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Abstract
We introduce novel classes of fully rational contraction oper-
ators for belief bases. These operators are founded on a plau-
sibility relation on models, called tracks, that allow distin-
guishing between suitable and unsuitable models. We obtain
three main representation theorems: the first one semantically
characterises the class of partial-meet operators, which are re-
lated to the rationality postulate of relevance; while the sec-
ond one semantically characterises the class of smooth kernel
contraction operators, which are related to the postulates of
core-retainment and relative closure. The third representation
theorem semantically characterises the supplementary postu-
lates (conjunction and intersection). We consider logics that
are both Tarskian and compact.

1 Introduction
The field of Belief Change (Alchourrón, Gärdenfors, and
Makinson, 1985; Gärdenfors, 1988; Hansson, 1999) stud-
ies how an agent should rationally modify its corpus of be-
liefs in response to incoming pieces of information. The
two most important kinds of change are: contraction, which
relinquishes undesirable/obsolete information; and revision,
which accommodates new information with the caveat of
keeping the corpus of beliefs consistent. Each of these kinds
of changes is governed by sets of rationality postulates, split
into basic and supplementary rationality postulates, which
prescribe adequate behaviours of change. Such rationality
postulates are motivated by the principle of minimal change:
in response to a piece of information, say α, an agent should
remove only beliefs that either conflict with α (in the case of
revision), or that contribute to entail α (in case of contrac-
tion).

Several classes of belief change operators were proposed
that abide by such rationality postulates, called rational be-
lief change operators (see (Hansson, 1999), for a list). These
classes of operators can be split into two main kinds: syntac-
tic operators and semantic operators. Operators belonging
to the first kind select sentences from the language, while
operators of the second kind select models. Examples of
syntactic operators are partial meet operators (Alchourrón,
Gärdenfors, and Makinson, 1985) and smooth kernel op-
erators (Hansson, 1994), while Grove’s system of spheres

∗A preliminary version was presented at NMR23 (Ribeiro,
2023).

(Grove, 1988; Gärdenfors, 1988) and the faithful pre-orders
of Katsuno and Mendelzon (1991) are the main frameworks
for constructing semantic operators. In the most fundamen-
tal case, when an agent’s corpus of beliefs is represented as
a logically closed set of sentences, called a theory, all these
classes of operators are characterised by the rationality pos-
tulates of contraction/revision.

Theories, however, are very restrictive, as they do not
distinguish between explicit and implicit beliefs. One can
achieve this distinction by dropping the logical closure re-
quirement, and simply representing an agent’s corpus of be-
liefs as a set of sentences, called a belief base (Hansson,
1999). For bases, however, very few belief change opera-
tors are capable of satisfying the rationality postulates of be-
lief change. The two foremost classes of syntactic operators
are smooth kernel contraction and partial-meet. On theories,
these two classes are equivalent, whereas on bases only par-
tial meet remains rational for belief bases (Hansson, 1999,
1994). On bases, smooth kernel contraction corresponds to
a more permissive version of contraction. As a result, re-
search on belief base change has focused on partial meet op-
erators or other similar syntactic operators (Hansson, 1999;
Ribeiro and Thimm, 2021). This poses a severe limitation
in advancing belief base change, as syntactic operators are
highly dependent on the assumptions made about the under-
lying logic used to represent an agent’s knowledge, as for
instance, imposing that the language is closed under classi-
cal negation (Ribeiro et al., 2013). By devising belief change
operators via models, such conditions upon the language of
the logics can be easily waived.

In this work, we devise three novel classes of semantic
operators for belief base contraction: one semantically char-
acterises partial meet operators, the second captures the sup-
plementary postulates, and the last one characterises seman-
tically smooth kernel contractions. Our approach consists in
imposing a pre-order, called a track, upon the models of the
logics. A track indicates the most plausible models, which in
turn are selected to perform a contraction. We call such oper-
ators that follow this strategy tracked contraction operators.
We show a representation theorem between the basic ratio-
nality postulates of belief base contraction and such a novel
class of contraction operators. Equivalently, the tracked con-
traction operators correspond to the semantic counterpart of
the partial meet operators. We then investigate the issue of



the supplementary postulates on bases. On the theories side,
such postulates are captured by imposing total relations on
models. We show that for bases, totality is too strong and we
we unveil a impressive disruptive result: in fact, there are op-
erators satisfying the supplementary postulates that cannot
be defined upon binary relations. We identify the cause of
the schism, which leads us to strengthen the track contrac-
tion operators with two novel conditions, and we obtain a
second representation theorem which connects tracked con-
traction operators with the supplementary postulates.

It is worth highlighting that, except for safe contraction
(Alchourrón and Makinson, 1985), the study of the supple-
mentary postulates on belief bases has been neglected. So
far, a class of contraction operators on bases that connects
with the supplementary postulates were still unknown. As
contraction is a central operation in belief change, our result
can be further extended to provide semantic operators for
other kinds of belief change, such as revision.

We also characterize semantically the smooth kernel con-
traction operators for bases. For this, we explore some prop-
erties of the track relations, which unveil the permissive be-
haviour of smooth kernel contraction on models. We then
relax the tracked contraction operators to capture such be-
haviour.

Road map: Section 2 introduces some basic notations
and definitions that will be used throughout this work. In
Section 3, we briefly review belief contraction, including
both basic and supplementary rationality postulate of con-
traction as well as the smooth kernel and partial meet con-
traction operators. For semantic operators, we review the
faithful pre-orders of Katsuno and Mendelzon (1991) for re-
vision, and we translate them in terms of belief contraction.
We show that such operators, though rational for theories,
are not rational for belief bases. In Section 4, we introduce
two novel classes of contraction operators and the represen-
tation theorem connecting tracks and both basic and supple-
mentary rationality postulates of contraction. In Section 5,
we semantically characterize the smooth kernel contraction
operators using the track relations. Finally, in Section 6, we
conclude the work and discuss some future works. The full
proofs are available in the appendix at https://jandsonribeiro.
github.io/home/appendix/KR 24 appendix.pdf

2 Notation and Technical Background
The power set of a set A is denoted by P(A). We treat
a logic as a pair ⟨L, Cn⟩, where L is a language, and
Cn : P(L) → P(L) is a logical consequence operator that
indicates all the formulae that are entailed from a set of for-
mulae in L. We limit ourselves to logics whose consequence
operator Cn satisfies:

monotonicity: if A ⊆ B then Cn(A) ⊆ Cn(B);
inclusion: A ⊆ Cn(A);
idempotency: Cn(Cn(A)) = Cn(A);
compactness: if φ ∈ Cn(A) then there is some finite set
A′ ⊆ A such that φ ∈ Cn(A′).

