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A B S T R A C T

Attentional subsetting theory (Caplan, 2023) posits that only a small subset of item features are attended in
episodic recognition tasks. This explained a pivotal finding for the development of recognition models: the
near-null list-strength effect, where encoding strength influences recognition similarly in mixed-strength lists
and pure-strength lists. Most research uses spaced repetition to manipulate encoding strength. However, the
origin of the null list-strength effect was a more unusual manipulation of stimulus duration (1 s versus 2 s)
— and reported an inverted list-strength effect. We present an attentional subsetting theory of duration that
produces inversions — and explains why they are uncommon: Earlier-attended features dwell within a lower-
dimensional feature subspace, which participants can sometimes disregard during test trials of pure-strong
lists, giving strong-pure items an extra advantage. The model previously only solved for 𝑑′. We extend it to
generate realistic hit and false-alarm rates by deriving the criterion from attention to each probe. Supporting
the theory, two pre-registered experimental manipulations of stimulus-duration reproduced robust inverted
list-strength effects, suggesting this type of finding is unlikely due to sampling error. This account of stimulus-
duration, explaining inverted, as well as upright and null, list-strength effects, could be incorporated in most
models with vector representations
Introduction

At the core of research on episodic memory is the nature of our
working representations of items (such as words). Episodic old/new
recognition distills this question. Having studied a list of items, discrim-
inating which probe items were on the list (targets) versus those that
were not (lures) is in large part interrogating the similarity of working
representations to one another. High similarity between list items
and lures makes the task more challenging, whereas distinctiveness
makes the task easier. Because similarity drives memory behaviour in
more complex tasks, a firm understanding of episodic recognition has
implications far beyond recognition behaviour, itself.

The development of models of old/new episodic recognition has
been substantially driven by two highly replicated findings, the null
list-strength effect and the strength-based mirror effect. Both regard
what happens to recognition performance when encoding strength is
manipulated. Most of the research in this tradition have manipulated
strength through spaced repetitions (and sometimes levels of process-
ing; e.g., Ensor et al., 2021; Kiliç et al., 2017; Ratcliff et al., 1990).
Data from spaced repetition studies also drove attentional subsetting
theory (Caplan, 2023), the theory we expand upon here. However, as
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we elaborate below, the impetus for that line of research started with a
manipulation of stimulus duration – namely, ‘‘weak’’ items: 1 s versus
‘‘strong’’ items: 2 s of study time per word – which produced a list-
strength effect that differed from the standard findings. We saw this as
potentially offering an interesting boundary condition on theory, and
sought to develop a theory of stimulus duration that can explain why
duration might produce such different results. Our main focus in this
manuscript is therefore to directly apply attentional subsetting theory
to manipulations of stimulus duration during the study phase.

List-strength effects. ‘‘Strength’’ experiments start with an experimental
manipulation that is thought to modulate encoding strength, resulting
in better recognition of a strong-encoded item than a weak-encoded
item. The null list-strength effect refers to the finding that recognition
of a strong item is better than recognition of a weak item — but that
strength benefit is about the same size when items are mixed in the
same list versus segregated to different lists, namely, pure lists of only
strong items or only weak items. This was surprising because one would
expect the strong items to have an advantage in mixed lists, because
they should experience less competition from the half of the items that
were weak; conversely, weak items should suffer in mixed, compared
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to pure lists, due to additional competition from the strong items that
are present on mixed lists.

The finding was first noted by Ratcliff et al. (1990), who quantified
it with their ratio-of-ratios (RoR) measure,

RoR =
𝑑′(D mixed)∕𝑑′(S mixed)
𝑑′(D pure)∕𝑑′(S pure) , (1)

where we use ‘‘D’’ to denote the strong condition (e.g., long stimulus
duration) and ‘‘S’’ to denote the weak condition (e.g., short stimulus
duration) with reference to deep and shallow levels of processing (Craik
& Lockhart, 1972). This is meant to emphasize our contention, which
shall become clear shortly, that weaker strength conditions often result
primarily in processing (and encoding) of shallow features whereas
stronger conditions result in processing and encoding of additional
deeper features. The typical measure of memory, 𝑑′, is the difference
n hit rate minus false-alarm rate after 𝑧-transforming each. A person

with no memory would make hits and false-alarms at the same rate, so
𝑑′ = 0, whereas person who can discriminate targets from lures would
make hits at a greater rather than false alarms, making 𝑑′ positive.
Thus, a list-strength effect would produce RoR > 1.

The specific way in which RoR > 1 is predicted is model-dependent,
but one of the easiest ways to understand this is to consider the
assumption that recognition is inversely proportional to the amount
of competition from other list-items. Consider a fixed list length 𝐿,
and pure lists of D items or S items, with a strength effect such that
𝑑′(D pure) > 𝑑′(S pure). Each D item is subject to strength-based
ompetition from (𝐿 − 1) D items, whereas each S item is subject to
ompetition from (𝐿 − 1) S items. If competition is indeed dependent

on strength, then for pure lists, each D probe is subject to more
competition than each S probe. In a mixed list, each D item is subject
to competition from 𝐿∕2 S items and (𝐿∕2−1) D items and each S item
is subject to competition from 𝐿∕2 D items and (𝐿∕2 − 1) S items. The
total strength-based competition is thus greater in pure D lists than in
mixed lists, because (𝐿−1)𝐷 > (𝐿∕2)𝑆+(𝐿∕2−1)𝐷. The opposite holds
for S items: (𝐿− 1)𝑆 < (𝐿∕2)𝐷 + (𝐿∕2 − 1)𝑆. As long as false alarms do
not neutralize these effects, 𝑑′(D pure) < 𝑑′(D mixed) but 𝑑′(S pure) <
𝑑′(S mixed). Thus, Ratcliff and colleagues found it curious that their
experiments produced RoR values close to 1. These findings presented
challenges to existing models, both local-trace models, where a separate
image (usually a vector) is stored for each element of a list (e.g., a
word or a pair) and global-matching memory models, where memories
are summated within a single memory structure. This inspired the
development new models including a particular class of local-trace
models that incorporated differentiation (Shiffrin et al., 1990; Shiffrin
& Steyvers, 1997) and other models assuming strict orthogonality of
item representations, elaborated below.

Inverted list-strength effects. Ratcliff et al. (1990) noted that their first
experiment (1 s versus 2 s duration) in fact produced a significant
inverted1 list-strength effect, with RoR < 1. Ratcliff and colleagues
acknowledged this, but they were most struck by the absence of an
‘‘upright’’ list-strength effect. The inversion could be due an underlying
null list-strength effect, with sampling error accounting for the apparent
inversion. This was also understandable given that their second experi-
ment, using longer durations, produced a RoR slightly above 1, but still
smaller than one intuitively would have expected. Ratcliff et al. (1994)
in fact found another statistically significant inversion (RoR = 0.7)

1 Note that Ratcliff, Shiffrin and others have used the terms ‘‘positive’’
nd ‘‘negative’’ describing list-strength effects corresponding to 𝑅𝑜𝑅 > 1 and
𝑜𝑅 < 1, respectively. This terminology would directly describe log(𝑅𝑜𝑅). But

because some people use ‘‘negative’’ to describe non-significant statistical out-
comes, we prefer the terms ‘‘upright’’ and ‘‘inverted,’’ respectively. The latter
terminology is theoretically loaded, but by design. It reflects the perspective
Ratcliff et al. (1990) had going into their list-strength studies, where 𝑅𝑜𝑅 > 1
as expected.

2 
in a manipulation of duration (although very short durations: 50 ms
versus 200 ms) but this was one of nine RoRs across the experiments
they reported in that paper (see their Table 7). These RoRs could
indeed have reflected measurement variability around an underlying
RoR = 1. Also worth mentioning, Sahakyan (2019) found inverted
(but non-significant) list-strength effects with repeated presentations
and 1.25 s/item, although the method was unique in that it compared
massed (‘‘weak’’) and spaced (‘‘strong’’) repetition. Given the occasional
inverted list-strength effect produced by attentional subsetting theory
(Caplan, 2023), we wondered if their results were not simply due to
random noise but a legitimate inverted list-strength effect. In that case,
a formal account of inverted list-strength effects at short durations
might also tell us why the inverted list-strength effect might go away
when all durations are longer.

Strength-based mirror effects. The strength-based mirror effect refers to
the often replicated finding that while hits (calling a target item old)
increase in pure-strong versus pure-weak lists, this is accompanied by
a comparable decrease in false alarms (calling a lure item old), of
similar magnitude (Kim & Glanzer, 1993; Stretch & Wixted, 1998). A
mirror effect did not emerge from older models, and thus demanded
additional mechanisms, such as differentiation or a variable strength
threshold (response criterion), which we describe below. Attentional
subsetting theory dealt only with 𝑑′ (Caplan, 2023). Because of the
importance of the strength-based mirror effect to theory, we develop
the theory further to estimate hit rate and false-alarm rate. Attentional
subsetting is compatible with models that incorporate either existing
approach (differentiation or criterion adjusted based on knowledge
of the statistics of encoding strengths) to produce mirror effects. But
in extending the theory, we found a third approach afforded by the
subsetting concept. Although we present proof of principle and do not
support our approach over the other two, we suggest this approach be
considered as a possible way of side-stepping the ongoing debate about
the cause of strength-based mirror effects.

Attentional subsetting theory. Addressing only 𝑑′, Caplan (2023) pro-
posed a novel continuum account, capable of explaining near-null as
well as positive and inverted list-strength effects. The key assumptions
were (Fig. 1):

(1) Subsetting: (a) Only a small subset of the features of a stimulus are
attended during the study phase — and thus, encoded. (b) Just
like during the study phase of an experiment, at test, only a small
subset of the features of the probe stimulus are attended — and
thus, available to be compared to memory.

(2) Item-specificity of subsetting: Due to prior knowledge, each item has
its own idiosyncratic subset of features that tend to be attended
(although the feature-subset may be modulated by factors like
task set and proximal stimuli).

(3) Reiteration: When a stimulus is encountered a second time, it is
highly likely that the same or similar subset of features will be
attended at both times (assuming task set and contextual factors
have not changed too much). Consequently, for probe items, often
the same subset of features are attended at test (and compared to
memory).

For example, when viewing the word CHEESE, a participant might
think of a yellow wedge of Swiss cheese with holes in it, about the
size of one’s hand— a handful of features (assumption 1) that are item-
specific (assumption 2). When encountering the word CHEESE a second
time, such as a recognition probe, it is likely that the participant will
think again of the same features: yellow, wedge-shaped, containing
holes and hand-sized (assumption 3). Some support for assumptions 2
and 3, that features are relatively (albeit not perfectly) stable across
encounters comes from experiments that asked participants to overtly
generate features of stimuli. Wu and Barsalou (2009) found reliable

item-specific influences of task-set on generated features and Medin
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Fig. 1. Schematic depiction of how attentional subsetting could work in a model of stimulus duration, where the ‘‘shallow’’ condition is nested within the ‘‘deep’’ condition. Grey
unfilled circles denote features that are not attended (and thus not encoded). We assume that the shallow features are dense, not sparsely subsetted, whereas the deep features
are sparsely subsetted. The horizontal line separates the shallow feature-subspace (above) from the deep feature-subspace (below). (a) The full vector representation of five items
(i.e., lexicon or knowledge). (b) The attended subset of features when studied in the shallow condition. The example list here consists of items A through D, where the memory
is their sum, A+B+C+D. E is an example of a lure probe, also shallowly attended, as assumed for pure shallow lists. (c) The same as (b) but for the deep condition; in addition
to the shallow features attended during both study and test, additional sparsely subsetted features from the deep subspace. Sparseness would be more pronounced if the deep
subspace were greater; it is kept small here for illustration only.
and Shoben (1988) found reliable item-specific effects of task-context
information on judgements of prototypicality and similarity. If these
effects are reliable across participants, it is plausible that they would
also be fairly stable across trials within an experimental session.

