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Abstract
We study belief change for the case in which beliefs are expressed as concepts in description logic. We consider
that the incoming information is in the format of a set of pointed interpretations and investigate eviction (removal
of pointed models) and reception (addition of pointed models). We provide preliminary results in this setting,
establishing whether ℰℒ⊥ and 𝒜ℒ𝒞-concepts are eviction/reception compatible.

1. Introduction

In Belief Change[1, 2, 3], when confronted with a piece of information, an agent must modify its beliefs
minimally: only beliefs in conflict with the incoming information can be removed. The principle of
minimal change is conceptualised via sets of rationality postulates, whilst several classes of operators
that abide by such postulates were proposed. The standard paradigms of belief change, such as the AGM
paradigm[1] of belief revision and the KM paradigm[4] of belief update, assume the incoming information
to be represented as formulae. In other areas, however, different forms of representing incoming
information, such as sets of finite models, have been addressed. In the learning from interpretations
setting [5], for example, the goal is to identify a concept that is satisfied by a given set of interpretations,
classified as positive, while falsified by another given set of interpretations (classified as negative).
Ideally, the concept should also follow the principle of minimal change, in the sense that the identified
concept should be as close as possible to the set of positive interpretations.

Guimaraes et al. [6] have generalised the belief change paradigm to the setting where the incoming
information is expressed as a set of interpretations, while the new corpus of beliefs should be finitely
representable. Two main operations were proposed: eviction, which consists in removing the given set
of interpretations; and reception, which consists in accommodating the given set of interpretations.
Keeping the principle of minimal change and finite representation in this setting is challenging, and
the authors have identified that eviction and reception are not definable in some logics. In this work,
we deepen this investigation and consider concepts expressed in the ℰℒ⊥ and 𝒜ℒ𝒞 description logics
(DLs). We show that while eviction is definable in ℰℒ⊥, reception is not definable in ℰℒ⊥ nor 𝒜ℒ𝒞.

2. Eviction and Reception

Following [7, 8], and [9], we use satisfaction systems to define logics. A satisfaction system is a triple
Λ = (ℒ,M, |=), where ℒ is a language, M is a set of models, and |= is a satisfaction relation which
contains all pairs (𝑀,ℬ), where 𝑀 is a model and ℬ is a base (that is, a subset of ℒ), such that 𝑀
satisfies ℬ (i.e., 𝑀 |= ℬ). We denote by modΛ(ℬ) the set {𝑀 ∈ M | 𝑀 |= ℬ}. We write simply
mod(ℬ) when the satisfaction system is clear from the context. Satisfaction systems allow us to be
more flexible and precise regarding the precise scope of the operations and constructions we define.
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This view also facilitates the generalisation of some results that do not depend on properties of the
consequence relation of the logic.

The power set of a set𝐴 is denoted by𝒫(𝐴), while the set of all finite subsets of𝐴 is denoted by𝒫 f(𝐴).
We write 𝒫*(𝐴) to denote the non-empty subsets of 𝐴. An arbitrary set of models M ⊆ M within Λ is
finitely representable iff there is ℬ ∈ 𝒫 f(ℒ) such that mod(ℬ) = M. FR(Λ) denotes the collection of
all finitely representable sets of models in Λ, that is, the set {M ⊆ M | ∃ℬ ∈ 𝒫 f(ℒ) : mod(ℬ) = M}.
Also, we say that a set of formulae ℬ ⊆ ℒ is finitely representable iff there is a ℬ′ ∈ 𝒫 f(ℒ) with
mod(ℬ) = mod(ℬ′).

Eviction turns the current belief state into a new one not satisfied by any of the input models.
Reception turns the current belief state into a new one satisfied by all the input models.

Definition 1. For all satisfaction systems Λ = (ℒ,M, |=) and M ⊆ M,

MaxFRSubs(M,Λ) := {M′ ∈ FR(Λ) | M′ ⊆ M and ̸ ∃M′′ ∈ FR(Λ) with M′ ⊂ M
′′ ⊆ M}.