Consequence operators that satisfy the first three condi-
tions above are called Tarskian. Likewise, consequence op-

erators satisfying the compactness property will be called
compact. Sometimes we say that the logic itself is Tarskian
or compact. Throughout this work, unless otherwise stated,
all the presented results regard logics whose consequence
operators are Tarskian and satisfy compactness. This makes
our results much more general than the others in the litera-
ture, which in turn assume several other assumptions such
as requiring boolean operators, the deduction theorem and
supraclassicality. This generalisation, however, makes it
much harder to achieve the results, as we need to devise
several auxiliary apparatuses. A theory is a set of formulae
X ⊆ L such that X = Cn(X).

As we are interested in defining semantic operators, we
exploit the semantics of the logics. Given a logic ⟨L, Cn⟩
and a set of structures I, an interpretation or a model is
an element of I that gives meaning to the formulae of L;
I is called an interpretation domain of that logic, whereas
each subset of I is called an interpretation set. For instance,
an interpretation domain for the Propositional Logic is the
power set of the propositional symbols of the language. A
satisfaction relation |= ⊆ I ×L is used to indicate on which
interpretations a formula is satisfied. If M |= α, we say that
M is a model of α. If an interpretation M does not satisfy
a formula α, denoted by M ̸|= α, then we say that M is a
counter-model of α. The set of all models of α is given by
JαK, while the set of all counter-models of α is given by JαK.

In Tarskian logics, the consequence operator can be se-
mantically defined as: a formula φ ∈ Cn(X) iff every
model that satisfies all formulae in X also satisfies φ1 (San-
tos, 2020). Let I be an interpretation domain of a logic
⟨L, Cn⟩, and M a model in I. The set of all formu-
lae of L satisfied by M is the theory Th(M) = {φ ∈
L | M |= φ}. Generalising, given a set of models A,
Th(A) = {φ | ∀M ∈ A,M |= φ} is the theory of the
formulae satisfied by all models in A. Moreover, given a set
X ⊆ L, the set of models that satisfy all formulae in X is
JXK = {M ∈ I | ∀φ ∈ X,M |= φ}. For simplicity, given
a set of formulae X and a model M , we will write M |= X
to mean that M satisfies every formula in X .

Throughout this paper, we will provide examples to sup-
port the intuition of the proposed contraction operators. Due
to its simplicity, we will use classical propositional logics to
construct such examples. Observe, however, that our results
are not confined to classical propositional logics. As usual,
the formulae of classical propositional logics are Boolean
formulae constructed from a set AP of atomic propositional
symbols, via the operators of conjunction (∧), disjunction
(∨) and classical negation (¬). The models are subsets of
AP , and the satisfaction relation is defined as usual.

A pre-order on a domain D is binary relation ⩽: D × D
that satisfies transitivity and reflexivity. The minimal ele-
ments of a set A ⊆ D w.r.t a binary relation ⩽: D × D is
min⩽(A) = {a ∈ A | if b ⩽ a then a ⩽ b, for all b ∈ A}.
We write a < b to denote that a ⩽ b but b ̸⩽ a. We also
write a ∼ b as a shorthand for a ⩽ b and b ⩽ a.

1See this paper’s appendix for detailed full proofs of this claim
and other properties we use.

https://jandsonribeiro.github.io/home/appendix/KR_24_appendix.pdf
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3 Belief Contraction
We assume that an agent’s corpus of beliefs is represented
as a belief base, which will be denoted by the letter K. The
term belief base has been used in the literature with two main
purposes: (i) as a finite representation of an agent’s beliefs
(Nebel, 1990; Dixon, 1994; Dalal, 1988), and (ii) as a more
general and expressive approach that distinguishes explicit
from implicit beliefs (Fuhrmann, 1991; Hansson, 1999). We
follow the latter approach, and therefore a belief base can be
infinite.

Let K be a belief base, a contraction function for K is a
function −̇ : L → P(L) that given an unwanted piece of
information α, outputs a subset of K which does not entail
α. A contraction function is subject to the following basic
rationality postulates (Hansson, 1991, 1994):
(success): if α ̸∈ Cn(∅) then α ̸∈ Cn(K −̇ α);
(inclusion): K −̇ α ⊆ K;
(vacuity): if α ̸∈ Cn(K) then K −̇ α = K;
(uniformity): if for all K′ ⊆ K it holds that α ∈ Cn(K′)

iff β ∈ Cn(K′), then K −̇ α = K −̇ β;
(core-retainment): if β ∈ K \ (K −̇ α) then there is a
K′ ⊆ K s.t α ̸∈ Cn(K′) but α ∈ Cn(K′ ∪ {β});

(relative closure): K ∩ Cn(K −̇ α) ⊆ K −̇ α;
(relevance): if β ∈ K\(K−̇α) then there is a K′ such that
K −̇ α ⊆ K′ ⊆ K, α ̸∈ Cn(K′) but α ∈ Cn(K′ ∪ {β}).
For a discussion on the rationale of these postulates, see

(Hansson, 1999). The postulate of uniformity guarantees
that contraction is not syntax sensitive: if two formulae, say
α and β, are entailed exactly by the same subsets of K (we
say α and β are K-uniform), then α and β must present the
same contraction result. We call the set of rationality postu-
lates listed above the basic rationality postulates of contrac-
tion. A contraction function that satisfies all the basic ratio-
nality postulates above will be dubbed a rational contraction
function. It is worth highlighting that relevance implies core-
retainment, while inclusion and core-retainment jointly im-
ply vacuity whenever the underlying logic is Tarskian (Hans-
son, 1999). Moreover, in Tarskian logics, relevance also im-
plies relative closure (Hansson, 1999).

There are two other postulates, called supplementary
postulates (Alchourrón, Gärdenfors, and Makinson, 1985;
Hansson, 1993, 1999):
(intersection) K −̇ α ∩ K −̇ β ⊆ K −̇ α ∧ β
(conjunction) If α ̸∈ Cn(K −̇ α ∧ β) then

K −̇ (α ∧ β) ⊆ K −̇ α.
It is important to stress that the study of the supplemen-

tary postulates has been confined to theories, and very little
is known about their behaviours on belief bases. Rational
contraction operators that satisfy the supplementary postu-
lates will be dubbed fully rational.