Among other things, subsetting can be seen as a way to deal with
the paradox of similarity: typical experimental stimuli are really almost
entirely composed of common features (for words: the font, size, colour
of the text, etc.) so clearly participants are successful in disregarding
most of these. If one turns this around and assumes that only a small
number (a handful) of features are attended, and those are particular
to each item, one can obtain representations with far fewer common
features. When the subset is sparse (a small number of attended features
within a high-dimensional feature-space), there is almost no confusion
due to common features across items. This enabled even the very
simple matched filter model (Anderson, 1970), which is just a sum
of item vectors evaluated with the dot product as a measure of the
strength of match to memory, to produce a near-null list-strength effect
(Caplan, 2023). Given the simplicity of the matched filter model, this
also suggested that attentional subsetting could have similar effects in
many, if not all, models that assume a vector representation of items.

As a continuum account, the theory could also explain why other
experimental manipulations do not produce a null list-strength effect.
For example, the production effect (reading aloud or typing produces a
memory advantage over reading silently) exhibits a list-strength effect,
a bigger advantage for produced over non-produced words in mixed
lists than in pure lists (Bodner et al., 2016; MacLeod et al., 2010).
Attentional subsetting theory provides a simple account of production
effects (Caplan, 2023), as elaborated by Caplan and Guitard (2024).
Production strengthens items through additional processing of phono-
logical features, which are presumed not to be sparsely subsetted,
so those features produce substantial overlapping features across list
items, producing sizeable list-strength effects. As we describe shortly,
3 
the theory also produced inverted list-strength effects, suggesting they
should be expected under certain conditions.

Objectives

Attentional subsetting theory thus far provides an alternative the-
oretical account of list-strength effects as quantified by 𝑑′, including
predicting legitimate (not due to sampling error) inversions of the list-
strength effect. Here we test if such inversions of the list-strength effect
can be confirmed, given their scarceness in published research. We
present two experiments with this as their primary goal.

But first, it is important to go beyond 𝑑′. Caplan (2023) only derived
the model to solve for 𝑑′, because it can be derived based on the forms
of the expected distribution of matching strengths for old items and the
distribution for new items. One wonders whether the model can even
produce realistic hit and false-alarm rates. The next question is whether
the model could produce a strength-based mirror effect, given that the
mirror effect has been a contentious area of debate between groups
of modellers (differentiation accounts versus variable criterion), as we
elaborate below. The idea of subsetting could be incorporated in any
model with a vector representation of items. For this reason, the theory
could piggyback on a model like REM and produce mirror effects based
on differentiation, or it could piggyback on models that incorporate
processes for variable criterion and produce mirror effects for that
reason. But attentional subsetting makes possible a third account: We
add to attentional subsetting theory a mathematically simple way in
which the model can derive a criterion that is reasonably close to
optimal, based on immediate processing of the probe item, itself, during the
test trial— in other words, setting the criterion based on task-relevant
attentional processing of the current probe item. Different than current
variable-criterion accounts, this does not require the participant to
have any knowledge of the statistical properties of encoded items. In
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the remainder of the introduction, we describe attentional subsetting
theory as applied to stimulus duration, specifically. We then review list-
strength effect findings and theories, delineating how our own theory
differs. We describe theories of the strength-based mirror effect and
describe how our new extension of attentional subsetting theory can
produce a mirror effect but with a new mechanism. We then present a
replication attempt of Experiment 1 of Ratcliff et al. (1990), which in
fact produced both an inverted list-strength effect, where weak items
were studied for 1000 ms and strong items, for 2000 ms. Because that
procedure produced very small effects of duration (as in the original
study), we followed this with a slight modification of the experiment,
where weak items were presented for 500 ms. Our hope was to produce
a bigger difference in performance for the strong and weak condition
and reduce the number of participants who nominally exhibited the
reverse effect, which is problematic for interpreting the results. After
reporting some additional exploratory findings that speak to the the-
ory, we conclude with a discussion of implications for experimental
manipulations of strength, and for models of recognition memory.

A theory of stimulus-duration

Attentional subsetting theory can be adapted specifically to model
the special case of stimulus duration with the following assumptions,
illustrated in Fig. 1:

1. Feature types. We distinguish two classes of stimulus features
(see Craik & Tulving, 1975 for a related view about the im-
portance of such distinctions). First, shallow features, such as
the phonology or orthography of a word, are considered to
be relatively small in number, so these features will repeat a
lot across stimuli and introduce considerable similarity-based
confusion. Second, deeper features, such as those related to the
meaning of a word (semantic features) or related to imagery,
are considered to dwell within a very large feature space.2 The
attended subset of deeper features will tend to be sparse and
introduce very little similarity-based confusion across items.

2. Short duration. For such ‘‘weak’’ items, shallow features are
attended. These features are drawn from a low-dimensional
subspace, which cannot be sparsely subsetted.

3. Long duration. For such ‘‘strong’’ items, the shallow features are
also processed, but as study time continues to unfold, additional
deeper features will be processed. Because deeper features are
drawn from a high-dimensional subspace, they are sparsely sub-
setted. Thus, strong and weak items include shallow features that
introduce similarity-based confusion but strong items also have
features that largely avoid such confusion.

4. Disregarding. Finally, in some cases participants may be able to
disregard the shallow features during the test phase. Specifically,
when tested on a pure-strong list, shallow features have little
diagnosticity compared to the deeper features, if these are plen-
tiful in the strong condition. Thus, metacognitive knowledge
of the list composition may enable participants to disregard
shallow features in this condition (just as participants evidently
can disregard other non-diagnostic features such as the fact that
all stimuli are words, printed in the same font, etc., as noted
earlier). Importantly, this would not be feasible in mixed lists
where one does not know the strength-status of a probe.

The idea of distinguishing perceptual from semantic features has
many precedents (e.g., Burgess & Hitch, 1999; Seidenberg & McClel-
land, 1989), and Malmberg and Nelson (2003) and Criss and Malmberg

2 These distinctions, such as perceptual versus semantic, are only meant to
ake the point; the dimensionality of the feature space is more important to

he argument, as we elaborate in the General Discussion.
4 
(2008) proposed further that perceptual features tend to be processed
earlier than semantic features and features accessed through controlled
processing. The inversion of the list-strength effect (illustrated in Fig. 2)
was found by Caplan (2023) when disregarding shallow features during
tests of pure-strong lists, was feasible, as we elaborate below.

Theories of the list-strength effect in recognition

The null list-strength effect in recognition memory has been repli-
cated numerous times, with strength usually operationalized with a
manipulation of the number of spaced repetitions of an item, but
sometimes stimulus duration, as we consider here and occasionally
levels of processing (e.g., Ensor et al., 2020, 2021; Ratcliff et al., 1990).
Ratcliff et al. (1990) and Shiffrin et al. (1990) viewed the lack of a
sizeable positive list-strength effect (RoR>1) as face-value evidence that
tems do not compete with one another, which was especially puzzling
ue to the stable finding of reduced recognition as list length increases.

ifferentiation accounts of the null list-strength effect. This led Ratcliff
et al. (1990) and Shiffrin et al. (1990) to propose that each item is
stored in its own local memory trace and the match of a probe to mem-
ory would be computed for each trace individually, before aggregating
matching-evidence across traces. This motivated the development of
influential local-trace, differentiation-based models (e.g., McClelland
& Chappell, 1998; Shiffrin et al., 1990; Shiffrin & Steyvers, 1997).
A strong item will have more encoded features. A strong item will
provide more evidence of having been on the list but each strong-
item trace will also provide more evidence of mismatching a lure
probe. Mixed lists include more weak items than pure-strong lists, so
mixed lists will produce a higher false-alarm rate than pure-strong lists.
Similarly, compared to pure-weak lists, mixed lists include more strong
items, which will lead to a lower false-alarm rate. The net effect can
be a greater difference in 𝑑′ between pure lists than between strong
and weak items on mixed lists. The frequent near-null list-strength
effect arises in REM because of an approximate balance between an
underlying positive list-strength effect and this cause of an inverted
list-strength effect.

Other accounts. Murdock and Kahana (1993) produced near-null list-
strength effects by assuming competition accumulates over multiple
lists and thus saturates after the first few lists in an experimental ses-
sion. Still other modellers viewed the null list-strength effect as indicat-
ing that item representations are approximately orthogonal. If items are
orthogonal, they will not be confused with one another, so they would
be evaluated with little influence of other studied item. By design, some
models therefore constructed item representations deliberately to be
orthogonal to one another (e.g., Chappell & Humphreys, 1994; Dennis
& Humphreys, 2001), appealing to item–context associations as the
cause of list-length effects.

Caplan (2023) noted that null list-strength effects may not be as
general as suggested, including upright list-strength effects with the
production effect, mentioned above, and the observation that exper-
iments manipulating duration, spaced repetition or levels of process-
ing typically do show RoR values above 1, just not significantly so,
including the second experiment reported by Ratcliff et al. (1990).

Attentional subsetting account. Caplan (2023) showed how nearly null
list-strength effects could be produced without assuming local traces
and without assuming strict orthogonality of item representations.
Briefly, it was assumed that the participant attends only to a small
subset (a handful) of features of a given item (illustrated in Fig. 1),
but those will often be the same small subset of features attended
upon a repeat presentation as happens during the test phase. When
viewing the word Squirrel, the participant may think of a bushy tail
and the chattering voice. When Squirrel is repeated (for example, as
a recognition probe), by virtue of those features having come to mind

rapidly and with little effort, the participant is likely to think again of
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Fig. 2. The attentional subsetting account of list-strength effects. The plots show the output of an example model of a manipulation of stimulus duration such as Experiment 1 of
Ratcliff et al. (1990). Here, condition 𝑆=short duration and condition 𝐷 = long duration. List length, 𝐿 = 32. 𝑛𝑠 = 64 ‘‘superficial’’ features. 𝑛𝑆 = 16 features subsetted per item and
is fixed. 𝑛𝑑 = 512 ‘‘deep’’ features. 𝑛𝐷 , the proportion subsetted per long-duration item, varies parametrically. (a) 𝑑′ as a function of item type, list type and 𝑛𝐷 . (b) Ratio-of-ratios
(RoR) as a function of 𝑛𝐷 . The dashed line denote a null list-strength effect (RoR = 1) and pink denotes where the list-strength effect is inverted. Bear in mind that this figure
is designed to illustrate the sensitivity of list-strength effect to the number of deep features while holding constant the dimensionality of the deep feature subspace. Consequently,
in this graph, the left-hand values correspond to the sparse regime for and the right-hand values correspond to the dense regime, respectively. In contrast, the way we think
about strengthening by adding sparse features (such as with stimulus duration, the focus of this manuscript) versus adding dense features (such as with production, investigated
in Caplan & Guitard, 2024), we assume the dimensionality of the feature subspace is what primarily drives the difference.
a
s

the bushy tail and the chattering voice. As elaborated by Caplan (2023),
task demands and contextual factors could modulate those subsetted
features in interesting ways. The reiteration of the attentional subset
does not need to be perfect; the assumption is simply that, aside from
factors that modulate attention or feature-relevance, the subset will
tend to be similar during repeated exposures to an item.

There are usually a very large number of ‘‘deep’’ features such as
many features related to meaning and imagery. If one assumes only a
handful of features are attended on an item, when this item-specific
attentional subsetting approximates sparse representations, explaining
why items did not seem to compete with one another. Sparse vectors
(mostly zeros) produce very little overlap-based confusion between
themselves, so the strengths of other items within a list will exert very
little influence on judging a probe item. If the stronger condition adds
sparsely subsetted features, a RoR very close to 1 is obtained (Fig. 2,
as derived by Caplan, 2023).

In this view, orthogonality is not an invariant feature of item
representations (cf. Chappell & Humphreys, 1994) but can be approx-
imated by sparse subsetting. Because the sparse subset of one item
can consist of different features than the sparse subset of another
item, even items that are extremely similar to one another (same
values of a given feature) can be functionally dissimilar. This account
also suggests situations that might deviate from orthogonality. For
‘‘shallower’’ features like phonological or orthographic features, the
feature space is smaller and more compact; phonemes and letters recur
across words at a high rate. When features are drawn from a compact
feature space, attentional subsetting cannot be sparse (corresponding
to the regime towards the right of Fig. 2) and list-strength effects
become pronounced, as when memory is improved by reading aloud
(the production effect, MacLeod et al., 2010 and see Caplan & Guitard,
2024). In this non-sparse regime, two items with similar features will
most likely have some of those similar features attended on both items.

