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Optical bistability and oscillating phases exist in a Sagnac interferometer and a single ring resonator made
of a χ (3) nonlinear medium where the refractive indices are modulated by the light intensity due to the Kerr
nonlinearity. An array of coupled nonlinear ring resonators behave similarly but with more complexity due to
the presence of the additional couplings. Here we theoretically demonstrate the bifurcation of edge modes, which
leads to optical bistability in the Su-Schrieffer-Heeger lattice with the Kerr nonlinearity. We also demonstrate
periodic and chaotic switching behaviors in an oscillating phase resulting from the coupling between the edge
mode and bulk modes with different chiralities, i.e., clockwise and counterclockwise circulations.
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Introduction. Asymmetrical states emerge when a system
loses balance and thus a symmetry between different com-
ponents is broken. This can lead to bistability, where the
system has two stable states for a single excitation. In some
cases, asymmetrical dynamic states can emerge with periodic
or chaotic oscillatory behaviors. In photonic systems, optical
bistability can appear when the light transmits through a cav-
ity with a nonlinear medium leading to two different optical
states, where one mode is dominant (switched on) and the
other is quenched (switched off) [1]. For instance, the stable
symmetry breaking has been studied for counterpropagating
light beams in a Sagnac interferometer [2] and microresonator
with Kerr nonlinearity [3–7] and also for a singular direc-
tion of input light in a one-dimensional (1D) chain of ring
resonators [8]. More interestingly, nonlinear optical ring res-
onators can present rich temporal dynamics with oscillatory
behaviors, displaying various types of mode switching, such
as chaotic, periodic, and self-switching dynamics [9]. These
various dynamics are the result of the nonlinear interaction
between the counterpropagating modes, and they manifest
the symmetry breaking, i.e., unequal intensities of the two
counterpropagating modes.

Topological phases of matters are classified depending on
the symmetry and dimension, featuring topological defects
and gapless modes in topological insulators and supercon-
ductors [10,11]. Further, three-dimensional topological band
insulator can have dislocation-line modes [12]. More recently,
topologically protected modes have been widely studied in
photonic systems due to their intriguing properties, such
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as unidirectional light propagation and robustness to de-
fects and disorders [13,14]. In particular, topological edge
modes in a 1D Su-Schrieffer-Heeger (SSH) configuration
and two-dimensional photonic quantum spin-Hall or quantum
valley-Hall structures have been employed in an array of
coupled lasers, namely, topological lasers [15–20]. Moreover,
nonlinear topological photonics has been studied in various
platforms such as waveguide arrays [21–24], microcavity po-
lariton systems [25,26], and optical resonators [27–33]. The
phase diagrams of a nonlinear SSH model and nonlinear
breathing kagome model were drawn for the nonlinear pa-
rameters and coupling coefficients between sites [31]. Also,
the edge solitons have shown to be stable at any energy when
the ratio between the weak and strong couplings falls below
a critical value [34]. Up until now, however, no research has
demonstrated spontaneous symmetry breaking coming from
the nonlinear response for the edge modes in photonic topo-
logical insulators.

In this paper we theoretically show that we can ob-
serve asymmetrical temporal dynamics, including optical
bistabilities and oscillation phases for edge modes in a non-
linear 1D SSH model. The system consists of an array of
coupled ring resonators with the Kerr nonlinearity. Using
the Lugiato-Lefever equation [35] with additional nearest-
neighbor couplings, we demonstrate the optical bistability of
the edge mode in the nonlinear SSH lattice. Finally, we use
Poincaré section plots, composed of the maxima of the oscil-
lating intensities, to display the oscillation phases featuring
periodic and chaotic switching.

Linear SSH model with two counterpropagating modes.
We start by considering a linear SSH chain which does
not have any resonance frequency shift coming from a
nonlinearity. As shown in Fig. 1(a), the 1D chain has (N + 1)
unit cells and every unit cell hosts two ring resonators: one
on the sublattice A, and the other on the sublattice B. The
(N + 1)-th unit cell has only one ring resonator that belongs
to the sublattice A, resulting in M = 2N + 1 ring resonators
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FIG. 1. (a) 1D array of coupled ring resonators with alternating
gap sizes. sin,± is the amplitude of input beams. (b) Schematic of
the SSH model with resonators with Kerr nonlinearity. B is the
XPM strength, v and w are the nearest-neighbor coupling coefficients
between ring resonators, and γc is the coupling coefficient between
the waveguide and the first ring resonator.