3.1 Partial Meet and Smooth Kernel Contractions
Several contraction operators were proposed in the litera-
ture. The two most influential ones are partial meet (Defini-
tion 4), and smooth kernel (Definition 9). Partial meet makes
use of remainders.

Definition 1. Given a belief base K and formula α, an α-
remainder of K is a set X ⊆ K such that: α ̸∈ Cn(X),
and if X ⊂ Y ⊆ K, then α ∈ Cn(Y ). The set of all α-
remainders of K is denoted by K ⊥ α.

Each member of K ⊥ α is called a remainder, and it is
a maximal subset of K that does not entail α. A partial
meet operator works by selecting remainders and intersect-
ing them. As a remainder set might have many remainders,
a choice must be made about which ones are the best to per-
form the contraction. This choice is done via an extra-logical
mechanism called a selection function:
Definition 2. A selection function γ picks some α-
remainders from K ⊥ α such that,

(i) γ(K ⊥ α) ̸= ∅; and
(ii) γ(K ⊥ α) ⊆ K ⊥ α, if K ⊥ α ̸= ∅; and
(iii) γ(K ⊥ α) = {K}, if K ⊥ α = ∅.

A selection function works as an extra-logical mechanism
that realises the agent’s epistemic preferences. In the origi-
nal work of (Alchourrón, Gärdenfors, and Makinson, 1985),
the authors propose to represent an agent’s preferences as a
binary relation ⩽ on all remainders. Precisely, a pair A ⩽ B
means that the remainder A is at least as preferable as B.
The agent picks the most preferable α-remainders w.r.t ⩽.
Definition 3. A selection function γ is relational iff there
exists some binary relation ⩽ on all remainders such that
γ(K ⊥ α) = min⩽(K ⊥ α), for all K ⊥ α ̸= ∅. If ⩽ is
transitive then γ is called transitive relational.

Remainder sets and selection functions are used to define
a contraction operator called partial meet contraction:
Definition 4. Given a belief base K, and a selection function
γ, the operation −̇γ defined as K −̇γ α =

⋂
γ(K ⊥ α) is a

partial meet contraction function.
Hansson (1993) has shown that the basic rationality pos-

tulates characterise the class of partial meet contraction op-
erators, under the assumption that the underlying logic is
Tarskian, compact and satisfies some classical assumptions
such as the deduction theorem and supraclassicality. Hans-
son and Wassermann (2002) generalised this connection be-
tween partial meet and the basic rationality postulates by re-
quiring only monotonicity and compactness.
Theorem 5. (Hansson and Wassermann, 2002) A contrac-
tion operator is rational iff it is a partial meet contraction
operator.

While partial meet operators do satisfy the basic ratio-
nality postulates, not all of them satisfy the supplementary
ones. For theories, the supplementary postulates connect
with the transitive relational partial meet operators.
Theorem 6. (Alchourrón, Gärdenfors, and Makinson,
1985) On theories, a contraction operator is fully rational
iff it is a transitive relational partial meet contraction oper-
ator.

As Hansson (1993) shows, the transitive relational partial
meet operators are not strong enough to satisfy the two sup-
plementary postulates on belief bases. Hansson proposes
to strengthen the transitive relations with a property called



maximising. However, a representation theorem is not ob-
tained. We overcome the issue of the supplementary postu-
lates on bases in Section 4.2.

Another influential class of rational contraction opera-
tions is the class of smooth kernel contraction operations,
which are defined on kernels and incision functions:

Definition 7. An α-kernel of a belief base K is a set X such
that (1) X ⊆ K; (2) α ∈ Cn(X); and (3) if X ′ ⊂ X then
α ̸∈ Cn(X ′).

An α-kernel of a belief base K is a minimal subset of K
that does entail α. The set of all α-kernels of a belief base
K is denoted by K⊥⊥α. Formulae that do not appear in any
α-kernel are not responsible for entailing the formula α to
be contracted, and therefore they should be kept intact. In
contrast, only formulae that appear in the kernels should be
picked for removal. This choice of removal is realised by an
incision function:

Definition 8. Let C(K) = {K⊥⊥α | α ∈ L} be the set of all
kernel sets of K. An incision function on a belief base K is
a function σ : C(K) → P(L) such that

(1) σ(K⊥⊥α) ⊆
⋃

K⊥⊥α;
(2) if X ∈ K⊥⊥α and X ̸= ∅ , then X ∩ σ(K⊥⊥α) ̸= ∅.

Intuitively, in order to contract a formula α, an agent
chooses at least one formula from each α-kernel, and only
formulae from such kernels. An incision function works
as an extra-logical device that realises an agent’s epistemic
preferences, and it chooses the least preferable formulae in
each α-kernel to be removed. A contraction operation can
be constructed by removing the formulae picked by an inci-
sion function. Contraction operations that follow this recipe
are called kernel contractions:

Definition 9. (Hansson, 1994) Given a belief base K and
an incision function σ for K, the kernel contraction function
−̇σ is defined as: K −̇σ α = K \ σ(K⊥⊥α).

Kernel contractions functions, however, are not strong
enough to satisfy relevance and relative closure. To capture
relative closure, Hansson (1994) has proposed the smooth-
ness property for incision functions:

smoothness: if K′ ⊆ K, φ ∈ Cn(K′) and φ ∈ σ(K⊥⊥α)
then K′ ∩ σ(K⊥⊥α) ̸= ∅.

Incision functions that satisfy smoothness are called
smooth incision function and the respective kernel contrac-
tions are called smooth kernel contraction operations. Intu-
itively, smoothness states that any removed formula cannot
be entailed by the remaining formulae.

The smooth kernel contraction operations are charac-
terised by the first six rationality postulates:

Theorem 10. (Hansson, 1994; Ribeiro, 2022) A contrac-
tion function satisfies success, inclusion, vacuity, unifor-
mity, core-retainment, and relative closure iff it is a smooth
kernel contraction function.

3.2 Semantic Contraction Operators
We start by explaining how belief contraction works on
models when the agent’s corpora of beliefs are represented

as theories. After that, we show why such strategies do not
work for belief bases.

In terms of models, in order to contract a formula α from
a theory K, it suffices to obtain a theory that is a subset of
K (due to the inclusion postulate) and is satisfied by some
counter-models of α. Such counter-models are picked ac-
cording to a selection mechanism which will call a model
choice function.
Definition 11. A choice model function on a belief base K
is a map µ : L → P(I) such that

1. µ(α) ⊆ JαK,
2. µ(α) ̸= ∅, if α is not a tautology,
3. µ(α) = ∅, if α is a tautology,
4. if α ̸∈ Cn(K), then µ(α) = JαK ∩ JKK,
5. if Cn(α) = Cn(β), then µ(α) = µ(β).

