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A B S T R A C T

Since the concept of Industry 5.0 was proposed, the emphasis on human–machine interaction (HMI) in
industrial scenarios has continued to increase. HMI is part of the factory’s development towards Industry 5.0,
mainly because HMI can help realise the human-centric vision. At the same time, to achieve the sustainable
and resilient goals proposed by Industry 5.0, green, smart, and more advanced technologies are also considered
important driving factors for factories to achieve Industry 5.0. Human-centric smart manufacturing (HCSM)
factories that integrate HMI with advanced technologies are expected to become the paradigm of future
manufacturing. Therefore, it is necessary to discuss technologies and research directions that may promote the
implementation of HCSM in the future. In a smart factory, HMI signals will go through the process of being
collected by sensors, processed, transmitted to the data analysis centre and output to complete the interaction.
Based on this process, we divide HMI into four parts: sensor and hardware, data processing, transmission
mechanism, and interaction and collaboration. Through a systematic literature review process, this article
evaluates and summarises the current research and technologies in the HMI field and categorises them into
four parts of the HMI process. Since the current usage scenarios of some technologies are relatively limited,
the introduction focuses on the possible applications and problems they face. Finally, the opportunities and
challenges of HMI for Industry 5.0 and HCSM are revealed and discussed.
1. Introduction

Artificial Intelligence (AI) has found its way into many aspects of
daily life with applications like ChatGPT, Alexa and Face ID, but it has
a much longer history in manufacturing. In the early 1980s, computer
technology and automation began to be widely used in manufacturing.
However, due to the limitations of computing power and hardware
equipment, the ability to process data was relatively weak at that
time [1,2]. Advances in these technologies lay the foundation for the
realisation of smart factories. Smart factories have emerged with the
rise of the Internet and the development of data storage technology.
In the early 2000s, the industrial field began to adopt more advanced
sensor technology and automation equipment, which meant that the
datasets collected in the production process could be much larger and
the data within them more accurate. Also, the development of cloud
computing and big data technology provides a more optimal platform
for processing and analysing these data [3,4]. Most previous smart
factories focused on analysing process-related data. However, with the
introduction of Industry 5.0, analysing human-related data to improve
HMI may be a focus in future smart factories.
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In 2011, the concept of Industry 4.0 was proposed at the Han-
nover Messe in Germany. It emphasises the interconnection of physical
systems and digital systems. It realises a high degree of automation
and intelligence in manufacturing through technologies such as digital
twins, the Internet of Things, and data analysis [5–7]. This digital
transformation improves production efficiency and flexibility and al-
lows for personalised production, customised requirements and remote
operation. This is inseparable from the development of smart factories.

Industry 5.0, however, takes the smart factory a step further and em-
phasises close cooperation between humans and machines, embracing
human-centric, resilience and sustainability as core values [8]. It puts
forward the vision of human-centric smart manufacturing (HCSM), ad-
vocates humanised smart manufacturing and focuses on human creativ-
ity, flexibility and professional knowledge [9]. This kind of manufactur-
ing pursues human–machine collaborative work, combines the advan-
tages of machines with human creativity, and promotes the sustainable
development of industries.

To achieve the Industry 5.0 vision, it is essential to discuss human–
machine interaction (HMI). This is because, in Industry 5.0, the role of
https://doi.org/10.1016/j.dte.2024.100013
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many people within the factory/factories has changed and will continue
to do so. This requires HMI to be better optimised to assist the operator
efficiently. Machines will serve as extensions and assistants to help
people make correct decisions and, at the same time, improve people’s
well-being through more humane assistance.

In Industry 4.0, the main research direction of HMI extended from
the early automated psychological tests and knowledge acquisition to
several major topics, including the distribution and allocation of tasks,
trust and focus [10–15]. According to [16], the focal points and analytic
approaches to HMI in Industry 4.0 focus on what can be divided into
three taxonomies: human, machine, and interaction. Three-taxonomy
focuses on the distinction of entities in the scene and the interactions
between them. In the current paper, according to the process that HMI
signals go through in manufacturing scenarios, HMI can be divided
into four parts: (1) Sensors, where the signal is collected; (2) Data
processing, where the signal and data are processed; (3) Transmission
mechanism, how the data are transmitted, and (4) Interaction and
collaboration. The purpose of adopting this classification is to better
summarise the technologies involved in HMI rather than just focusing
on research issues in the HMI field and the relationship between
humans and machines. In Section 3, this paper will review the different
types of technologies and research topics related to each part.

Although Industry 5.0 proposes a human-centric vision, the em-
ployees in the manufacturing scenario should be viewed from two
perspectives [10]. First, people with professional capabilities will be-
come the core of the HCSM factory. This is mainly because as the level
of specialisation and intelligence of factories increases, the professional
ability level of employees also needs to be correspondingly improved
to operate these high-precision equipment. The HMI system should
become their extensions and assistants, helping them better utilise their
professional expertise and capabilities with a reduction (in areas) of
physical aspects of work. On the other hand, the increase in integration
and intelligence has also resulted in operators being unable to pos-
sess all manufacturing-related knowledge, meaning that they become
‘‘non-professional users’’ in some scenarios. Therefore, designing an
empathetic, better interactive experience and personalised HMI system
is the key to better serving these users. Key goals of HMI design in
Industry 5.0 should be to reduce the burden on workers, improve their
well-being and maximise their ability to realise their creativity.

Sustainability and resilience are the other two visions proposed by
Industry 5.0, and they are also goals that the manufacturing industry
has always wanted to achieve. In recent years, significant global factors
such as pandemics and climate change have turned them into urgent
issues and core values of Industry 5.0. The realisation of these visions
cannot be separated from implementing new equipment and concepts.
Developing optimal HMIs within this application domain and context
is inseparable from these new technologies. VR and digital twins al-
low workers to monitor processes and perform operations anytime
and anywhere, effectively improving the factory’s resilience [17,18].
Machine learning (ML) and AI have greatly improved the efficiency
of quality management, predictive maintenance, personnel planning
and scheduling, thereby improving the sustainability of the factory.
These all demonstrate the promotion of new technologies in manufac-
turing and HMI. The development of HMI in the future manufacturing
industry will inevitably be inseparable from the application of these
new technologies, and how these technologies optimally integrate with
humans form the key focus points of the current article.

This paper aims to explore and study the opportunities and chal-
lenges that may be encountered in the future development of HMI in
the manufacturing industry by summarising the technologies and topics
in the HMI field. Section 1 introduces the background and motivation
of the research. Section 2 presents the research methodology. Section 3
provides a review of research and technologies in the field of HMI.
Section 4 discusses the opportunities and challenges that HMI will face
in Industry 5.0. The final Section 5 summarises the topics reviewed
in this paper and provides an outlook on possible future research

directions.
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Table 1
Research question.

Research questions Motivation

Q1: What are the main HMI-related
technologies and research in the
manufacturing field?

Analysing existing technologies and
research can lead to a better
understanding of their strengths
and weaknesses.

Q2: What challenges will HMI face
in HCSM and Industry 5.0, and
how best to deal with them?

The human-centric concept is the
core of Industry 5.0. Existing HMI
equipment is still centred on
efficiency, so it will inevitably face
many new challenges.

Q3: What are the opportunities of
HMI in HCSM and Industry 5.0?

As one of the important parts of
realising the core value of Industry
5.0, the improvement and change
that HMI can bring is one of the
core issues we pay attention to.

Table 2
Research database websites.

Scopus https://www.scopus.com
IEEE Xplore digital library http://ieeexplore.ieee.org
ScienceDirect http://www.sciencedirect.com
SpringerLink https://link.springer.com
Google Scholar https://scholar.google.com
ACM digital library https://dl.acm.org

2. Methodology

To investigate the development of HMI in HCSM, this paper adopts
a systematic literature review to identify and evaluate the relevant liter-
ature in this field. The overall approach is shown in Fig. 1. Our review
process includes four main steps: defining research questions, identi-
fying publication sources, identifying keywords, and paper selection.
During the selection process, appropriate criteria are indispensable to
ensure that papers provide a comprehensive overview of research in
the field.

2.1. Research questions

This paper has three main research focuses: the current technologies
and topics in HMI in manufacturing, the challenges that HMI will face
in Industry 5.0, and the opportunities brought by implementing new
technologies and concepts. To this end, we propose three research
questions, as shown in Table 1.

2.2. The process of data collection

2.2.1. Search terms and resource identification
To better find research related to HMI in manufacturing, first, we

need to determine the source of search resources and identify keywords.
The paper search is entirely done through the following scientific

research databases: (see Table 2).
After identifying resource sources, we searched using keywords

and included relevant literature references. There are two keyword
searches. The first keyword search focused on an overview of HMI re-
search in the manufacturing domain, thereby gaining a comprehensive
understanding of the technologies involved. Search queries based on
Boolean operators are as follows:

(‘‘Industry 5.0’’ OR ‘‘Industry 4.0’’ OR ‘‘Smart Manufacturing’’ OR
‘‘Human-centric Smart Manufacturing’’) AND (‘‘Human–machine inter-
action’’ OR ‘‘human–robot interaction’’ OR ‘‘human–machine collabora-
tion’’ OR ‘‘human–robot collaboration’’)

According to the results of this search, we added new keywords
based on relevant review papers in this field containing terms that
were not included within the original searches and conducted a second
search. New keywords are HMI interface, Wearable Sensor, Computer

https://www.scopus.com
http://ieeexplore.ieee.org
http://www.sciencedirect.com
https://link.springer.com
https://scholar.google.com
https://dl.acm.org
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Fig. 1. Paper selection and evaluation process.
Vision, Optical Sensor, VR, XR, Hand-gesture Recognition, Acoustic
Sensor, Speech Recognition, Anomalous Sound Detection, Bionic Sen-
sor, Brain–computer Interface, Tactile Sensor, Motion Detection, In-
ternet of Things, Internet of Everything, Big Data, Cloud Computing,
Edge Computing, Cloud Computing Security, Machine Learning, Deep
Learning, Wireless Sensor Network, Industrial Ethernet, 5G, 6G, data
transmission, Function allocation, workload allocation.