Attentional subsetting account of inverted list-strength effects. Finally, the
list-strength effect inverts is as follows. Start with a regime in which the
weak condition (short duration) has only enough time to attend and en-
code shallow features, whereas the strong condition (long duration) has
additional time to process and encode deep, sparsely subsetted features.
Pure-weak lists contain items that only have shallow features, which
introduce overlap-based confusion. In mixed lists, shallow features
cannot be disregarded (because some probes might be weak), so the
 a

5 
weak items are susceptible to interference due to the shallow features
from the strong items as well as the weak items. Strong items fare
better than weak items in mixed lists, because they benefit from having
additional, sparsely subsetted features that are more distinctive than
the shallow features. But in pure-strong lists, if shallow features can
be safely disregarded, judgements will be based on fewer features, but
those features will be the more diagnostic, sparse features rather than
the more confusing, densely subsetted shallow features. This comes at a
cost of reduced functional vector length. So if the strong condition is not
strong enough, in that strong items do not have very many additional
sparsely subsetted features attended, there may no longer be a net
benefit for pure-strong items.

Theories of the strength-based mirror effect

Glanzer and Adams (1985) reported what they termed the Mirror
Effect, where items that are better recognized as belonging to a studied
list are also better ruled out when they appear as lures. This pattern was
found for a large number of manipulations of stimulus characteristics
(most notably, word frequency), and was robust across various exper-
imental conditions (Glanzer & Adams, 1985, 1990). They posed this
as a challenge to existing models of item recognition. In most models,
studying items would tend to increase their strengths, right-shifting
their distribution (and often increasing their variance). However, this
would have no effect on the distribution of matching strengths to lure
items that were not encoded in memory3; the ‘‘new’’ distribution would
remain where it was. As the hit rate increases, there is no a priori reason
to expect any effect on lure items.

However, mirror effects produced by comparing two different stim-
ulus pools are hard to interpret, as one can never run out of hypothet-
ical properties that might not be equated between the stimuli. When
one takes concerted efforts to control such characteristics, the mirror
effect can go away; when disentangled, Neath et al. (2021) found that
more pure manipulations of a stimulus property largely affected either
hit rate or false alarm rate (associative recognition produced similar

3 In models with vector representations of items, this is the case if vectors
re mean-centred, which is typically done. Otherwise, in some models, the
trength of the lure distribution can even increase, producing the opposite of
mirror effect.
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dissociations; MacMillan et al., 2022). Consistent with this, Cortese
et al. (2010) and Cortese et al. (2017) failed to find mirror effects
at the level of individual words, in item analyses we shall follow up.
Stimulus-based mirror effects might be explained by dual-factor (or
more) accounts rather than a single factor simultaneously increasing
hit rate while decreasing false alarms.

The Strength-Based Mirror Effect (Criss, 2006, 2010; Hockley &
Niewiadomski, 2007; Kim & Glanzer, 1993; Starns et al., 2012; Stretch
& Wixted, 1998) manipulates encoding conditions between sets of
stimuli drawn from the same overall stimulus pool, avoiding all possible
stimulus-characteristic confounds. As already noted, strength is most
commonly manipulated with spaced repetitions (but also stimulus du-
ration and levels of processing). Because a manipulation of strength is
at least unitary as an experimental factor (unlike stimulus-based mirror
effects), the strength-based mirror effect does remain a challenge to

odels of the form proposed by Glanzer and Adams (1985).4

ifferentiation accounts of the strength-based mirror effect. In differen-
iation models, strengthening a particular local memory trace both
ncreases the subsequent match of a target probe to the trace and in-
reases the degree to which lure probes would mismatch the trace (e.g.,
riss, 2006, 2009, 2010; McClelland & Chappell, 1998; Shiffrin et al.,
990; Shiffrin & Steyvers, 1997). For example, Retrieving Effectively
rom Memory (REM; Shiffrin & Steyvers, 1997) not only often produces
null list-strength effect, it can also produce a mirror effect. Different

han earlier local-trace models (such as Hintzman, 1988), REM uses the
umber of features that match between the probe and each encoded
race, but also the number of mismatching features to estimate the
ikelihood that the item was studied. If a strength manipulation results
n more features (accurately) encoded into the trace, the strengthened
race will lead to higher (log) likelihood that the item was studied, but
lso higher likelihood that a lure item was not studied. The (correct)
ismatches increase as the matches increase, comprising a mirror

ffect. Elegantly, a mirror effect emerges from the core calculations of
he model, without needing further assumptions.

riterion-shift accounts of the strength-based mirror effect. The major
lternative theoretical account of the strength-based mirror effect is
he one proposed by Glanzer and Adams (1985) and their descendants,
ncluding Cary and Reder (2003) and Stretch and Wixted (1998). They
roposed that a model could compute a log-likelihood of an item with
given strength having been produced by the strong versus weak

xpected strength distribution (Hirshman, 1995, proposed the idea of
sing the range of expected strengths to derive a criterion without
ny log-likelihood calculation). Having studied a pure-strong list, the
odel could thus safely increase the criterion with little cost to the
it rate, since the strong items will easily exceed a higher strength
hreshold, but with the advantage that lure items with chance strengths
hat are somewhat higher would be rejected, reducing the number of

4 There are accounts of mirror effects based on signal-detection theory
DeCarlo, 2007, 2010), which may be instructive here. Such models focus
n characterizing the forms of the distributions of strength values. They
o not explain where those strengths come from, but for example, DeCarlo
2007) proposes participants encode items in several discrete ways, each of
hich is associated with a mean encoding strength plus some variance (where

he variance is equivalent across these distributions). This kind of mixture
odel can produce net strength distributions that resemble unequal-variance
odels with just two strength distributions (one for unstudied items and one

or studied items). Our model does not directly include encoding-strength
ariability, but the number of encoded features has consequences similar
ncoding strength. As can be seen in Eqs. (A.3) and (A.4) and shown by Caplan
2023), the variance of target strengths is greater than that for lure strengths
although the variance come closer as the list length increases). It would be
nteresting to explore a mixture model where the 𝑛𝐷 = 𝑛𝑆 but attentional
ubsetting has a higher probability of (all-or-none) succeeding both at study
nd test in the 𝐷 than the 𝑆 condition, or some more complex mixture.
 w

6 
false alarms. In other words, if the expected strength distributions are
known, the criterion could be optimally adjusted. One asset of the
criterion-shift account is that it can be attached to any model that
produces strength distributions, with or without local traces. Some
support for such adjustments in criterion have been found (e.g., Starns
et al., 2012). The main weak point of such models is that they arguably
demand too much knowledge on the part of the participant about the
expected strength distributions (but see Dubé et al., 2019; Tong & Dubé,
2022a, 2022b; Tong et al., 2019 for evidence in defence of people
having this kind of knowledge). Koop et al. (2019) showed that the
mirror effect is found under conditions in which they argued criterion-
shifts are not plausible, after either very few test trials or in conditions
in which the need to change criterion would not be blatantly obvious
to participants.

In the next section, we extend attentional subsetting theory to
produce separate hit and false-alarm rates. In doing so, we propose
a principle by which participants could derive a good criterion based
purely on immediate processing of the current probe item, influenced
only by meta-knowledge of the task. We check if the model can produce
realistic values of hit and false-alarm rates, as well as being able to
produce mirror effects.

Attentional subsetting theory

The basic idea of feature-subsetting has been around for a while.
The original log-likelihood/criterion-based account dates to Glanzer
and Adams (1985) who proposed two conditions might differ in the
number of features stored, and the number of features extracted at
test. This meta-knowledge can be used to evaluate the match and
could produce a mirror effect, computing likelihood ratios in their
attention/likelihood theory (Glanzer & Adams, 1990). Similar to the
later Glanzer et al. (1993) model, they assumed that a subset of features
are ‘‘marked’’ and those features also have values. The main differences
are that in our account, attentional subsets are in many circumstances
quite sparse, and respectively, sparseness is practical only because we
also assume the same subset will tend to reiterate itself similarly at test
(in contrast to Glanzer et al., 1993 who assumed a random re-sampling
upon each exposure). Also, Glanzer et al. (1993) assumed the set of
marked features is evaluated, rather than their values; here we assume
the values, themselves, are compared, and the markedness (which we
call attentional subset) gates which values propagate through the com-
parison process. Introducing some notation for attentional subsetting,
let 𝑛𝐶,𝑖 denote the small number of attended features of a given item,
where 𝐶 can denote a particular experimental condition and 𝑖 denotes
a given item (Caplan, 2023; Caplan et al., 2022). When implemented
in the matched filter model (Anderson, 1970),5 the memory is a simple
sum over the 𝐿 list items,6

𝐦 =
𝐿
∑

𝑖=1
𝐰𝐶,𝑖 ⊗ 𝐟𝑖, (2)

5 It is important to note our choice to formulate the idea within the
atched-filter model is chiefly for clarity of exposition and to build our

ntuition. We are not suggesting this is a complete model of recognition. The
atched-filter model stores a list of items as a sum of the corresponding

tem vectors, and probe items are evaluated by computing dot products of
he probe vector with the memory vector. The model has serious limitations,
ut its simplicity allows us to see how attentional subsetting may function
n a model. Because of its simplicity, it is also easy to see how the same
rinciples could be embedded within well developed memory models that have
een able to address problems with the matched-filter model. We are in no
ay endorsing the matched-filter model as a ‘‘best’’ or ‘‘complete’’ model of

ecognition memory, although it may be instructive to note that such a simple
odel is sufficient to produce the phenomena of interest here.
6 We use the term ‘‘item’’ loosely, but it always refers to a putative vector in
knowledge ‘‘lexicon’’ corresponding to one discrete stimulus such as a single
ord.
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where (column) vectors are denoted in boldface, 𝑖 indexes distinct
items, items are 𝑛-dimensional, with independent (aside from when
we consider similarity across items), identically distributed values
drawn from 𝑁(0, 1∕

√

𝑛) (approximately, but not strictly, normalized
nd mean-centred), and ⊗ denotes elementwise multiplication. As

discussed in Caplan (2023), 𝑛 could be arbitrarily large, we assume that
the extremely large number of task-irrelevant features are disregarded,
so 𝑛 can be thought of as the full potential functional feature-space
in a given task-setting. The 𝐰𝐶,𝑖 vectors are attentional masks, with
value 1 for attended features and 0 otherwise. Thus, selective attention
zeros-out any unattended features and lets the attended features pass
through. Importantly, 𝐰 are indexed by both item and condition,
expressing the idea that the specific subset of features attended will
tend to vary across items, 𝑖, but be relatively stable across presentations
of a given item, although they can be substantially modulated by
task-conditions, 𝐶.

Since this is meant to correspond closely to actual attention, it is
plausible that the participant has a good estimate of 𝑛𝐶,𝑖 for a given
item at the time the stimulus is presented as a probe (perhaps even
as a consciously accessible count of numbers of features processed). At
first we assume for a target item, 𝑖, the attentional subset applied at
test is the same as that applied at study. But in general, the subsets can
differ, and we will introduce one particular such deviation shortly. For
now, the judgement is based on the matching strength of a probe item,
𝑥, to the stored memory 𝐦, their dot product

𝑠𝑥 = (𝐰𝐶,𝑥 ⊗ 𝐟𝑥) ⋅𝐦, (3)

If 𝐟𝑥 were stored (attentionally masked) in 𝐦, then 𝑠𝑥 will tend to be
greater than if the item were not stored. Thus, the response is based on
whether or not 𝑠𝑥 exceeds a criterion, 𝜃:
{

‘‘Old’’ 𝑠𝑥 > 𝜃𝐶,𝑖
‘‘New’’ 𝑠𝑥 ≤ 𝜃𝐶,𝑖

(4)

As with other models, the value of 𝜃𝐶,𝑖 is important. If 𝜃𝐶,𝑖 is extremely
low, the model will call everything ‘‘Old,’’ producing lots of hits but
also lots of false alarms. If 𝜃 is too high, the model will call every-
thing ‘‘New.’’ If the model were to have access to the full expected
distributions of strengths for target and lure items, it could choose
an optimal value for 𝜃𝐶,𝑖. But note that the mean matching strength
is directly related to this attentional subset size, 𝜇target = 𝑛𝐶,𝑖∕𝑛. For
non-presented items, 𝜇lure=0. Stretch and Wixted (1998) (for example)
defined ‘‘optimal’’ criterion placement, as ‘‘the point that maximizes
the proportion of correct responses,’’ which for symmetric reward
conditions is halfway between the two means, thus 𝜃𝐶,𝑖 = .5𝑛𝐶,𝑖∕𝑛.