Essentially, a model choice function µ picks for every
non-tautological formula α, some counter-models of α (con-
ditions 1 and 2). For tautological formulae α, we make
µ(α) = ∅ (condition 3), as tautologies have no counter-
models. When α ̸∈ Cn(K), there is nothing to be re-
moved, and K should be kept untouched, according to vacu-
ity. Therefore, in this case, we make µ(α) = JαK ∩ JKK
(condition 4), that is, the most plausible counter-models of
α are those ones that satisfy K. Moreover, if two formulae α
and β are logically equivalent, then µ(α) = µ(β) (condition
5). This guarantees that the choice function is not syntax
sensitive.
Definition 12. The contraction function induced by a model
choice function µ is the operator

K −̇µ α = {φ ∈ K | µ(α) ⊆ JφK}.
Indeed, the basic rationality postulates characterise such

a class of semantic contraction operators for theories.
Theorem 13. A contraction function −̇ on a theory K is
rational iff it is induced by some model choice function µ.

For full rationality, there are two main classes of be-
lief operators: the revision operators based on faithful pre-
orders of Katsuno and Mendelzon (KM, for short) (Katsuno
and Mendelzon, 1991) and the revision operators based on
Grove’s spheres (Grove, 1988). Although both classes of
operators were originally framed for belief revision, they
can be easily translated to contraction. In the following, we
present a translation of KM operators based on faithful pre-
orders in terms of contraction. Caridroit, Konieczny, and
Marquis (2017) have shown a similar translation, for clas-
sical propositional logic, where a theory is represented as a
single formula. The translation we present below works di-
rectly on bases (sets of formulae instead of a single formula).
Definition 14. (Katsuno and Mendelzon, 1991)2 Given a be-
lief base K, a pre-order ⩽K is faithful w.r.t K iff it satisfies
the two following conditions:

2Originally, KM defines an assignment that maps each formula
to a pre-order, and defines such an assignment to be faithful. This
assignment has only the purpose to provide general contraction op-
erators. As here we focus on local contraction, we opt to remove
this complication and operate directly on the pre-orders.



(1) if M,M ′ ∈ JKK then M ̸<K M ′;
(2) if M ∈ JKK and M ′ ̸∈ JKK then M <K M ′.

Definition 15. Given a faithful pre-order ⩽K on a belief
base K, the faithful contraction operator founded on ⩽K
is the operation −̇⩽K such that JK −̇⩽K αK = JKK ∪
min⩽K(JαK). If ⩽K is total then −̇⩽K is a total faithful
contraction operator.

A faithful pre-order works as an epistemic preference re-
lation on models. In order to contract a formula α, the agent
chooses exactly the most plausible counter-models of α. In
the current presentation, KM operators are suitable only for
theories, because, for belief bases, there is no guarantee that
K −̇⩽K α outputs a subset of K, as the inclusion postulate
demands. Towards this end, in order to satisfy the inclu-
sion postulate we need only to rewrite faithful contraction
in the spirit of Definition 12: get the greatest subset of K
satisfied by the minimal counter-models of the formula α to
be contracted. Indeed, within classical propositional logics,
the KM operation is a special kind of contraction induced
by a model choice function as per Definition 12. In classi-
cal propositional logics, for theories, the faithful contraction
operators on total pre-orders are fully rational:
Theorem 16. (Katsuno and Mendelzon, 1991; Caridroit,
Konieczny, and Marquis, 2017) In classical propositional
logics, a contraction operator on a theory K is fully rational
iff it is a total faithful contraction operator.

Observe that the representation theorems above (Theo-
rem 13 and Theorem 16) are established only for theories.
Indeed, as Example 1 below illustrates, both representation
theorems break down for bases, which is due to violation of
the relevance postulate.
Example 1. Consider the belief base K = {p, q, p∨ q,¬q∨
p}, expressed in classical propositional logics, with AP =
{p, q}. We want to contract the formula p ∧ q. There are
only three rational contraction results:

A1 = {p, p ∨ q,¬q ∨ p}, A2 = {q, p ∨ q},
A3 = {p ∨ q}.

Not every model choice function, however, induces a ratio-
nal contraction operator. To see this, note that we have only
four models

M1 = {p, q},M2 = {p},M3 = {q}, and M4 = ∅.
Observe that Jp ∧ qK = {M2,M3,M4}. Let <K be the

following strict total faithful pre-order on K:
M1 <K M4 <K M3 <K M2.

Let σ be a model choice function such that σ(p ∧ q) =

min<K(Jp ∧ qK) = {M4}. The only formula of K that M4

satisfies is ¬q ∨ p. Thus, K −̇σ p ∧ q = {¬q ∨ p}. However,
this does not correspond to any of the three possible rational
contraction results listed above.

4 Belief Base Contraction on Models
In this section, we provide two novel classes of semantic
contraction operators for belief bases. Section 4.1 introduces
the first class, which connects with the basic rationality pos-
tulates, whereas Section 4.2 introduces the second class for
the supplementary postulates.

4.1 Tracks: Semantic Constructions on Bases
In terms of models, contracting a formula α from a theory K
consists in picking some counter-models of α and maintain-
ing the formulae in K satisfied by all such picked counter-
models. While this strategy yield rational contractions for
theories (Theorem 13), it fails for belief bases as Example 1
illustrates. This occurs because some counter-models of α
might satisfy less formulae than allowed by the relevance
postulate. For instance, looking back at Example 1, accord-
ing to relevance the formula p ∨ q must be kept. Observe
that this formula appears in all the three possible rational
contraction results. The counter-model M4, however, does
not satisfy p ∨ q, which makes it unsuitable for perform-
ing a rational contraction, as picking it would remove p ∨ q.
The main hurdle is to properly distinguish between suitable
and unsuitable models. To solve this problem, we establish
a plausibility relation ⩽ on the models. Intuitively, a pair
M ⩽ M ′ means that the model M is at least as plausible
as M ′. Towards this end, in order to contract a formula α,
only the most plausible counter-models of α w.r.t ⩽ should
be chosen, that is, only models within min⩽(JαK). The
question at hand is which properties a pre-order on models
should satisfy in order to be an adequate plausibility relation
that distinguishes between suitable and unsuitable models.

