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Abstract

In this paper, we present ASPEN, an answer set program-
ming (ASP) implementation of a recently proposed declara-
tive framework for collective entity resolution (ER). While an
ASP encoding had been previously suggested, several practi-
cal issues had been neglected, most notably, the question of
how to efficiently compute the (externally defined) similar-
ity facts that are used in rule bodies. This leads us to pro-
pose new variants of the encodings (including Datalog ap-
proximations) and show how to employ different function-
alities of ASP solvers to compute (maximal) solutions, and
(approximations of) the sets of possible and certain merges.
A comprehensive experimental evaluation of ASPEN on real-
world datasets shows that the approach is promising, achiev-
ing high accuracy in real-life ER scenarios. Our experiments
also yield useful insights into the relative merits of different
types of (approximate) ER solutions, the impact of recursion,
and factors influencing performance.

1 Introduction
Entity resolution (ER) is a fundamental problem in data
quality which aims at identifying different constants (of the
same type) that refer to the same real-world entity (Singla
and Domingos 2006; Singla and Domingos 2006). Over
time, several variants of ER (also known as record linkage
or deduplication) have been investigated, including pairwise
matching in a single table and (the more general) collective
ER, which looks at the joint resolution (match, merge) of
entity references across multiple tables (Bhattacharya and
Getoor 2007). Given the multi-faceted nature of the ER
problem, diverse techniques have been already proposed
to tackle it (Christophides et al. 2021), including machine
learning (ML), and declarative frameworks based upon log-
ical rules and constraints. Most existing approaches to ER
focus on single-pass matching of tuples within a single ta-
ble or between a pair of tables, and ML methods have ob-
tained remarkable results (Li et al. 2020) for such settings.
On the other hand, declarative methods are well suited for
complex multi-relational settings as they naturally exploit
the relational dependencies to perform collective ER. More-
over, some declarative approaches conduct ER in a recursive
manner (also called deep ER (Deng et al. 2022)), instead of
examining entity pairs only once.

LACE is a recently proposed declarative framework (Bi-
envenu, Cima, and Gutiérrez-Basulto 2022) for collective
ER, which employs hard and soft rules to define manda-
tory and possible merges, and denial constraints (Bertossi
2011) to enforce consistency of the resulting database and
constrain the allowed combinations of merges. LACE em-
ploys a dynamic semantics in which rule bodies are evalu-
ated over the current induced database, taking into account
all previously derived merges. This makes it possible to sup-
port recursive scenarios, while ensuring that all merges have
a (non-circular) derivation. The semantics of LACE is also
global since all occurrences of the matched constants are
merged, rather than only those constant occurrences used in
deriving the match. Additionally, LACE considers a space
of maximal (w.r.t. set inclusion) solutions, which emerges
from adopting denial constraints to enforce consistency and
restricting which merges can be performed together, effec-
tively creating choices. From this, one can define the notions
of possible and certain merges, as those merges that belong
to some, respectively all, maximal solutions.

While the theoretical foundations of LACE have been al-
ready established, a real-life implementation is to-date ab-
sent. Bienvenu, Cima, and Gutiérrez-Basulto (2022) showed
that LACE solutions can be faithfully captured by answer set
programming (ASP) (Lifschitz 2019; Gebser et al. 2012) sta-
ble models. Building upon this, in this paper we present
ASPEN, an ASP-based system for collective ER. ASPEN
deals with several practical issues, including the question of
how to efficiently compute the (externally defined) similar-
ity facts that are used in rule bodies. It also implements
new variants of the encodings (including Datalog approxi-
mations) and uses different functionalities of ASP solvers to
compute (maximal) solutions, and (approximations of) the
sets of possible and certain merges. A comprehensive exper-
imental evaluation of ASPEN on real-world datasets shows
that the approach is promising, achieving high accuracy in
real-life ER scenarios. Our experiments also yield useful in-
sights into the relative merits of different types of (approxi-
mate) ER solutions, the impact of recursion, and factors in-
fluencing performance, such as the degree of dirtiness and
size of datasets. ASPEN also leverages the xclingo (Cabalar
and Muñiz 2023) framework for explaining conclusions of



ASP programs to compute the justification of a merge in a
solution, making ASPEN a justifiable framework for ER.

Related Work We discuss prior work on logic-based ap-
proaches to ER; for details on ML and probabilistic meth-
ods, see (Christophides et al. 2021). The LACE framework,
underlying ASPEN, shares some characteristics with other
logic-based ER methods. Similar to approaches based on
matching dependencies (MDs) (Bertossi, Kolahi, and Lak-
shmanan 2013; Deng et al. 2022), ASPEN adopts a dynamic
semantics, enabling recursive ER. Like the Datalog-like ap-
proaches Dedupalog (Arasu, Ré, and Suciu 2009) and En-
tity Linking (EL) (Burdick et al. 2016) (and unlike MDs),
ASPEN considers a global semantics. Finally, as in the EL
framework, ASPEN does not consider only a single solution,
but rather a space of maximal solutions, leading to notions
of possible and certain merges. While ASP encodings have
been proposed for MDs (Bertossi, Kolahi, and Lakshmanan
2013; Bahmani and Bertossi 2017), no implementation nor
evaluation are provided. Likewise, there is no implementa-
tion of the EL framework. The closest existing implemen-
tations of logic-based ER are those of Dedupalog (Arasu,
Ré, and Suciu 2009) and MRL (Deng et al. 2022). How-
ever, they are not publicly available. The main distinguish-
ing features of ASPEN compared to existing systems are as
follows: i) Rather than computing a single (possibly non-
optimal) solution, ASPEN is not only able to compute, with
the guarantee of correctness, a space of maximal solutions
but also approximations with different levels of granularity
based on different reasoning modes. ii) To the best of our
knowledge, ASPEN is the first system that is able to explic-
itly give justifications to merges. We finally note in passing
that ASP-based approaches to database repair have been ex-
plored (Eiter et al. 2008; Manna, Ricca, and Terracina 2013;
Ahmetaj et al. 2022). Additionally, a bespoke ASP system
for cleaning healthcare data has also been developed (Ter-
racina, Martello, and Leone 2013).

All programs, code, experiments and data of ASPEN are
available at https://github.com/zl-xiang/Aspen. Further de-
tails on proofs and experiments can be found in the appendix
of (Xiang et al. 2024).

2 Preliminaries
We assume infinite sets of constants C and variables V. A
(database) schema S consist of a finite set of relation sym-
bols, each having an associated arity k ∈ N. We write
R/k ∈ S to indicate that R has arity k. A relational
atom (over schema S) takes the form R(t1, . . . , tk) where
R/k ∈ S and ti ∈ C ∪ V for 1 ≤ i ≤ k, and we call
R(t1, . . . , tk) a fact if {t1, . . . , tk} ⊆ C. We say that ti oc-
curs in position i of an atom R(t1, . . . , tk). A database D
(over schema S) is a finite set of facts (over S). The set of
constants occurring in a database D is denoted by Dom(D).
Sometimes it will prove more natural to employ attributes
rather than (unnamed) positions, writing R(A1, . . . , Ak) to
indicate that (A1, . . . , Ak) are the attributes of R.

A conjunctive query (CQ) over a schema S takes the
form q(x⃗) = ∃y⃗.φ(x⃗, y⃗), where x⃗ and y⃗ are disjoint tu-
ples of distinguished and quantified variables, and φ(x⃗, y⃗)

is a conjunction of relational atoms over S, with variables
drawn from x⃗ ∪ y⃗. We use terms(q) for the set of terms
of q, i.e. the constants and variables appearing in q. The
set of answers to a CQ q(x⃗) = ∃y⃗.φ(x⃗, y⃗) on a database
D (over the same schema), denoted q(D), contains those
tuples of constants c⃗ such that there exists a mapping h :
terms(q) → Dom(D) such that (i) h(x⃗) = c⃗, (ii) h(t) = t
for t ∈ terms(q) ∩C, and (iii) for every atom R(t1, . . . , tk)
of q, R(h(t1), . . . , h(tk)) ∈ D. We will also consider CQs
with inequalities (CQ̸=), which may additionally include in-
equality atoms ti ̸= tj , in which case we require that the
mapping h further satisfies (iv) h(ti) ̸= h(tj) whenever q
contains ti ̸= tj . When q has only quantified variables, it is
called Boolean, and we say that a Boolean CQ̸= q is satis-
fied in D if q(D) = {()}. A denial constraint (DC) takes
the form q → ⊥, where q is a Boolean CQ ̸=. We say that D
satisfies a DC q → ⊥ just in the case that the CQ̸= q is not
satisfied in D. Functional dependencies (FDs) and primary
key constraints are special cases of DCs.

When we speak of complexity, we will always mean data
complexity, which is measured only in terms of the size of
the input database, with all other inputs (e.g. ER specifica-
tions and queries) treated as fixed.

3 Entity Resolution Framework
In this section, we recall the syntax and semantics of
LACE (Bienvenu, Cima, and Gutiérrez-Basulto 2022). We
also introduce new notions that are useful for our system.

3.1 LACE Entity Resolution Specifications
Entity resolution can be formulated as the task of discov-
ering pairs of syntactically distinct database constants that
refer to the same entity (we will often use the term merges
for such pairs). We adopt the LACE framework, which fo-
cuses on identifying merges of entity-referencing constants
(e.g. paper or author identifiers).

LACE employs hard and soft rules to identify mandatory
and possible merges. Hard rules and soft rules, over schema
S, take respectively the forms:

q(x, y)⇒ Eq(x, y), q(x, y) 99K Eq(x, y) (1)

where Eq is a special relation symbol not in S used to store
pairs of merged constants, and q(x, y) is a CQ using relation
symbols from S. Intuitively, a hard (resp. soft) rule states
that a pair of constants (c1, c2) being an answer to q provides
sufficient (resp. reasonable) evidence that c1 and c2 refer to
the same real-world entity. We use q(x, y) → Eq(x, y) ∈ Γ
to denote a generic (hard or soft) rule (note the arrow).