2.2.2. Criteria for paper selection
The inclusion and exclusion criteria proposed within the systematic

review were set based on the proposed aims and research questions.
Exclusion criteria:

1. Papers that topics are not relevant to the manufacturing field.
If the technologies and research in a paper are completed in a
manufacturing scenario and can be applied to manufacturing,
this paper will be marked as ‘relevant’. If a paper is not about
HMI in manufacturing but its main content can be applied to
manufacturing, it will be marked as ‘less relevant’. If a paper is
not about manufacturing solutions and its core idea and model
cannot be applied to manufacturing, it will be marked as ‘not
relevant’.

2. The paper must be available in English.
3. For technology papers, the publication time should be after

2019. This is mainly because the concept of Industry 5.0 was
proposed in 2020.

2.3. Paper selection

The first keyword search aims to comprehensively understand the
relevant technologies in this field. A total of 47 relevant results were
obtained. Based on papers in this research, we conducted a second
search with new and original keyword combinations. We eliminated
the duplicated results of the two searches and finally identified 234
relevant and less relevant papers. Then, We compared the relevance
between papers and our research question and excluded papers that
discussed duplicate issues. Finally, 152 papers were included in the
review after all criteria were applied.

3. Human–machine interaction in smart manufacturing

3.1. Overall framework of HMI

As mentioned in previous sections, according to [16], HMI in In-
dustry 4.0 can be divided into three categories: Human, Machine and
Interaction. Due to the different attributes, Humans and Machines are
3

separated, and Interaction is classified separately as it is one of the
most important parts of this process. Fig. 2 presents this taxonomy
and some of the subcategories within each category. This classifica-
tion method is simple and intuitive. However, it can be found that
each major category’s subcategories are very different. For example,
machines include psychological topics such as roles and functions and
hardware and technology. Their commonalities are relatively small
and cannot be compared when discussed. Each subcategory in this
classification method needs to be more cohesive, and this classification
method emphasises the differences rather than the connections. With
more interdisciplinary research expected in Industry 5.0, this three-
category taxonomy needs to be revised, as it fails to represent the HMI
relationship in a highly integrated, closely connected smart factory.

To this end, we propose a framework to classify HMI according to
the data transmission process in the factory, as shown in Fig. 2. Sensors
are the first step in the HMI process in a smart factory, and signals are
fed into the system through these devices. These signals and data are
then sent to the data centre for processing and analysis, and humans
in the data centre will make decisions with the help of machines. The
input of data and the output of instructions are inseparable from the
transmission mechanism, and this part also requires the cooperation of
various hardware. Finally, after receiving the instruction, the device
completes the interaction with the operator [19]. This paper briefly
introduces the enabling technologies and related research designed in
each part.

3.2. Sensor

Sensors in manufacturing scenarios can be divided into five cate-
gories according to different principles: optical-based, acoustic-based,
bionic-based, tactile-based and motion-based sensors [19]. In smart
factories, most sensors mainly collect the environment and process-
related data. This is mainly based on two considerations. First, Industry
4.0 is efficiency-driven [8]. Second, collecting data related to people
can easily violate workers’ privacy.

To better understand the scenarios used by these sensors, the HMI
interface must first be introduced. HMI interfaces in the industry can
be divided into two categories [20]. The first category is the physical
part of a machine that a user can see and touch, such as a com-
puter interface. The other category is invisible natural user interfaces
(NUIs), where users use intuitive everyday behaviours to perform in-
teractions, such as gesture recognition [21]. Their difference is that
physical interaction requires prior operator training, while NUI focuses
on understanding user behaviours.

According to different interaction methods, HMI in smart factories
can also be divided into five categories: gaze, voice, gesture, tactile,



J. Yang, Y. Liu and P.L. Morgan Digital Engineering 2 (2024) 100013
Fig. 2. HMI’s three-category and four-category taxonomies.
and haptic interactions [2]. Gaze interaction mainly interacts with
devices that detect human eyes [22]. Voice completes the control of
the device by inputting voice information [23]. Gesture recognition can
not only collect hand movement data through cameras but also collect
data through wearable devices to complete the interaction [19,20].
Tactile is closely related to haptic interaction. Tactile refers to operators
performing tasks through tablets and physical interfaces. In contrast,
haptic recognition focuses more on nonverbal communication (sound,
vibration, touch, and temperature) provided by wearable devices [2].

Next, we comprehensively introduce and discuss each sensor and its
interaction interface and method.

3.2.1. Optical-based sensors
Optical sensors do not require physical contact and, as such, are

widely used in public interfaces and NUIs [19]. LEDs, lasers and
camera–computer vision are three of the most common types of optical-
based sensors. LEDs and lasers are often used for position detection
and recognition in traditional manufacturing, which makes them also
applicable to gesture detection. They are also used in multi-touch sen-
sors and displays [19,24]. Their structures are often relatively simple,
with low cost and convenient deployment advantages. Fields such as
motion detection, hand gesture recognition (HGR) and eye tracking are
inseparable from the application of camera–computer recognition. It is
also one of the technologies that enable extended reality (XR) (virtual
reality (VR), augmented reality (AR), and mixed reality (MR)) [20].

Since the 1980s, VR glasses have been used to train pilots [25].
With the continuous development of technology in this field, VR head-
mounted displays (HMDs) have been widely used in various fields [18,
26]. As the demand for customised products continues to grow, the
need for production processes and varieties also grows, further in-
creasing the need for operators. The study found that in High-Mix
Low-Volume (HMLV) assembly systems and Mixed Model Assembly
Lines (MMALs), complex and variable operating systems and envi-
ronments lead to a decline in worker efficiency and reduce worker
satisfaction [27]. An effective way to solve this problem is XR. XR
reduces the cost of understanding for workers and can better deliver
effective information, making the workplace a ‘small-batch, knowledge-
driven place’ [17,28]. However, some research results show that XR
does not always assist workers in reducing workload in industrial
scenarios [29]. The reasons for this problem can be summarised into
four points: 1. XR cannot assist in low-complexity work [30]. 2. Current
HMDs are still bulky and cannot be used long. Therefore, better results
can often be obtained in spatial and projection-based XR applica-
tions [31]. 3. Interface also greatly impacts workers’ understanding of
the system, and NUI is considered to have lower learning costs in many
4

cases [20,21,32]. 4. The information presentation mode will also affect
the effect of XR, such as annotation, information availability and visual
interference [31].

Vision-based HGR uses cameras to capture scene information and
machine learning to analyse gesture features. Such systems generally
consist of three components: detection, tracking and recognition. In
the detection phase, the camera captures images of hand gestures
and segments them from the background [33,34]. In the tracking
process, the computer will continuously analyse the characteristics of
the hand to realise real-time dynamic recognition [35]. Finally, through
machine learning algorithms, the computer recognises and classifies
gestures [36]. Generally, ordinary RGB (red, green and blue) cameras
on the market can complete the HGR task. However, the improvement
of the quality of the camera can not only improve the recognition accu-
racy but also require the device to have better computing power [34].
Therefore, selecting the most suitable sensor according to the task is
also a major issue that needs to be considered when designing the
HGR system. Kinect and Leap Motion are widely used products with
high reliability and complete functions in vision-based HGR design.
Kinect achieved an average recognition ability of 95% and 98.9% in
recognising numbers and letters written in the air [34,37]. Leap Motion
has been experimentally verified to improve the accuracy of intelligent
systems and robot interactions [38].

Over the years, many researchers have continued to improve visual
sensors to make them perform better, be more portable, and be suitable
for more scenarios. Part of the research mainly focuses on reducing the
burden on people who have existing equipment through new materials
and designs. Nanoparticles, nanowires, carbon nanotubes (CNTs), and
graphene have been used to build new types of XR devices [18]. They
are characterised by strong stretchability, flexibility, and low load, so
they can effectively solve the problems of bulky and poor flexibility of
many HMDs [39]. In addition, smart contact lenses are also a topic that
shows great potential [19]. In terms of medical treatment, it has been
used in vision aids [40], corneal temperature detection [41], intraocu-
lar pressure detection [42], blood sugar level detection [34] and other
fields, and has shown good results. It is used in medical, visual aids,
near-eye displays and other fields and has great eye-tracking potential.
In addition, it may be an effective solution to the damage to vision
caused by VR HMDs.

3.2.2. Acoustic-based sensors
In Industry 4.0, acoustic sensors are widely used in machine status

detection, fault detection, and voice recognition [19,43]. Compared
with contact sensors such as probes and temperature sensors, acoustic
sensors have the advantage of low cost and do not require physical
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contact with the sensor. However, due to the large amount of noise in
most industrial environments, the use or quality of the signals and data
produced by this type of sensor is limited. Abnormal sound detection is
the basis of machine status and fault detection [44]. However, since the
abnormal sound data is relatively small compared with the overall data
(data imbalance problem), and these data are various, it is not easy to
put these data into the machine learning algorithm for training [45].
For this reason, some researchers have adopted a multi-microphone
serial combination system to suppress noise and reverberation [46].
In addition to reducing the impact of noise by adding sensors, algo-
rithms such as Autoencoder-Based [43,45], Gaussian Mixture Model-
Based [47] and Outlier Exposure-Based [48] anomaly detection are also
used to eliminate noise and improve data imbalance problems.

Speech recognition technology has greatly progressed with AI devel-
opment [49]. A speech recognition system consists of acoustic hardware
sensors and speech recognition software [44]. Condenser microphones
are one of the representatives of acoustic sensors. They use capacitance
differences, such as voltage changes, to detect sound signals [50]. How-
ever, this sensor has disadvantages such as instability, short recognition
distance, high power consumption, and low sensitivity. A piezoresistive
microphone detects sound through a change in resistance. Its advantage
over capacitive sensors is that they can still detect sound at high
temperatures because the resistance is temperature-dependent [51].
The advantage of a triboelectric sensor is that it does not require an ex-
ternal power supply [44,52]. However, due to electrostatic phenomena,
such sensors are easily affected by humidity and temperature. Flexible
piezoelectric sensors that mimic the structure of the human cochlea are
considered suitable candidates for speech recognition due to their high
sensitivity and recognition rate [51]. It has a self-powered structure and
can perform well in complex environments due to bionic concepts and
flexible film materials [53]. The sensor has proven 97.5% accurate in
recognising speech [44].