in total. In photonics, this SSH model can be implemented by
alternating the gap size between the ring resonators, resulting
in different intra- and intercell coupling coefficients v and w

[Fig. 1(b)]. The coupled ring resonators are excited by two
optical pumps with the same intensity, both of which are
coupled into the first ring resonator but in the opposite direc-
tions exciting clockwise (CW) and counterclockwise (CCW)
modes, respectively. Then the optical waves propagate back
and forth through all the resonators via the couplings between
the ring resonators. To calculate the intensities of circulating
optical waves at all ring resonators, we describe the time
evolution of the field amplitudes an(t ) and bn(t ) in the nth
unit cell [Fig. 1(b)] for which we use the temporal coupled
mode theory [36,37]. Then the coupled mode equations are
written as

dan,±
dt

= i(ω0 + iγn)an,± + ivbn,∓ + iwbn−1,∓ + δn,1γcsin,

dbn,±
dt

= i(ω0 + iγ ′
n)bn,± + ivan,∓ + iwan+1,∓, (1)

where

γn = γ0 + δn,1γc, γ ′
n = γ0. (2)

Here the subscript ± denotes the mode propagation directions,
CW and CCW, respectively. δn,1 is the Kronecker delta and ω0

is the resonance frequency of the uncoupled ring resonators.
The two input beams with the same amplitude sin, which is
given as

√
Iseiωt for pump intensity Is, are coupled to the CW

and CCW modes in the first ring (a1,±) with the waveguide-to-
ring coupling coefficient γc. Note that only an’s and bn’s are
time-dependent functions, and we have omitted the symbol (t )
for brevity.

To be more compact, we express the coupled mode equa-
tions [Eq. (1)] in a matrix form by using the Hamiltonian
H as

dx
dt

= Hx + S, (3)

where

x = (a1,+, b1,−, a2,+, b2,−, . . . , a1,−, b1,+, a2,−, b2,+, . . .)T.

Note that the Hamiltonian H can be differently defined after
multiplying i in both sides, which makes the equation look

like the Schrödinger equation and makes its eigenvalues cor-
respond to the real parts of the frequencies. However, we
have chosen this notation to make Eq. (3) similar to Lugiato-
Lefever equation, which we will explain in the following
section. Then the Hamiltonian H can be split into two terms
like

H = H0 + Hc, (4)

where

H0 = i(ω0 + iγ0)I2M (5)

with I2M the (2M×2M ) identity matrix. The ring-to-ring cou-
pling is expressed as

Hc = i

⎛
⎜⎜⎜⎜⎝

0 v 0 0 · · ·
v 0 w 0 · · ·
0 w 0 v · · ·
0 0 v 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠. (6)

Finally, the source term S is expressed as
[sin,+, 0, 0, . . . , sin,−, 0, 0, . . . ]T. For the remainder of
this paper, we assume the symmetric pumping by setting
sin,+ = sin,−.

The coupled mode equations [Eq. (3)] can be solved in both
frequency and time domains. For example, in the frequency
domain, by assuming x = x̃ exp(iωt ) and S = 0, we obtain an
eigenvalue equation

iωx̃ = Hx̃. (7)

Solving the eigenvalue equation gives an frequency spectrum
with so-called zero-energy modes that are topologically pro-
tected and localized on one of the edges of the SSH chain with
the smaller coupling coefficient among v and w. In this work,
we will use the term edge modes because their frequencies
deviate from the resonance frequency ω0 and thus they are
not any more zero-energy modes for nonlinear cases. We
call the rest of the modes bulk modes as the mode fields are
delocalized over the entire SSH lattice.

Lugiato-Lefever equation for nonlinear SSH model. Now
we introduce the Kerr nonlinearity in the linear SSH model. In
optics, the Kerr nonlinearity induces various nonlinear effects,
for instance, self-phase modulation (SPM), cross-phase mod-
ulation (XPM), four-wave mixing, and two-photon absorption
[38]. Here we consider only the SPM and XPM for the coun-
terpropagating rotating modes in the ring resonators, both of
which lead to a shift of the resonance frequencies of the CW
or CCW modes. Although only the couplings due to the XPM
are shown in Fig. 1(b), the frequency shift �ω is expressed by
(AIn,+ + BIn,−) where In,+ and In,− are the intensities of the
CW and CCW modes in the nth ring resonator, respectively.
A and B are the SPM and XPM nonlinear coefficients, respec-
tively.