Let us pause to emphasize that we assume the model (participant)
has direct access to the approximate number of features it has just
processed of a given probe item. The unbiased threshold is then simply
what one expects if half those attended features match memory. The
participant does not need to remember anything else about the list, nor
to keep track of criteria used during other trials. All that is relevant is
current processing of the probe item. The number of features attended
will in turn be influenced by the participant’s meta-knowledge of the
task, so attention will be driven by characteristics of the list, but at the
level of the list as a whole, not varying across items. On the other hand,
the threshold derived for each item will be specific to the item, itself,
since we have allowed for 𝑛𝐶,𝑖 to differ as a function of both condition,

, and item, 𝑖. The threshold will change from one item to the next,
ut the meta-cognitive rule dictating that threshold is assumed to be
elatively fixed over the course of a set of test trials.

Whereas it may seem implausible that participants can accurately
nough estimate the full expected strength distributions (but there is
upport for the idea that participants have knowledge of the statistical
roperties of encoded stimuli; Dubé et al., 2019; Tong & Dubé, 2022a,
022b; Tong et al., 2019), it is plausible that the participant has access
o the approximate number of features attended on the probe item

hey are currently processing. However, this assumption remains to be e

7 
tested in future research. Without knowing anything about any other
probe items (nor even, at this stage, anything about their memory for
the list, itself), the participant could plausibly select a criterion that
is close to optimal. This heuristic only makes sense once we assume
feature-subsetting. Without subsetting, there is no meaning to the idea
of a particular number of features processed. This heuristic results in
a criterion-shift, but unlike the prior criterion-shift models, the model
needs absolutely no information about either the expected target or lure
strength distributions. If the number of attended features varies across
items (𝑛𝐶 = 𝑛𝐶,𝑖), then so will the threshold, 𝜃 = 𝜃𝐶,𝑖, but this is due to
immediate processing (attentional subsetting) of the current stimulus,
not due to cumulative knowledge of the studied list or even of the probe
set (Starns et al., 2010), consistent with a mirror effect emerging even
on the first test trial (Koop et al., 2019).

Next we derive the hit and false alarm rates with a main focus
on the model of stimulus duration, where the strong items include
weak-item features plus additional features subsetted from a much
larger-dimensional feature space.

Extension of attentional subsetting theory to hit rate and false
alarm rate

Previous authors have proposed participants can make use of char-
acteristics of the probe item to adjust their response criterion, for
example, when considering high- versus low-frequency words (e.g.,
Gillund & Shiffrin, 1984; Stretch & Wixted, 1998). Here we make this
process quite specific to the item. For a given item, we assume the
participant is aware of how many features they readily extract from
the item. For now, let us drop the index 𝑖 and assume that this number
is 𝑛𝐶 and is constant for a set of stimuli. But note first, that we retain
the index, 𝐶, because the number of attended features could vary as a
function of condition, and second, the 𝑛𝐶 specific features, themselves,
will still tend to be different for each item. Moreover, we start with the
simplest assumption that participants will tend to process items at test
similarly to how they did so during study, so the same 𝑛𝐶 is applied
at test as at study for the case of pure lists (but we will amend this
for mixed lists and in the nested model). For all models considered by
Caplan (2023), 𝜇target = 𝑛𝐶∕𝑛 and 𝜇lure = 0. The criterion is simply

𝜃𝐶 = 1
2
𝑛𝐶
𝑛
. (5)

Next we let 𝐶 ∈ {𝑆,𝐷}, where condition 𝑆 represents something
like a shallow level of processing and 𝐷 represents something like a
deep level of processing or short versus long stimulus durations.7 In
typical strength-based mirror effect experiments, hits and false alarms
are compared between pure lists, so 𝜃𝑆∕𝜃𝐷 = 𝑛𝑆∕𝑛𝐷. In other words,
the criterion will be set higher when it can be — when the expected
distribution of matching strengths is greater. This acts a bit against
the increased hit rate for strong (𝐷) versus weak (𝑆) items, but not
entirely. And in exchange, it reduces the false-alarm rate because the
higher criterion will not be as often duped by high-strength lure items.

Given 𝜇target, 𝜇lure, 𝜎target and 𝜎lure, the hit rate is the proportion of
trengths from the target distribution that will fall above the threshold,
. The false-alarm rate is the same for the lure distribution. The use of
′ implies a normal distribution, so we use the error function, erf(), to
ntegrate strength from the threshold to infinity. Thus:

𝑃 (hit) = ∫

∞

𝜃𝐶
𝑁(𝜇target, 𝜎target) = 1 −

⎛

⎜

⎜

⎝

0.5 + 0.5 erf
⎛

⎜

⎜

⎝

𝜃𝐶 − 𝜇target
√

2𝜎target

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

(6)

7 Hintzman (1994) proposed that the participant tests the probe item for
earnability or memorability and then it essentially rescales itself; that mini-
est gives the participant the information needed to customize their threshold.

e are proposing something similar but arguably asking even less of the
articipant because we are not suggesting participants do any learning test.
ather, they simply use meta-knowledge of the information they have just

xtracted about the stimulus.
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𝑃 (false alarm) = ∫

∞

𝜃𝐶
𝑁(𝜇lure, 𝜎lure) = 1 −

(

0.5 + 0.5 erf

(

𝜃𝐶 − 𝜇lure
√

2𝜎lure

))

(7)

where erf(𝑥) = 2
√

𝜋 ∫

𝑥

0
𝑒−𝑡2𝑑𝑡.

Our primary focus in this manuscript is the nested model, applied
o stimulus-duration, where the 𝐷 condition includes the 𝑆 condition
eature subspace, and the latter is more compact than the additional
eep subspace. However, in the Appendix we consider two different
odel variants considered by Caplan (2023), where the two conditions

re assumed to dwell within the same feature subspace and both are
parse. This deepens our mathematical intuition, and those models may
escribe other experimental manipulations.

he full model of strength as duration

Caplan (2023) proposed that when an item is studied, the earliest
eatures attended occupy a low-dimensional subspace, such as ortho-
raphic or phonological features. This builds on a suggestion by Tulving
1968) and Lewis (1979) that the order of retrieval of features from
uperficial to semantic (and see Criss & Malmberg, 2008; Malmberg

Nelson, 2003), although they did not suggest any differences in
eature-space dimensionality. With more processing time (and perhaps
lso with repeated presentations of an item), the extracted features are
parsely subsetted from a much higher-dimensional subspace, such as
emantic or imagery-based features.8 Thus, in strength manipulations,
t may often be the case that the 𝑆 condition is in the non-sparse regime
hereas the 𝐷 condition includes both those 𝑆 features plus additional

eatures that are in the sparse regime. Consistent with the former
ssumption, Yonelinas et al. (1992) observed a large list-strength effect
hen duration was manipulated between 50 ms and 200 ms for weak
nd strong conditions, respectively; in our framework, this corresponds
o a non-sparse regime. Even when RoR = 1, the so-called ‘‘null list-
trength effect’’ may be a misnomer. The account proposed by Caplan
2023) implies that there in fact is an influence of other studied
tems, which can be seen when list-strength is manipulated around the
trength levels of what is usually called the ‘‘weak’’ condition — due to
on-sparse subsetting (as reported by Yonelinas et al., 1992). The null
ffect of typical list-strength manipulations is because ‘‘strong’’ items
dd sparsely subsetted additional features, and thus do not introduce
ny more non-negligible noise due to feature overlap with other items.

This arrangement can also produce a mirror effect. The mirror effect
roduced by the full-probe model in the Appendix (although arguably
ognitively implausible) is lost with masked probes because the terms
ue to feature overlap became negligibly small (𝑂(𝑛2𝐶∕𝑛

3) rather than
(𝑛𝐶∕𝑛2), where we use ‘‘big-O’’ notation to summarize terms of a
articular order or higher, emphasizing the term that dominates in
he limit). This is because with sparse subsetting, the chance of over-
ap of attended feature-subsets is quite small. But if the 𝑛𝑆 subspace
ere low-dimensional, and not sparsely subsetted, the 𝑂(𝑛𝐶 ) terms are

eintroduced. In this model, the false-alarm rate is reduced when the
hreshold is increased proportionally to 𝑛𝐶 because similarity amongst
eakly encoded items is substantial.

Disregarding. In a pure list, we can consider two cases, illus-
rated in Fig. 3a and b, respectively: First, we could assume the par-
icipant intuits that it is better to disregard the 𝑆 features, since they
roduce similarity-based confusion between items, including between
argets and lures, thus 𝜃 = (1∕2)𝑛𝐷∕𝑛 and 𝜃 = (1∕2)𝑛𝑆∕𝑛 for conditions

and 𝑆, respectively. Alternatively, the participant might be unable to
gnore those early-attended features, in which case 𝜃 = (1∕2)(𝑛𝑆 + 𝑛𝐷)
or both conditions. Note that for simplicity, we are assuming the 𝑆 and

feature spaces are strictly segregated, but if they are not, additional

8 This echoes Ratcliff and McKoon (1989) who showed that associative
nformation is retrieved later than item or feature-matching information.
8 
cross-terms would be added. Unlike the fully sparse regime consid-
ered in the masked probe model (Appendix), the lure distribution of
strengths does not have a negligible variance, so reducing the threshold
will substantially increase the false-alarm rate in condition 𝑆 versus 𝐷.

In the first model version, where participants can successfully ignore
the 𝑆 features when judging a pure-𝐷 list, each cross-term contributes
𝑉𝑥𝑦 = (𝛺𝐶𝐶∕𝑛𝐶 )∕𝑛2 (defined in the Appendix) but now the overlaps
will differ. Overlap arises from choosing 𝑛𝐶 features out of 𝑛𝑐 , where
the lowercase index refers to the size of the feature subspace specific to
condition 𝐶, if

(𝑛
𝑘

)

denotes 𝑛 choose 𝑘: 𝛺𝐶𝐶 =
(𝑛𝑐
𝑛𝐶

)2∕𝑛𝑐 , which will be
large for small 𝑛𝑐 and small for large 𝑛𝑐 . For the second model version,
where participants cannot selectively ignore the 𝑆 features, the pure-𝑆
lists are unchanged but for the pure-𝐷 lists, 𝑉𝑥𝑦 is the sum of 𝑉𝑥𝑦 for 𝑆
and 𝐷 conditions in the first version.

When the model can disregard the 𝑆 features during pure-𝐷 lists,
the hit rate increases but the false-alarm rate is constant as the ‘‘D’’
condition increases in strength, increasing 𝑛𝐷 (Fig. 3a). When 𝑛𝐷 is
small, the hit rate for the so-called ‘‘deep’’ condition suffers, which
makes sense, because when 𝑛𝐷 < 𝑛𝑆 , the ‘‘deep’’ items have fewer
features encoded, and the advantage due to the sparseness of the deep
feature space is insufficient to compensate for that. But the sparseness
increasingly benefits the ‘‘D’’ hit rate as more features are attended
and soon shows an advantage over the ‘‘S’’ condition. Meanwhile, the
false-alarm rate is not just invariant to 𝑛𝐷, it is quite small due to the
sparseness. Assuming a handful of ‘‘deep’’ features are attended in the
strong condition (to the right of 𝑛𝐷 = 5 for this parameter set), the 𝐷
condition produces a mirror effect compared to the 𝑆 condition.