Here, we propose such plausibility relations be defined
upon the notion of information preservation. Intuitively, the
more information from K a model preserves the more plausi-
ble it is. The set of all formulae from K satisfied by a model
M is given by the set Pres(M | K) = {φ ∈ K | M |= φ}.
Generalising, given a set X of models, Pres(X | K) =
{φ ∈ K | M |= φ, for all M ∈ X}. Definition 17 below
formalises a class of pre-orders based on this notion, which
we call tracks.
Definition 17. A track of a belief base K is a pre-order ⩽K
⊆ I × I such that
(1) If Pres(M | K) = Pres(M ′ | K) then M ′ ⩽K M and
M ⩽K M ′; and

(2) If Pres(M | K) ⊂ Pres(M ′ | K) then M ′ <K M .
In short, a track relation imposes models that strictly pre-

serve more information to be strictly more plausible (condi-
tion 2), while models that preserve the same set of informa-
tion are equally plausible (condition 1). Thus, in every track
for a belief a base K, the models of K are the most plausible
ones, and they are also all equally plausible.

A least track of a knowledge base K is a least relation
satisfying all conditions of Definition 17. It is easy to see
that every belief base has a unique least track. We denote
the least track of a belief base K as ⩽−

K.
Proposition 18. If K is a consistent belief base and ⩽K is a
track of K then min⩽K(I) = JKK.
Example 2 (continued from Example 1). The beliefs in K =
{p, q, p∨q, p∨¬q} preserved by each of the four models are:

Pres(M1 | K) = K
Pres(M2 | K) = {p, p ∨ q,¬q ∨ p}
Pres(M3 | K) = {q, p ∨ q}
Pres(M4 | K) = {¬q ∨ p}.



Fig. 1 (on the right ) illustrates the set inclusion relation be-
tween the preservation sets of each model, while Fig. 1 (on
the left) depicts the least track relation of K. As M1 is the
only model of K, it is strictly more plausible than all other
models. Models M2 and M3 are incomparable, since they
preserve different beliefs in K. For the same reason,M4 and
M3 are incomparable. However, M2 is strictly more plau-
sible than M4, as M2 preserves strictly more information
than M4. At this point, we can see that a track can distin-
guish between suitable and unsuitable models. According to
this track, both models M2 and M3 are the most plausible
counter-models of p∧ q. If we choose either M2 or M3 then
we get a rational contraction: eitherA1 = {p, p∨q,¬q∨p},
or A2 = {q, p ∨ q}. By picking both models we get the last
rational contraction A3 = {p ∨ q}. The only non-rational
contractions are those involving the model M4 which is not
among the most plausible ones (the suitable ones). Also, ob-
serve that other tracks exist: for instance, augmenting the
illustrated track by making M2 and M3 comparable or even
M3 and M4 comparable. However, for any of the possi-
ble tracks, M4 is never among the suitable ones, as it must
be strictly less plausible than M2, due to condition 2 of the
track’s definition. This suggests that tracks can be used as
an adequate class of plausibility relations to distinguish be-
tween suitable and unsuitable models.

M1 = {p, q}

M2 = {p} M3 = {q}

M4 = ∅

K ⩾ ⩽K

⩽K

Pres(M1 | K) = K

Pres(M2 | K) Pres(M3 | K)

Pres(M4 | K)

⊂ ⊃

⊃

Figure 1: The least track relation ⩽K(on the left), and the set inclu-
sion relation on the preservation set of the models (on the right).

As tracks establish an adequate notion of plausibility be-
tween models, the most plausible ones to contract a for-
mula α are the minimal counter-models of α. In classi-
cal propositional logics, with finite signature, such mini-
mal models always exist, as there is only a finite number
of models. However, for more expressive logics, such as
First Order Logics and several Description Logics (Baader
et al., 2017), there are formulae with an infinite number
of (counter-)models. In the presence of an infinite amount
of models, some tracks arrange the models through infinite
chains. In general, these infinite chains prevent identifying
the most plausible counter-models for some formulae. Thus,
we need to constrain ourselves to tracks that do not present
such bad behaviour, that is, tracks that are founded.
Definition 19. A relation ⩽ ⊆ I × I is founded iff
min⩽(JαK) ̸= ∅ for every non-tautological formula α.

Relying on founded tracks guarantees that for every non-
tautological formula α, there is at least one counter-model
to be picked to perform such a contraction. In fact, as long
as the underlying Tarskian logic satisfies compactness, every
belief base presents at least one founded track: its least track.
Theorem 20. If a logic ⟨L, Cn⟩ is Tarskian and compact
then for every belief base K ⊆ L, the least track is founded.

We can then define a function that selects among the most
plausible models:

Definition 21. A tracking choice function, on a founded ⩽K,
is a function δ⩽K : L → P(I) such that

1. δ⩽K(α) ⊆ min⩽K(JαK);
2. δ⩽K(α) ̸= ∅, if α is not a tautology;
3. if α and β are K-uniform, M ∈ δ⩽K(α), M ∼K M ′ and
M ′ ∈ min⩽K(JβK) then M ′ ∈ δ⩽K(β).

4. if α ̸∈ Cn(K) then δ⩽K(α) = JKK ∩ JαK

Observation 22. Every tracking choice function is a model
choice-function.

A tracking choice function is a special kind of choice
functions. The main difference is that model choice func-
tions can choose any counter-models of a formula α, while
tracking choice functions choose only among the most plau-
sible (w.r.t a track relation) counter-models of α. Condition
3 is related to the postulate of uniformity, and guarantees
that a tracking choice function is not syntax sensitive. Pre-
cisely, it states that if two modelsM andM ′ are respectively
counter-models of α and β and they are equally preferable,
then pickingM to contract α implies pickingM ′ to contract
β. Example 3 illustrates a tracking choice function and the
role of this condition. When it is clear from context, we drop
the subscript ⩽K and write δ.

Example 3. Let K = {p ∨ q, p ↔ q} be a knowledge base.
Observe that the formulae p and q are K-uniform. There
are only three possible results to contract either p or q that
satisfy relevance, which are

A1 = {p ∨ q}, A2 = {p↔ q} and A3 = ∅.

Recall that ⩽−
K denotes the least track of K. Assume we want

the solution A1 for contracting either the formulae p or q.
Thus, a track choice function δ⩽−

K
can pick only counter-

models that satisfy A1, when contracting such formulae. We
have only four models:

M1 = {p, q},M2 = {p},M3 = {q}, and M4 = ∅.