For simplicity, we use the normalized Lugiato-Lefever
equation to describe the field amplitudes in our nonlin-
ear SSH model [35]. Notably, the equation is equivalent
to the one derived from the temporal coupled-mode theory
(see Appendix A for more details). With the time-varying
envelope amplitudes ã(t ), b̃(t ), defined as a(t ) = ã(t )eiωt ,
b(t ) = b̃(t )eiωt , respectively, the Lugiato-Lefever equation for
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a 1D SSH array of nonlinear ring resonators can be written as

dãn,±
dt̄

= −ãn,± − iη�ãn,± + iη(A|ãn,±|2 + B|ãn,∓|2)ãn,±

+ ivb̃n∓ + iwb̃n−1,∓ + δn,1sin,

db̃n,±
dt̄

= −b̃n,± − iη�b̃n,± + iη(A|b̃n,±|2 + B|b̃n,∓|2)b̃n,±

+ ivãn∓ + iwãn+1,∓, (8)

where t̄ = tγ0 is the dimensionless time. The first term on the
right-hand side represents damping, while the second term
stands for detuning (� = (ω − ω0)/γ0), which is the differ-
ence between the frequency of the continuous wave input
beams and the resonance frequency of a single ring resonator.
The third and fourth terms correspond to the SPM and XPM,
respectively, with the normalized nonlinear coefficients A and
B, and η = +1 for a self-focusing medium or η = −1 for
a self-defocusing medium. The terms with v and w refer to
the intra- and intercouplings between ring resonators as in the
linear case. Finally, we add a nonlinear term to Eq. (4) to have
the Hamiltonian for our nonlinear SSH model:

H = H0 + Hc + HNL, (9)

where

H0 = −(1 + iη�)I2M (10)

and

HNL = iηI2M × diag
(
μcw

1,a, μ
cw
1,b, . . . , μccw

1,a , μccw
1,b , . . .

)
, (11)

where

μcw
n,a = A|ãn,+|2 + B|ãn,−|2

and

μccw
n,a = A|ãn,−|2 + B|ãn,+|2.

Similarly we can define μcw
n,b and μccw

n,b . Because of the non-
linear terms, the time-dependent equation [Eq. (3)] cannot be
changed into an eigenvalue equation. Instead, we can obtain
the temporal evolution of the amplitudes ãn,±, b̃n,± by solving
it numerically. In this work, we use the Runge-Kutta fourth-
order method to integrate Eq. (3) with respect to the time.

Optical bistability of topological edge modes. Optical bista-
bility in a single ring resonator is a result of the XPM between
two counterpropagating modes [39]. This means that the Kerr
nonlinearity leads to a shift in the resonance frequency of the
two counterpropagating modes due to both SPM and XPM,
and the coupling via XPM between them leads to spontaneous
symmetry breaking above a certain threshold pump intensity
[3]. Here we want to answer the question whether we can ob-
serve the optical bistability using an edge mode in a nonlinear
SSH lattice model.

To theoretically observe the optical bistability in the non-
linear SSH lattice, we consider a SSH array of seven ring
resonators (M = 7) with detuning of 2.1, A = 1, B = 2.5,
and γc = 1 as the alternating coupling coefficients (v = 3
and w = 7). In our simulations, we vary the pump intensity
Is for a certain interval with random initial conditions. In-
deed, as shown in Fig. 2(a), we observe the optical bistability
where the symmetry between CW and CCW modes is broken

FIG. 2. (a) Optical bistability for seven ring resonators (M = 7)
with detuning � = 2.1, A = 1, B = 2.5, γc = 1, v = 3 and w = 7.
(b) Optical bistability with the Kerr nonlinearity in the first ring res-
onator only. (c), (d) Distributions of intensity for the input intensities
corresponding to the dashed vertical lines in (a).

for the pump intensity range between log(Is + 1) = 3.4 and
log(Is + 1) = 5.9. This means that one of the CW and CCW
modes becomes stronger while the other mode is suppressed.
As shown in Figs. 2(c) and 2(d), the amplitude decreases
gradually towards the bulk of the lattice system. Note that
the amplitude is relatively large for odd sites only (sublattice
A), and the intensity decreases exponentially along the right
direction for both single stable [Fig. 2(c)] and bistable cases
[Fig. 2(d)], which is reminiscent of the zero-energy edge
modes.