MinFRSups(M,Λ) := {M′ ∈ FR(Λ) | M ⊆ M′ and ̸ ∃M′′ ∈ FR(Λ) with M ⊆ M
′′ ⊂ M′}.

Definition 2. An eviction operation for a satisfaction system Λ = (ℒ,M, |=) is a function evc :
𝒫 f(ℒ)×𝒫(M) → 𝒫 f(ℒ) that satisfies the following postulates, for all M,M′ ⊆ M and for all ℬ ∈ 𝒫 f(ℒ):

(success) M ∩mod(evc(ℬ,M)) = ∅.

(inclusion) mod(evc(ℬ,M)) ⊆ mod(ℬ).

(finite retainment) If mod(evc(ℬ,M)) ⊂ M′ ⊆ mod(ℬ) ∖M then M′ ̸∈ FR(Λ).

(uniformity) MaxFRSubs(mod(ℬ) ∖ M,Λ) = MaxFRSubs(mod(ℬ′) ∖ M′,Λ) implies
mod(evc(ℬ,M)) = mod(evc(ℬ′,M′)).

Definition 3. A reception operation for a satisfaction system Λ = (ℒ,M, |=) is a function rcp :
𝒫 f(ℒ)×𝒫(M) → 𝒫 f(ℒ) that satisfies the following postulates, for all M,M′ ⊆ M and for all ℬ ∈ 𝒫 f(ℒ):

(success) M ⊆ mod(rcp(ℬ,M)).

(persistence) mod(ℬ) ⊆ mod(rcp(ℬ,M)).

(finite temperance) If mod(ℬ) ∪M ⊆ M′ ⊂ mod(rcp(ℬ,M)) then M′ ̸∈ FR(Λ).

(uniformity) MinFRSups(mod(ℬ) ∪ M,Λ) = MinFRSups(mod(ℬ′) ∪ M′,Λ) implies
mod(rcp(ℬ,M)) = mod(rcp(ℬ′,M′)).

For a discussion on the postulates presented in this section, see [6]. Neither reception nor eviction
are definable in every logic. Eviction can only be defined in logics where MaxFRSubs(M,Λ) ̸= ∅, for
all sets of models M, whilst reception can only be defined in logics where MinFRSups(M,Λ) ̸= ∅, for
all sets of models M. Such logics are called respectively eviction-compatible and reception-compatible.
Incompatibility is a problem inherent in belief change, and even when the incoming information is
represented as formulae, some belief change operators, such as contraction[1], cannot be defined in
some logics [10, 11, 12].

3. Description Logic Concepts: Eviction and Reception

In this section we establish preliminary results on eviction and reception compatibility for DL concepts.
In particular, we show that ℰℒ⊥ is eviction-compatible (Theorem 4).

DL Concepts Let NC and NR be countably infinite and pairwise disjoint sets of concept names and role
names, respectively. ℰℒ-concepts are built according to the rule: 𝐶,𝐷 ::= ⊤ | 𝐴 | (𝐶 ⊓𝐷) | (∃𝑟.𝐶),



where 𝐴 ∈ NC and 𝑟 ∈ NR. ℰℒ⊥-concepts extend ℰℒ by allowing ⊥ (interpreted as the empty set).
𝒜ℒ𝒞-concepts extend ℰℒ-concepts with the rule ¬𝐶 (recall that 𝐶 ⊓ ¬𝐶 is equivalent to ⊥, so 𝒜ℒ𝒞
extends ℰℒ⊥). We may omit parentheses if there is no risk of confusion. A pointed interpretation is a
pair (ℐ, 𝑑) where ℐ = (·ℐ ,∆ℐ) is an interpretation and 𝑑 ∈ ∆ℐ . A pointed interpretation (ℐ, 𝑑) satisfies
a concept 𝐶 iff 𝑑 ∈ 𝐶ℐ . The semantics of ℰℒ, ℰℒ⊥, and 𝒜ℒ𝒞 is defined using interpretations, as usual
for DLs [13, 14].