It is natural and useful for rule bodies to use similarity
relations, i.e. binary relations whose extension is fixed and
computed using some external function (e.g. by applying a
string similarity measure to a pair of constants and keeping
those pairs whose score exceeds a given threshold). We shall
thus allow the considered schema to contain such similar-
ity relations and will adopt the more intuitive infix notation
x ≈ y (possibly with indices) for similarity atoms. Note also
that in the present section, we will assume that the similarity
facts are provided as part of the input database, leaving the
question of how to best compute them to later sections.

https://github.com/zl-xiang/Aspen


Band(bid, name, genre, year, founder)
bid name genre year founder
b1 Pink Floyd Psy. rock 1965 Barrett
b2 The Pink Floyd Prog. rock 1965 Barrett

Song(sid, title, lyricist, bid)
sid title lyricist bid
s1 Shine On You Crazy Diamond (I-IV) Waters b1
s2 Shine On You Crazy Diamond Waters b2
s3 Shine On You Crazy Diamond (V-IX) Waters b1

σex: Song(x, t, l, b) ∧ Song(y, t′, l, b) ∧ t ≈ t′ 99K Eq(x, y)
ρex: Band(x, n, g, d, f)∧Band(y, n′, g′, d, f)∧n ≈ n′∧g ≈ g′ ⇒ Eq(x, y)
δex: Appear(s, a, i) ∧ Appear(s, a, j) ∧ i ̸= j → ⊥

We assume that the extension of the similarity relation ≈
(restricted to Dom(Dex)) is the reflexive and symmetric closure of
{(n1, n2), (g1, g2), (t1, t2), (t2, t3)}, where ni, gi, and ti are
the name and genre of band bi and the title of song si, respectively.

Appear(sid, album, position)
sid album position
s1 Wish You Were Here 1
s2 A Delicate Sound of Thunder 1
s3 Wish You Were Here 5

Figure 1: A schema Sex, an Sex-database Dex, and an ER specification Σex = ⟨Γex,∆ex⟩ for Sex, where Γex = {ρex, σex} and ∆ex = {δex}.

Example 1. Figure 1 presents our running example inspired
by the MUSIC dataset. Relations Group, Song, Appear
of the schema Sex provide information about music bands,
songs, and which songs appear on which albums. The at-
tributes bid and sid contain identifiers for bands and songs
respectively, and the task at hand is to identify which of these
identifiers refer to the same band / song. The hard rule ρex
says that if two band ids have the same founding year, same
founder, similar names, and similar genres, they must refer
to the same band. The soft rule σex states that two song ids
likely refer to the same song if they have the same band and
lyricist and similar titles. For simplicity, a single similarity
relation ≈ is used to say which strings count as similar.

To enforce consistency of the inferred merges and to help
block false positives, LACE specifications may also include
denial constraints. For example, the denial constraint δex in
Figure 1 is an FD for Appear, which forbids the occurrence
of the same song in different positions within an album.

A LACE entity resolution (ER) specification over schema
S takes the form Σ = ⟨Γ,∆⟩, where Γ = Γh ∪ Γs is a fi-
nite set of hard and soft rules and ∆ is a finite set of denial
constraints, all over S. Rulesets are required to satisfy a sim-
safety condition, whereby the relation positions involved in
merges must be distinct from those involved in similarity
atoms. The example specification Σex is sim-safe as the at-
tributes involved in similarity atoms (title, name, genre) are
different from those involved in merges (bid, sid). Thanks
to sim-safety, we may assume w.l.o.g. that the constants ap-
pearing in merge positions do not occur in sim positions.

3.2 Semantics of LACE

The semantics of LACE associates with every database D
and ER specification Σ a set of solutions, where each solu-
tion takes the form of an equivalence relation over Dom(D),
indicating which constants refer to the same entity. Given a
set of pairs P ⊆ S × S, we write EqRel(P, S) to denote the
least equivalence relation over S that extends P .

In a nutshell, ER solutions in LACE are obtained by apply-
ing the hard and soft rules in such a manner that all hard rules
and constraints are satisfied, with the inferred Eq-facts deter-
mining the equivalence relation. Importantly, the evaluation

of LACE rules takes into account previously derived merges,
making it possible for merges to trigger further merges. For-
mally, given a database D, and equivalence relation E over
Dom(D), the database induced by D and E, denoted DE ,
is obtained from D by replacing each constant c by the (uni-
formly chosen) representative c̄ of its equivalence class. The
set q(D,E) of answers to q(x⃗) w.r.t. D and E is defined as:

q(D,E) = {(c1, . . . , cn) | (c̄1, . . . , c̄n) ∈ q(DE)}
Rule q(x, y)→ Eq(x, y) is satisfied in (D,E) if q(D,E) ⊆
E, and DC δ is satisfied in (D,E) if δ is satisfied in DE .

With these notions in hand, we can now define solutions.
Given an ER specification Σ and database D, we call E a
candidate solution for (D,Σ) if one of the following holds:

1. E = EqRel(∅,Dom(D))

2. E = EqRel(E′ ∪ {α}, D), where E′ is a candidate solu-
tion for (D,Σ) and α ∈ q(D,E)\E′ for some q(x, y)→
Eq(x, y) ∈ Γ

and it is a solution for (D,Σ) if additionally (i) (D,E) |=
Γh and (ii) (D,E) |= ∆. We denote by Sol(D,Σ) the set
of solutions for (D,Σ), and let MaxSol(D,Σ) be the set of
maximal solutions, i.e. solutions E such that there is no so-
lution E′ for (D,Σ) with E ⊊ E′.
Example 2. We determine the maximal solutions for
(Dex,Σex). The initial trivial equivalence relation E =
EqRel(∅,Dom(Dex)) is not a solution as the hard rule ρex
requires us to merge b1 and b2. Applying ρex, we obtain
E′ = EqRel({(b1, b2)},Dom(Dex)), which is a solution
for (Dex,Σex) but not a maximal one. Indeed, due to the
addition of (b1, b2), both (s1, s2) and (s2, s3) can now be
obtained by applying the soft rule σex. Notice, however,
that it is not possible to include both of them, as transitiv-
ity would force us to include (s1, s3), leading to a violation
of δex. We thus obtain two maximal solutions for (Dex,Σex),
namely E1 = EqRel({(b1, b2), (s1, s2)},Dom(D)) and
E2 = EqRel({(b1, b2), (s2, s3)},Dom(D)).

There can be zero, one, or multiple (maximal) solutions.
However, for specifications that do not contain soft rules,
there can be at most one solution, and for specifications that
do not contain constraints, there is always a single solution.



3.3 Summarizing and Explaining Solutions
When there are multiples solutions, it is useful to be able to
summarize them by identifying merges that occur in all or
some maximal solutions. Formally, we say that a merge α is
certain if α ∈ E for every E ∈ MaxSol(D,Σ), and it is pos-
sible if α ∈ E for some E ∈ MaxSol(D,Σ) (equivalently,
some E ∈ Sol(D,Σ)). We use CM(D,Σ) and PM(D,Σ)
for the sets of certain and possible merges.

While certain and possible merges provide natural sum-
marizations, they are unfortunately hard to compute:

Theorem 1. (Bienvenu, Cima, and Gutiérrez-Basulto 2022)
It is NP-complete (resp. Πp

2-complete) in data complexity to
decide if α ∈ PM(D,Σ) (resp. CM(D,Σ)).

For this reason, it will prove useful to define efficiently
computable approximations. To this end, we consider two
ways of simplifying a specification Σ = ⟨Γh ∪ Γs,∆⟩:
• Σlb = ⟨Γh, ∅⟩, i.e. remove soft rules and constraints

• Σub = ⟨Γh ∪ Γs→h, ∅⟩, i.e. drop constraints and replace
soft rules by the corresponding hard rules (Γs→h)

As Σlb and Σub do not contain any constraints, they will
always yield a unique solution. We can therefore define

• LB(D,Σ) as the unique solution to (D,Σlb)

• UB(D,Σ) as the unique solution to (D,Σub)

We summarize the properties of the different merge sets:

Theorem 2. The sets LB(D,Σ) and UB(D,Σ) can be com-
puted in polynomial w.r.t. data complexity. Moreover, if
Sol(D,Σ) ̸= ∅, then

LB(D,Σ) ⊆ CM(D,Σ) ⊆ PM(D,Σ) ⊆ UB(D,Σ)

and CM(D,Σ) ⊆M ⊆ PM(D,Σ) for M ∈ MaxSol(D,Σ).

Example 3. In our toy example, LB(Dex,Σex) and
CM(Dex,Σex) coincide, and the only non-trivial pair they
contain is (b1, b2). The set PM(Dex,Σex) further contains
merges (s1, s2) and (s2, s3), whilst UB(Dex,Σex) also con-
tains (s1, s3) (not present in any solution).

We will employ proof trees to explain why a merge ap-
pears in a solution (we provide here some intuitions behind
proof trees and refer to App. A for more details). Informally,
a proof tree for a merge α in a solution E ∈ Sol(D,Σ) is a
node-labelled tree such that (a) the root node has label α, (b)
every leaf node is labelled with a fact from D, and (c) ev-
ery non-leaf node n is labelled with a pair of constants (d, e)
corresponding to a single transitive step or a rule application.

To quantify the number of successive rule applications
needed to obtain a merge, we let the rule-depth of a proof
tree T be the maximum number of rule nodes in any leaf-to-
root path in T . The level of a merge α in a solution E is 0 if
α = (c, c) for some c ∈ C, and otherwise is the minimum
rule-depth of all proof trees of α in E.