Fig. 2 illustrates the least track ⩽−
K on the base K. For

clarity, in Fig. 2, we depict within rectangles the formulae
from K that are satisfied by each model. The counter-models
of p are M3 and M4, and the only one satisfying A1 is M3.
So, we make δ⩽−

K
(p) = {M3}. As p and q are K-uniform,

their contraction must coincide. Ideally, we would make
δ⩽K(p) = δ⩽K(q). However, this is not possible, as M3

is not a counter-model of q. In fact, the only counter-models
of q are M2 and M4. Observe that M2 is the only counter-
model of q that satisfy A1. Therefore, the track choice func-
tion must choose M2, that is, δ⩽−

K
(q) = {M2}. Not surpris-

ingly, M2 and M3 are equally preferable modulo ⩽−
K, and

according to Condition 3, from the definition of track choice
function, M2 must be picked for contracting q, since M3

was chosen to contract p. This condition, as this example
illustrates, ensures uniformity.



KM1 :

{p ∨ q}
M2 :

{p ∨ q}
M3 :

{p↔ q}
M4 :

Figure 2: The least track on the base of Example 3.

Following the same strategy as for theories, a contraction
on a belief base is performed by keeping the formulae from
the current belief base satisfied by all the counter-models
selected by a tracking choice function. As every tracking
choice function is a choice function, they induce a contrac-
tion function, as per Definition 12.

Definition 23. The contraction function induced by a track-
ing choice function δ⩽K will be called a tracked contraction
function and denoted −̇δ⩽ .

Example 4 (continued from Example 2). Let ⩽−
K be the

least track (depicted at Fig. 1) of the belief base K =

{p, q, p ∨ q,¬q ∨ p}. Observe that min⩽−
K
(Jp ∧ qK) =

{M2,M3}. Then, we can choose any combination of M2

and M3 to contract p ∧ q. Let δ1, δ2 and δ3 be tracked
choice functions founded on ⩽−

K such that δ1(p ∧ q) =
{M2}, δ2(p ∧ q) = {M3} and δ3(p ∧ q) = {M2,M3}.
They induce the following tracked contraction operators:
K −̇δ1 p∧ q = {p, p∨ q,¬q ∨ p}, K −̇δ2 p∧ q = {q, p∨ q},
and K −̇δ3 p ∧ q = {p ∨ q}. As one can easily check, each
one of them is a rational contraction operator.

The tracked contraction functions correspond to the se-
mantic constructions for the basic rationality postulates.

Theorem 24. A contraction function is rational iff it is a
tracked contraction.

Equivalently, the tracked contraction operators semanti-
cally characterise the partial meet operators.

4.2 Supplementary Postulates for Bases
On theories, the usual way to capture the supplementary
postulates is to enforce the choice function to pick all the
best interpretations w.r.t an underlying preference relation.
Therefore, on bases, instead of simply picking some of the
most plausible models w.r.t a track, it would be rational to
pick all such most plausible models as well.

Observe that tracks form a special case of faithful pre-
orders (Definition 15). It would be natural then to simply
impose totality upon the tracks in the hope of capturing both
intersection and conjunction. Unfortunately, totality is not
strong enough to capture the supplementary postulates on
bases, as Example 5 illustrates.

Example 5. Let K = {p→ r, q → r, r → p, q ∨ p, r ∧ ¬q}
and the eight interpretations:

M1 = {p, q, r}, M2 = {p, q}, M3 = {p, r}, M4 = {p},
M5 = {q, r}, M6 = {q}, M7 = {r}, M8 = ∅.

The only model of K is M3. One can exhaustively check

Pres(M2 | K) ⊂ Pres(M4 | K)

Pres(M2 | K) ⊂ Pres(M6 | K) ⊂ Pres(M1 | K)

Pres(M5 | K) ⊂ Pres(M1 | K)

The preservation of all the other models are incomparable
w.r.t set inclusion. Thus, the following total relation is a
track.

M3 ⩽ M1 ⩽ {M5,M7} ⩽ M6 ⩽ {M4,M8} ⩽ M2,

where two interpretations M and M ′ within a set are
equally preferable, that is, M ⩽ M ′ ⩽ M . Note that
min⩽K(Jp ∧ rK) = {M5,M7}, whereas min⩽K(JrK) =
{M6}. Thus, using this total relation ⩽K, we obtain

K −̇δ⩽ p ∧ r = {p→ r, q → r}
K −̇δ⩽ r = {p→ r, r → p, q ∨ p}.

Note that r ̸∈ Cn(K −̇δ⩽ p ∧ r), whereas K −̇δ⩽ p ∧ r ̸⊆
K−̇δ⩽ r. Therefore, this contraction operation violates con-
junction.

The problem, however, is not with totality. Actually, the
class of all full rational contraction operators cannot be cap-
tured even with binary relations in general. To put this in
perspective, let us first relax the definition of contraction on
tracks to binary relations on models in general. We call such
contractions, model-relational contractions.
Definition 25. A model-relational choice function is a
choice function µ such that for some binary relation ⩽ on
models, µ(α) = min⩽(JαK).

For model-relational choice functions, we write µ⩽ to al-
lude to the underlying relation ⩽. Contraction functions
induced by model-relational choice functions are model-
relational contraction functions.

Example 6 illustrates a fully rational contraction that is
not model-relational.
Example 6. Consider the base K = {a, b, a↔ b}, and

K −̇µ α =


∅ if α ≡ a ∧ b
b if α ≡ b→ a or α ≡ a↔ b
a if α ≡ a→ b or α ≡ b

a↔ b if α ≡ a ∨ b or α ≡ a
K otherwise.

On the definition above, ≡ denotes the logical equivalence
relation, that is, φ ≡ ψ stands for Cn(φ) = Cn(ψ). The
contraction operation above is not model-relational. To see
this, assume for contradiction purposes that −̇µ is model-
relational. Thus, there is a relation ⩽ on models such that
µ(α) = min⩽(JαK). Note that there are only four models:

M1 = {a, b},M2 = {a},M3 = {b}, and M4 = ∅.
In the following, we show the counter models of the formulae
‘a′, ‘b′ and a↔ b as well as the countermodels chosen by µ:

a b a↔ b

JαK M3,M4 M2,M4 M2,M3

µ M4 M2 M3



Each of formula α ∈ {a, b, a ↔ b} has only two counter
models, while µ picks only one of each pair of models.
Therefore, as µ picks exactly the most preferable ones mod-
ulo ⩽, it follows that

M2 < M4 < M3 < M2 (1)

Contracting the conjunction a ∧ b results in the empty set
∅. However, each of its counter models M2,M3 and M4

satisfies some formula in K. To remove all formulae from
K, µ must pick at least two distinct counter models in
{M2,M3,M4}. Let Mi and Mj be two distinct chosen
counter models. Then, either (i) bothMi andMj are equally
preferable (that is,Mi ⩽Mj andMj ⩽Mi), or (ii) they are
incomparable, that is, Mi ̸⩽ Mj and Mj ̸⩽ Mi. In either
case, (1) is violated. Therefore, −̇µ cannot be constructed
upon a relation on models. Analogously, by exchanging each
counter model with a remainder in this proof, we also show
that −̇µ is not partial-meet relational either.
Observation 26. The contraction of Example 6 is fully ra-
tional.
Proposition 27. Some fully rational contraction functions
are neither model-relational nor partial-meet relational.