Canonical Model Given a satisfiable ℰℒ⊥-concept 𝐷, we inductively define the tree-shaped interpre-
tation ℐ𝐷 of 𝐷, with the root denoted 𝑑𝐷 , as follows. When 𝐷 is ⊤, we define ℐ⊤ as the interpretation
with ∆ℐ⊤ := {𝑑⊤} and all concept and role names interpreted as the empty set. For 𝐷 a concept
name 𝐴 ∈ NC we define ℐ𝐴 as the interpretation with ∆ℐ𝐴 := {𝑑𝐴}, 𝐴ℐ𝐴 := {𝑑𝐴}, and all other
concept and role names interpreted as the empty set. For 𝐷 = ∃𝑟.𝐶 , we define ℐ𝐷 as the interpreta-
tion with ∆ℐ𝐷 := {𝑑𝐷} ∪∆ℐ𝐶 . All concept and role name interpretations are as for ℐ𝐶 and we add
(𝑑𝐷, 𝑑𝐶) to 𝑟ℐ𝐷 , and assume 𝑑𝐷 is fresh (i.e., it is not in ∆ℐ𝐶 ). Finally, for 𝐷 = 𝐷1 ⊓𝐷2 we define
∆ℐ𝐷 := ∆ℐ𝐷1 ∪ (∆ℐ𝐷2 ∖ {𝑑𝐷2}), assuming ∆ℐ𝐷1 and ∆ℐ𝐷2 are disjoint, and with all concept and role
name interpretations as in ℐ𝐷1 and ℐ𝐷2 , except that we connect 𝑑𝐷1 with the elements of ∆ℐ𝐷2 in the
same way as 𝑑𝐷2 is connected. In other words, we identify 𝑑𝐷1 with the root 𝑑𝐷2 of ℐ𝐷2 .

Homomorphism Given two pointed interpretations (ℐ, 𝑑0), (𝒥 , 𝑒0), a homomorphism from (ℐ, 𝑑0)
to (𝒥 , 𝑒0) is a function ℎ : ∆ℐ → ∆𝒥 that satisfies: (i) ℎ(𝑑0) = 𝑒0; (ii) for all 𝐴 ∈ NC, if 𝑑 ∈ 𝐴ℐ then
ℎ(𝑑) ∈ 𝐴𝒥 ; and (iii) for all 𝑟 ∈ NR, if (𝑑, 𝑑′) ∈ 𝑟ℐ then (ℎ(𝑑), ℎ(𝑑′)) ∈ 𝑟𝒥 .

Our proof strategy for Theorem 4 is to invoke Theorem 1 (see [6]), which we recall here, together
with the two technical lemmas below.

Theorem 1 (Theorem 16[6]). A satisfaction system Λ is eviction-compatible iff for every M ⊆ M either (i)
M ∈ FR(Λ), (ii) M has an immediate predecessor in (FR(Λ) ∪ {M},⊂), or (iii) there is no M′ ∈ FR(Λ)
with M ⊆ M′.

Lemma 2 (Adapted [15]). For all satisfiable ℰℒ⊥-concepts 𝐶 and 𝐷, we have that |= 𝐶 ⊑ 𝐷 iff there is
a homomorphism from (ℐ𝐷, 𝑑𝐷) to (ℐ𝐶 , 𝑑𝐶).

Lemma 3. For all satisfiable ℰℒ⊥-concepts 𝐶 , if 𝐶 is satisfiable then there is an ℰℒ⊥-concept 𝐶 ′ such
that |= ⊥ ⊏ 𝐶 ′ ⊏ 𝐶 .

Let Λ(ℰℒ⊥-concepts) be the satisfaction system for ℰℒ⊥-concepts.

Theorem 4. Λ(ℰℒ⊥-concepts) is eviction-compatible.