3.2.3. Bionic-based sensors
Bionic sensors detect biological signals through computer technol-

ogy and biotechnology, and they generally have the characteristics
of ultra-sensitivity, self-adaptation, and low power consumption [19].
Bionic materials, bionic structures, and functional bionic are three
bionic strategies for sensors [54]. Bionic materials are components in
sensors that use materials that mimic the structure of natural materi-
als [55]. This gives these sensors unique properties. Bionic structures
mean sensors realise certain functions and characteristics by imitat-
ing and learning biological and natural structures. The waterproof
super-hydrophobic film is obtained by imitating super-wet biomimetic
materials [56]. The difference with functional bionics is that it mainly
improves sensor detection capabilities by imitating biological senses
rather than focusing on adding new functions [19].

Generally, collecting biological signals by bionic sensors is com-
pleted through electrodes. The electrodes can collect different signals
by changing the monitoring frequency and level amplification [19].
According to different sources, these biological signals can come from
the brain, muscles and movements [57]. The electroencephalography-
based brain–computer interface and the electromyography-based myo-
electric interaction are two of the more common ones. Electrooculogra-
phy and electrocardiograms have also received continuous attention in
recent years [19,54]. Brain–computer interface is one of the most con-
cerned studies in this field, but due to ethical and moral issues, research
in this field is somewhat controversial. In the industrial field, brain–
computer interfaces can already be used for robotic arm control [58].
This technology will play an important role in HCSM because it can
meet the needs of Industry 5.0 for sensors to serve humans. Like the
brain–computer interface, the electromyographic interaction completes
the control process by detecting the muscles’ electrical signals. A major
application direction of this technology is exoskeleton and auxiliary
limbs [59].
5

3.2.4. Tactile-based sensors
Tactile sensors include all sensing devices that require physical

contact, such as operable buttons, tablet computers (tactile), and non-
verbal communication (haptic) provided by wearable devices. Accord-
ing to different principles, these sensors can be divided into capacitive,
piezo-resistive, piezoelectric and optical tactile sensors [60]. The dif-
ference in principle determines the difference in the materials they use.
Among them, the material of the optical tactile sensor must have optical
transparency and elasticity.

The main purpose of tactile sensing is to obtain information about
the environment and objects to manipulate them [61]. Therefore, much
of the early research on this type of sensor was focused on the medical
field. For example, compared with traditional surgery, tactile sensor-
based surgery involves smaller incisions, less blood loss, and is safer
overall [62]. However, the performance of these devices depends on the
accuracy of the tactile information collected [61]. In the manufacturing
industry, the force sensor represented by the Telerobot hand pressure
sensor is one of the main application scenarios of the tactile sensor [19].
In recent years, as robots have become more and more intelligent and
anthropomorphic, basic sensory system simulation is also a research
direction that has attracted wide attention. By implementing simulation
of basic perception systems, robots can become more like humans and
have stronger empathy, which is more conducive to human–machine
collaboration. In the robot grasping problem, the combination of tactile
and visual information is a problem many researchers pay attention
to [63].

Tactile sensors are also the basis of wearable devices. In VR devices,
these sensors can collect haptic information such as vibration, touch,
and temperature to provide users with more realistic and sensitive feed-
back [2,33,34]. In addition, these tactile sensors have become smaller
and more sensitive through the combination with bionic technology,
making them have a wider range of application scenarios [54].

3.2.5. Motion-based sensors
Motion sensors in HMIs, such as accelerometer pointers and gy-

roscopes, are often used in wearable devices to detect the motion of
objects [19]. The function and structure of these sensors are relatively
simple. Some studies have used them as an alternative to optical
sensors because of their lower space requirements [64]. Most studies
use a combination of gyroscopes, magnetic needles, and accelerometers
to determine the 3D position of the object of interest — including
humans [65,66]. A recent review paper [65] concludes that healthcare
is the most common application area for inertial motion sensors. These
sensors improve human physiological conditions by collecting data
on human movement [64]. Although some studies used two types of
motion sensors to analyse 2D planar data, most studies used 3D data.
In the industrial field, motion sensors have been used in equipment and
production line detection [67].

As one of the most important parts of HMI, sensors are responsible
for collecting information and signals and completing interactions. The
design of these sensors not only affects the efficiency and ability to
collect signals but also affects the operator’s experience. A good sensing
system should be able to collect valid data, be easy to use, and not place
additional burdens on workers.

3.3. Data processing

Since the sensor(s) collects only raw signals, these signals must be
processed to obtain the desired results. The original dataset collected
by the sensor cannot be processed directly because the quality and
quantity of the data may not meet the requirements of the data analysis
algorithm [5]. In this case, the original data set must be pre-processed.
Reduced noise data, feature extraction, and data fusion are common
methods for processing and integrating data in some industries [68].
Taking appropriate processing methods can improve the data’s validity
and the model’s accuracy.
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Three types of problems may occur in the data collected in the
ndustry: too much data, too little data, and fractured data [68].
oo much data is very common in the manufacturing industry. This

s mainly because the current manufacturing environment is often
quipped with many sensors, which will collect a large amount of data.
owever, not all of this data is valid. Noise, irrelevant, and categori-
al/numerical mixed data exist [69]. When splitting the dataset, too
ittle data may be caused by missing attributes or uneven distribution
f features [68,69]. In this case, the reliability of the model is very
ow. When data comes from multiple sources and platforms, it may
ead to fractured data due to incompatibility. In addition, the different
eight levels of data in the model and repository may also cause this
roblem [68,70].

After collecting the data, we first need to determine the appropriate
reprocessing method based on the problems in the data. Reducing
oise data is a method that most original datasets need to adopt.
inning, regression and clustering are three common methods to re-
uce noise data [69]. Binning can replace data with smoother interval
iscrete values to reduce observation errors [68,71]. Regression uses
achine learning to predict variance and bias variables to improve

ccuracy. Robust regression, Gaussian process regression, support vec-
or regression, polynomial regression, linear regression and decision
rees are some common regression analyses. Clustering analyses the
ntrinsic connections between data and groups them to exclude noise
nd irrelevant data. Some common clustering methods are k-means,
patial clustering based on noise applications, and mean shift [68].
n addition, feature extraction can also be used to filter data. The
eatures of data collected in the manufacturing industry include process
eatures, process features, personnel features, etc. [70]. Statistical and
egression analysis, dimensionality reduction analysis, text mining and
mage processing are common feature extraction methods [70,72]. Data
usion can solve the fractured data problem and increase the size
f the data set, so it is also an important processing method in the
anufacturing industry. Bayes ’Rule, Probabilistic Grids, The Kalman

ilter, Sequential Monte Carlo Methods and Alternatives to Probability
re common multi-sensor data fusion methods [73]. Bayes ’Rule infers
hanges in environment and state values by building a probabilistic
odel. Probabilistic Grid is a method that implements Bayesian data

usion through mapping. The Kalman Filter is a Bayesian filter that
ses a recursive function to calculate changes in continuous values.
equential Monte Carlo Methods can convert probability distributions
nto weighted samples in space for calculation. Interval calculus, fuzzy
ogic and evidence reasoning are common Alternatives to Probability
ethods. They can solve the complexity, inconsistency, uncertainty and
recision problems in probabilistic modelling [73].

After the data pre-processing, the smart factory will analyse the data
et and build a model to achieve predictive maintenance and condition
onitoring goals. In this analysis process, most industrial scenarios
ave relatively high requirements for real-time instructions, so there
re requirements for the factory’s data transmission and processing ca-
abilities. Here, smart factories need suitable data processing solutions.
his section will start with the Internet of Things (IoT) and introduce
loud computing (CC), edge computing (EC), and machine learning and
heir place in smart factories.

.3.1. Internet of things and internet of everything
The concept of IoT can be traced back to the late 1990s. Its main

oal is to control processes by connecting devices, sensors and soft-
are [74]. By connecting various devices to the network, not only

an we realise functions such as predictive maintenance, production
onitoring, supply chain optimisation, energy saving, inventory man-

gement, and quality tracking, but also, the data collected in the factory
an be effectively integrated to maximise the use of the potential of this
ata [7]. IoT has three enabling technologies [75]:

• Radio Frequency Identification (RFID) and Near Field Communi-
cation (NFC) technology
6

• Wireless Sensor Networks (WSN) technology
• Data Storage and Analytics technology

RFID technology guarantees real-time traceability, controllability and
visibility of personnel, materials and equipment [1]. NFC is built
based on RFID, which ensures the transmission and reception of short-
distance data [75]. WSN will be introduced more specifically in the
next section. Data Storage and Analytics technology development is
inseparable from CC, machine learning and the establishment of big
data platforms [19]. These technologies are necessary to extract useful
information from collected big data.

There are six main functional elements of IoT: semantics, identifica-
tion, sensing, services, computational and communication [76]. Among
them, identification realises the naming and matching of elements in
the network. Subsequently, the sensing element collects data and sends
it to the computing centre. The key to realising digital services for
different objects is communication. The computational and semantics
functions provided by both hardware and software ensure that the
system can send signals and instructions to various components in real-
time to achieve the ultimate goal of IoT: to provide services for anyone
at any time.

After years of development, IoT has been widely used. These ap-
plications mainly focus on five areas: Smart City, Internet of Medical
Things (IoMT), Smart Grid, Internet of Vehicles (IoV), and Industrial
Internet of Things (IIoT).

IoT-based smart cities collect data through different sensors and
identification technologies and implement energy management, road
maintenance, water supply systems online, crime prevention, com-
munity planning and other functions based on these data [77,78].
IoT-based smart cities can provide more timely, intelligent and high-
quality services than the current urban management system. However,
since these data often involve residents’ privacy, data security is a major
issue in smart city deployment.