As, on bases, fully rational contractions cannot be char-
acterised via relations on models nor on remainders, the vi-
able alternative is to identify the conditions on the choice
functions that characterise the supplementary postulates. We
start by looking at the standard conditions that connect the
relational choice functions on theories with the supplemen-
tary postulates. We identify that such conditions, however,
also disconnect with the supplementary postulates on bases.
We investigate the cause of this schism, and we identify the
two conditions, C1 and C2, which characterise the supple-
mentary postulates in terms of choice functions.

For theories, the intersection and conjunction are charac-
terised respectively via the following conditions on selection
functions for remainders (Rott, 1993, pp.1436-1439).

S1 γ(K ⊥ α ∧ β) ⊆ γ(K ⊥ α) ∪ γ(K ⊥ β)

S2 if α ̸∈
⋂
γ(K ⊥ α∧β) then γ(K ⊥ α) ⊆ γ(K ⊥ α∧β)

We translate such conditions to model choice functions:
TS-1: µ(α ∧ β) ⊆ µ(α) ∪ µ(β)
TS-2 if µ(α ∧ β) ∩ JαK ̸= ∅ then µ(α) ⊆ µ(α ∧ β).

Ribeiro, Nayak, and Wassermann (2018) have used the
conditions TS-1 and TS-2 above to obtain a representa-
tion theorem with the supplementary postulates on theories.
Such connection, however, is lost for bases: neither S1 and
S2 connect with the supplementary postulates nor TS-1 and
TS-2. For instance, for the contraction function from Exam-
ple 6, there is no model-choice function that satisfies TS-1,
nor selection function that satisfies S1. From that exam-
ple, if µ induces −̇µ, then µ(a) = {M4}, µ(b) = {M2},
µ(a ↔ b) = {M3}, and there are two distinct models from
{M2,M3,M4} in µ(a ∧ b). Thus, either M4 ∈ µ(a ∧ b) or
M2 ∈ µ(a ∧ b). In either case, according to TS-1, either (i)
M4 ∈ µ(b)∪µ(a↔ b) or (ii)M2 ∈ µ(a)∪µ(a↔ b). How-
ever, neither case holds. Analogously, no selection function
for −̇ satisfies S1.

We have traced the connection between the supplemen-
tary postulates and model-choice functions to the notion of
redundancy.

Definition 28. A model M is K-redundant with a set X of
models, if Pres(X | K) ⊆ Pres(M | K).

Intuitively, a model M is redundant if it preserves at least
as much information as all the models in X . Consequently,
adding M to X does not incur loss of information, that is,
Pres(X | K) = Pres(X | K) ∩ Pres(M | K).

Originally, the conditions S1, S2, TS-1 and TS-2 were
proposed assuming some properties about the underlying
logic: both Rott (1993) and Ribeiro et al. (2018) require
the underlying logic to be closed under classical negation
and disjunction (boolean, for short). We have identified that,
under such an assumption, both TS-1 and TS-2 interweave
redundancies between the countermodels of a conjunction
with the countermodels of its parts. Precisely, we identified
the following behaviours

C1 M is K-redundant with δ(α)∪ δ(β), if M ∈ δ(α ∧ β).

C2 If δ(α ∧ β) ∩ JαK ̸= ∅, and M ∈ δ(α) then M is K-
redundant with δ(α ∧ β)

Specifically, the interpretations chosen to contract the
parts of a conjunction must be K-redundant with those cho-
sen to contract the conjunction (C1). Conversely, the in-
terpretations picked to contract a conjunction must be K-
redundant with those picked to contract its forgone parts
(C2). It is not hard to see that TS-1 and TS-2 satisfy re-
spectively C1 and C2. Tracked contraction functions whose
choice function satisfies C1 and C2 will be called full-
tracked contraction functions.

Definition 29. A full-tracked contraction function −̇δ⩽ is a
tracked contraction function whose tracking choice function
satisfies both C1 and C2.

It turns out that the supplementary postulates characterise
C1 and C2, while on theories such conditions coincide with
TS-1 and TS-2.

Theorem 30. A contraction function −̇ is fully rational iff it
is a full-tracked contraction function.

Our result shows that, unlike what has been believed,
the supplementary postulates do not present a relational be-
haviour nor the properties used to obtain the representation
theorem, but rather, some properties of the theories grant
such behaviours.

5 Tracking Smooth Kernel Contraction
In this section, we characterise semantically the class of
smooth kernel contraction operations. In terms of rational-
ity postulates, we are capturing core-retainment and relative
closure. While semantic operators satisfying relevance, as
shown in the previous section, select only countermodels of
the formula α being contracted; some operations satisfying
core-retainment do incorporate models of α. This exhibits
the permissive and drastic behaviour of smooth kernel con-
traction for bases. Example 7 illustrates this behaviour.



Example 7. Let K = {p, p→ q, p∨ q, r}, and suppose that
we want to contract q. There are only four possible solutions
satisfying both core-retainment and relative closure:

A1 = {p, p ∨ q, r} A2 = {p→ q, r}
A3 = {p ∨ q, r} A4 = {r}.

Solutions A1, A2 and A4 satisfy relevance, while A3 does
not satisfy relevance but core-retainment. The base A3 can
only be obtained selecting the models {p, r} and {q, r}. Ob-
serve that the latter model satisfies q. Therefore, in order to
capture core-retainment, it is necessary to relax the selec-
tion functions to choose both models and counter-models of
the formulae to be contacted.