To explain the origin of the observed optical bistability, we
hypothesize that the optical bistability comes from the sym-
metry breaking in the first ring only. First, optical bistability
in a single ring resonator can occur when the pump intensity
is above a certain threshold called a bifurcation point. This
means the first ring will show the optical bistability first as
we increase the pump intensity under an excitation close to
the zero-energy frequency. Indeed, the detuning � = 1.85 is
smaller than the topological band gap (2|v − w| = 8) mean-
ing the zero-energy edge mode is dominantly excited even
though the system is at off-resonance. This is supported by the
field intensity distribution in Fig. 2(d). As the intensities in the
rest of rings are much smaller than the first ring [Fig. 2(d)],
only the first ring introduces bistability. and the modes in
the first ring couple to the other rings successively instead of
having additional optical bistability from the rest of the rings.
Second, to confirm this propagation of asymmetric intensities,
we consider the Kerr effect only in the first ring resonator
but keep all other parameters the same. This is equivalent to
switching off the Kerr effect in the 2N ring resonators except
the first ring resonator in our original setting. As shown in
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FIG. 3. Poincaré section of the maxima of the CW and CCW intensity time series for the first ring resonator in 1D SSH lattice composed
of seven ring resonators with alternating coupling, v = 3 and w = 7, here A = 1, B = 4 and γc = 1. (a) Maximum intensity curves for low
input intensities Is = 0.05 (yellow), 2 (cyan), 3 (green), 4 (blue), 5 (red). (b) For high input intensities Is = 20 (yellow), 25 (cyan), 30 (green),
35 (blue), 40 (red), both optical bistability and oscillation regions appear. The vertical dashed lines indicate frequencies determined by the
eigenvalue equation for the linear case (7).

Fig. 2(b), the intensity-intensity curve has almost an identical
shape as the original one except a slight reduction in the
range of Is and a slight change in the difference between two
counterpropagating mode intensities.

Asymmetrical temporal dynamics. Now let us look at the
temporal evolution of the optical intensities of a 1D SSH array
that contains seven ring resonators. To visualize oscillation
and chaotic phases in our nonlinear system, we will use the
Poincaré section obtained by plotting all the local maxima in
a time series of oscillating intensities [9]. Since the intensity
of each ring in the 1D SSH array follows the same pattern as
the intensity of the first ring (see Fig. 7 in Appendix C), we
plot the Poincaré sections for the first ring resonator only.

As shown in Figs. 3(a) and 3(b), the nonlinear SSH lattice
exhibits both bistability and oscillation phases in the range
of detuning corresponding to the edge mode and two bulk
modes with positive detuning for the linear SSH lattice (de-
noted as the vertical dashed lines). Here we set A = 1 and
B = 4 and change the pump intensity from 0.05 to 20 denoted
with different colors. As we can see in the zoomed view of
the plots, these spectra show seven resonance modes: one
edge mode with the largest intensity in the middle and six
bulk modes on both sides of the edge mode having three
on each side. For low pump intensities [Fig. 3(a)], the edge
mode shifts to larger detuning values dramatically and its
intensity increases significantly, whereas the bulk modes shift
less and their intensities increase slightly. This is due to the
localization of intensity at the first ring resonator. For high
pump intensities [Fig. 3(b)], the CW and CCW modes for the
edge mode undergo an interaction between them via XPM,
leading to an optical bistability. Remarkably, the high pump
intensity leads to the interaction between the edge mode and
the bulk mode near � = 6.8 for Is = 40 as shown in Fig. 4(a),

resulting in a series of oscillation phases occurring for both
CW and CCW modes. Note that CW and CCW intensities for
bistable and oscillation phases can be exchanged at any time
because the chirality depends on the history of the dynamic
system, which is determined by the initial conditions in our
case.