The rapid development of IoMT and travel restrictions brought
about by COVID-19 are inseparable. IoMT enables medical profes-
sionals and hospitals, more generally, to understand patients’ data
in real-time through remote devices and wireless medical devices to
provide timely medical treatment [79]. The often very small wearable
device(s) can transmit the patient’s heartbeat, blood oxygen, blood
pressure and other health data to the medical centre, which enables
people to receive continuous health monitoring support. However,
personal health data breaches will hit 45 million worldwide in 2021,
tripling in just three years, according to a report by cybersecurity firm
Critical Insights [76]. Since patient information and their identities are
closely linked in the IoMT, these leaks can greatly impact patients’
treatment, prognosis and lives.

The concept of the Smart Grid is summarised as ‘‘encapsulating the
entire power generation and distribution system in a single frame’’ [76].
It makes the whole system cleaner and smarter through intelligent con-
trol systems, renewable energy, smart switchboard and other facilities.
Supervisory control and data acquisition (SCADA), energy management
system, grid communication system and distributed energy resources
(DER) are the four components of a smart grid [80]. Among them,
SCADA is often attacked because it contains many user data. In 2010,
a SCADA system at a nuclear facility in Iran was targeted [81]. There
are also data security issues and user privacy in smart grid systems. In
2015, three electricity distribution companies in Ukraine were hacked,
causing 225,000 customers to lose power for over three hours [82].

IoV – also called intelligent transportation or connected vehicles
[76,83] – helps the transportation system improve road safety, space
utilisation, traffic congestion, control costs, and reduce environmen-
tal impact by integrating road and vehicle data. By adopting this
technology, smart factories realise optimised management of
raw material transportation and the Internet of Things. The IoV net-
work contains vehicle-to-sensor, vehicle-to-infrastructure, vehicle-to-
pedestrian, vehicle-to-vehicle, and vehicle-to-network communications
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implemented via cellular, Bluetooth, and Wi-Fi. Through the seamless
integration of these communications, each vehicle can be helped to
plan the optimal route. However, some cyberattacks can steal the way
by modifying data [84]. Fast network authentication frameworks are
currently used to defend against attacks [76].

The Industrial IoT (IIoT) and smart manufacturing are closely re-
lated. Smart manufacturing focuses on the manufacture of products,
while IIoT refers to the exchange of data between machines, systems
and people [85]. The Industrial Internet of Things is the basis for
realising smart manufacturing. Due to the industry reliability, security
and timeliness requirements, many wired transmissions are often in-
volved in the Industrial Internet of Things [74,75,86]. This is mainly
because industrial scenarios are often complex, so there is a lot of
interference, and wireless transmission cannot meet the demand. 5G
is seen as a solution for the Industrial Internet of Things. However, it
lacks licensed frequency bands and business models [87]. EC-GSM-IoT
and LTE Cat M1 (LTE-Advanced Pro) are two industrial 5G cellular
spectrums currently under development [85]. Bluetooth Low Energy
(BLE) is a low-power solution with disadvantages such as high la-
tency, volume and distance limitations [88]. Some researchers solve
these problems using connectionless schemes and optimising output
distribution [89,90]. The industrial Internet of Things has four main
challenges: energy efficiency, real-time performance, limited spectrum,
and security [85]. Many IIoT devices run on batteries, so effective
energy-efficient designs are necessary. Achieving real-time response in
an industrial environment with multiple disturbances is a must for IIoT.
The channel congestion and resource allocation problems caused by
using many wireless devices in the limited spectrum are also difficulties
in industrial Internet design. Data security and privacy issues are also
some elements that must be considered in the design. 6G is considered
one of the effective solutions to the difficulties of the Industrial Internet
of Things, but it is still in the research stage [91,92].

The Internet of Everything (IoE) concept is built based on IoT, which
connects people, data, processes, and things rather than just focusing
on things [86]. This concept was first proposed by CISCO in 2012.
IoE focuses more on intelligent network connections and technologies,
while IoT focuses on physical devices and network infrastructure [93].
IoE has received more attention in Industry 5.0 because the core of
Industry 5.0 is people, and IoE pays more attention to the connection
between people and things. The connection that IoE focuses on is
realised through HMI. Therefore, IoE and HMI are inseparable from
each other.

The core of IoE is the process [86]. The entire system can become
a whole through the flow of people, things, and data. It can analyse
and extract the collected information in real-time and provide more
precise assistance and improvement without IoT’s environmental inter-
ference [87]. The development of IoE faces challenges similar to those
of IoT. However, the difference is that since IoE also connects people,
it requires people to have a consensus on the entire system. This is the
basis for realising IoE.

3.3.2. Cloud computing and edge computing
The United States National Institute for Standards and Technol-

ogy (NIST) defines Cloud Computing (CC) as ‘‘a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage,
applications and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction’’ [94].
This technology is not new. Since 2000, commercial CC services have
appeared on the market [95]. This technology enables remote manage-
ment and sensor miniaturisation and is an indispensable part of HMI
in smart factories. After years of development, it has become a mature
product and has been applied in the industry to a certain extent. CC
models are mainly divided into four categories [19,95,96]:

∙ Software as a Service (SaaS): Service providers provide software

and applications to users.
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∙ Platform as a service (PaaS): The service provider provides a
latform on which users can use their own software and the provided
omputing power.

∙ Infrastructure as a Service (IaaS): Users can control all the rented
oftware and hardware anytime and anywhere.

∙ Container as a Service (CaaS): Similar to PaaS, the applications
eveloped by users are independent of the platform.

Customers can choose suitable model(s) for use according to differ-
nt needs. However, although CC already has mature models, it still
as one of the biggest problems: data security. The statistic [96] shows
hat in the CC field, cloud security has seven main problems:

• Data model IaaS concerns
• Data synchronisation issues
• Secured communication between two parties
• Data confidentiality and availability
• Data storage security concerns
• Data intrusion threats
• Data tampering and leakage

mong them, data tampering and leakage problems concern customers
he most [90]. Some cloud service providers have recently introduced
lockchain technology into the cloud service system to reduce the prob-
bility of hacker attacks [97,98]. But this inevitably leads to another
roblem: the timeliness of data. To reduce latency, many manufacturers
eed to redesign sensor systems within the factory to ensure the lowest
hysical latency [96]. Even so, for some tasks with very high timeliness
equirements, CC still cannot meet their needs. Therefore, EC was
ntroduced to solve the data tampering and leakage problem.

EC is the opposite of CC. Its main goal is to disperse computing to
he network’s edge, thereby solving the delay problem caused by trans-
ission [74]. This method can reduce latency and data channel load,

ffectively reduce energy consumption and ensure data security [4].
C is usually located between the cloud and end devices and consists
f five parts [74,99,100]:

• Authentication and Authorisation: Determine system control
rules.

• Offloading Management: Design the offloading scheme and define
the information type.

• Location Services: Map physical locations.
• System Monitor: Provide information such as workload and usage

to other parts.
• Resource Management: Responsible for resource allocation.
• VM Scheduling: Design the optimal strategy.

C has the characteristics of wide distribution, relatively small ca-
acity, low energy consumption, low cost, and low delay, which are
etermined by its nature [101]. EC has been widely used in smart
rids, smart cities, smart homes and other fields [74]. In IoT, EC
lso plays a very important role. For example, facial recognition and
otion detection algorithms can be implemented through EC [68,96].
lthough EC avoids leakage during data transmission, it still has data
ecurity problems. This is because devices at the edge often do not have
ufficient capabilities to perform complete security verification [74,
02]. Therefore, both physical and virtual measures must be used to
nsure information security.

.3.3. Machine learning and deep learning
The analysis of big data in the industry is inseparable from ma-

hine learning and deep learning algorithms. This is because the data
n the manufacturing scenario is large and has many characteristics
hat correlate with each other [19]. They are also the cornerstone of
ata analysis in CC and EC. The application of conventional machine
earning algorithms in areas such as predictive maintenance is not
ew [103]. Deep learning has also begun to be applied in manufac-
uring scenarios in recent years. However, due to its ‘‘black box’’ (the
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specific operations and processes performed in the model cannot be
described) characteristics, it cannot fully meet the industry’s safety and
controllability requirements. As a result, the use of deep learning in
many industrial scenarios is limited [5,104].

Machine learning can be divided into three categories: unsuper-
vised learning (discovering information from data), supervised learning
(given data, predicting the label of the data), and reinforcement learn-
ing (given data, choosing actions to maximise long-term reward). Re-
search on reinforcement learning has received much attention because
it can continuously optimise the model and give more accurate results.
Commonly used unsupervised learning algorithms in industry include
SVM/SVR, Bayesian Networks, Naive Bayesian Networks, K-nearest
Neighbours, Artificial Neural Networks, Multiple Linear Regression,
Decision Tree/ Regression Tree, Addictive Models, Logistic Regression,
Bag of Words, Locally Weighted Training. Supervised learning algo-
rithms include Kmeans and Self Organising Maps, and reinforcement
learning algorithms include PILCO and SMART [104].

Generally, deep learning is divided into unsupervised and super-
vised learning as a subcategory of machine learning. Commonly used
supervised learning algorithms in the industry include Convolutional
Neural Networks, Recurrent Neural Networks, Restricted Boltzmann
Machines, Multiple Linear Perceptron, and YOLOv2. Unsupervised
learning algorithms include Auto Encoders, Convolutional Neural Net-
works, Recurrent Neural Networks, Restricted Boltzmann Machines,
and CAMP-BD [104,105]. Deep learning has been used in image recog-
nition, anomaly detection, natural language processing, and high-
dimensional data processing. Compared to machine learning, deep
learning is often used on large amounts of data. Applying deep learning
to small data sets can result in high variance and low accuracy. Deep
learning has imposed higher requirements on hardware, and at the
same time, the computational cost is relatively higher.