Proof. We show that every non-empty M ⊆ M has an immediate predecessor in
(FR(Λ(ℰℒ⊥-concepts)) ∪ {M},⊂) (the case M is empty is easy as ℰℒ⊥ has the ⊥ concept).
Recall that an immediate predecessor of M in this case is a set of models M′ ∈ FR(Λ(ℰℒ⊥-concepts))
such that M′ ⊂ M and there is no M′′ such that M′ ⊂ M′′ ⊂ M. For this, we show that
given a finitely representable set of models M, there is no infinite chain M1 ⊂ M2 ⊂ . . .
of sets of models in (FR(Λ(ℰℒ⊥-concepts)) such that M𝑖 ⊂ M for all 𝑖 ∈ N. Indeed, given
M,M′ ∈ (FR(Λ(ℰℒ⊥-concepts)), with M′ ⊂ M, let 𝐶,𝐷 be ℰℒ⊥-concepts such that mod(𝐶) = M
and mod(𝐷) = M′. By the semantics of ℰℒ⊥, we have that |= 𝐷 ⊏ 𝐶 . We want to show
that there are finitely many ℰℒ⊥-concepts 𝐸 such that |= 𝐷 ⊏ 𝐸 ⊏ 𝐶 . Suppose there is no
M′ ∈ MaxFRSubs(Λ(ℰℒ⊥-concepts)) such that M′ ⊂ M with M′ ̸= ∅. That is, ⊥ is the only
ℰℒ⊥-concept such that |= ⊥ ⊑ 𝐶 , or, in other words, there is no (satisfiable) ℰℒ⊥-concept 𝐶 ′ such
that |= ⊥ ⊏ 𝐶 ′ ⊏ 𝐶 . However, as M′ ⊂ M, we have that M ̸= ∅, so 𝐶 is satisfiable. This cannot be
the case for ℰℒ⊥-concepts due to Lemma 3. By Lemma 3, if 𝐶 is satisfiable then there is 𝐶 ′ such that
|= ⊥ ⊏ 𝐶 ′ ⊏ 𝐶 .

Then, there is M′ ∈ (FR(Λ(ℰℒ⊥-concepts)) such that M′ ⊂ M and M′ ̸= ∅, so 𝐷 is satisfiable. Let
𝐸 be an ℰℒ⊥-concept such that |= 𝐷 ⊏ 𝐸 ⊏ 𝐶 (if there is no such concept then we are done). Since
|= 𝐷 ⊏ 𝐸 we have that 𝐸 is satisfiable. Then, by Lemma 2, there is a homomorphism from (ℐ𝐸 , 𝑑𝐸) to



(ℐ𝐷, 𝑑𝐷). As 𝐷 is finite, the number of concept and role names that occur in 𝐷 is finite. Denote with
sig(𝐷) the set of concept and role names occurring 𝐷. Also, the existence of a homomorphism from
(ℐ𝐸 , 𝑑𝐸) to (ℐ𝐷, 𝑑𝐷) and the definition of ℐ𝐸 and ℐ𝐷 imply that the set of concept and role names
occurring in 𝐸 is a subset of sig(𝐷). That is, there are finitely many concept and role names occurring in
𝐸 and they are subset of sig(𝐷). Moreover, by definition of ℐ𝐸 and ℐ𝐷 , these interpretations correspond
to tree-shaped labelled structures where the depth of (the tree corresponding to) ℐ𝐸 is less or equal to
the depth 𝑛 of ℐ𝐷 . Since 𝐸 was an arbitrary ℰℒ⊥-concept such that |= 𝐷 ⊏ 𝐸 this holds for all such
concepts. As there are finitely many tree-shaped labelled structures with symbols in sig(𝐷) and depth
bounded by 𝑛, there are finitely many ℰℒ⊥-concepts 𝐸 (up to logical equivalence) such that |= 𝐷 ⊏ 𝐸.
Then there are finitely many ℰℒ⊥-concepts 𝐸 (up to logical equivalence) such that |= 𝐷 ⊏ 𝐸 ⊑ 𝐶 .
This means that, by Theorem 16 in [6], Λ(ℰℒ⊥concepts) is eviction-compatible.

The previous result does not hold for ℰℒ (without ⊥) as it cannot express inconsistencies [6]. Let
Λ(𝒜ℒ𝒞-concepts) be the satisfaction system for 𝒜ℒ𝒞-concepts.

Theorem 5. Λ(ℰℒ⊥-concepts) and Λ(𝒜ℒ𝒞-concepts) are not reception-compatible.

The proof of Theorem 6 is based on [6].

Theorem 6. Λ(𝒜ℒ𝒞-concepts) is not eviction-compatible.
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