4 ASP Encoding and Algorithms
The ASPEN system implements the LACE framework by en-
coding ER specifications as ASP programs and making calls
to ASP solvers to generate and reason about ER solutions.

After recalling some ASP notions, we present the ASP en-
coding and algorithms employed by ASPEN. We also ex-
plore some practical issues that were ignored in the theoret-
ical treatment of LACE , most importantly, the question of
how to handle similarity atoms.

We assume familiarity with ASP basics, see (Brewka,
Eiter, and Truszczynski 2011; Gebser et al. 2012; Lifschitz
2019) for more details. For our purposes, it is enough to
consider normal rules and constraints. That is, respectively,
rules with a single atom head and rules with an empty head.
We shall use Π to denote an ASP program (a set of rules).
Given a program Π, we use gr(Π) to denote the set of all
ground instantiations rules from Π with constants occurring
in Π, and SM(Π) to denote the set of all stable models of Π.
Determining whether a program has a stable model is the
fundamental decision problem in ASP, which is solved using
ASP solvers (Gebser et al. 2018). However, more reasoning
modes are needed to cover problems encountered in prac-
tice. Most modern ASP solvers are also able to enumerate
(n elements of) SM(Π); project answers w.r.t. a given set of
atoms, and enumerating (n elements of) those projections;
computing the intersection (resp. union) of all stable models
of Π (cautious, resp. brave reasoning); and perform optimi-
sations by computing some (or enumerating n) elements of
SM(Π) that minimize a given objective function.

4.1 ASP Encoding of Solutions
Given a LACE specification Σ and a database D, we define
an ASP program Π(D,Σ) containing all the facts in D, and
an ASP rule for each (hard or soft) rule in Σ. Consider, for
example, the specification Σex in Figure 1. Rules ρex, σex
and δex are translated as follows:
eq(X,Y )← band(X,N,G,D, F ),band(Y,N ′, G′, D, F ),

sim(G,G′, S), S ≥ 95,sim(N,N ′, S′), S′ ≥ 95.

{eq(X,Y )} ← song(X,T, L,B),song(Y, T ′, L,B′),

not empty(L),sim(T, T ′, S), S ≥ 95,eq(B,B′).

⊥ ← appear(S,A, I),appear(S′, A, J),eq(S, S′), I ̸= J.

Roughly, each relational atom in the body of a (hard or soft
rule) is translated into an atom in the body of an ASP rule.
The relation eq is used to store mandatory merges (and ulti-
mately solutions to (D,Σ)). Atoms of the form eq(X,X ′)
in the rule bodies are used to encode that instantiations of
X and X ′ have been determined to denote the same entity.
Π(D,Σ) also includes rules for encoding that eq is an equiv-
alence relation. Soft rules are encoded using a choice rule
encoding the possibility of including (X,Y ) in eq. We note
that choice rules are special syntactic sugar available in ASP.

Differently from the original ASP encoding in (Bien-
venu, Cima, and Gutiérrez-Basulto 2022), we encode sim-
ilarity relations with a relation simi(X,Y, S), where the
first two arguments store the pair of constants to be as-
sessed for similarity, while the third argument corresponds
to a similarity score. This offers the flexibility of tuning
the threshold for the same similarity measure. Facts of the
form simi(X,Y, S) are included in D after a preprocessing
stage, as discussed in Section 4.3. Notably, the encoding re-
quires a special treatment of null values. Missing values in



databases might be problematic (Fan and Geerts 2012), in
particular, when joins need to be performed to evaluate rule
bodies. To represent null values in Π(D,Σ), we use an atom
empty(nan), where nan is a special constant. To encode
the fact that merges are not performed on unknown or miss-
ing values, we add an atom of the form not empty(V ) in
rule bodies, for every joined variable V . This encoding pre-
vents merges that otherwise would result from rule bodies
being satisfied when considering two nulls equivalent. With
the encoding Π(D,Σ) in place, solutions of (D,Σ) are then
obtained by projecting stable models of Π(D,Σ) w.r.t. eq.

Theorem 3 ((Bienvenu, Cima, and Gutiérrez-Basulto
2022)). For every database D and ER specification Σ: E ∈
Sol(D,Σ) iff E = {(a, b) | eq(a, b) ∈ M)} for some sta-
ble model M ∈ SM(Π(D,Σ)). In particular, Sol(D,Σ) ̸= ∅
iff SM(Π(D,Σ)) ̸= ∅1.

4.2 ASP-based Algorithms
We now explain how to employ the ASP encoding to gener-
ate (maximal) solutions and other sets of merges, cf. Sec.3.3.
Solutions. Thanks to Theorem 3, we can obtain a single so-
lution from Sol(D,Σ) by using the ASP solver to generate
a stable model of Π(D,Σ), then projecting onto its eq facts.
Likewise, we can enumerate all or a fixed number of solu-
tions by requesting an enumeration of SM(Π(D,Σ)).
Maximal solutions. The maximal solutions correspond to the
stable models of Π(D,Σ) having a⊆-maximal set of eq facts.
We rely on asprin, a framework for implementing prefer-
ences among the stable models of a program (Brewka et al.
2015). In our case, we prefer a model M ′ over M if its pro-
jection to eq is a proper superset of that of M . asprin also
allows us to compute n optimal stable models of a program.
Lower and upper bound merge sets. To compute LB(D,Σ),
we first construct the ASP encoding Π(D,Σlb) based on Σlb

and then we use the ASP solver to compute the (unique) an-
swer set of Π(D,Σlb), which we project onto the eq relation.
We proceed analogously for UB(D,Σ), but using Σub.
eq(X,Y )← song(X,T, L,B),song(Y, T ′, L,B′),

not empty(L),sim(T, T ′, S), S ≥ 95,eq(B,B′).

Possible merges. To generate PM(D,Σ), it suffices to run
the ASP solver in brave reasoning mode, and to project onto
the eq relation. To check whether a particular pair (c, c′) is
a possible merge, we can run the solver on Π(D,Σ) ∪ {⊥ ←
not eq(c, c′)} observing that (c, c′) ∈ PM(D,Σ) iff this
modified program admits a stable model.
Levels. To support our analysis of the impact of recursion,
we will need a means of retrieving, for a given solution
E ∈ Sol(D,Σ), all triples (c, c′, i), where α = (c, c′) ∈ E
and i is the level of α in E. This can be achieved by con-
sidering a variant Πlvl(i) of Π(D,Σub), which is an ASP pro-
gram that takes an integer i as a parameter and, by taking
into consideration also the already derived merges inside E
(i.e. those with level < i), applies single transitive steps or

1We note that the proof in (Bienvenu, Cima, and Gutiérrez-
Basulto 2022) does not consider nulls, but it can be easily extended.

rule applications, attaching integer i as the additional third
element of the merges obtained in this way.

4.3 Similarity Computation
Our ASP rules contain body atoms simi(X,X ′, S), but
such similarity facts are not present in the data sources and
need to be computed via external functions. The question
then is how best to compute a sufficient set of simi facts to
properly evaluate the program, while avoiding making calls
to the external functions for every possible pair of values.

A naı̈ve approach would be to compute and store the
set Simall(D), containing all facts simi(c, d, s) such that c
and d are data values of a form compatible with simi and
s = fi(c, d), with fi the function underlying the similar-
ity relation simi. Although it requires only a polynomial
number of function calls w.r.t. |D|, it is nevertheless ex-
tremely costly on even moderately-sized databases. A first
improvement would be to only consider those pairs of con-
stants (c, d) ∈ R[i]×R′[j]2 such that there is a rule ρ which
contains an atom simi(X,X ′, S) in which X and X ′ ap-
pear respectively in the ith (resp. jth) position of an R-atom
(resp. R′-atom). However, as our experiments will show,
this improved approach remains memory-consuming and its
time consumption grows as the data size grows.

Another idea would be to exploit the structure of the rules
so that we only call the similarity functions on pairs of con-
stants that occur in a similarity atom for which the rest of the
rule body is satisfied. For example, for rule σex, we would
remove sim(T, T ′, S) and instead store the compared vari-
ables (T, T ′) in a fresh relation getsim as follows:

getsim(T, T ′)←song(X,T, L,B),song(Y, T ′, L,B′),

not empty(L),eq(B,B′). (2)

Note however that the body still contains eq(B,B′), whose
extension is initially unknown. We shall therefore employ
a further ingredient: an overapproximation of the eq facts.
For this, we could use the program Π(D,Σub), except that we
do not know how to evaluate similarity atoms in rule bod-
ies. One option would be to weaken the bodies by dropping
all similarity atoms, but this yields a very loose approxima-
tion (cf. Appendix B). An alternative is to run the original
Π(D,Σub) program, but making online calls to the similarity
functions3 by replacing literals sim(X,Y, S), S ≥ δ with
simext(X,Y ) ≥ δ. We denote by Π(D,Σub

ext)
the modified

program. This will not only give us an upper bound on the
true set of eq facts, but it will also compute a portion of the
similarity facts. In fact, a further alternative would be to rely
entirely on an online computation of similarity atoms over
the original program. However, this is less efficient as results
cannot be reused to compute different merge sets and may be
time-consuming for the computation of MaxSol(D,Σ) and
PM(D,Σ) (we refer to Appendix B for details).

Combining these ideas, we obtain the following approach
to similarity computation, on input D,Σ.

2R[i] denotes the constant at position i of R.
3Modern ASP solvers, e.g. clingo, support the syntax of ex-

ternal function calls (Kaminski et al. 2023)



Phase 1 Compute the unique stable model Mub of Π(D,Σub
ext)

using an ASP solver with external function calls enabled.
Let U = {ubeq(c, d) | eq(c, d) ∈ Mub}, and let L con-
tain all simi facts produced during the computation.