In recent years, with the continuous improvement of machine learn-
ing and deep learning algorithms, the manufacturing industry has seen
an increasing application of them. Machine learning and deep learning
in manufacturing have three main development directions: task, tech-
nology, and industry-centred [106]. Task-centred machine learning re-
search focuses on using algorithms to solve specific tasks, such as defect
detection in additive manufacturing [107], process improvement [108],
and optimising production processes [109]. Technology-centred re-
search focuses on specific technologies that integrate machine learning
algorithms, such as processing monitoring systems [110], using soft
computing to improve processing performance [111], and using image
recognition to monitor production processes [112]. In addition, the
transformation of industrial data to big data is also a research focus in
this direction [113]. Industry-centred research focuses on how machine
learning affects manufacturing development from various perspectives,
such as Industry 4.0, Industry 5.0, and smart manufacturing. New
technologies such as augmented reality, data mining, the Internet of
Things, intelligent supply chain management, cyber–physical systems,
intelligent robots, smart factories, virtual manufacturing, and cloud sys-
tems are inseparable from the development of machine learning [114].
In addition, deep reinforcement learning, deep learning combined with
big data digital transformation, and industrial artificial intelligence
are also research focuses that have received much attention [115].
Deep reinforcement learning has the principle of trial and error and
can continuously optimise itself in interacting with the environment.
Therefore, it has self-adaptation advantages, strong flexibility, and high
time efficiency, which can better meet smart manufacturing require-
ments [116]. The application of this technology in the manufacturing
industry is still lacking in sufficient research [117]. The deep integra-
tion of deep learning and big data technology provides new technical
support for the digital transformation of factories. Deep learning en-
sures factories can make more intelligent and sustainable decisions and
deployments during digital transformation [118]. Industrial artificial
intelligence will become the brain of future smart factories, making
decisions on the deployment and arrangement of factories [115].
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In future smart manufacturing scenarios, a major change is expected
to occur. Human and environment-related data will become one of the
focus areas of data analysis to optimise the HMI experience. These
two types of data are areas where deep learning is suitable. Their
requirements for timeliness are not so high, so even in an environ-
ment with low computing power and high latency, deep learning can
be used to offer a suitable response. In addition, deep learning has
shown great potential in human-related fields such as social media
and medical practice, so it has become promising as an effective
tool for assisting people in industrial contexts. To meet the needs of
individualisation in the future, factories need to adopt algorithms with
self-optimisation effects to improve the factory’s ability to manufacture
different products.

3.4. Data transmission mechanism

Data transmission sends and receives data and signals between
sensors and data processing centres. The data transmission mechanism
in the manufacturing field can be divided into wired ‘‘Industrial Ether-
net’’ and wireless WSN according to the connection method [19]. In
addition, according to different wireless spectrums, the transmission
mechanism can also be divided into 5G, 6G, etc. [91]. Different mecha-
nisms have different properties and are suitable for different industrial
environments. In an industrial environment, the security issue during
data transmission in HMI is one of the most important issues [74,96–
98,102]. In WSN, many studies have pointed out security issues due
to wireless transmission [119–121]. In addition, because industrial
scenarios are often complex and have multiple interfering signals, the
use of WSNs is also limited [19]. ‘‘Industrial Ethernet’’ is currently
the world’s most successful and widely used wired communication
architecture [103]. After years of development, Industrial Ethernet
has the advantages of fast transmission speed, high adjustability of
network scale, and convenient parallel connection with other networks.
But it also has disadvantages. These data transfer devices were not
designed for the harsh environment of a factory, so the extra expense
was spent on protective enclosures and add-on equipment to keep
them functioning properly. Second, it has an inherent non-deterministic
nature, which makes it unable to meet the time requirements of some
industrial equipment and models [122].

WSN will be one of the most important enabling technologies in
Industry 5.0 because it can better meet the sustainability and human-
centric demands of Industry 5.0. In addition, 6G will also help WSN
to accomplish these goals better as it can efficiently improve the data
transmission speed and coverage. Therefore, this section will mainly
introduce these two technologies, the challenges they face and the
opportunities they bring.

3.4.1. Wireless sensor network
WSN refers to a series of sensor nodes dispersed in space and

connected by wireless transmission [123]. These sensor nodes measure
fluctuations in the surrounding environment, process the information,
and send it to designated devices [124]. Through the cooperation of
multiple sensors, WSNs can monitor a wide range of counterattacks.
In recent years, with the continuous development of technology, these
wireless sensors have achieved characteristics such as miniaturisation,
low cost, and high sensitivity, so they have expanded from the mili-
tary field to industrial, medical, maritime exploration, environmental
monitoring and other fields [125].

WSN consists of four parts: WSN hardware, WSN communication
stack, WSN Middleware, and Secure Data aggregation [75]. WSN hard-
ware includes a power supply, transceiver, processor, and sensor inter-
face. These hardware generally consist of multiple A/D converters that
can communicate in the same frequency band, ensuring the network’s
versatility. The WSN communication stack utilises topology, routing
and MAC layer to realise the connection between the WSN subnet and
the Internet. WSN Middleware is a platform-independent middleware
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used to isolate and access resources between different sensors. The main
goal of Secure Data aggregation is to ensure the system’s security and
provide self-healing capabilities.

The basic feature of WSN is intra-network transmission, which does
not transmit original data but integrates them instead [126]. In recent
decades, WSN has played an important role in supply chain manage-
ment, manufacturing process control and automation [127,128]. By
integrating WSN and existing networks, smart factories reduce the
labour force, improve automation levels, and increase revenue [120].
WSN is also widely used in wearable sensors, which promotes the
development of HMI [2]. Whether it is a wearable device based on
VR or a smart glove that remotely controls a robot, WSN is indispens-
able [26,32,64]. However, as mentioned above, there are still some
difficulties and challenges in applying WSNs. The biggest concerns are
those about data and security [120]. With the explosive growth of
the total amount of data in the industry, it is difficult for factories
to manage such a large amount of data in a timely manner [129].
Difficulties with system updates also contribute to the problem. Because
these devices are often distributed across various factory parts, the
amount of work and disruption needed to upgrade the equipment is
dramatic. This leads to a relatively weak anti-attack negligence of the
whole system. Sensors deployed in some vulnerable environments be-
come weak points of the overall system. Also, the risk of being attacked
is aggravated because the supply chain system is often connected to the
external network or cloud system [130]. Finally, the limited resources
of WSN make it unable to respond to changes in external conditions
effectively. This resource limitation is reflected in two aspects. The
energy limitation makes the sensor unable to switch between working
and sleeping modes flexibly, and the Internet integration is not high
enough due to the restricted movement [131]. Researchers hope to
solve the current problems of WSNs by deploying 6G in the future.
Therefore, developing WSN devices with sufficient computing power,
low energy consumption and low cost in 6G is also a major challenge
in Industry 5.0.

3.4.2. 5G/6G
5G has become one of the most popular technologies in recent years.

It extends the connection between people to people and things so that
popularising a series of technologies requiring high data transmission
speed, including unmanned vehicles, smart medical care, autonomous
manufacturing, and remote operations, is no longer restricted [132].
Compared with 4G, 5G has been significantly improved in many as-
pects. However, it still has shortcomings such as power consumption,
secure connection, latency, dense connection, and global coverage.
Therefore, academia and industry have begun to focus on 6G research.
The main goal of 5G is to realise the ‘‘Internet of Everything’’ (IoE).
And 6G hopes to achieve intelligent IoE by integrating AI technology.
The biggest difference between 6G and 5G technology is that 6G not
only includes communication technology. 6G will combine communi-
cation and sensing technologies to enable a series of functions, such
as positioning, sensing, and communication, to be realised through
it [133]. [91] summaries the future development of 6G as a six-F
trend: full spectrum, full coverage, full dimension, full convergence,
full photonics, and full intelligence. Another research [133] described
the goal of 6G as ‘‘global coverage, all spectrum, full applications, all
senses, all digital, and strong security’’.

6G expects to achieve global coverage communication services by
integrating various communication networks (e.g. unmanned aerial
vehicle (UAV) communication, ground ultra-dense communication net-
work, maritime communication, satellite communication, and under-
ground communication). This service will incorporate remote areas and
special scenarios into the communication system [132]. Full spectrum
can not only solve the problem of band spectrum congestion caused
by the explosive growth of the number of devices but also provide
higher data transmission rates. Sub-6 GHz, centimetre wave (cmWave),
mmWave, THz [134], and optical wireless bands [135] will all be used
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in 6G [133]. 6G’s ultra-short-distance communication, wireless data
centre, and nano-Internet cannot be realised without the support of
THz’s ultra-high bandwidth and ultra-fast transmission rate. Optical
wireless bands have the characteristics of energy saving, high security,
no electromagnetic radiation, and no frequency band, etc., and can play
a huge role in 6G. Full applications aim to combine 6G and robotics, AI,
big data and other technologies to realise intelligent applications such
as smart cities and IoE and provide human beings with personalised
and diversified services. The development of all senses focuses on
combining 6G with wearable devices and VR, integrating go-you and
display, and providing people with a full range of sensory experiences.
This will effectively promote the development of remote surgery, skills
training and other fields [136]. All digital will further improve the real-
time and accuracy of digital twin technology through 6G to realise the
deep integration of physical and virtual. Communication security is a
hot spot in 6G research. Current research attempts to combine security
technologies such as quantum communication [137], blockchain [138],
and 6G to ensure data security during data transmission. Many stan-
dardisation organisations, such as IEEE and ITUT, have proposed 6G
system security architecture and process standards [139].

In HCSM, 6G will be one of the most important enabling technolo-
gies. It can bring ultra-low latency and ultra-high-speed data transmis-
sion services to smart factories, providing wider coverage and more
diversified and customised services [92]. The user experience can thus
be improved during the HMI process. The tactile internet is considered
an important future application [140]. In industrial settings, teler-
obotics will act as human avatars. The user’s tactile feedback will be
transmitted to the robot in real-time through the network, and the
robot will be controlled to complete various dangerous tasks. Wireless
brain–computer interface, immersive XR, and holographic communi-
cation are all inseparable from the superb transmission capabilities of
6G [133,141]. These hardware and technologies form the basis of HMI,
and interaction and collaboration behaviours can be completed. The
next section will focus on topics that attract researchers’ attention in
interaction and collaboration.

