fluid components, while
the distinctions of the new VF-FTLE measure are accentuated where
the regions of high circulation are located. The global mixing measures
give insight into the overall degree of mixing achieved at an instant, as
well as the progress towards homogeneity over time.
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Fig. 29. Two-dimensional heated cylindrical tank with two fluid components.
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Fig. 30. Density, temperature, viscosity and velocity at 300 s for two-dimensional two-component cylindrical tank.

Fig. 31. Mixing measures at 300 s for two-dimensional two-component cylindrical tank.
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