Phase 2 Let Πsim contain, for each rule τ in Π(D,Σ) that
encodes a (soft or hard) rule in Σ with at least one simi-
larity atom in its body, a rule τsim that is obtained from τ
by (i) deleting all similarity atoms and all associated com-
parison atoms (e.g. S ≥ δ), (ii) changing the head atom to
getsimi(T, T

′), where simi(T, T
′, S) occurs in τ , and

(iii) renaming eq as ubeq.

Phase 3 Let Msim be the unique stable model of Πsim∪D∪
U . For every pair (c, d) such that getsimi(c, d) ∈Msim

and there is no simi(c, d, ) fact in L, call the associated
similarity function fi on input (c, d), and create the fact
simi(c, d, fi(c, d)). Let Simopt(D,Σ) contain L and all
of these newly created similarity facts.

Note that in Phase 2, our example rule σex would be replaced
by (2), but with ubeq(B,B′) in place of eq(B,B′).

The next result shows that this approach is correct, i.e. we
get the same eq facts using Simopt rather than the full Simall.

Theorem 4. For every database D and ER specification Σ,

{Meq |M ∈ SM(Π(Dall,Σ))} = {Meq |M ∈ SM(Π(Dopt,Σ))}

where Dall = D ∪ Simall(D), Dopt = D ∪ Simopt(D,Σ),
and Meq is the set of eq facts in M .

5 The ASPEN System
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Figure 2: A General Pipeline of ASPEN .

An overview of the pipeline of ASPEN is shown in Fig-
ure 2, where boxes coloured light blue, strong blue, or-
ange and green indicate an ASP program, ER solution,
Python program and Python-based ASP solver, respec-
tively. Arrows interconnecting these boxes symbolize the

flow of data. The blue dashed boxes highlight a pool of can-
didates that may be chosen based on the input options.

ASPEN takes as input an ASP encoding of an ER speci-
fication (cf. Sec. 4.1), a set of running options (see below)
and a dataset in CSV/TSV format containing duplicates with
corrupted values, such as missing ones. Depending on the
input options, ASPEN outputs either the specified merge
sets as shown by the deep blue boxes in the second row
of Figure 2, and additionally explanations of all/particular
merges (cf. Appendix A). ASPEN comprises two primary
phases for generating (approximate) ER solutions:
i) Preprocessing Phase: ASPEN initialises schema infor-

mation and converts DB tuples into ASP facts, then com-
putes similarity facts.

ii) Solution Computation Phase: ASPEN takes the DB and
similarity facts computed before as input, then it com-
putes various types of LACE -based ER solutions as spec-
ified in the input options.

The explanation phase (third row, Fig. 2) additionally takes
as input a set of rule labels and a merge pair to check, and
visually displays proof trees of explanations (see App. A).
Preprocessing. Initially, ASPEN uses a Python function
called the Schema Initialiser to load schema information
from the input, including database tuples, schema names,
relations, attributes, and foreign keys. This information is
stored in a schema instance (Python object), which is used
throughout the system workflow. The schema information
is then passed to the Program Converter (PC), which gen-
erates variants of ΠΣ and facts for the computation of dif-
ferent merge sets (cf. Sec. 4.2). During preprocessing, the
PC utilises the relation and attributes structure in the schema
instance to convert the database tuples into facts, including
the reflexive closure of constants on merge positions. Ad-
ditionally, empty entries in facts are replaced with the spe-
cial constant nan. To precompute the similarity facts, the
PC transforms the input ER program into similarity filtering
programs Πsim. The resulting programs, along with the gen-
erated database facts, are passed to the ER Controller (ERC),
a Python object that encapsulates reasoning facilities of the
ASP solver clingo (Gebser et al. 2012) and algorithms (cf.
Sec. 4.2). The ERC then executes the similarity filtering al-
gorithm. The resulting set of triples (compared pair of con-
stants and score) are stored as ternary sim-facts, which are
then combined with database facts and the set of ubeqs to
form the fact base, as indicated by the flow arrow from the
first row to the second row in Figure 2.
Computing solutions. With the fact base as input, the ERC
selects a program variant from the PC based on the selected
solution option, as shown in the blue dashed box. Subse-
quently, the ERC executes grounding and solving with one
of the corresponding reasoning modes, as indicated by the
red initials in Figure 2. It computes the desired solutions as
follows:
1. for the lower and upper bound merge sets (LB, UB) by

making a Standard grounding&solving call to clingo .

2. for a set of maximal solutions MS-n with an enumera-
tion limit of n, with standard grounding calls on ΠΣ but



employing Maximisation solving calls supported by the
optimiser asprin.

3. for a set of all possible merges PM using the Brave rea-
soning mode of clingo .

In addition, if the merge level is required, the derived merge
set will be further combined with the level retrieval program
Πlvl to assign levels to each of the merges, cf. orange arrows
in the second row of Figure 2.
Explanation. ASPEN uses several xclingo functions (Ca-
balar, Fandinno, and Muñiz 2020; Cabalar and Muñiz
2023) to provide explanations of merges, including: i) the
Translate function, which takes as input a program Π
and labels declared upon Π, and outputs a program Πt, in-
cluding auxiliary rules to track the original rules that have
been triggered, and ii) the explanation program ΠE , which
constructs explanations by grounding and solving together a
stable model M of Π and Πt.

As illustrated by the third row of Figure 2, ASPEN takes
as input a merge pair to be justified and optionally a set of
rule labels. A default set of labels is generated automati-
cally capturing rule bodies of the ER program, if no rule la-
bels are provided. Utilising the Translate function, AS-
PEN translates the rules and fact base into a trace program
Πt

(D,Σ) according to the labels. The ERC then combines this
with the fact base and the xclingo explanation program to
derive a proof answer set, which is displayed as a graphical
proof tree, explaining the input merge.

6 Experiments
We conducted experiments on real-life ER scenarios, in-
cluding both pairwise and complex multi-relational datasets.
We evaluate the following aspects: (1) effectiveness of our
approach to similarity computation, (2) accuracy and effi-
ciency of ASPEN, (3) effect of recursion, (4) factors impact-
ing scalability and (5) use of Datalog engines to compute UB
and LB approximations. We also exemplify generated justi-
fications of merges in Appendix A.

6.1 Experimental Setup
Datasets. We consider two pairwise matching datasets from
the bibliographic domain: DBLP-ACM (Köpcke, Thor, and
Rahm 2010) and CORA, and four multi-relational datasets:
i) a subset of the IMDB movie dataset (Deng et al. 2022);
ii) a Music dataset sampled from the Musicbrainz database
with synthetic duplicates; iii) a dirtier instance of the Mu-
sic dataset, which contains the same amount of duplicates
but a higher percentage of nulls and more syntactical vari-
ants on the duplicates; iv) a Pokémon dataset, sampled from
the Pokémon database with synthetic duplicates and com-
plex inter-table references. For simplicity, we refer to the
datasets as Dblp, Cora, Imdb, Mu, MuC and Poke, respec-
tively. Sources and statistics of the datasets can be found in
Appendix C, as well as details about duplicates generation,
sampling of datasets and the experimental environment.
Similarity measures and metrics. We calculate the syntactic
similarities of constants based on their data types (Bahmani,
Bertossi, and Vasiloglou 2017). We adopt the commonly

used metrics (Köpcke, Thor, and Rahm 2010) of Precision
(P), Recall (R) and F1-Score (F1). See App. C for details.

6.2 Similarity Filtering
We denote by simopt the similarity algorithm presented

in Section 4.3. We implemented and ran simopt on all
datasets and compared with the baseline procedure simcs,
which computes the similarity of every possible pair of val-
ues (Bahmani, Bertossi, and Vasiloglou 2017) occurring in
every pair of sim positions appearing in rule bodies.

Data #At #Cat tcs topt Mcs Mopt MRed.
Dblp 5 10.2M 96.3 531.4 512Mb 256Mb 50
Cora 17 0.8M 5.49 932.9 32Mb 4Mb 87.5
Imdb 22 19.6M 89.5 598.9 512Mb 128Mb 75
Mu 72 143.6M 664.03 772.3 4Gb 256Mb 93.8

MuC 72 147.1M 867.5 446.4 4Gb 256Mb 93.8
Poke 104 769.9M 9,419 4,142 32Gb 128Mb 99.6

Table 1: #-columns denote the number of attributes, the sum of
cross-products of constant pairs found in sim positions of a dataset.
MRed. stands for the reduction rates of memory usage.

Results. Table 1 presents the results on execution time
(t{opt,cs}) and memory usage (M{opt,cs}). We observe that
simopt requires substantially less space than simcs, with
memory usage reduction rates of 50%, 87.5%, 75% and
99.6% on Dblp, Cora, Imdb and Poke, and 93.8% on
Mu /MuC, respectively. Note that in general the reductions
become substantially larger as the number of attributes in-
creases from 5 to 104. This is because a key strength of
simopt is to leverage joins on attributes as preconditions for
two constants to be compared. Consequently, as the num-
ber of attributes within a schema increases, a proportional
increase occurs in the preconditions that can be employed to
restrict unnecessary comparisons.

As for running time, simcs tends to be faster than simopt

in datasets of smaller scale, yielding speed advantages of
5.5, 6.5 and 100+ times on Dblp, Imdb and Cora, respec-
tively. Note that as #Cat increases this tendency is in-
versed: on Mu both have similar running times, and then on
MuC and Poke , simopt becomes 2 times faster. This shift
might be because time spent on similarity computations out-
weighs the simopt program execution time as the number of
pairs to be compared grows quadratically for simcs.

6.3 Main Results
We evaluated performances of the lower LB and upper
bound UB approximate solutions, a single maximal solu-
tion MS-14, and all possible merges PM. We consider MS-
1 as the default output of ASPEN. Additionally, we com-
pared these solutions with two (pairwise) rule-based ER sys-
tems: Magellan (Konda et al. 2016) and JedAI (Papadakis
et al. 2020). Note that the two closest approaches, Dedu-
palog (Arasu, Ré, and Suciu 2009) and MRL (Deng et al.