3.5. Interaction and collaboration

In the research of the HMI field, human–machine function and
task allocation, trust and workload allocation are three major issues
researchers focus on. Moreover, these issues are expected to continue
to receive attention as the degree and scope of automation increase.

3.5.1. human–machine function and task allocation
The distribution of functions and tasks between humans and ma-

chines has received continuous attention in human–machine interac-
tion [10]. For example, one of the goals of introducing an automated
system is to reduce the workload of humans by using machines to
complete or assist with some tasks. However, in different HMI designs,
the setting of function allocation is different because researchers have
different understandings of the functions that humans and machines
are good at. The functions in a smart factory consist of four parts:
operation and supervision, management, maintenance services, and
cybersecurity [2]. The realisation of these functions is mainly through
workers performing corresponding tasks. To achieve operation and
supervision functions, workers must utilise HMI to monitor machines
and processes, control production parameters, identify and assemble
parts, and schedule machines. The tasks involved in the management
function include administration, workforce and operation scheduling,
and production planning. Maintenance services involve fault detection,
repair, quality inspection, and simulation. Tasks involved in network
security include data retrieval, authentication, security assessment,
and network configuration. As automation increases, some functions
and corresponding tasks have been replaced by machines, while some
still require human participation. Therefore, in a dynamic production
environment, workers should not only focus on the tasks they are
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currently performing but also understand the functions they want to
achieve and the shortcomings of the machine. Humans are generally
considered better suited for tasks like creativity and decision-making,
while machines are better suited for repetitive tasks [142]. However,
this does not mean that all repetitive tasks can be completely separated
from operator monitoring. Therefore, the operator can misunderstand
what task has been replaced by the machine and what task he should
focus on.

A good example is the ‘‘irony of automation’’: Introducing automa-
tion equipment into the system changes human behaviour [11]. The
goal of introducing automation is to help or even replace humans for
some work tasks so that humans can focus more on others — and/or
free up resources along the way. Still, these automation devices can also
reduce people’s concentration in these non-automated tasks and lead
to impoverished cognitive processing of information, which impacts
cognitive factors such as memory and problem-solving. Studies of
driver assistance systems have shown that drivers become less attentive
to tasks such as steering, which the system assists, and lose situational
awareness [10,143].

The distribution of functions and tasks in HCSM factories will face
two major problems. First, the mental load on workers will increase
significantly as the professional level of factory equipment increases.
The introduction of automation has effectively reduced the physical
burden on workers, but the consequence is that a large amount of
information is collected. Workers need to process the collected data
and information to make correct decisions. Although AI and big data
analysis can help people process this data because people are the
core and decision-making layer of the factory, the mental load on
operators is still heavy. In addition, the growth of non-professional
users is also a problem that cannot be ignored. It is unrealistic to
expect workers to understand the function of every part of the factory.
Workers may not understand the mechanics of the equipment they
operate. Good guidance is necessary to assist workers in completing
their tasks. Therefore, HMI design in Industry 5.0 should include two
considerations: to help professionals reduce their burden and to help
non-professionals understand the tasks.

3.5.2. Incorrect use, trust and confusion
Incorrect use, trust and confusion are three topics often discussed

together [10]. There are four different kinds of use in HMI: use, misuse
(over-dependence and over-trust), disuse (do not use, do not trust) and
abuse (do not consider the impact of introducing machines, ‘‘irony of
automation’’) [14,19]. Different initial trust levels in the system will
lead to different users’ use of the device, and the consequences of incor-
rect use may further affect users’ trust in the system. Incorrect use will
not only affect human–machine collaboration, reduce efficiency, and
cause safety issues but also lead to loss of workers’ trust in machines.

Confusion is mainly produced by system complexity [10]. As the
factory develops towards customisation and integration, the system
needs multiple modes to meet different needs. The manufacturing
environment often involves a dynamic set of systems, and as time
changes, its operating mode will also change. Different operating modes
often appear to deal with different situations. But this can potentially
cause mode confusion on the operator’s part. Research on autonomous
driving has found that confusion may arise for three reasons. Unex-
pected situations such as sudden snowfall and overtaking vehicles can
cause the car’s mode to change before the user has enough reaction
time to respond to the new mode. However, users often must respond
quickly when the unexpected happens [144]. In addition, the vehicle’s
functions will change as the environment changes. Certain weather
and environments may limit the functionality of some sensors, making
it dangerous if the operator’s attention is not on driving [15]. This
situation is more common in manufacturing environments. Since the
factory’s equipment status and production conditions are constantly
changing, it can be said that most of the time, the functions of the fac-
tory are changing [19]. ‘‘Irony of automation’’ is the third reason users
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pay less attention to mode changes. The introduction of automation
will reduce operators’ attention to the system, preventing them from
detecting changes in the system. In future factories, automated equip-
ment will be used in more complex situations, so multiple operating
modes are necessary [11]. Research on modelling and analysis of mode
confusion in different manufacturing environments will be one of the
most efficient methods of evaluating and improving this problem. An
early study found that power plants have high requirements for equip-
ment maintenance, so some equipment will always be in maintenance
status. In such an environment, workers can easily become confused
about alarms caused by accidents and maintenance [144].

Overall, ensuring that users have sufficient trust in the system is
one of the main ways to encourage effective and sustained use and
prevent misuse and possible disuse. A bigger problem is that because
many technologies and products are developed without user trust, these
devices may not have established trust models, and it is very difficult to
build models for them. Researchers should not only consider establish-
ing operators’ trust in equipment and appropriate evaluation models
to accurately assess the degree of trust and prevent the occurrence
of excessive trust but also focus on restoring and maintaining trust
after an accident. The prevention of confusion should focus on the
establishment of an early warning system. This is also inseparable from
establishing analytical models for specific environments.

3.5.3. Workload allocation
Several papers within the review were focused on workload and

how it can be optimally distributed to achieve tasks at hand bet-
ter [10,19,145–150]. In general, workload distribution aims to prevent
underload and overload so that users are optimally engaged in tasks
with enough cognitive resources to perform them effectively. Many
studies reviewed often also focus on focus and/or divided attention,
as well as attention management, and these will also be discussed
below [10].

One purpose of automation is to free up workload (resources) so
that people do not have to perform as many repetitive tasks and instead
can focus on other tasks where human involvement is more valuable.
However, this does not mean that these automated tasks do not re-
quire human intervention — and hence workload. When failures or
abnormal conditions occur, workers must still participate in these tasks
to supervise. Numerous studies have found that workers in automated
control environments are less sensitive to alarms [10,19,145]. To this
end, a study has used early warning to prepare workers for emergencies
in advance [146]. In addition, the researchers proposed six solutions
to keep workers focused: avoiding the role of human supervision of
automation, reducing the role along an objective dimension (reduce
automation tasks and devices), reducing the role along a subjective
dimension (add human tasks), support the role from the behaviour
paradigm (more training), support the role from the dyadic cognitivism
paradigm (align content, structure and functions of computerised sys-
tems with human minds), support the role from the triadic ecological
paradigm (emphasise the importance of direct perception and informed
considerations of adaptation to specific work domains) [147].

Years of research have found that supervising automated processes
is not where humans excel. Human errors still occur when people
supervise automated equipment that is designed to prevent or at least
minimise operational errors. Therefore, it is necessary to reasonably
evaluate whether a certain function is suitable for introducing au-
tomation. The introduction of automatic flying systems in aircraft
sometimes fails to improve safety and, in some cases, causes the pilot
to be away from tasks for a long period, and this can keep them
out of the loop and lead to errors and potential accidents in some
(albeit very few) cases accidents [147]. Research in this field is also
called ‘‘stay tuned’’. Other researchers have found that although long-
term supervision is difficult for operators to achieve (due to vigilance
limitations), requiring operators to perform a short operation over a
short period can significantly reduce the occurrence of errors [148].
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Periodic proactive engagement maintains operator engagement and
response times better than reactive handling when an incident occurs.
For the system, sometimes the operator can be made more involved in
the system by increasing the operator’s workload, although this seems
counter-intuitive. One study found that autonomous driving systems
can attract the driver’s attention by showing a lack of ability or even
deliberately making wrong judgements [149]. A major focus in future
operator training should be creating immersive applications that can
motivate operators to operate correctly. Some VR operation training
equipment is designed based on increased engagement. During training,
workers build a better understanding and trust in the system and
develop their interest in work. To ensure that computerised systems
are consistent with human thinking, it is necessary to explore workers’
mental models and follow the user-centred cognitive interface design
concept in the design of HMI. The part of the system displayed to the
user must meet the four key points: the process is understandable, the
results are understandable, consistent with user goals, and meets user
reliability expectations [150].

Finally, external environmental context and task considerations
should not be ignored in the design of HMI. The operators always per-
ceive the external environment, which directly affects their behaviour.
While considering people’s psychological state, constructing a suitable
external environment and setting appropriately challenging tasks can
improve operators’ feelings and ability to cope with the workload.

In HCSM, research needs to focus more on how to make worker
and machine work partners (and to optimise this) rather than being
studied separately as two individuals. The changes brought about by
the development of AI to HMI may be inflammatory. These AI-based
interactive systems can improve people’s communication experience
in a humanised way and stimulate recognised creativity and thinking
ability in more creative tasks like an assistant, improving workers’
comfort and satisfaction. This may be one of the best ways to solve
these HMI problems.