To quantify the degree of the CW-CCW symmetry
breaking (see Appendix B), we introduce the dissymmetry
parameter defined in a similar manner for a single microcavity
in Ref. [40] as

D =
∑

n ICW,n − ∑
n ICCW,n∑

n ICW,n + ∑
n ICCW,n

. (12)

Then a positive (negative) value of D means the CW (CCW)
mode is stronger than the other, corresponding to the optical
bistability, and D = 0 means the mode is CW-CCW symmet-
ric. For the bistability regime, the nonlinear system shows
relatively large dissymmetry close to 1 as shown in Fig. 4(b),
meaning the CW-CCW symmetry is strongly broken. How-
ever, for the oscillations regime (� > 6.9), the dissymmetry
has a random value between −1 and 1 and becomes very sen-
sitive to the detuning. A similar trend can be observed in the
dissymmetry calculated for the first ring only, reconfirming
that the origin of the optical bistability is mainly due to the
bifurcation of CW and CCW modes in the first ring.

To investigate the sublattice symmetry breaking (see Ap-
pendix B), we calculate polarization (P) in terms of

∑
n IA,n

(for sublattice A) and
∑

n IB,n (for sublattice B) for each
direction using the following equation:

P =
∑

n IA,n − ∑
n IB,n∑

n IA,n + ∑
n IB,n

. (13)
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FIG. 4. (a) Poincaré sections of the maxima of oscillating cou-
pled intensity as a function of detuning for pump intensity Is = 40,
for the first ring resonator from the 1D SSH array. The Poincaré sec-
tions for coupling coefficients (v = 3, w = 7) and XPM strength (B)
of 4. The red shading indicates a symmetric case, the yellow indicates
optical bistability, and the cyan indicates oscillations. The vertical
dashed lines refer to resonance frequencies for the linear 1D SSH
lattice. (b) Dissymmetry for CW and CCW modes. (c) Polarization.
(d) Participation ratio.

Positive polarization values in Fig. 4(c) indicate that the
modes for the bistability regime are localized at sublattice A;
a value close to 1 confirms that the energy of the modes is
concentrated at A sites. This is a reminiscence of topological
zero-energy mode which would show a completely polarized
distribution, i.e., P = 1.

To characterize the localization of the intensity of dynamic
modes in the whole SSH lattice, we calculate the participation
ratio (PR), which is given by [41]

PR =
( ∑

n In
)2

∑
n |In|2 . (14)

A large value of PR refers to delocalization. At small values
of detuning (� � 1.5), as shown in Fig. 4(d), the nonlinear
SSH lattice exhibits almost identical delocalization behavior
for both CW and CCW modes. In contrast, for larger detuning
(� � 1.5), one of the CW and CCW modes is more localized
that the other.

FIG. 5. Snapshots of intensity distribution in the nonlinear 1D
SSH lattice with Is = 40, B = 4; two figures in each row have the
same detuning values for the CW modes and the CCW modes,
respectively: (a), (b) in the optical bistability regime, (c), (d) in the
oscillation regime, and (e), (f) in the oscillation switching regime.

To better understand the asymmetrical dynamic modes, we
show the spatial distributions and temporal changes of the
excited mode intensity for different detuning in Figs. 5 and 6.
Here we focus on the case of Is = 40 and B = 4 as an example
of high pump intensity. For the optical bistability (� = 4.77)
shown in Figs. 5(a) and 5(b), both CW and CCW modes have
contrasting intensity values, whereas their profiles are similar
to the zero-energy edge mode’s profile in a linear SSH model
with exponentially decaying nonzero odd-site intensities and
zero even-site intensities. The deviations can be attributed to
the off-resonance excitation and the interaction between CW
and CCW modes via the nonlinear process (XPM). Note that
the excited mode is stable as they have constant intensities and
appear as two separate points in the phase space [Figs. 6(a)
and 6(b)]. When we increase the detuning further to � =
7.3, both the CW and CCW mode profile deviates further
away from the zero-energy edge mode but the CCW mode
profile deviates less still having low intensities at even sites
[Figs. 5(c) and 5(d)]. Here the largest value at the first site is
related to the zero-energy edge mode and also due to the fact
we are exciting the ring resonators from the waveguide on the
left side. The dynamics for this detuning [Figs. 6(c) and 6(d)]
is periodically oscillatory, resulting in two distinct regions in
the phase space meaning the CW mode intensity is always
larger than the CCW mode intensity (the trajectory for CW is
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FIG. 6. Time series of intensity and their phase space trajectories
for A = 1, B = 4 and Is = 40 at different values of detuning, for
the first ring resonators from 1 D SSH array of seven rings. (a), (b)
Optical bistability phase with � = 4.77; (c), (d) oscillations without
overlapping trajectories; (e), (f) periodic switching for � = 7.51; (g),
(h) chaotic switching with � = 8.78.