4We do not consider all n enumerated maximal solutions as
there were only minimal variations among them.



Data Method F1 (P / R) to tg ts
D

bl
p

Magellan 79.97 89.80 72.08 1.71 - -
JedAI 95.02 100 90.51 49.16 - -
LB 46.09 97.10 30.21 531.63 0.23 0.0039

MS-1 96.21 95.36 97.07 532.17 0.45 0.32
PM 95.15 92.85 97.57 538.5 0.35 6.75
UB 91.11 85.50 97.57 531.41 - -

C
or

a

Magellan 79.70 93.09 69.68 131.13 - -
JedAI 90.53 95.53 87.72 40.92 - -
LB 83.57 99.80 71.87 1,008 7.85 0.29

MS-1 95.55 94.25 96.79 1,031 20.88 10.50
PM 95.55 94.25 96.79 1,857.6 20.19 837.58
UB 87.50 79.66 97.05 999.87 - -

Table 2: Results on Pairwise Matching. Bold figures indicate the
best performing results, and the second-best results are underlined.

2022), are not publicly available. To be comparable, we
specified the same preconditions and similarity measures
as in ASPEN, and followed the best performing setups for
Magellan 5 and JedAI (Efthymiou et al. 2023). Note that
since both systems lack native support for multi-relational
table inputs and do not recognise inter-references between
tables, for multi-relational datasets, we performed directly
pairwise matching for each table (see Appendix D for de-
tails).
Accuracy The main results for the pairwise and multi-
relational datasets are presented in Tables 2 and 3, respec-
tively. The default output MS-1 consistently achieves the
highest F1-score across all datasets, outperforming both
Magellan and JedAI by significant margins. On the pair-
wise benchmarks Dblp and Cora, MS-1 surpasses Magel-
lan by 16% and 1.1%, and JedAI by 15% and 5% respec-
tively. Substantial performance differences are observed in
the multi-relational datasets. When comparing MS-1 with
Magellan and JedAI , improvements of 11% and 1.7%, 7.7%
and 26%, 28% and 51%, and 81% and 86% are observed
on Imdb, Mu, MuC and Poke respectively. This shows AS-
PEN is promising, particularly the multi-relational setup.

We also observed that different (approximate) AS-
PEN solutions might lead to different performances:
UB vs LB. The comparison between LB and UB reveals ex-
treme results in precision and coverage. LB reached the
highest precision (with an average of > 99%) in all but one
dataset, but has poor coverage with an average recall of
≈ 43%. Given that duplicated tuples often contain different
versions of a value, it is not surprising that only few met the
strong evidence required by hard rules. UB has the best cov-
erage of the considered (approximate) solutions: on average
≥ 50% higher recall than LB, 0.5%, 0.26%, 0.05%, 0.78%
higher than MS-1 on Dblp , Cora , Mu /MuC , and slightly
higher than PM on Cora and Mu /MuC . However, UB ob-
tains the lowest precision of all solutions in all datasets. This

5https://tinyurl.com/y6hupmrb

difference can be explained by the presence of additional
hard rules (the ones replacing soft rules) for UB, which al-
low for more merges but also introduce more false positives.

MS-1 & PM vs UB & LB. By contrast, the results for merge
sets that make full use of LACE specifications are more bal-
anced. On the one hand, MS-1 and PM outperformed LB in
recall by ≈ 44% on average, with slight sacrifices of preci-
sion on most datasets, only showing a considerable decrease
on MuC (11% lower than LB). On the other hand, MS-1
and PM outperformed UB by significant precision margins
of 10% and 7.3% on Dblp and 14% and 22.4%, on Cora and
Poke, respectively, with only floating-point drops on recall.
This highlights the effectiveness of combining soft rules and
DCs to encourage the discovery of more merges while en-
forcing consistency to prevent false merges.

MS-1 vs PM. Observe that PM and MS-1 have identical re-
sults in both precision and recall in Cora , Imdb , Mu and
Poke. A possible explanation is that when DCs are com-
plementary to the soft rules in a specification, the combina-
tion behaves like hard rules (Bienvenu, Cima, and Gutiérrez-
Basulto 2022). With no room for guessing, the specification
derives a unique maximal solution, therefore MS-1 and PM
include the same set of merges. Additionally, for Dblp and
MuC , we see that precision of MS-1 respectively is 2.5%
and 0.52% higher than that of PM. For these datasets, PM
respectively obtained a 0.5% and 0.05% higher recall than
MS-1. This underscores the characteristic differences be-
tween the two type of solutions: MS-1 prioritises precision
while maintaining good coverage, whereas PM is more in-
clusive but may consequently contain more false positives.

Running Time The overall time, denoted as to, consists of
preprocessing and ER time. Magellan and ASPEN involve
preprocessing steps for blocking or similarity filtering, while
JedAI interleaves similarity computation with the ER pro-
cess, i.e., to includes both. For ASPEN, the ER time is
further composed of grounding and solving time tg and
ts. Note that to may not always reflect the optimal run-
ning times of ASPEN. Indeed, when the simplest LB setup
is considered, directly running an ASP encoding with on-
line similarity evaluation is much faster (cf. Appendix B).
However, to ensure a consistent analysis of the ER times of
ASPEN, we present the to as the sum of preprocessing and
ER time.

As shown by the to column of Tables 2 and 3, both Mag-
ellan and JedAI significantly outperform MS-1 across all
datasets. Magellan achieved speed advantages of 7.8, 8, 13,
16, 150, 311 times on Cora, MuC, Mu, Poke, Imdb and Dblp
respectively. Similarly, JedAI is 10, 25, 36, 8.5, 71 and
182 times faster across Dblp , Cora , Imdb , Mu , MuC and
Poke respectively. This is largely due to more costly similar-
ity computations in the preprocessing stage, which are nec-
essary to achieve high quality results on the complex multi-
relational settings. Indeed, in Mu , MuC and Poke , AS-
PEN obtains substantially higher accuracy than the base-
lines. We compare to of other (approximate) solutions with
that of Magellan and JedAI in Appendix D.

When looking at tg and ts of the different merge sets,
LB is consistently the fastest, with tg averaging within half

https://tinyurl.com/y6hupmrb


Data Method F1 (P / R) to tg ts Data Method F1 (P / R) to tg ts
Im

db
Magellan 88.09 99.80 78.83 3.89 - -

M
u

Magellan 89.78 98.63 82.38 64.83 - -
JedAI 97.49 99.40 95.67 16.65 - - JedAI 70.67 87.46 59.30 100.26 - -
LB 72.73 100 57.15 600.65 1.73 0.027 LB 64.08 99.79 47.19 798.22 25.85 0.071

MS-1 99.27 99.39 99.14 609.96 10.27 0.79 MS-1 97.52 99.25 95.58 853.91 79.75 1.86
PM 99.27 99.39 99.14 643.7 9.94 34.87 PM 97.52 99.25 95.58 1,152.4 78.64 301.51
UB 99.27 99.39 99.14 598.9 - - UB 97.44 99.03 95.90 772.3 - -

M
uC

Magellan 55.54 97.51 38.83 66.87 - -

Po
ke

Magellan 7.01 3.97 29.74 260.96 - -
JedAI 32.75 73.95 21.02 7.88 - - JedAI 2.1 1.08 46.56 23.46 - -
LB 53.95 99.79 36.97 474.56 28.01 0.062 LB 28.00 100 16.27 4,144 2.29 0.018

MS-1 84.10 88.11 80.44 562.37 113.64 2.33 MS-1 88.71 92.88 84.90 4,271.8 127.67 2.17
PM 83.87 87.59 80.46 893.44 113.26 333.78 PM 88.71 92.88 84.90 4,296 129.04 25.84
UB 83.55 86.01 81.24 446.4 - - UB 77.00 70.43 84.90 4,142 - -

Table 3: Results on Complex Multi-relational Datasets

a minute and ts concluding in fractions of a second. This
performance is expected, given that LB straightforwardly
derives a single set of merges. Regarding MS-1, tg took
the majority of ER time, while solving is consistently much
more efficient, terminating in ≤ 10 seconds. For PM, tg be-
haved as for MS-1, but it required longer solving time (100
times longer in the worst case). This might be explained by
the need to perform brave reasoning. We note that the size
of a dataset may not always be the main factor impacting the
solving time. For instance, despite containing only 1.9k tu-
ples, ts of MS-1 and PM on the Cora dataset are noticeably
longer than on much larger datasets like Mu and Poke. Sim-
ilarly, despite Mu and MuC being of the same size, the tg of
UB, MS-1 and PM on these datasets are very different.

6.4 Effect of Recursion
We executed the levels algorithm described in Section 4.2 on
(approximate) solutions derived in our previous experiments
on multi-relational datasets. We report accuracy results of
UB and MS-1 on the Poke dataset and merge increments for
various recursion levels of MuC and Poke in Figures 3 and
4, respectively. Additional results for other datasets can be
found in Appendix E. We can observe that achieving conver-
gence of merges requires more than one recursion level. For
example, in Figure 3, Poke converged at level 2 (red dashed
line). Figure 4 shows noticeable increments of merges ob-
taining 17.8% and 18.8%, 2.4% and 18.8% increment gains
in the MS-1 and UB settings on MuC and Poke , respec-
tively. This shows the efficacy of recursion in discovering
new merges utilising merges derived from previous levels.

We present further results on the interplay of recursion
and DCs and dataset characteristics in Appendix E.