In a manufacturing environment, sensors are the first hardware
devices to interact when humans and machines interact. They collect
signals and information, convert them into data, and pass them to the
data centre for analysis. Various sensors based on different mechanisms
and with different performances build the foundation for big data
analysis. The application of CC and EC in different scenarios allows
factories to solve the problem of insufficient data processing and/or
transmission capabilities to a certain extent, thereby helping factories
realise IoT/IoE. Machine learning and deep learning algorithms have
become important means for factory data analysis. In the future, with
the popularisation of 6G, WSNs and networks in factories will have
stronger anti-interference capabilities and data transmission capabili-
ties, improving the factory’s data analysis and collection capabilities
and data security. Finally, as the concept of human-centric gradually
becomes popular, more and more products and equipment will con-
sider human factors during production and design, which will play an
important role in the construction of HMI analysis in these scenarios
in the future. In Industry 5.0, machines and humans should cooperate
and coexist, trust each other, allocate tasks reasonably, and achieve the
goal of improving human well-being.

4. Towards human-centric smart manufacturing: Challenges and
opportunities

The previous section reviewed some important research and en-
abling technologies in the field of HMI, thereby providing some basic
understanding for analysing how they will realise the Industry 5.0
vision. This section will focus on the challenges faced when realising
the vision of Industry 5.0 and the opportunities that Industry 5.0 brings
to future manufacturing.
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4.1. Challenges

4.1.1. Non-deployed technology and costs
Applying new technologies to HMI in real manufacturing scenarios

can be challenging. Although some developing technologies such as
ChatGPT and AI-based voice recognition assistants have been widely
used in people’s daily lives, technologies such as brain–computer in-
terface and 6G are still mainly based on laboratory research. The
development and application of these technologies mainly have three
constraints. To design a suitable HMI product/system, factors such
as material selection, ergonomic design, equipment performance, etc.,
must be considered in terms of hardware. At the theoretical level, it
is also necessary to consider how humans and machines collaborate,
how work is distributed, how to ensure workers’ trust in machines,
and how to evaluate and monitor these indicators quantitatively. The
complexity brought to HMI system design involving multiple disciplines
and fields is a major restriction for HMI technology to be applied in
actual scenarios [10].

In addition, cost is also a major factor restricting the development
of these technologies. Big companies with high-profit margins, such
as Intel, Nvidia, Tesla, etc., are the main drivers of HMI research in
manufacturing [16]. However, those companies with low-profit mar-
gins need more incentives and strength to invest in this area, even
if these studies can bring huge benefits to the company in the long
run. Manufacturers with low-profit margins often find implementing
measures and equipment with long payback periods difficult because
their capital pools are not generous. Therefore, Industry 5.0 should
focus on how to reduce the cost of HMI technology and deployment.

Sustainability has been discussed since the age of Industry 4.0. But
it has now turned into an urgent need. The realisation of sustainability
cannot be achieved without applying new technologies. In recent years,
incidents and events such as the COVID-19 pandemic and the Russia-
Ukraine war have exposed the fragility of existing international supply
systems. Global warming is also making sustainability an urgent need
in industry. Countries have passed bills to stop using highly polluting
gasoline cars in the next two decades [8,9,19]. To implement the
concept of sustainability in HMI in the industry, factories must adopt
greener equipment and sensors from the technical level and improve
workers’ understanding of this concept. Improving the explainability
of the system will not only prevent the emergence of unnecessary pro-
cesses but also encourage workers to implement appropriate behaviours
to improve the sustainability of the factory [130,131].

4.1.2. The application of human-centric concept: from efficiency and profit
to human-centric

Although Industry 5.0 have proposed the human-centric concept,
it is difficult to expect enterprises to focus more on human than their
profit-pursuing nature. As discussed in previous sections, improving
factory output through people’s well-being is a long-term goal. Most
small and medium-sized enterprises lack the corresponding funds and
sometimes the motivation to undertake related investment and indus-
trial upgrading. An important point of contradiction is that low-end
manufacturers are where people’s well-being is neglected the most.
Still, they lack the corresponding funds to improve the system in this
area because their demand for innovation is relatively low. Therefore,
implementing Industry 5.0 not only depends on enterprises but also
needs help from the government and policy.

In addition, for factories, the human-centric concept should be
implemented at the beginning of design to fully understand and meet
human needs. In a human-centred factory, everything should be about
serving people. Devices and systems based on AI should continuously
enhance their collaboration and empathy capabilities based on real-
time data and help workers maintain a good physical and mental state
at all times.

A comprehensive HCSM factory should include human-centric pro-
cess planning, workshop scheduling, processing and assembly [151].
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Human-centric process planning requires factories to consider work-
ers’ needs when coordinating production processes. Some researchers
have explored the differences in decision models under different de-
sign philosophies (e.g. [152,153]). Human-centric workshop schedul-
ing focuses on putting the interests of operators and consumers in
the first place in production in the workshop. AI can help factories
complete intelligent workshop scheduling, thereby assisting operators
and improving efficiency [154]. Human-centric processing focuses on
recognised safety and health. Remote operations and more human-
friendly smart assistants are technologies already used in some smart
factories [7,26,32,64]. Human-centric assembly is mainly based on the
following considerations. First, humans still dominate the assembly pro-
cess. Second, assembly work is repetitive. Therefore, this part mainly
aims to use automated equipment to replace repetitive tasks and fully
stimulate the operator’s cognition and flexible innovation capabilities.

Besides, research in the HMI field in the industry has yet to focus
on human-related data. Human-related data is expected to be central
in HCSM, as it is one of the indispensable data to help HMI devices
understand people. Collecting and analysing these data allows the ma-
chine to provide humanised and personalised assistance to the operator.
This makes the IoE that the industry has always imagined cannot
be well implemented. More effort must be put into human-related
data in deploying and applying sensors, which also puts forward new
requirements for developing technology and research [9].

4.1.3. Training of employees
Training employees is also a big challenge that needs to be opti-

mised to reap HCSM’s rewards fully. These training efforts should train
workers to understand the equipment and teach them how to use it as
a supporting feature of their work lives [10].

In some previous sub-sections, we explored the growth of non-
professional users and the emergence of professional users as the core of
manufacturing. It needs to be clear that with the increase in integration
and complexity of manufacturing systems, even professional users need
help understanding the entire system. In today’s fast-paced techno-
logical iteration, operators in manufacturing scenarios have both the
attributes of professional users and the attributes of non-professional
users. Therefore, a major difficulty in worker training is that different
workers have different knowledge backgrounds, and it is difficult to
achieve the desired effect only by centralised training [155].

Therefore, personalised training based on big data and AI is nec-
essary. This personalised training should focus on helping workers
understand the system rather than on subtle technical difficulties. At
its core, HCSM is about helping workers unleash their creativity and
flexibility while safeguarding their well-being. Training that sticks to
the HCSM core can help workers better understand factory systems and
make the best decisions.

4.1.4. Data and personnel security
Security is also a major issue that factories will pay attention to.

Security can be divided into two issues: data security and personnel
security. Data security not only depends on confidentiality technology
but also on workers’ awareness of protection. In the HMI process, how
to transmit this concept to workers will be a more permanent and
effective way to improve. The safety of workers is inseparable from
the addition of humanised design, such as the empathy ability of the
interactive system. These designs improve worker comfort and give
them a greater awareness of hazards.

In recent years, blockchain technology has also been applied to data
encryption in the IoT field due to its confidentiality. Blockchain has
the characteristics of traceability, anti-tampering, and decentralisation,
so it has received much attention in ensuring information security in
industrial IoT [91,92]. However, this technology still faces three major

problems [151]:
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• The blockchain model relies on the IoT architecture, and its
ability to deal with problems alone is weak, and its ability to deal
with physical attacks is weak.

• The current technology is immature, and there still needs to be
more research on how to evaluate the security and privacy of the
network.

• How to promote the integration of people and systems and how to
protect the privacy and security of people still needs to be solved.

In addition to ensuring physical safety, factories should also ensure
workers’ psychological safety and privacy. The manufacturing indus-
try has relatively mature processes and measures to protect workers’
health and life safety. Considering psychological conditions and privacy
protection will receive more attention in Industry 5.0. Since human-
related data will become an important part of HCSM data, these data
are closely related to workers’ psychological state and privacy. Due to
their natural attributes, technologies such as brain–computer interface
and myoelectric-based myoelectric interaction must consider how not
to infringe on human privacy when designing. The goal of Industry
5.0 is to enable humans and machines to work closely together rather
than manipulating workers through HMIs. Therefore, how to protect
workers’ mental health without abusing these data and models will be
a problem that needs to be addressed in future research.

4.1.5. Real-world HMI implementation
To ensure that HMI systems can be deployed in the real world, some

principles and factors must be considered during the design process of
HMI systems. As research continues to deepen, people have established
different design principles for HMI systems [156]. The frameworks
of Shneiderman [157], Wickens, Lee, Liu, and Becker [158] et al.
believe that user experience, needs, and capabilities should be the
core of the design. The principles summarised by Shneiderman include
system consistency (using consistent instructions), providing feedback
on input (sending status information when the system has a request),
designing a closed loop of dialogue (task completion prompts), pro-
viding simple error prompts (avoiding multiple clicks), and reducing
cognitive memory load (avoiding complex menus). Wickens et al. are
more concerned with human cognitive abilities and limitations and
therefore regard perception (clear interactive interface), attention (re-
ducing the difficulty of obtaining information), memory (simplifying
the steps to obtain important information), mental models (ensuring
that icons and logic are easy to understand), and situational aware-
ness (the ability to predict the future and remind of key past events)
as general HMI design principles [158]. Cuevas [159] proposed a
four-factor criterion: ethnographic/anthropomorphic traits, cognitive
factors, predictive modelling, and empirical testing. This criterion states
that HMI systems must be evaluated from these four perspectives to
meet practical application requirements.

During the design process, we believe an HMI system must be
verified to meet the requirements from the perspectives of adaptability,
accessibility, usability and functionality. Adaptability is the ability of
the HMI system to adapt to changes in the environment, tasks and
personnel. A good HMI system should be customised according to
user needs and the external environment to ensure user experience.
Accessibility refers to whether the HMI system is easy to use. In
particular, when users have special needs or physical disabilities, the
HMI system should ensure they can still access it. Usability refers to
the efficiency and ease of use of the HMI. A good HMI system should
be easy to understand and reduce the user’s learning cost and error
probability. Functionality means that when designing the HMI, the
system should ensure the required functions are available to prevent
functional deficiencies.