The idea that a participant might be 100% successful in disregarding
superficial features may be unrealistic — and likewise for the assump-
tion that a participant might be absolutely unable to disregard any
superficial features. A more realistic model might be in between the
two models in Fig. 3: some superficial features might be successfully
disregarded and some other portion not (or if the 𝑆 and 𝐷 feature
spaces are not strictly segregated, the overlapping features may not be
disregarded).

Discussion of the model

The heuristic for deriving the criterion item-by-item can produce
strength-based mirror effects, without differentiation and without a
good estimate of the expected distribution of null strengths. This stands
as proof of principle, although we do not present any evidence ruling
out the other accounts. Two arrangements produced a fairly symmet-
ric mirror effect could be explained by immediate processing of the
probe alone. The first is the full-probe model (Appendix). This model
produced a substantial list-strength effect (Caplan, 2023), inconsistent
with many list-strength findings, so it may provide insight into mirror
effects in situations in which list-strength effects are sizeable (e.g., the
production effect, Bodner et al., 2016; Hopkins & Edwards, 1972;
MacLeod et al., 2010 and short presentation durations, Yonelinas et al.,
1992). We chose the (1∕2)𝜇target∕𝑛 value because it marks the midpoint
between the two distribution means and is an optimal placement of the
threshold. It is also robust; a threshold too high will produce 0% false
alarms but 0% hits and a threshold too low will produce 100% hits
but 100% false alarms. A participant who has a vastly miscalibrated
threshold would thus not even be able to express the information they
do have in memory. One half the expected target distribution keeps
the participant close to the comfortable middle, reducing the risk of
a drastically miscalibrated threshold. That said, it is clear that the
expressions in Eqs. (A.5)–(A.6) would still produce a mirror effect if
the 1/2 were replaced with some other coefficient, although the further
one deviated from 1/2, the more asymmetric the mirror effect would
become. The threshold does not need to be perfectly tuned to produce
a mirror effect, speaking to its plausibility.

The second account works with a model appropriate for stimulus-
duration that was found to produce small list-strength effects and
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Fig. 3. The nested model of stimulus duration with the ability to selectively ignore 𝑆 features when tested on a pure 𝐷 list (a) or not (b). Keeping with Caplan (2023) and
sticking close to the experimental design of Ratcliff et al. (1990), Experiment 1, list length is set to 32. 𝑛𝑠 = 64 ‘‘superficial’’ features. 𝑛𝑆 = 16 features subsetted per item. The
dashed line plots the hit rate and false alarm rate for pure-𝑆 lists, which was not varied. 𝑛𝑑 was fixed at 512. The solid lines plot hit and false-alarm rate for pure-𝐷 lists as a
function of the number of (additional) 𝐷 features encoded per item.
even inverted list-strength effects (Caplan, 2023). The important as-
sumption was that the weak condition drew attention to features that
occupy a low-dimensional subspace and are thus not sparse, leading
to confusion due to feature-overlap. In both cases, 𝑛𝐶 need not be
estimated accurately. In fact, we suggest it is plausible that the par-
ticipant processes the probe in much the same way as during the
study phase (particularly for short study–test intervals). It then seems
plausible that 𝑛𝐶 should be immediately accessible. A more realistic
model would include variability in 𝑛𝐶 . This would produce largely the
same effects, including a mirror effect, with a cost of adding variability
across probes (easily confirmed with a simulation, replacing 𝑛𝐶 with
𝑛𝐶,𝑖 ∼ 𝑁(𝑛𝐶 , 𝜎𝐶 )). The implication would be that probe stimuli that
draw attention to a larger number of features (Fig. 7) would be subject
to a higher evidence criterion as probes (higher 𝜃𝐶,𝑖), leading to fewer
hits and fewer false alarms. However, this might be offset by factors
that separately influence false alarms, such as the overlap of the shallow
features (or even some deep features) with other studied items.

However, mirror effects are typically asymmetric, often with far less
effect on false alarms than on hits. It is noteworthy that the other two
model variants we explored in fact produce this type of result, where
hit rate is influenced by strength but false-alarms not. Importantly,
one of those conditions was found for the model of duration when
features producing confusion due to feature-overlap can be disregarded
in pure-strong but not in pure-weak lists, coinciding with conditions
that produce an inverted list-strength effect.

Our theoretical account of stimulus duration can produce null list-
strength effects and substantial mirror effects. But it specifically pre-
dicts true (not sampling error) inverted list-strength effects when shal-
low features can be at least partially disregarded in tests of pure
long-duration lists. Next we report two new experiments aimed to test
this result.

Experiment 1: A replication attempt of an inverted list-strength
effect and asymmetric mirror effect

We conducted a pre-registered replication attempt of experiment 1
of Ratcliff et al. (1990), which produced a significantly inverted list-
strength effect along with an asymmetric mirror effect (a large effect
on hit rate but a small effect on false-alarm rate).

Rationale and goals. The theory can explain how the list-strength effect
can sometimes invert, as in the first experiment of Ratcliff et al. (1990).
This novel prediction distinguishes the theory from other accounts of
the list-strength effect, which have been more focused on explaining
the null (or near-null) effect. Some (accounts relying on orthogonal
9 
representations) have not suggested why it inverts. Others (accounts
relying on differentiation) explain near-null list-strength effects by in
fact assuming a cause of an inversion (differentiation) that nonetheless
is often well offset by a source of upright list-strength effect. Models like
REM, that function this way, have many ways in which this balance
might be weighted towards a net inversion. But all accounts of list-
strength effects would be justified in disregarding inversions if the
scarce reports of inversion are not real, but perhaps a statistical fluke
due to variability around a true null list-strength effect. If we can
replicate the inverted list-strength effect, that would emphasize that
the inversion, itself, needs to be explained. If we observe inverted list-
strength effects under the kinds of conditions attentional subsetting
theory implies they might be observed, that would reinforce our con-
tinuum account of list-strength effects. It would also provide data that
could inform the conditions under which differentiation models might
be expected to produce net inverted list-strength effects.

Second, we test for a mirror effect, where hits and false alarms
both differ between strength levels. Also, we produced an inverted list-
strength effect in the model that assumed that disregarding shallow
features was possible in pure-strong lists; this assumption also produced
a very pronounced asymmetric mirror effect, where hits vary consider-
ably with strength but false alarms change very little (Fig. 3a). Granted,
there are numerous ways a mirror effect can become asymmetric,
but out of curiosity, we sought to test whether the same individuals
who produced an inverted list-strength effect also show the asym-
metry. Third, exploratory analyses tested how response times varied
across conditions, potentially speaking to the timecourse of retrieval
of shallow versus deep features, and whether the correct rejection rate
exceeded the hit rate, as produced by the model. Fourth, we wondered
whether the conclusions of Neath et al. (2021), that mirror effects are
due to more than one separable underlying factor, is also seen at the
item level, following Cortese et al. (2010, 2017). Within a condition,
we sought to test whether individual items show a mirror effect: a word
that is better identified as a target is also better ruled out as a lure. As
evident in the theory (and the word-pool manipulations by Neath et al.,
2021), hit rate and false alarm rate can be influenced by different, often
independent factors, so this was far more exploratory and reported for
both experiments together.

The stopping rule was to collect sets of 10 participants until the
critical Bayes Factor for the Pure/Mixed×Strength interaction was con-
clusive (>3:1 or <1:3). However, after collecting 100 participants (after
exclusions), although the 𝑝 value was (just) under 0.05, the Bayes
Factor was around 1.5, still quite inconclusive. Rather than spend

more money collecting more data, we analysed the data. We had not
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anticipated this prior to the pre-registration, but a considerable number
of participants failed the basic manipulation-check — that is, if the
2 s duration produces ‘‘stronger’’ encoding than the 1 s condition, then
performance should be better for strong than for weak items. We there-
fore follow up with unregistered exploratory analyses broken down into
participants who passed that manipulation check (both for pure lists
and for mixed lists) compared to those that do not. For the subset who
passed both manipulation checks, the interaction indicating an inverted
list-strength effect was clearly significant and clearly conclusive; thus,
although one should not forget that this was post-hoc, for those ‘‘valid’’
participants, the stopping rule was already surpassed, despite being
under our initial target sample size.

Data availability. Data, materials and scripts can be found at https:
/osf.io/39cz8.

ethods

This experiment was a pre-registered (pre-registration available at
ttps://osf.io/rx9jb and data at https://osf.io/39cz8) replication of Ex-
eriment 1 of Ratcliff et al. (1990). Deviating from the pre-registration,
e planned to check for a recency confound. Because plots of 𝑑′ as a

unction of serial position and of test position produced no suggestion of
uch confounds, we did not pursue this further. Additional analyses that
ere not pre-registered are denoted as ‘‘exploratory’’. The procedures
ere approved by a University of Alberta ethical review board.

articipants. Participants were recruited via Prolific (prolific.co), (a)
ere native speakers of English, (b) were of British, American or
anadian nationality, (c) had normal or corrected-to-normal vision,
d) had no cognitive impairment or dementia, (e) had no language-
elated disorders, (f) were of ages between 18 and 30 years, and (g)
ad an approval rating of at least 90% on prior submissions at Prolific.
emographic information (Questions 1 through 6) from Prolific is self-

eported by the participants and the approval rating is computed by
rolific. Participants were paid £7 for their participation in a session
asting around 30–45 minutes.

To keep the sample uniform, participants were excluded if they took
ore than a ten-minute break. Participants were also excluded if their

verall 𝑑′ (collapsed across list and item type, but excluding practice
rials) was below 0 (chance), which would suggest they misunderstood
he task or the response mapping or were not able to perform the task
t the very basic level. On this basis, one participant was excluded for
aking a break longer than 10 min and 4 because their overall 𝑑′ < 0,
eaving 𝑁 = 101. We had planned to exclude any participant who
esponded with the same key (either ‘‘old’’ or ‘‘new’’) to more than 90%
f the trials were to be entirely excluded, on suspicion of mindlessly
acing through the experiment, but there were no such participants.

ample size and stopping rule. The original experiment (Ratcliff et al.,
990) had 5 participants with 6–9 sessions each for a total of 37
ubject-sessions. This makes it tricky to estimate required power. Our
irst target sample size was 70, about double the number of subject-
essions, partly to take into account the fact that we expected having
ore subject-contributed variance. Due to the differences that should,

n principle, be immaterial to the effect (different stimuli, one ses-
ion/participant, randomly mixed lists; these are detailed below), it
as conceivable that our sensitivity differs. As already mentioned, we
eviated from our pre-registration, stopping at 𝑁 = 100.

aterials. Stimuli were the 1000 words from the Toronto Word Pool
Friendly et al., 1982), displayed in 40 point size Times font in the
entre of the screen. Each list was composed of 32 nouns for study,
ollowed by 64 old/new recognition probes, half of which were just
tudied (targets) and the other half of which were never seen in the
xperiment (lures). Words were drawn at random, anew for each par-

icipant. Strong words were presented for 2 s and weak words for 1 s, p

10 
ith no inter-stimulus interval. Pure lists were composed of all strong
tems (pure-strong) or all weak items (pure-weak). Mixed lists were
omposed of half strong and half weak items, with strength order drawn
t random. Following Ratcliff and colleagues, each counterbalance set
f four lists included one pure-strong and one pure-weak list, but two
ixed lists to equate data collection rates for all item types (Item

trength[strong, weak] × List Type[Mixed, Pure]). Condition-order was
random within each counterbalance set of four lists.

Procedure. The online experimental session was controlled via Psy-
Toolkit (Stoet, 2010, 2017). Each session started with one 10-word
mixed practice list with interleaved instructions, excluded from anal-
yses. The test phase was self-paced. Responses faster than 100 ms were
trapped and a 5-s message displayed the message ‘‘Too Fast!’’ to prevent
participants from speeding through the experiment.9

Data analyses. Single trials that were signalled ‘‘Too Fast!’’ (or under
100 ms) were excluded trial-wise. Participants were excluded entirely
from any analysis for which they had missing data after trial-exclusions.