6.5 Efficiency

Factors impacting scalability. Our efficiency analysis shows
that both tg and ts increase monotonically with the size of
the data and the percentage of duplicates. The impact on ts
is particularly significant for PM, increasing up to 52 times
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when these factors are raised by fivefold. Similarly, lowering
similarity thresholds consistently increases tg, while ts is up
to 300 times longer on MS-1 and reaches a time-out (≥24h)
on PM. For more details, see Appendix F.
Datalog approximations. We examined the running times of
Datalog programs ΠΣlb and ΠΣub on all datasets using AS-
PEN and the rule engine VLog4j (Carral et al. 2019; Urbani,
Jacobs, and Krötzsch 2016). For LB, ASPEN outperforms
VLog4j on most datasets, whereas for UB, VLog4j is faster
on all multi-relational datasets except Poke. These results
suggest that the performance of different reasoning engines
is impacted by characteristics of the data. See Appendix F
for more details.

7 Discussion
We have introduced ASPEN, an ASP-based implementation
of the LACE framework for collective, explainable, and re-



cursive ER. Distinguishing features of ASPEN are the con-
sideration of a space of maximal solutions and the ability
to supply explanations of derived merges. It is also one of
only a handful of systems to natively support collective ER
tasks, involving multiple database tables and entity types.
A comprehensive experimental evaluation provided insights
into how ASPEN performs, in terms of quality metrics and
runtime, depending upon which notion of (approximate) so-
lution is employed and how its performance compares to two
baseline rule-based ER systems. The overall takeaway is
that ASPEN is promising, as it is able to terminate in a rea-
sonable amount of time (ER is typically an occasional offline
task) and is competitive and often outperforms the baseline
systems w.r.t. quality metrics, in particular, being able to ef-
fectively handle more complex multi-relational scenarios.

Our paper showcases entity resolution as an exciting but
challenging application for ASP. Indeed, we believe that ER
is as an ideal testbed for ASP techniques, as it is an important
practical problem that naturally involves many solver func-
tionalities, such as: brave and cautious reasoning (to identify
possible and certain merges), preferred answers sets (to gen-
erate or reason over maximal solutions), external function
calls (for similarity computation), and explanation facilities
(to produce justifications of merges). By making ASPEN’s
code and data publicly available, we hope to facilitate future
research on ASP-based approaches to ER.

While our experiments show that ASPEN can success-
fully handle some real-world ER scenarios, scalability re-
mains an issue, and we expect that both general purpose and
dedicated optimizations will be needed to be able to scale up
to larger datasets and support even more complex reasoning
over ER solutions. In addition to continuing to improve the
similarity computation phase, we plan to explore the poten-
tial of employing specialized data structures or custom pro-
cedures for handling equivalence relations, as has been con-
sidered for Datalog reasoners (Nappa et al. 2019; Sahebo-
lamri et al. 2023). As parallelization has been successfully
employed in some rule-based ER systems (Deng et al. 2022),
another promising but non-trivial direction would be to see
how parallel algorithms can be integrated into ASPEN. For
this, we hope to build upon existing work on paralleliza-
tion of Datalog reasoning (Perri, Ricca, and Sirianni 2013;
Ajileye and Motik 2022) and ASP solving (Gebser, Kauf-
mann, and Schaub 2012).

We also plan to extend ASPEN to handle more expres-
sive ER scenarios, building upon recent extensions to the
LACE framework. Our top priority will be support not only
global merges of entity-referencing constants, as considered
in ASPEN and the original LACE framework, but also lo-
cal (cell-level) merges of value constants (Bienvenu et al.
2023), so that e.g. some occurrences of ‘J. Smith’ can be
matched to ‘Joe Smith’ while others are matched to ‘Jane
Smith’. Another important extension, requiring more sig-
nificant changes to the ASP encoding, would be to allow
for both merges and repair operations, as in the REPLACE
framework (Bienvenu, Cima, and Gutiérrez-Basulto 2023),
in order to be able to handle constraint violations that cannot
be solved solely via merges.
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A Proof Trees and Explanations

Proof Trees. We shall employ proof trees to explain why a
merge α appears in a solution E ∈ Sol(D,Σ). Formally,
we define a proof tree for α in E as a node-labelled tree
such that (a) the root node has label α, (b) every leaf node is
labelled with a fact from D, and (c) every non-leaf node n is
labelled with a pair of constants (d, e) such that one of the
following holds:

• node n has exactly two children, which have labels (d, f)
and (f, e) for some constant f (transitive node)

• there is a rule6 P1(v
1
1 , . . . , v

w1
1 ) ∧ . . . ∧

Pm(v1m, . . . , vwm
m )→ Eq(x, y) ∈ Γ such that node n has

m children labelled with the facts P1(c
1
1, . . . , c

w1
1 ), . . . ,

Pm(c1m, . . . , cwm
m ) ∈ D, there exist vji = x and vℓk = y

such that {cji , cℓk} = {d, e}, and additionally, whenever
vji = vℓk and cji ̸= cℓk, then n has a child labelled with
the pair (cji , c

ℓ
k) or (cℓk, c

j
i ) (rule node)

Observe that each node corresponds to a single transitive
step or rule application, while reflexivity and symmetry
steps are left implicit. Also note that when database facts
used to satisfy the rule body do not ‘join’, additional children
are introduced to ensure that the required merges exist. It is
not hard to see that every non-trivial merge α = (c, d) ∈ E
(i.e. with c ̸= d) has at least one proof tree. A proof tree for
the merge (s1, s2) in solution E1 is presented in Fig. 5.

We shall also be interested in quantifying the number of
successive rule applications needed to obtain a given merge.
To this end, we define the rule-depth of a proof tree T as the
maximum number of rule nodes in any leaf-to-root path in
T . The level of a merge α in a solution E is 0 if α = (c, c)
for some c ∈ C, and otherwise is defined as the minimum
rule-depth of all proof trees of α in E. (s1, s2) has level 2
in solution E1, as it possesses a proof tree with rule-depth 2
(and no proof tree with rule-depth 1).

(s1, s2)

t1 ≈ t2 So(s1, t1,W, b1) (b1, b2)

Ba(b1, n1, g1, Y, B) n1 ≈ n2 Ba(b2, n2, g2, Y, B) g1 ≈ g2

So(s2, t2,W, b2)

Figure 5: Proof tree for merge (s1, s2) in solution E1. In the tree,
So and Ba stand for the relations Song and Band. W , Y , and B
stand for the constants Waters, 1965, and Barrett, respectively. ni,
gi, and ti are the name and genre of the band bi and the title of
song si, respectively.

Example Proof Tree from ASPEN . An exemplary proof tree
generated by ASPEN is shown in Figure 6.

6To avoid an overly lengthy definition, we focus on rules with-
out constants, but the definition generalises to rules with constants.

(s1, s2)

(b1, b2)

σex: merged due to similar titles and
same band and lyricist
ρex: merged due to similar names and
genres and same founder and founding
year

Figure 6: Example of a graphical proof tree provided by AS-
PEN relative to merge (s1, s2) in solution E1 for (Dex,Σex).

A Qualitative Case. In Mu , the specification contains a hard
rule h1 and a soft rule s3 declaring merges of album releases.
h1: “two album releases are the same if they have the same
barcode” and s3: “two album releases are possibly the same
if they have similar names and the same list of artists”. Ad-
ditionally, it has a hard rule h2 related to release groups:
“two release groups are the same if they have the same re-
lease and similar names”.

Utilising xclingo (Cabalar, Fandinno, and Muñiz 2020),
ASPEN generates two proof trees for (rg1, rg2). Figure 7
illustrates how the merge (rg1, rg2) of release group can be
justified in a solution. We observe that the solution gener-
ated two proof trees for (rg1, rg2) as seen in Figures 7a and
7b.

B Similarity Computation
Loose Upper-bound. Given an upper-bound transformation
Σub of a LACE specification Σ, let Σub

op be the specification
obtained from Σub by dropping every similarity atom in rule
bodies. From Σub

op, we obtain a Datalog program P ub
op . If we

run P ub
op over the database D, then the extension of eq will

contain a loose upper-bound of the pairs of constants that can
be potentially merged. An instance of such rule transformed
from σex in Figure 1 will be:

eq(X,Y )←song(X,T, L,B),song(Y, T ′, L,B′),

not empty(L),eq(B,B′).

We executed the loose upper-bound program for each
specification on the datasets on VLog4j (Urbani, Jacobs,
and Krötzsch 2016; Carral et al. 2019). Only on Dblp and
Cora the programs were able to terminate without throwing
errors of memory overflow. We recorded the running times
and number of eq-facts, comparing with sum of the size of
cross products of each merge position pair.

As shown by Table 4, the resulting sets of eq-facts for
Dblp and Cora barely differ to #Cat.

Data #eq #Cat t(s)

Dblp 6,006k 6,006k 35.54

Cora 3,530k 3,534k 23.75

Table 4: Size of eq-facts in loose upper-bound. #-columns denote
the number of eq-facts, the sum of cross-products of constant pairs
found in merge positions of a dataset.



(a) Proof Tree 1 for (rg1, rg2)

(b) Proof Tree 2 for (rg1, rg2)

Figure 7: Proof trees of a merge in the Mu dataset

Online vs Preprocessed Similarity. In principle, one can run
directly an ASP program Π(D,Σext) by replacing literals
sim(T, T ′, S), S ≥ δ with simext(X,Y)≥ δ in Σ (and its
variants) instead of the method in Section 4.3. We conducted
a set of experiments comparing the overall running times of
ASPEN when using the approach in Section 4.3 (denoted as
Simopt) and online similarity evaluation (denoted as Simext)
on the datasets and reported the running times as Table 5.