4.2. Opportunities

Although implementing Industry 5.0 faces many challenges, it will
also bring new opportunities to the HMI system in the manufacturing
scenario. Next, three emerging technologies will be introduced. They
are expected to drive the development of HMI in Industry 5.0.
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4.2.1. Digital twins and industrial metaverse
Digital twin (DT) is a technology that digitises physical devices

and processes to enable remote manipulation, prediction, optimisa-
tion, simulation, and control of manufacturing processes [160]. It is
a discipline that is still developing. Early DT models included three
dimensions: physical, virtual, and connected. In this model, models
in the virtual space are mapped to the physical world through data
transmission [161]. Fei Tao et al. proposed a five-dimensional model
that includes virtual models, physical entities, connections, digital twin
data, and services [162]. The theory of DT includes four parts: mod-
elling and simulation, data fusion, interaction and collaboration, and
services. According to the five-dimensional model theory, DT mod-
elling includes physical modelling (extracting physical features), virtual
modelling (building virtual models), connection modelling (building
connections between models), data modelling (storing and process-
ing data), and service modelling (identifying and analysing services).
Data fusion involves data preprocessing, mining, and optimisation.
It helps to build and connect models. Interaction and collaboration
include physical–physical, physical–virtual, and virtual–virtual inter-
actions. Physical–physical interaction allows multiple devices to work
together. Physical–virtual interaction can connect remote models and
entities to achieve manipulation. Virtual–virtual interaction can share
data within the network to achieve remote collaboration. Services
include business encapsulation, service optimisation and matching,
quality assessment, etc., which can help DT provide the best service to
customers. DT is used in product design, production process monitoring
and health management [160].

The Industrial Metaverse has continued to develop in the manufac-
turing industry in recent years. It is a concept very similar to Digital
twins. Digital twins start from the virtualised design and development
of complex products, while the industrial metaverse originated from
the game industry and gradually developed into the industrial world.
Digital twins are first oriented towards technology, while the Industrial
Metaverse focuses more on people [163]. The Industrial Metaverse aims
to merge the physical and digital worlds. It builds an online virtual
factory parallel to the real factory so that all relevant researchers can
work together in the same scenario [164]. In this virtual factory, users
can simulate real work scenarios to train, design, test and operate real-
world equipment [165]. The Industrial Metaverse focuses on building
a complete 3D environment, allowing workers to use and analyse data
from the spatial dimension to solve previously unsolvable problems. In
the industrial virtual world, when technical experts join an invitation
link to a remote factory, they can use wearable devices to see the
manufacturing scene visually.

The Industrial Metaverse can bring many benefits to manufacturers.
First, it can be optimised and designed through simulation, reducing
actual production costs and trial and error costs [166]. In addition,
it can also improve the production efficiency of manufacturing com-
panies, allow employees to become familiar with operations through
virtual training, and reduce failures in actual operations. The industrial
metaverse can promote company innovation. Rapid design, testing,
and development of new products through virtual environments can
help companies form competitive advantages [167]. The Industrial
Metaverse can also help companies become more sustainable. It can
maximise resource utilisation while meeting individual needs through
intelligent, planned production, procurement, quality and inventory
management [163,166,167].

4.2.2. Worker safety, health monitoring and ergonomics design
Sensors and monitoring systems in Industry 5.0 will focus not only

on processes but also on the status of workers. Research on worker
fatigue in manufacturing environments is not new [168–170]. How-
ever, because people’s definition of fatigue is relatively subjective, and
related analysis requires collecting some data that may involve privacy,
large-scale applications of this model have not yet been seen in actual
production. With the collection and research of human-related data,
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future smart factories will have personalised safety and health detection
systems for each worker to ensure the well-being of workers [171].
The expected goal is that in the future, big data analytics can be used
to create personalised profiles based on workers’ different indicators,
thereby improving worker well-being from an ergonomic, medical and
psychological perspective. Since every worker’s situation differs, using
universal data to meet their needs is unrealistic. Only a personalised,
customised system can meet the needs of each worker.

Ergonomics will also be a big focus in Industry 5.0. Monitoring
systems can only provide us with early warnings and indications,
while ergonomics will improve conditions that may arise for work-
ers [172]. In the future, in Industry 5.0, a large number of ergonomic
equipment will be designed using human-centric methodology [173].
These devices can reduce the cognitive load on workers, reduce the
probability of errors, and increase productivity. In addition to this,
these devices prevent the occurrence of many occupational diseases and
health problems. These devices will also serve as a monitoring system
to safeguard workers’ well-being.

4.2.3. Brain-Computer Interface (BCI)
Brain–computer interface technology will be an extremely impor-

tant key technology that will promote social development in the future.
This system can connect the human brain and the external environ-
ment, allowing users to control devices through brain signals [174].
Researchers have always favoured this field. The system can be classi-
fied as passive or active depending on how the brain is used. Passive
BCI analyses the brain’s unconscious signals and emotions, while active
BCI involves the user’s voluntary brain movements. Passive BCI can be
used in fault and fatigue detection. For example, an early warning is
given when a person is exhausted [175]. Active BCI can help users
complete interactions with devices.

BCI has broad application prospects. However, most current re-
search on BCI still focuses on the medical aspect [174]. It replaces the
central nervous system and controls prosthetic limbs [176]. BCIs are
used in some clinical settings to assess and diagnose patients for various
diseases [177]. In the industrial field, BCI can effectively promote
human–machine collaboration and help humans and robots understand
each other’s intentions. One study used eye blinks as a signal in-
put to complete loading and unloading work through BCI-controlled
robots [1]. In the future, as the number of psychological states and
input signals that BCI can classify increases, it can be used to control
robots to complete more complex tasks. This can significantly reduce
the physiological load on workers and prevent possible accidents. The
deployment and development of BCI will greatly promote realising the
Industry 5.0 vision.

4.2.4. MES systems in Industry 5.0
The concept of the manufacturing execution system (MES) emerged

in the 1990s. It builds a top-down system for managing workshops
and enterprise resource planning to establish detailed operating plans
for enterprises [178]. Through this system, enterprises can manage
workshops in real time. In the past three decades, the industry has
established 11 functions of MES systems: resource allocation and sta-
tus management, job scheduling, product unit scheduling, document
control, data collection and acquisition, labour management, quality
management, process management, maintenance management, product
tracking and performance analysis [179]. In the field of MES, there are
currently some different solutions on the market. POMSNet Aquila, ABB
MES, Siemens Opcenter, GE Digital’s Proficy MES, 3DS’s DELMIAworks
and PLEX’s MES/MOM are some of the popular MES solutions and
software on the market [180]. These solutions and software have their
characteristics in terms of functions and applicable scenarios. Many
companies use a combination of different software to meet actual
needs. However, the intelligence level of these existing commercial
MES systems is not very high and cannot meet the requirements of
enterprises for predictive capabilities [180].
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There are three frontiers in the research of MES: combining AI and
ES systems, DT and augmented reality [180]. By combining AI, MES

ystems can handle tasks in the system more efficiently, ensure the
afety of the working environment, and meet productivity and quality
oals [181]. DT can connect the intelligent layer of MES with the
hysical world to achieve real-time monitoring and management of the
orkshop [182]. Augmented reality can promote the collaboration and

ntegration of people and MES systems. In Industry 5.0, people will still
lay an important role in the factory. In the MES system, augmented
eality can visualise data to assist operators in better managing the MES
ystem [183,184].

The development of MES systems will promote the realisation of
ndustry 5.0. It is an effective measure for smart factories to achieve
ustainability and elasticity goals. MES systems combined with aug-
ented reality will make the interaction between operators and systems
ore humane in the future, thereby making the relationship between
eople and systems closer. This system can ensure production and
s an important guarantee for employee well-being. By incorporating
mployee well-being into production workflow management, factories
an become people-centric.

. Conclusions

This paper gives a systematic review of the development of HMI
n the future HCSM and Industry 5.0 and the constraints that may be
ncountered by analysing and summarising the existing research and
echnology in the HMI field. According to the signal transfer process in
he HMI, this article classifies and summarises these related studies in
our parts: sensor, data processing, data transmission mechanism, inter-
ction and collaboration. In the sensor field, the equipment involved in
MI is summarised from the perspectives of optical, acoustic, bionic,

actile and motion. The review on data processing mainly focuses on
oT and IoE, CC, EC, machine learning and deep learning. The data
ransmission mechanism discusses WSN and 5G/6G. In the interaction
nd collaboration part, this article focuses on three main issues in
MI field research: 1. human–machine function and task allocation, 2.

ncorrect use, trust and confusion, and 3. workload allocation.
Reviewing the current HMI Research in the field, this paper explores

he challenges and opportunities that HMI may encounter in Industry
.0. There are four challenges facing the realisation of the Industry 5.0
ision. The development maturity and deployment costs of technologies
imit their practical application. The human-centric concept has not
een placed in an important position in the design of products and
rocesses. This has resulted in many equipment and links in the factory
eing naturally incapable of building HMI analysis models. Workers’
urrent knowledge and skill levels cannot cope with the new equipment
nd processes of Industry 5.0. Security issues brought about by the
ersonalisation of HMI analysis and increased data collected about
eople are also important challenges facing Industry 5.0.

Many new opportunities will emerge in Industry 5.0. This paper
xplores three opportunities related to manufacturing. The industrial
etaverse will bring a new online operating model to manufacturers,

nhance collaboration and innovation, and enable factories to make
ore informed data-driven decisions. Ergonomics, human factors and
any more intelligent safety and health monitoring systems will bring
eople and machines closer together and ensure the well-being of
eople in HMI. Brain–computer interface (BCI) will connect people and
achines, with a promise of making future machines truly like part of

he human body, serving as human assistants to help people complete
anufacturing tasks.
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