Our primary measure was 𝑑′, with the log-linear correction favoured
by Hautus (1995), adding 0.5 observation correction to hits, false
alarms, misses and correct rejections,10 computed for each participant
and each of the four conditions separately. Because this correction can
sometimes distort the results, in the pre-registration we planned to
analyse hit and false-alarm rates separately, which we do. We also had
planned to check the results with hits minus false alarms to check for
complications to the interpretation of the results; this we have not done
because the results were clear-cut in this regard and did not seem to
warrant a separate analysis of hits — false alarms. The ratio-of-ratios
was computed [𝑑′(mixed strong)∕𝑑′(mixed-weak)]∕[𝑑′(pure-strong)∕
′(pure-weak)] and was log-transformed prior to statistical tests and
orrelation across participants. The pre-registration stated that an
nteraction, where hits increase and false alarms decrease in strong,
ompared to weak, lists would be considered support for the mirror
ffect. This seemed unnecessary; we report strength effects for hits and
alse-alarms individually and evaluate the difference of those differ-
nces, computing the index11 𝜔 =

[

HR(pure strong) − HR(pure weak)
]

−
CR(pure strong) − CR(pure weak)

]

. If hits and false alarms move to the
ame degree in opposite directions, this index will be zero. If hits move
ore than false alarms, the index will be positive, indicating the pre-
icted form of the asymmetry. The pre-registration erroneously stated
hat asymmetry of the mirror effect would be quantified with hit rate-
1–false alarm rate) for each participant. It is this, but the difference
etween strengths for hit rate and false alarm rate, respectively. We do
eport this within list-type analysis anyway, because while it may not
trictly test the theory, at least our specific simulations lead to a clear
rediction. In Experiment 2, we report this analysis as exploratory.

Our main analysis of interest for the list-strength effect was a
epeated-measures ANOVA on 𝑑′ with design Item Strength [Strong,
eak] × List Type[Mixed, Pure]. An interaction was considered evi-

ence of deviation from the null list-strength effect.

9 Due to a programming oversight, such trials were presented again to all
articipants except the last 10 participants and were sometimes still below
00 ms if the participant held the key down the throughout the too-fast
essage. There is presumably some contamination of the data from those
articipants, where some trials were immediate repeats of the prior probe.
owever for the final 10 participants, the implementation was fixed and the
umber of such trapped trials was low (9 experimental trials out of a total of
680 trials across the 10 participants), so we think the effect on the overall
esults is minimal. This remained corrected for Experiment 2.
10 We had this incorrect in our pre-registrations, where we had mistakenly
tated the correction was to hits and false alarms only.
11 This index is not perfect, but rather, a quick-and-dirty measure we can
se for exploratory purposes. In evaluating data and model output, it is also
mportant to examines hits and correct rejections individually to obtain a full
icture, which we will do.

https://osf.io/39cz8
https://osf.io/39cz8
https://osf.io/39cz8
https://osf.io/rx9jb
https://osf.io/39cz8
https://prolific.co
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To test whether the inversion of the list-strength effect roughly co-
occurs with the asymmetry of the mirror effect, we compared the mirror
effect asymmetry index, 𝜔, between participants with RoR < 1 versus

oR ≥ 1 (there were in fact no participants with RoR = 1). Statis-
ical tests are reported with both Classical and Bayesian approaches.
ignificance is assessed with 𝛼 = 0.05 but 𝑝 values near-threshold

are interpreted with caution. Bayes Factors are considered to provide
support for the null hypothesis if 𝐵𝐹10 < 1∕3 or for the hypothesis
if 𝐵𝐹10 > 3∕1 (Kass & Raftery, 1995). Analyses of false alarm rate
sing the three-level factor have the Greenhouse–Geisser correction
pplied to correct for violations of sphericity and post-hoc pairwise
omparisons are Holm-corrected 𝑡 tests.

Deviations from the original study. Because this was a replication at-
empt, here we list all elements we pre-registered that deviated from
he original study. These were deviations that we felt were superficial
nd should not reduce our expectation to replicate the original findings.
atcliff and colleagues collected data from a small number of partici-
ants who each performed several sessions; we had more participants
ut only one session each. The original study was conducted in person
hereas ours was conducted online, with no direct interaction between
articipant and researcher. The original study excluded trials shorter
han 200 ms and greater than 2500 ms; we chose more inclusive cri-
eria, excluding trials shorter than 100 ms and longer than 10,000 ms.
he original study had 14 lists per session; we had 12. The original
tudy had no practice list; we included a short 10-word mixed practice
ist. The original study blocked strength within the mixed lists; we
onstructed lists with a random shuffle of mixed/strong. Finally, we
dded the ‘‘Too Fast!’’ deterrent.

esults

efore manipulation checks
ist-strength effect. A repeated-measures ANOVA on 𝑑′ (Table 1 and

Fig. 5) with design Mixed/Pure × Item Strength [Strong/Weak] re-
vealed a significant main effect of Item Strength, 𝐹 (1, 100) = 45.15,
𝑀𝑆𝐸 = 0.055, 𝑝 < 0.001, 𝜂2𝑝 = 0.31, 𝐵𝐹inclusion > 1000. The main
effect of Mixed/Pure was not significant, 𝐹 (1, 100) = 0.52, 𝑀𝑆𝐸 = 0.08,
𝑝 = 0.47, 𝜂2𝑝 = .005, 𝐵𝐹inclusion = 0.18. Our effect of interest, speaking
to the nature of the list-strength effect, was the interaction. It was
significant, 𝐹 (1, 100) = 4.40, 𝑀𝑆𝐸 = 0.05, 𝑝 = 0.038, 𝜂2𝑝 = 0.04, but
the Bayesian ANOVA was not conclusive, 𝐵𝐹inclusion = 1.54. At face-
value, this is consistent with our previous prediction: a reliable but
small interaction. The Bayes Factor is biased against small-magnitude
effects.

We next disentangled the effects on 𝑑′ by analysing hit rates and
false alarms separately. For Hit Rate, the main effect of Item Strength
was significant, 𝐹 (1, 100) = 58.95, 𝑀𝑆𝐸 = 0.003, 𝑝 < 0.001, 𝜂2𝑝 = 0.37,
𝐹inclusion > 1000. The main effect of Mixed/Pure was not significant,
(1, 100) = 2.85, 𝑀𝑆𝐸 = 0.003, 𝑝 = 0.095, 𝜂2𝑝 = 0.03, 𝐵𝐹inclusion = 0.39

nearly a supported null, although just inside the ‘‘inconclusive’’ range).
he interaction was not significant, 𝐹 (1, 100) = 1.29, 𝑀𝑆𝐸 = 0.002,

𝑝 = 0.26, 𝜂2𝑝 = 0.013, 𝐵𝐹inclusion = 0.38, nearly favouring a null
nteraction. For the false alarm rate, now a one-way ANOVA on a factor
ith three levels (to avoid duplicating false alarms for ‘‘strong’’ and

‘weak’’ items in mixed lists): Mixed/Pure-Strong/Pure-Weak produced
non-significant main effect, 𝐹 (1.8, 176) = 0.90, 𝑀𝑆𝐸 = 0.003, 𝑝 = 0.40,

𝜂2𝑝 = 0.009, 𝐵𝐹inclusion = 0.079.
The ratio of ratios (RoR), which is based on 𝑑′, was slightly above

1 on average (mean) but the median was slightly below 1 (Table 1).
A 𝑡 test of the log(RoR) against zero was not significant, 𝑡(98) = −0.51,
𝑝 = 0.61, 𝐵𝐹10 = 0.13. Comparing the RoR to 0.88, the value reported
by Ratcliff and colleagues, 𝐵𝐹10 = 0.12, also favouring the null. This is,
of course, a naïve application of Bayes Factors but tells us that we do
not have the resolution to differentiate between RoR = 1 and RoR =

0.88.

11 
Mirror effect. To evaluate the mirror effect, we turn to the pure lists
only. The hit rate was greater in pure-strong than pure-weak lists,
𝑡(100) = 6.36, 𝑝 < 0.0001, 𝐵𝐹10 > 1000. If there were a perfect mirror
effect, this would be parallelled by an equal effect in the opposite
direction in the false-alarm rate but the difference for false alarms was
not significant, 𝑡(100) = −1.16, 𝑝 = 0.25, 𝐵𝐹10 = 0.21. To be more direct,
the change in the hit rate was significantly greater than the change in
false-alarm rate, 𝑡(100) = 3.53, 𝑝 < 0.001, 𝐵𝐹10 = 33.80, resembling the
model with feature-disregarding (Fig. 3a).

With manipulation checks

The following analyses were not anticipated in our pre-registration
and should be read as exploratory. Fig. 4a plots the cumulative distri-
bution functions of the item-strength effect, 𝑑′(Pure-Strong)−𝑑′(Pure-
Weak) and 𝑑′(Mixed-Strong)−𝑑′(Mixed-Weak), respectively. If the ma-
nipulation of duration influences encoding strength as intended, both
of these measures should be greater than zero. In fact, for each check,
about one third of the participants failed; duration did not produce an
overall increase in 𝑑′. Interestingly, the distribution of strength effects
is broader for pure than for mixed lists, with both more big positive
strength effects and more big negative strength effects than mixed lists.
This may be due to the fact that for mixed lists, a single false-alarm rate
went into the difference measure, whereas for pure lists, each list type
had its own false-alarm measure, adding more measurement variance
to the calculation.

If the additional duration is not helping those participants, the
premise of measuring a list-strength effect is undermined. For those
participants, one might even view the 1 s duration as the ‘‘strong’’
condition and the 2 s duration as the ‘‘weak’’ condition. This seems
irrational; in fact, the duration conditions must be functioning dif-
ferently than Ratcliff and colleagues had in mind, at least for some
participants, but possibly for all participants. This echoes the theme
of Caplan (2023), that the word ‘‘strength’’ has been overloaded, and
may refer to a collection of different processes and effects, each of
which should be understood in its own right. No participants had strict
equivalence between pure-weak and pure-strong lists. We return to this
in the General Discussion.

The implication of calling it the ‘‘null list-strength effect’’ is that
list-strength has no effect. Taking this literally, the pure and mixed
lists are essentially within-experiment replications of one another. The
prediction is that the benefit of strong over weak items in pure lists (𝑑′)
should covary with the benefit of strong over weak items in mixed lists,
across participants. This is contradicted by the correlation we observed,
𝑟(99) = 0.065, 𝑝 = 0.52, 𝐵𝐹10 = 0.10.

The same outcome results if we correlate the difference in hit rate,
𝑟(99) = 0.14, 𝑝 = 0.15, 𝐵𝐹10 = 0.22. The near-equivalence of the
strength effect in mixed and pure lists may not occur at the level of
single subjects, but rather, differently, due to independent sources of
variability in pure than in mixed lists. Alternatively, the data acquired
with the 1 s versus 2 s comparison might be too subtle and swamped
by noise.

Table 1b and 1c report results for the subset of participants who
failed at least one, or passed both manipulation checks, respectively.
The former performed worse than the latter. But closer inspections
suggests the major difference, at least for the group as a whole, was
that those who failed the manipulation check had higher false-alarm
rates.