further away from the origin). For slightly larger detuning of
� = 7.51 [Figs. 6(e) and 6(f)], the two trajectories are merged
into one, meaning that the intensities between the two modes
alternate. In the phase space, they are located at different two
points with the π phase difference in the same trajectory.
For a large detuning of � = 8.78, we see chaotic oscillations
showing two separate trajectories covering a similar region in
the phase space [Figs. 6(g) and 6(h)].

In contrast to the optical bistability coming from the
coupling between two counterpropagating modes via nonlin-
earities (XPM and SPM), the emergence of the periodic and
chaotic oscillations has its origin in the coupling between the
edge mode and the bulk modes. The reasoning is as follows:
First, the resonance frequency shift of the edge mode when in-
creasing the intensity is much larger than the ones for the bulk
modes [Fig. 4(a)], and there are clear signatures of the edge
modes, i.e., an exponentially decaying odd-site intensities and
nearly zero even-site intensities [Figs. 5(c)–5(h)] although the
intensity distributions are getting close to the bulk modes.
Thus, our numerical simulations confirm that the edge mode
overlap with bulk mode due to the Kerr nonlinearity results in
the periodic and chaotic oscillations.

Conclusions. In summary, we have numerically demon-
strated the optical bistability and various types of oscillations

in a 1D SSH model composed of ring resonators with Kerr
nonlinearity. When the nonlinear terms are introduced in the
Lugiato-Lefever equation, the first ring’s CW and CCW mode
intensities are symmetric until the pump intensity reaches a
bifurcation point. Above the bifurcation point, the symmetry
is spontaneously broken due to the splitting of the resonance
frequencies of the two CW and CCW modes in the first ring
resonator. For the high-intensity regime, we have observed
oscillating phases including periodic and chaotic oscillations.
We have classified the periodic oscillation phases into two
different phases where the trajectories are separate or identical
in the phase space of the mode intensities. This emergence
of the oscillating phases can be attributed to the coupling
between the edge mode and bulk mode due to the large shift
of resonance peaks of the edge mode.

We believe that our theoretical model and numerical results
will provide valuable insight in understanding the complex
dynamics in coupled nonlinear resonator systems with two
chiral modes. In practice, the asymmetrical dynamic modes
can be demonstrated experimentally using an optical ring res-
onator array, such as a silicon microring resonator array [42].
In particular, the bifurcation states can be a building block for
optical memory and switching devices allowing for storing
and maintaining information by controlling the pump inten-
sities depending on the direction of light circulation [43,44].
Additionally, the various spatiotemporal dynamics could be
applied to the stability analysis of coupled lasers.

The data supporting the findings of this study are available
in the Cardiff University Research Portal [45].

Acknowledgment. We are grateful to Daniel Leykam
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European Regional Development Fund through the Welsh
Government (80762-CU145 [East]).

Appendix A: Derivation of the Lugiato-Lefever equation
using the coupled mode theory. The coupled mode theory [36]
has been used to describe the field amplitude a propagating in
an optical ring resonator, which can be written as

da

dt
= iω0a − γ a + γcs. (A1)

Here ω0 refers to the resonance frequency, and γ and γc are
the damping and coupling with the source coefficient, respec-
tively. We can express field amplitude a in terms of envelope
amplitude ã as

a = ãeiωt , (A2)

by substituting in Eq. (A1):

dã

dt
= [i(ω0 − ω) − γ ]ã + γcs̃, (A3)

where −�̃ = ω0 − ω, and then we can rewrite this equation in
terms of detuning as

dã

dt
= (−γ − i�̃)ã + γcs̃. (A4)

This equation is equivalent to the Lugiato-Lefever equa-
tion without nonlinearity terms; the terms in the r.h.s.
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FIG. 7. Poincaré sections of the maxima of oscillating coupled intensity as a function of detuning for a 1D SSH lattice (M = 7) with the
same parameters in Fig. 4(a). (a) For odd sites in the main text (Is = 40, v = 3, w = 7, A = 1, B = 4, γc = 1) with the cyan, green, blue, and
red corresponding to the first, third, fifteh, and seventh ring resonators respectively. (b) For even sites with the red, green, and blue colors
corresponding to the second, fourth, and sixth ring resonators, respectively.

correspond to damping, detuning, and source terms, respec-
tively.