We observe that for the simpler solution types LB and
UB, using the external similarity call directly consistently
leads to faster termination times, especially for LB. In-
deed, if only LB or UB are needed, the similarity algorithm
is unnecessary. For the more complex settings MS-1 and
PM, we found that online similarity calculations provided
speed advantages on Dblp , Cora , and MuC , with improve-
ments of 31%/32%, 4%/3.6%, and 41%/25%, respectively.
Conversely, our similarity method performed better on most
multi-relational datasets, with improvements of 1.4%/4.3%,
27.5%/22%, and 16%/18% on Imdb , Mu , and Poke , respec-
tively. These results suggest that, apart from being able
to reuse materialised output (Simopt and the upper-bound
merge set U ) for deriving different solutions, our similar-
ity method can also speed up the computation of solutions
in complex settings.

Theorem 4
Proof Sketch:. Let Mopt

eq := {Meq | M ∈ SM(Π(Dopt,Σ))}
and Mall

eq := {Meq | M ∈ SM(Π(Dall,Σ))}. To show that
Mopt

eq ⊆ Mall
eq, we use the observation that Dopt ⊆ Dall, and

that the rules for encoding hard and soft rules from Σ in both
programs are the same. Let eq(e, e′) ∈ Mopt

eq , then there is
a stable model M of Π(Dopt,Σ) containing eq(e, e′) ∈Mopt

eq .
Further, there is a rule σ in the grounding of Π(Dopt

, with
eq(e, e′) in the head, with all the atoms S in its body con-
tained in M . Using the observation, we can argue that there
is a stable model M ′ of Π(Dall

containing S and therefore
eq(e, e′) ∈M ′, which in turn implies eq(e, e′) ∈Mall

eq.
To prove that Mall

eq ⊆Mopt
eq . Let eq(e, e′) ∈Mopt

eq , and let

M ′ ∈ SM(Π(Dall,Σ)) a stable model that contains eq(e, e′).
Then there is a ground rule σ rule in the reduct of ΠM

(Dall,Σ)

and a set of ground atoms S in M that support eq(e, e′). If
the body of σ does not contain an eq atom, then we note that
all similarity atoms in the body of σ are included in Dopt by
the computation in Phase 3, and because Dopt occurs in ev-
ery (stable) model of Π(Dopt,Σ) and both programs contain
the same rules encoding Σ, is easy to see that eq(e, e′) oc-
curs in a stable model of Π(Dopt,Σ). For the case where σ
contains eq atoms, we can use an inductive argument, with
the previous case being the base of the induction. An impor-
tant observation to construct the argument is that all the simi-
larity atoms used in the derivation of eq(e, e′) w.r.t ΠM

(Dall,Σ)

are added to Π(Dopt,Σ) either in Phase 1 or in Phase 3 of the
similarity computation.

C Experimental Setup

Datasets. Statistics of the datasets used in our experiments
are shown in Table 6. Note that regardless of the num-
ber of relations and attributes, datasets with a larger num-
ber of referential constraints are structurally more com-
plex. Sources of the original databases can be found
at: i) Cora : https://hpi.de/naumann/projects/repeatability/
datasets/cora-dataset.html, ii) Mu : https://musicbrainz.
org/doc/MusicBrainz Database/Schema, iii) Poke : https://
pokemondb.net/about.
Similarity Measures and Metrics. We calculate the syntactic
similarities of constants based on their data types (Bahmani,
Bertossi, and Vasiloglou 2017). (i) For numerical constants,
we use the Levenshtein distance; (ii) for short string con-
stants (length< 25), we compute the score as the editing
distance of two character sequences (Jaro-Winkler distance);
(iii) for long-textual constants (length≥ 25), we use the TF-
IDF cosine score as the syntactic similarity measure. We
adopt the commonly used metrics (Köpcke, Thor, and Rahm
2010) of Precision (P), Recall (R) and F1-Score (F1) to ex-
amine the solutions derived from the specifications. Pre-

https://hpi.de/naumann/projects/repeatability/datasets/cora-dataset.html
https://hpi.de/naumann/projects/repeatability/datasets/cora-dataset.html
https://musicbrainz.org/doc/MusicBrainz_Database/Schema
https://musicbrainz.org/doc/MusicBrainz_Database/Schema
https://pokemondb.net/about
https://pokemondb.net/about


Data Met. to too tog tpg ts Data Met. to too tog tpg ts

Dblp

LB 531.63 17.12 17.12 0.23 0.0039

Cora

LB 1,008.01 133.02 132.73 7.85 0.29
MS-1 532.17 362.58 362.26 0.45 0.32 MS-1 1,031.25 987.75 977.25 20.88 10.5

tp = 531
PM 538.5 364.22 357.47 0.35 6.75

tp = 999
PM 1,857.64 1,789.35 951.77 20.19 837.58

UB 531.4 364.06 364.05 0 0.0098 UB 999.87 998.27 997.77 0 0.5

Imdb

LB 600.65 78.88 78.86 1.73 0.027

Mu

LB 598.9 34.43 34.36 25.85 0.071
MS-1 609.96 618.62 617.83 10.27 0.79 MS-1 853.91 1,178.8 1,176.94 79.75 1.86

tp = 598
PM 643.71 672.92 638.05 9.94 34.87

tp = 772
PM 1,152.45 1494.9 1,193.39 78.64 301.51

UB 598.94 535.06 535.012 0 0.045 UB 772.41 698.91 698.8 0 0.11

MuC

LB 474.56 29.43 29.37 28.1 0.062

Poke

LB 4,144.31 7.28 7.26 2.29 0.018
MS-1 562.37 331.68 329.35 113.64 2.33 MS-1 4,271.86 5,093.16 5,090.99 127.69 2.17

tp = 446
PM 893.44 665.53 331.7 113.26 333.78

tp = 4, 142
PM 4,296.8 5,241.05 5,215.21 129.04 25.84

UB 446.51 306.44 306.33 0 0.11 UB 4,142 4,130.03 4,130 0 0.035

Table 5: Comparison on solution computation time using online and preprocessed similarity computation. to and too record the overall
running times of Simopt and Simext respectively. tp denotes the preprocessing time on a dataset. tog and tpg are the grounding time of online
and preprocessed similarity respectively, and ts is the solving time. Figures in red/green represent worse/better performances between to and
too.

Name #Rec #Rel #At #Ref #Dup
Dblp 5k 2 5b 0 2.2k
Cora 1.9k 1 17 0 64k
Imdb 30k 5 22 4 6k
Mu 41k 11 72 12 15k

MuC 41k 11 72 12 15k
Poke 240k 20 104 20 4k

Table 6: Dataset Statistics. #-columns represent the number of
records, relations, attributes, referential constraints and duplicates,
respectively. ·b: the DBLP and ACM tables share the 5 attributes.

cision reflects the percentage of true merges in a solution
and Recall indicates the coverage of true merges in a solu-
tion relative to the ground truth. The quality of a solution is
then measured as F1 = 2×Precision×Recall/(Precision+
Recall).
Clean Data Sampling. We describe the process of data
sampling and synthesising duplication for Mu /MuC and
Poke datasets. Note that it is important to preserve the re-
lation between entities from different relations when cor-
rupting the instances to retain interdependencies of the data.
Thus, we consider the referential dependency graphs of the
schema when creating the datasets. Assuming the original
schema instances of the Mu and Poke are clean, we sampled
tuples from each table and created clean partitions of the in-
stances. In particular, we started from the relations with zero
in-degree and sampled for each step the adjacent referenced
entity relations that have all their referencing relations sam-
pled. Since tuples from relations store only foreign keys do
not represent entities, they were sampled only after one of
their referencing relations were already sampled.

In Figure 8, green nodes and blue nodes respectively

represent entity and non-entity relations in the Mu schema
and edges represent referential constraints from an out-
node to an in-node labelled with the corresponding foreign
key. In this case, we begin sampling from the entity re-
lations Track, Place, Label since they are not refer-
enced by any other relations. As Artist Credit re-
lation is also referenced by many other relations, in the
second step we sample only those that are adjacent to
Track and with all in-arrows sampled, i.e., the Medium
and Recording relations. Entities of other relations are
sampled analogously. Note that since the non-entity re-
lation Artist Credit Name stores mappings between
Artist Credit and Artist, it is sampled only af-
ter the entities of Artist Credit are picked. We
are then able to proceed sampling from Artist when
Artist Credit Name is selected. Consequently, clean
partitions of the schema instances can be obtained from sam-
pling. The sampling procedure is done by an extra ASP pro-
gram as a part of data preprocessing step.

Duplicates Generation. The original Mu and Poke datasets
are clean, so we synthesised and injected duplicates to create
the datasets with duplicates employed in our experiments.
To this end, we utilised the Geco corruptor (Tran, Vatsalan,
and Christen 2013). The corruptor randomly picked enti-
ties from the clean instances and generated per record up
to 3 duplicates. Errors of different types, such as keyboard
input errors, OCR (characters visually similar) errors, and
null values were injected following a predefined distribu-
tion across tuple attributes to ensure uniqueness of the du-
plicates created. Importantly, tuples may contain foreign
keys, so it is undesirable that the generated duplicates are
not referenced by other tuples at all. Hence, for each tuple
with foreign keys, we replaced each foreign key k (which
we always consider as merge attributes) with an identifier
randomly drawn from the equivalence class of k (including
k and its duplicates) as a type of error injection after creat-
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Figure 8: The relational dependencies of Mu

ing duplicates. Finally, the ground truth of the datasets is
obtained from the identifiers of the original clean instances
and their duplicates.
Environment. We implemented ASPEN in Python. The ER
controller, asprin optimiser (Brewka et al. 2015), and ex-
plainer xclingo2 (Cabalar and Muñiz 2023) are all based
on clingo 5.5 7 Python API. The specification of pro-
grams follow the format of the ASPCore2.0 standard (Cal-
imeri et al. 2020). All the experiments were run on a work-
station using a single 3.8GHz AMD Ryzen Threadripper
5965WX core and 128 GB of RAM.