List-strength effect. Illustrated in Fig. 5a, for the 54 participants who
failed at least one manipulation check, analysis of 𝑑′ produced only
non-significant effects, with 𝐵𝐹inclusion < 0.32, favouring null effects.
For hit rate, only the main effect of Item Strength was significant
(𝑝 = 0.026) but with an inconclusive 𝐵𝐹inclusion = 0.93. For false alarms,
the main effect was non-significant (𝑝 = 0.43) and a favoured null

(𝐵𝐹inclusion = 0.12).
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Table 1
Experiment 1: Hit rates, false alarm rates and 𝑑′ as a function of List (Mixed, Pure) and Item type (Long: 2000 ms, Short: 1000 ms ≡ Strong,
Weak), as well as the ratio-of-ratios. Note that false alarms for mixed lists are simply repeated under the mixed-strong and mixed-weak columns,
as lure items are not identified with one or the other duration in mixed lists. In parentheses are the 95% confidence interval based on standard
error of the mean. (a) Before the manipulation-checks. (b) Participants failing one or both of the manipulation-checks: 𝑑′(Pure-Long)> 𝑑′(Pure-
Short) and 𝑑′(Mixed-Long)> 𝑑′(Mixed-Short). (c) Participants passing both manipulation-checks. (d) The original values reported by Ratcliff
et al. (1990), Experiment 1.
a Before the manipulation-checks

Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.66 (0.63, 0.69) 0.63 (0.60, 0.66) 0.66 (0.63, 0.69) 0.61 (0.58, 0.64)
False Alarm Rate 0.24 (0.21, 0.28) 0.24 (0.21, 0.28) 0.24 (0.21, 0.27) 0.25 (0.22, 0.28)
𝑑′ 1.25 (1.10, 1.40) 1.14 (1.00, 1.28) 1.28 (1.11, 1.44) 1.07 (0.95, 1.20)

Mean Ratio of Ratios: 1.12 (0.87, 1.37) Median: 0.97

b Participants who failed a manipulation-check
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.64 (0.59, 0.68) 0.62 (0.58, 0.66) 0.63 (0.59, 0.67) 0.61 (0.58, 0.65)
False Alarm Rate 0.29 (0.25, 0.34) 0.29 (0.25, 0.34) 0.30 (0.25, 0.35) 0.29 (0.25, 0.33)
𝑑′ 0.99 (0.82, 1.15) 0.95 (0.79, 1.10) 0.96 (0.79, 1.12) 0.95 (0.79, 1.11)

Mean Ratio of Ratios: 1.22 (0.79, 1.65) Median: 1.10

c Participants who pass both manipulation-checks
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.70 (0.65, 0.74) 0.63 (0.59, 0.68) 0.70 (0.65, 0.74) 0.61 (0.57, 0.65)
False Alarm Rate 0.18 (0.14, 0.22) 0.18 (0.14, 0.22) 0.16 (0.13, 0.19) 0.20 (0.16, 0.23)
𝑑′ 1.59 (1.37, 1.82) 1.39 (1.17, 1.61) 1.69 (1.43, 1.96) 1.24 (1.05, 1.43)

Mean Ratio of Ratios: 0.99 (0.83, 1.15) Median: 0.89

d Ratcliff et al. (1990) Experiment 1
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.705 0.646 0.740 0.646
False Alarm Rate 0.227 0.227 0.202 0.228
𝑑′ 1.30 1.12 1.48 1.12

Ratio of Ratios (computed from the averaged 𝑑′ values): 0.88
Fig. 4. Cumulative proportion distribution functions of the two measures that were used as strength manipulation checks, for mixed lists and pure lists, respectively. (a) Experiment
1. (b) Experiment 2. Each point represents one participant and the proportion is the cumulative proportion of participants.
More to the point, for the 44 participants who passed both ma-
nipulations checks and thus for whom the manipulation of duration
was arguably influencing strength in the intended direction, a more
robust picture emerged. For 𝑑′, the main effect of Item Strength was
significant, 𝐹 (1, 43) = 94.61, 𝑀𝑆𝐸 = 0.05, 𝑝 < 0.001, 𝜂2𝑝 = 0.69,
𝐵𝐹inclusion > 1000. This is of course unsurprising, because the effect
was robust in the full sample and this subsample was selected based
on the individual strength effects. The Mixed/Pure main effect was
not significant, 𝐹 (1, 43) = 0.40, 𝑀𝑆𝐸 = 0.09, 𝑝 = 0.53, 𝜂2𝑝 = 0.009,
𝐵𝐹inclusion = 0.26.

The effect of interest, the interaction, was now quite robust, 𝐹 (1, 43)
= 17.03, 𝑀𝑆𝐸 = 0.04, 𝑝 < 0.001, 𝜂2 = 0.28, 𝐵𝐹 = 513.
𝑝 inclusion

12 
Breaking this down, for hit rates, the main effect of Item Strength
was significant, 𝐹 (1, 43) = 151.05, 𝑀𝑆𝐸 = 0.003, 𝑝 < 0.001, 𝜂2𝑝 = 0.78,
𝐵𝐹inclusion > 1000. The main effect of Mixed/Pure was not significant
but also inconclusive, 𝐹 (1, 43) = 2.01, 𝑀𝑆𝐸 = 0.003, 𝑝 = 0.16, 𝜂2𝑝 = 0.04,
𝐵𝐹inclusion = 0.57. Finally, the interaction was also not significant nor
conclusive, 𝐹 (1, 43) = 2.12, 𝑀𝑆𝐸 = 0.002, 𝑝 = 0.152, 𝜂2𝑝 = 0.05,
𝐵𝐹inclusion = 0.99.

For false alarms, the main effect of the three-level factor was signif-
icant, 𝐹 (1.8, 79) = 8.63, 𝑀𝑆𝐸 = 0.003, 𝑝 < 0.001, 𝜂2𝑝 = 0.17, 𝐵𝐹inclusion =
66, suggesting the effects on 𝑑′ are more driven by false alarms than by
hits. Post-hoc pairwise comparisons with the Holm correction revealed
significantly more false alarms for Pure-Weak than Pure-Strong lists
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Fig. 5. Accuracy data for both experiments, plotting sensitivity (𝑑′), hit rate and false alarm rate (note that for mixed lists, lures are not tied to a particular item-strength). Top
wo rows: Experiment 1. Bottom two rows: Experiment 2. First and third rows plot data for all participants; second and fourth rows plot data for participants who passed both
anipulation checks: long duration > than short duration in mixed lists and in pure lists, respectively. Error bars plot 95% confidence intervals based on standard error of the

mean.
a
s

(𝑝 < 0.001, 𝐵𝐹10 > 1000), but both other comparisons fell just short
of significant (Mixed > Pure-Strong, 𝑝 = 0.056, 𝐵𝐹10 = 2.93; Mixed <
Pure-Weak, 𝑝 = 0.059, 𝐵𝐹10 = 0.90.

The log of the ratio of ratios was nearly significantly different
than zero (i.e., log(1)), based on a 𝑡 test, 𝑡(43) = −1.31, 𝑝 = 0.11
and significant based on a Wilcoxon test (𝑝 = 0.011) although with
an inconclusive 𝐵𝐹10 = 0.57. Comparing the raw RoR to 0.88 was
non-significant based on a 𝑡 test and a nearly favoured null 𝐵𝐹10 =
0.34. 𝐵𝐹10 = 0.36. In other words, in the subsample that passed the
manipulation check, our findings are consistent with those of Rat-
cliff and colleagues: a robust interaction and a ratio of ratios clearly
under 1.
 𝑝

13 
As a final check, the benefit of strong over weak items in pure lists
still did not covary with the benefit of strong over weak items in mixed
lists, across participants for the subset who passed the manipulation
checks. This was the case for 𝑑′, 𝑟(42) = 0.15, 𝑝 = 0.33, 𝐵𝐹10 = 0.19 and
for hit rate, 𝑟(42) = −0.136, 𝑝 = 0.38, 𝐵𝐹10 = 0.17.

Mirror effect. The hit rate was still greater in pure-strong than pure-
weak lists, 𝑡(45) = 7.77, 𝑝 < 0.001, 𝐵𝐹10 > 1000 and the false-alarm rate
exhibited the opposite change, now significant, 𝑡(45) = −3.97, 𝑝 < 0.001,
𝐵𝐹10 = 100.83, confirming a basic mirror effect. Next we asked if the
symmetry is still present, which it was. The change in the hit rate was
ignificantly greater than the change in false-alarm rate, 𝑡(45) = 3.18,
= 0.0027, 𝐵𝐹 = 12.16.
10
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Response times and deep processing

Our account of the manipulation of duration rests upon the as-
sumption that deeper features take longer to process, resulting in more
deep features encoded for long-duration (strong) items. We assume
the participant attentionally subsets the probe similarly. This implies
a speed–accuracy tradeoff at test. If deep features are available, they
should afford more diagnostic evidence but the cost is that they take
longer to process. This leads to the prediction that for pure-strong
lists, there should be longer correct responses than for pure-weak lists.
Hits and correct rejections are therefore expected to have longer mean
response times in pure-strong than in pure-weak lists. That said, if
participants have some metaknowledge, they might seek that speed–
accuracy tradeoff in general in pure-strong lists and less so in pure-weak
lists, so error responses may show the same response-time difference.
For mixed lists, it is harder to derive predictions, but to the degree
that participants seek a speed–accuracy tradeoff (due to the presence
of strong items on the list), there should be some excess hits with long
response-times (note that lures are not tied to an encoding strength in
mixed lists). The following analyses were not pre-registered and should
be read as exploratory.

Fig. 6 plots the response times (median for each participant in
each trial type) for participants who passed the manipulation checks.
Aligning with the predictions, response times on pure-strong lists were
longer for all response types, significantly for all but correct rejections
and supported by a Bayes factor for misses and false alarms (Hits:
𝑡(43) = 2.48, 𝑝 = 0.017, 𝐵𝐹10 = 2.50; Misses: 𝑡(43) = 2.76, 𝑝 = 0.009,
𝐵𝐹10 = 4.51; False alarms: 𝑡(42) = 2.90, 𝑝 = 0.006, 𝐵𝐹10 = 6.25; Correct
rejections: 𝑡(43) = 1.69, 𝑝 = 0.098, 𝐵𝐹10 = 0.61). This was somewhat
corroborated when all participants were analysed, apart from false
alarm times which were inconclusive here (Hits: 𝑡(100) = 3.01, 𝑝 =
0.003, 𝐵𝐹10 = 7.46; Misses: 𝑡(100) = 1.81, 𝑝 = 0.073, 𝐵𝐹10 = 0.53;
False alarms: 𝑡(98) = 2.42, 𝑝 = 0.018, 𝐵𝐹10 = 1.76; Correct rejections:
𝑡(100) = 1.01, 𝑝 = 0.32, 𝐵𝐹10 = 0.18).

Overlap between asymmetric mirror effects and inverted list-strength effects

With the subset of participants who passed both manipulation-
checks, we examined the asymmetry of the mirror effect (𝜔, defined in
the methods) in pure lists only, for participants depending on whether
their RoR was above or below 1. Mean asymmetry was 0.061 (95%
CI=[0.0230, 0.0995]) and 0.026 (95% CI=[–0.0238, 0.0767]) for RoR
< 1 and RoR > 1, respectively. Although this is in the expected direc-
tion, the difference was not significant, 𝑡(42) = 1.08, 𝑝 = 0.29, 𝐵𝐹10 =
0.50. This may be due to the small (sub)sample size of the RoR > 1
group (𝑁 = 13) versus 𝑁 = 31 with inverted RoRs). Individually, for the
RoR < 1 group, the mirror effect index was significantly asymmetric,
𝑡(30) = 3.14, 𝑝 = 0.0038, 𝐵𝐹10 = 10.16 but not for the RoR > 1 group,
𝑡(12) = 1.03, 𝑝 = 0.32, 𝐵𝐹10 = 0.44.