Appendix B: Sublattice symmetry and CW-CCW symme-
try. In the linear regime, i.e., when Is � 0, our SSH model
[Fig. 1(b)] has two distinctive symmetries called sublattice
symmetry and CW-CCW symmetry. While both of them are
called chiral symmetry in the literature, we use the terms sub-
lattice symmetry and CW-CCW symmetry to avoid confusion.
The Hamiltonian of the SSH model can be written in the
following block matrix form:

H =
(

Hcw 0
0 Hccw

)
, (B1)

where Hcw (Hccw) is the SSH Hamiltonian for CW (CCW)
modes with the size of M×M. They can be written as

Hcw = i

⎛
⎜⎜⎜⎝

δcw
1,a v 0 0 . . .

v δcw
1,b w 0 . . .

0 w
. . .

. . .
...

...
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ (B2)

and

Hccw = i

⎛
⎜⎜⎜⎝

δccw
1,a v 0 0 . . .

v δccw
1,b w 0 . . .

0 w
. . .

. . .
...

...
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎠, (B3)

respectively. Here the diagonal terms, corresponding to the
onsite energy in a tight-binding description, represent the shift
of resonance frequencies:

δcw
n,a = i − η� + η(A|ãn,+|2 + B|ãn,−|2) (B4)

and

δccw
n,a = i − η� + η(A|ãn,−|2 + B|ãn,+|2). (B5)

δcw
n,b and δccw

n,b are defined similarly.
First, let us check the sublattice symmetry of the nonlinear

SSH Hamiltonian. The sublattice symmetry operator � with

the size of 2M×2M is given by

� =
(

�M 0
0 �M

)
, (B6)

where �M for the subspace with the size of M × M is:

�M =

⎛
⎜⎜⎜⎝

−1 0 0 . . .

0 1 0 . . .

0 0 −1 . . .
...

...
. . .

. . .

⎞
⎟⎟⎟⎠. (B7)

If we apply � to Hcw (Hccw), we obtain

�MHcw�†
M = i

⎛
⎜⎜⎜⎝

δcw
1,a −v 0 0 . . .

−v δcw
1,b −w 0 . . .

0 −w
. . .

. . .
...

...
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ (B8)

and

�MHccw�†
M = i

⎛
⎜⎜⎜⎝

δccw
1,a −v 0 0 . . .

−v δccw
1,b −w 0 . . .

0 −w
. . .

. . .
...

...
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎠. (B9)

This means that the sublattice symmetry is broken in the
strong nonlinear regime because the diagonal terms of Hcw

and Hccw do not vanish making �H�† �= −H. In the weak
nonlinearity regime, however, the diagonal terms approxi-
mately equal zero, satisfying �H�† = −H, and the sublattice
symmetry is recovered. Here we assume the detuning is zero.

Next, we check the CW-CCW symmetry. Let us define a
block mirror symmetry operator matrix P as

P =
(

0 IM

IM 0

)
, (B10)

L042013-7



ALHARBI, WONG, GONG, AND OH PHYSICAL REVIEW RESEARCH 6, L042013 (2024)

where IM is an identity matrix with size of M×M. Then we
apply P to the full Hamiltonian as

PHP−1 =
(

Hccw 0
0 Hcw

)
. (B11)

From (B2) and (B3) one can notice that PHP−1 = H is
satisfied only when ãn,− = ãn,+ which corresponds to the
symmetrical dynamic modes in the weak nonlinear regime.
For a strong nonlinear regime, we obtain PHP−1 �= H giving
rise to asymmetrical dynamics.

Appendix C: Site dependence of poincaré sections for
nonlinear SSH model. Figures 7(a) and 7(b) display Poincaré
sections of maxima of oscillating in coupled intensities Imax,±
for odd (sublattice A) and even (sublattice B) sites in the
1D SSH lattice, respectively. The odd-site intensities of the
CW and CCW modes follow the same pattern as the ones for
the first ring resonator, while the even-site intensities follow
the same pattern as the one the second ring resonator. The
symmetry is broken, i.e., the CW and CCW mode intensi-
ties are not equal for the optical bistability and oscillation
phases.
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