D Main Results
Multi-relational Input to Baselines. Note that since baseline
systems lack native support for multi-relational table inputs
and do not recognise inter-references between tables, for
multi-relational datasets. Moreover, these approaches as-
sume that only one merge position is present for each rela-
tion (hence consider tuples are entities). Therefore, we per-
formed directly pairwise matching for each table. Specif-
ically, let S = {R1, ..., Rn} be a multi-relational schema
and D be a S-database, we consider pairwise matchers a
function m : D ×D → {0, 1}, where 0 and 1 represent not
match/match resp. The set of merges w.r.t. D is collected as

{(tj , t′j) | m(Ri(t1, ..., tk), Ri(t
′
1, ..., t

′
k)) = 1, Ri ∈ S}

where j is a merge position.
Running Time. The preprocessing time is used as to for UB,
as UB can be obtained directly from this step. When com-
paring baselines with various solutions of ASPEN , it is
evident that all ASPEN (approximate) solutions are signif-
icantly slower than the baselines. This is primarily due to
the costly preprocessing stage. The LB and UB times are
comparable, being 310 and 10, 7.6 and 24.6, 154 and 36,
12 and 7.9, 7.1 and 60.2, 15.8 and 176 times slower than
Magellan and JedAI on Dblp , Cora , Imdb , Mu , MuC , and
Poke , respectively. The worst performance is observed on
the most complex setup PM, where ASPEN is up to 340 and
183 times slower than Magellan and JedAI , respectively.

7https://potassco.org/clingo/python-api/5.5/

Dirtiness of Duplicates. We observe that in Imdb and Mu ,
UB, MS-1 and PM achieved nearly perfect F1 scores. Re-
markably, results are identical for the three type of solu-
tions in Imdb . This uniformity may indicate that values
on duplicates of entities exhibit low variance, resulting in
a ‘cleaner’ instance. Indeed, if values of duplicates of an en-
tity are largely identical, the discovery of merges becomes
easier as merges derived from soft rules become more cer-
tain. Clearly, if merges derived from soft rules are as certain
as those raised from hard rules, DCs would not be triggered
at all. This observation is confirmed by the differences in ac-
curacy between MS-1 and PM on the dirtier MuC . Although
the number of duplicates per entity in MuC is the same as in
Mu , the presence of more variants and nulls in MuC may
have introduced more uncertainties.

E Effect of Recursion

We executed the levels algorithm described in Section 4.2
on solutions derived in our previous experiments on multi-
relational datasets.

Recursion is Effective. In general, achieving convergence of
merges requires more than one recursion level: Imdb and
Poke converged at level 2, while Mu and MuC converged at
level 3 and level 5, respectively. As illustrated by Figure 9c,
noticeable increments of merges are observed in most of
the datasets, obtaining 8% and 8.03%, 17.8% and 18.8%,
2.4% and 18.8% increment gains in MS-1 and UB settings
on Mu , MuC and Poke respectively. These patterns confirm
the efficacy of recursion in discovering new merges utilising
merges derived from previous levels.

DCs are Important for Recursion. The impact of DCs on
recursion becomes apparent when comparing the perfor-
mances depicted in Figure 9a and Figure 9b . While recur-
sion generally improves F1 scores across most datasets, it
is interesting to observe that in Poke , introducing recursion
leads to a decline in accuracy of UB. Notably, at the second
level of UB, a slight increase in recall comes at the expense
of a significant drop in precision, resulting in an 8% decrease
in F1 score. Conversely, with the integration of DCs, the pre-
cision of MS-1 on Poke remains consistent, ultimately lead-
ing to an increase in F1 score. This highlights the critical
role of DCs in recursive setups, enhancing the consistency
of newly included merges across subsequent levels.

Recursion and Dataset Characteristics. One can observe in
Figure 9c that Imdb shows only a slight increase in the num-
ber of merges, whereas Mu , MuC , and Poke (despite a small
increment for MS-1 due to the regulation of DCs) exhibit
more substantial increments in levels > 1. This disparity
in merge counts correlates with the increasing number of
references within the databases. Indeed, as all merge at-
tributes specified are key attributes, databases with a greater
number of inter-table references are better poised to lever-
age recursion for merge identification. When comparing
Mu and MuC , it is interesting to observe that despite hav-
ing the same number of referential constraints, MuC yields
2,600 more merges in later levels and requires two additional
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iterations to converge. This parallels the findings in Sec-
tion 6.3, suggesting that recursion may prove more effective
in discovering merges when dealing with dirtier duplicates.
Indeed, simply comparing the similarity of attributes is less
likely to identify merges due to the presence of nulls and
value variations. Consequently, identifying duplicates may
necessitate to consider the inter-dependencies between enti-
ties within the dataset.

F Efficiency
We conducted two sets of experiments to examine the effi-
ciency of Datalog approximations and impact on efficiency
of various factors: i) data size; ii) the percentage of dupli-
cates in a dataset; iii) similarity thresholds on an ER pro-
gram.
Datalog Approx. We assume similarity facts are given by
Simopt and ran the Datalog programs ΠΣlb and ΠΣub on
all datasets using ASPEN and VLog4j (Carral et al. 2019;
Urbani, Jacobs, and Krötzsch 2016). Table 7 presents
the running time results. For LB, ASPEN outperforms
VLog4j on most datasets, being 1.03, 1.7, 6 and 9 times
faster on Imdb, Cora, Poke and Dblp, respectively. Con-
versely, VLog4j terminated 4 and 11 times faster on Mu and
MuC . For UB, VLog4j outspeeds ASPEN in all but one
of the multi-relational datasets, being 4.3, 7 and 46 times
faster on MuC, Imdb and Mu, respectively. However, AS-
PEN surpassed VLog4j by 7 times on Poke . This results sug-
gest that the performance of different reasoning engines is
impacted by characteristics of the data.

Prg. Sys. tDblp tCora tImdb tMu tMuC tPoke

LB
VLog4j 0.76 8.06 6.02 2.33 7.25 39.86
ASPEN 0.079 4.66 5.8 27.03 30.21 6.38

UB
VLog4j 0.83 10.8 32.19 6.66 15.47 5115.31
ASPEN 0.13 7.74 240.51 307.53 67.63 697.96

Table 7: VLog4j vs. ASPEN on LB and UB.

Varying Size of the Data We ran ASPEN on variants of
Mu , where the data size |D| ranged from ×1 to ×5, main-
taining a consistent 10% proportion of duplicates (higher
than the real-world duplicate distribution of 1% (Wang et
al. 2022)). Table 8 illustrates the changes in grounding and
solving times on both MS-1 and PM. Overall, both tg and ts
increase monotonically as |D| increases. tg follows a simi-
lar pattern for both MS-1 and PM, increasing by factors of
5, 22, 42, and 63 as the data scale increases from ×2 to ×5.
However, while ts increases linearly for MS-1, it increases
more drastically for PM, resulting in running times 6, 16,
29, and 52 times longer across the range of sizes |D|.
Varying the Percentage of Duplicates
Setup. We created variants of Mu with duplication ratios of
10%, 30% and 50%, while keeping the same dataset size.
We denote the variants as Du{10, 30, 50}, respectively. To
mitigate the potential impact brought by tuple distribution,
the sets of duplicates are such that Du10 ⊂ Du30⊂ Du50.

|D| Met. tg ts Met. tg ts

×1

M
S

-1

17.82 1.02

P
M

17.55 14.87
×2 92.4 2.21 92.75 84.6
×3 388.2 3.4 418.17 228.87
×4 719.2 4.8 763.61 416.48
×5 1083.6 5.7 1106.7 735.43

Table 8: Impact of Varying |D|

Result. The results are presented in Figure 10a. Since LB,
UB and MS-1 present a similar behaviour, we only include
the results of MS-1 and PM for comparison. Generally, in-
creasing the proportion of duplicates led to monotonic in-
creases in both tg and ts. This explains the previous obser-
vation of longer times spent on smaller datasets like Cora .
Indeed, despite its smaller scale, the ground truth size of
Cora is much larger than that of other datasets. The in-
crease in solving time ts for PM in Du50 was particularly
notable, being almost 30 times longer than in Du10. This
can be attributed to the larger number of possible merges
derived from soft rules due to the increased size of dupli-
cates, leading to a larger space of merge combinations and
consequently longer solving times.

Varying Similarity Thresholds
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Figure 10: Impacts on duplicate (%) and similarity threshold

Setup. We create variants of the ER program for Mu by ad-
justing similarity thresholds. This results in four versions of
the Mu specification with similarity thresholds set to 98, 95,
90, and 85. For simplicity, we refer to the similarity thresh-
old as δ.
Results. We ran the ER program with different δs across the
solution setups on Mu . We observed consistent patterns in
tg across all setups (LB, UB, MS-1, and PM) with an ap-
proximately nine-fold increase in tg when reducing δ from
98 to 85, as exemplified for MS-1 in Figure 10b. This in-
crease can be attributed to the nature of the recursive eval-
uation algorithm, e.g. semi-naive evaluation (Gebser et al.
2012), adopted by the grounder. As the value of δ lowers,
more new merges may be produced in earlier levels, so that
they can be reevaluated in later ones. This is shown in the
trend of orange charts w.r.t. merge increments. A more inter-
esting pattern is observed when looking at the solving times
on MS-1 and PM. We can observe a dramatic increase of ts



when reducing δ from 90 to 85: as shown by the green curve
in Figure 10b, ts for MS-1 sharply rose from tens of seconds
to 3,345 seconds. Moreover, ts reached a timeout (> 24
hours) for PM with δ = 85. This suggests the scalability of
ASPEN may potentially be restricted in complex reasoning
settings, provided the inherent intractability of computing
MS and PM (Bienvenu, Cima, and Gutiérrez-Basulto 2022).
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