As Example 7 illustrates, we need to allow selection func-
tions to pick not only counter-models but also models of
the formulae being contracted. However, even for core-
retainment, not all models can be chosen. For instance, al-
though M ′ = {q} is a model of ‘q’, M ′ violates all the
four rational solution for contracting q in Example 7, as M ′

violates r. On one hand, we need to relax the selection func-
tions to pick models of the formulae being contracted. On
the other hand, we need to constrain the selection function
so we do not choose unsuitable models. The tracks still
capture enough information to allow distinguishing between
such suitable and unsuitable models. We slightly modify the
definition of the tracking selection function to capture this
permissive behaviour:
Definition 31. A permissive selection function on a founded
track ⩽K is a map λ⩽K : L → P(I) such that

(1) λ⩽K(α) = ∅, if α is a tautology;

(2) λ⩽K(α) ∩ JαK ̸= ∅, if α is not a tautology;
(3) λ⩽K(α) = λ⩽K(β), if α and β are K-uniform;
(4) permissiveness: if M ∈ λ⩽K(α), then M is K-

redundant with min⩽K(JαK).
As tautologies cannot be contracted, Condition 1 enforces

that no model will be picked for tautologies. Condition 2 re-
laxes the selection mechanism to choose both models and
counter-models, while enforcing that at least one counter-
model will be chosen, so the contraction is successful. Con-
dition 3 is related to the uniformity postulate, and states that
K-uniform formulae present the same choice. Since mod-
els are allowed to be picked, the last condition, permissive-
ness, dictates how permissive the selection mechanism can
be. While contracting a formula α, instead of picking only
the best models w.r.t the track relation, permissiveness al-
lows any (counter)model M to be chosen, as long as M pre-
serves as much information as the best counter-models of α.
For clarity, we omit the subscript ⩽K and simply write λ.
Example 8. (continued from Example 7). We have eight
models in total:

M1 = {p, q, r} M2 = {q, r} M3 = {p, r} M4 = {r}
M5 = {p, q} M6 = {q} M7 = {p} M8 = ∅.

Fig. 3 illustrates the least track ⩽−
K for the knowledge base

K. For clarity, in Fig. 3, we depict within rectangles the
formulae from K that are satisfied by each model. Observe

KM1 :

{p→ q, p ∨ q, r}M2 :

{p→ q, r}
M4 :

{p→ q}
M8 :

{p, p ∨ q, p→ q}
M5 :

{p, p ∨ q, r}
M3 :

{p, p ∨ q}
M7 :

{p→ q, p ∨ q}
M6 :

Figure 3: The least track on the base of Example 8. The relation is
transitive, but to avoid visual pollution we omit edges obtained by
transitivity.

that the counter-models of q are {M3,M4,M7,M8}, and
min⩽−

K
(JqK) = {M3,M4} which are coloured in gray. A

selection function that picks only M3 or M4 yields respec-
tively the solutions A1 and A2, while picking both M3 and
M4 yields the solution A4. The solution A3, which satisfies
core-retainment but fails relevance, can only be obtained by
choosing the modelM2. Observe thatM2 preserves as much
as M3 and M4 combined, that is,

Pres(M3 | K) ∩ Pres(M4 | K) ⊆ Pres(M2 | K).

Therefore, according to permissiveness, a selection function
can choose any of the models in {M2,M3,M4}. Notice that
M2 is a model of ‘q’, while M3 and M4 are counter-models
of ‘q’. The models that preserve as much information as M3

and M4 combined are depicted within the dashed lines.

The contraction function is defined analogously to the
tracked contractions:

Definition 32. Let λ be a permissive selection function on
a track ⩽K. The permissive contraction founded on λ is
defined as K −̇λ α = {φ ∈ K | λ(α) ⊆ JφK}.

The permissive contraction operators are as rational as
smooth kernel contraction operators.

Theorem 33. A contraction function −̇ satisfies success,
inclusion, vacuity, uniformity, core-retainment and relative
closure iff −̇ is a permissive contraction.

Theorem 33 jointly with Theorem 10 implies that smooth
kernel contraction and permissive correspond to the same
class of operators: being the latter the semantic counterpart
of the former.

6 Conclusion and Future Works
While both syntactic and semantic operators are well known
for belief theory contraction (and other forms of belief
change), only syntactic operators are known to be rational on
belief bases. In this work, we have introduced new classes of



semantic contraction operators for belief bases: tracked con-
traction operators, full-tracked contraction operators, and
permissive tracked contraction operators. These operators
rely on plausibility relations between models, called tracks.

To contract a formula α, the (full) tracked contraction op-
erators select among the most plausible counter-models of
α w.r.t a track relation (the most reliable ones). The per-
missive tracked contraction relaxes the choice mechanisms,
allowing to pick models instead of only counter-models,
as long as some innocuous requirements are satisfied. We
have established three important representation theorems:
the first one connects tracked contraction operations with
relevance and the other basic rationality postulates, while the
second one connects the permissive tracked contraction op-
erators with core-retainment and the most basic rationality
postulates. Equivalently, the tracked contraction operations
semantically characterize the partial meet operators, while
the permissive tracked contraction operators characterise se-
mantically the smooth kernel contraction operators.

The third representation theorem concerns the supple-
mentary postulates, and it is obtained by strengthening the
tracked choice functions with two novel conditions C1 and
C2. This connection with the supplementary postulates is
important, because the study of such postulates in the liter-
ature has been restricted to belief change operators on theo-
ries. Particularly, the connection between contraction oper-
ators and the supplementary postulates has been established
via epistemic preferences relations upon which the agent
must choose exactly all the best models/formulae such as to-
tal faithful preorders, Grove’s spheres, Epistemic Entrench-
ment (Gärdenfors, 1988), Hierarchies (for safe contraction)
(Hansson, 1999), and relations on remainders. We name all
such strategy choice-relational. Although all such epistemic
preferences work well for theories, their connection with
such rationality postulates easily disappears for bases, as we
have shown in Section 4. This schism does not occur only
for relations on models, but also on the syntactical operators
such as relations on remainders. To this end, it is worth in-
vestigating, as future work, what properties do theories have
that makes the supplementary postulate characterise rela-
tional choices. Conversely, it is worth identifying precisely
which postulates characterise relational-choices and investi-
gate their rationality.

Our results also pave the way to understanding, from
the semantics perspective, other forms of belief change
on bases such as revision (both external revision and in-
ternal revision), belief update and belief erasure (Katsuno
and Mendelzon, 2003), and iterated revision (Darwiche
and Pearl, 1997). We also intend to extend our results to
more expressive logics by dispensing with compactness and
widening our results to Tarskian logics.
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