Single-condition symmetry

While not a strong prediction, the simulations we presented pro-
duced approximately equal hit and correct-rejection rates as can be
seen in Fig. 3b, when the shallow features could not be disregarded
as well as in Fig. 3a, where the model can disregard the shallow
features on pure-strong lists when there were a lot of sparse features
attended. This symmetry breaks down when the model attends to only
a small number of deep, sparsely subsetted features, which can be
seen towards the left of Fig. 3a. In these figures, the ‘‘S’’ condition
was simulated as though it comprised only attended shallow features
and no deep features. Our 1 s and 2 s conditions are probably a mix
of ‘‘S’’ features attended plus some number of ‘‘D’’ features. So the
weak condition should be more like a ‘‘D’’ condition (solid lines) with

parameters towards left of the figure and the strong condition relatively c

14 
more towards the right. For both conditions, we expect the correct-
rejection rate to be greater than the hit rate. The prediction is that for
the strong condition, the hit rate will be closer to the correct-rejection
rate than for the weak condition. As pre-registered for Experiment 1,
the hit rate was less than the correct-rejection rate for all participants,
pure-strong lists, 𝑡(100) = −4.37, 𝑝 < 0.0001, 𝐵𝐹10 = 555.43 and for
pure-weak lists, 𝑡(100) = −6.10, 𝑝 < 0.0001, 𝐵𝐹10 > 1000 and the
ifference was significantly smaller for pure-strong than for pure-weak
ists, 𝑡(100) = −3.53, 𝑝 = 0.0006, 𝐵𝐹10 = 33.80, consistent with the
imulations. An exploratory follow-up with only participants passing
oth manipulation checks produced the same pattern; pure-strong,
(43) = −5.52, 𝑝 < 0.0001, 𝐵𝐹10 = 9718.71; pure-weak 𝑡(43) = −7.02,
< 0.0001, 𝐵𝐹10 > 1000; and the difference, 𝑡(43) = −3.24, 𝑝 = 0.0023,
𝐹10 = 14.07.

iscussion of experiment 1

Comparing Table 1b and 1c to 1d, it is evident that despite some
inor differences in the materials and procedures, our accuracy values

ome close to those of Ratcliff et al. (1990). Our data are clearly
oisier, which may be due to the motivation of the participants. Our
articipants were recruited online and participated in a single session
ith no social pressure (i.e., no direct interaction with a human re-

earcher). Ratcliff and colleagues collected data from a smaller number
f participants, but in person, and notably, each participant did several
essions. These factors may have provided added incentive for the
articipants to engage earnestly in the task, and may also have selected
or participants who were interested in performing well. The noisiness
f our data is evident in the high number of participants with chance or
elow chance performance overall. More seriously: more than half of
ur participants showed nominally reverse effects of stimulus duration
n either pure lists or mixed lists or both! The premise of a list-
trength effect or strength-based mirror effect experiment is that one
s manipulating encoding ‘‘strength’’. Although that may be arguable,
t minimum the stronger condition should produce better memory
han the weaker condition. The central question, whether there is an
nteraction between item-strength and list composition, is noised up if
articipants are included who did not respond to the intended strength
anipulation or confounded by participants who showed a reverse

ffect. This may very well be entirely due to noise, which was the main
otivation for running Experiment 2. This is indeed our view, having

xamined the results of Experiment 2, which follows.
Despite the noisiness of the data, Experiment 1 did produce a small-

ut-significant (also small through the lens of the inconclusive Bayes
actor) inversion of the list-strength effect. When restricted to par-
icipants passing both manipulation checks, the inverted list-strength
ffect became extremely robust. The inversion was driven more by false
larms than by hits, consistent with the simulations (Fig. 3). Finally,
onsistent with an assumption of our attentional subsetting theory of
ow stimulus duration works, there was some post-hoc evidence that
esponse times were longer in pure-strong lists, which may be due to
he deeper, more diagnostic features taking longer to process.

xperiment 2: A larger manipulation of strength

Experiment 1 replicated the inverted list-strength effect, which our
ttentional subsetting model of duration manipulations can explain.
owever, given the noisiness of the data, we conducted a second
xperiment with the aim of making the manipulation of strength more
ronounced, to see if we could obtain an inverted list-strength effect
nder conditions that differed from those of Ratcliff and colleagues’.
e looked to attentional subsetting theory as a guide. First, we note

hat the model figures already show that the inversion (RoR < 1) is
fickle result that is only produced in sweet-spots of the parameter

pace. If the weak condition were too much weaker, or the strong

ondition too much stronger, a near-null or even upright list-strength
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Fig. 6. Response times for both experiments for participants who passed the manipulation checks. The median was computed for each participant. Note that one participant was
excluded from the false-alarm analyses for having no false alarms. Also note that for lure probes (false alarms and correct rejections), item-strength is only meaningful on pure
lists. Error bars plot 95% confidence intervals based on standard error of the mean.
effect would be expected. In fact, Ratcliff et al. (1990) designed their
second experiment with the same goal: to make the manipulation of
strength more pronounced. But they made both the weak and strong
condition longer; the short duration was 2000 ms and the long duration
was 6000 ms. Our example model output (Fig. 2) makes it clear that
this would likely produce an upright list-strength effect, which their
experiment did (RoR = 1.10). To elaborate, if the 2000 ms duration
already allows participants to process a number of deep, sparsely
subsetted features, then both the short and long duration conditions
are now squarely within that deep, sparse regime. There should be
very little feature overlap. Although not zero, the false-alarm rates
15 
reduced from around 0.22 in their first experiment down to around
0.16 in their second experiment. If participants were able to disregard
shallow features in their first experiment in 2000 ms pure lists, they
would presumably be disregarding those features in all list types in the
2000 ms/6000 ms experiment. That experiment may have moved away
from the regime that produces inverted list-strength effects.

Rather, if we keep the 2000 ms condition, which presumably pro-
vides a mix of shallow and deep features, but reduce the duration of the
short condition to 500 ms, we thought that might reduce the number of
deep/sparse features encoded during the short-duration items but leave
relatively intact their shallow features. We thus predicted not only that
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Fig. 7. Schematic depiction of how the number of attentional subsetted features might
vary across items. Grey unfilled circles denote features that are not attended (and thus
not encoded). The horizontal line separates the shallow feature-subspace (above) from
the deep feature-subspace (below). For simplicity, items A through E have increasingly
more attended deep features.

the strength effect should be larger in both pure and mixed lists, but
the inversion of the list-strength effect should be more robust.

This experiment was pre-registered (pre-registration available at
https://osf.io/y9dbj and data at https://osf.io/39cz8). Analyses that
were not pre-registered are denoted as exploratory. All materials and
procedures were identical to those of Experiment 1 apart from the short
duration (500 ms in place of 1000 ms) and the ‘‘Too Fast!’’ bug was
corrected.

Data availability. Data, materials and scripts can be found at https:
//osf.io/39cz8.

Methods

Methods were identical to Experiment 1 except the 1000 ms condi-
tion was replaced with 500 ms duration.

Participants. Our initial target sample size was 𝑁 = 70, on the same
basis as Experiment 1, but now with an upper limit of 𝑁 = 100 to avoid
high cost. We had planned to collect batches of 10 participants until
the Bayes Factor for the critical interaction (Item Strength×List Type)
moved outside the range (1:3, 3:1) but it already was after 73 included
participants (a few extra participants were obtained due to some extra
posted slots), so we stopped. To save money, we also implemented
an early stopping rule to ensure that our manipulation of strength
was successful. More exactly, if 𝑑′(pure-strong) − 𝑑′(pure-weak) > 0.4
(about twice as large as in Experiment 1) after 20 participants (no
manipulation checks but after the basic exclusions based on chance per-
formance, extra-long breaks and speed-through) data collection would
be continued. This criterion was satisfied.

Results

Before manipulation checks
List-strength effect. A repeated-measures ANOVA on 𝑑′ ( Table 2 and
Fig. 5) with design Mixed/Pure × Item Strength[Strong/Weak] revealed
a significant main effect of Item Strength, 𝐹 (1, 72) = 59.00, 𝑀𝑆𝐸 =
16 
0.13, 𝑝 < 0.001, 𝜂2𝑝 = 0.45, 𝐵𝐹inclusion > 1000. 𝐹 (1, 72) = 1.10, 𝑀𝑆𝐸 =
0.044, 𝑝 = 0.30, 𝜂2𝑝 = .015, although 𝐵𝐹inclusion = 1134. Speaking to
the list-strength effect, the interaction was significant and quite robust,
𝐹 (1, 72) = 18.79, 𝑀𝑆𝐸 = 0.068, 𝑝 < 0.001, 𝜂2𝑝 = 0.21, 𝐵𝐹inclusion > 1000.

Following up, for Hit Rate, the main effect of Item Strength was
significant, 𝐹 (1, 72) = 106.17, 𝑀𝑆𝐸 = 0.005, 𝑝 < 0.001, 𝜂2𝑝 = 0.60,
𝐵𝐹inclusion > 1000. The main effect of Mixed/Pure was not significant,
𝐹 (1, 72) = 1.80, 𝑀𝑆𝐸 = 0.003, 𝑝 = 0.18, 𝜂2𝑝 = 0.02, although 𝐵𝐹inclusion =
85.67. The interaction was significant, 𝐹 (1, 72) = 15.98, 𝑀𝑆𝐸 = 0.003,
𝑝 < 0.001, 𝜂2𝑝 = 0.18, 𝐵𝐹inclusion = 391.38. For the false alarm rate, now
a one-way ANOVA on a factor with three levels (to avoid duplicating
false alarms for ‘‘strong’’ and ‘‘weak’’ items in mixed lists): Mixed/Pure-
Strong/Pure-Weak produced a significant main effect, 𝐹 (1.6, 117) =
5.26, 𝑀𝑆𝐸 = 0.003, 𝑝 = 0.011, 𝜂2𝑝 = 0.068, 𝐵𝐹inclusion = 4.42. Holm-
corrected post-hoc 𝑡 tests found a significant advantage of Pure-Strong
over Pure-Weak lists (𝑝 = 0.006, 𝐵𝐹10 = 2.86), a nearly significant
advantage of Mixed over Pure-Weak lists (𝑝 = 0.055, 𝐵𝐹10 = 2.42)
and no difference between Pure-Strong and Mixed lists (𝑝 = 0.35,
𝐵𝐹10 = 0.23).

The ratio of ratios (RoR), which is based on 𝑑′, was clearly below
1 for all participants except those who failed a manipulation check (
Table 2). A 𝑡 test of the log(RoR) against zero was significant, 𝑡(69) =
−4.69, 𝑝 < 0.001, 𝐵𝐹10 > 1000.

Mirror effect. Turning again to the pure lists only, the hit rate was
greater in pure-strong than pure-weak lists, 𝑡(72) = 9.50, 𝑝 < 0.0001,
𝐵𝐹10 > 1000. If there were a mirror effect, this would be parallelled
by opposite effect for false alarms; this was significant but with an
inconclusive Bayes Factor, 𝑡(72) = −2.59, 𝑝 = 0.012, 𝐵𝐹10 = 2.86.
The change in the hit rate was significantly greater than the change
in false-alarm rate, 𝑡(72) = 6.19, 𝑝 < 0.001, 𝐵𝐹10 > 1000.

With manipulation checks

Learning from Experiment 1, we had pre-registered the plan of
conducting additional analyses with participants who passed the ma-
nipulation checks. Fig. 4b plots the cumulative distributions func-
tions of the item-strength effect, 𝑑′(Pure-Strong)> 𝑑′(Pure-Weak) and
𝑑′(Mixed-Strong)> 𝑑′(Mixed-Weak), respectively. Compared to Exper-
iment 1 (panel a), one can see that the minor change in duration of
the weak condition resulted in far fewer participants who nominally
failed the manipulation check (Strong<Weak). As in Experiment 1,
the distribution of strength effects is broader for pure than for mixed
lists, with both more big positive strength effects and more negative
strength effects. Although the concern is not as pronounced in this
experiment, due to greater signal-to-noise ratio with respect to the
strength manipulation, as with Experiment 1, we report a second set
of analyses restricted to participants who passed both manipulation-
checks. First, however, unlike in Experiment 1, the two strength effects
are now related to one another; the correlation of strength effects on
𝑑′ was significant as well as large, 𝑟(71) = 0.47, 𝑝 < 0.001, 𝐵𝐹10 = 582,
and likewise for hit rate, 𝑟(72) = 0.31, 𝑝 = 0.008, 𝐵𝐹10 = 3.15. The null
correlation obtained in Experiment 1 may have been due to the small
effect of the strength manipulation relative to noise.

Table 2 panels b and c report results for the subset of participants
who failed at least one, or passed both manipulation checks, respec-
tively. As in Experiment 1, for the group as a whole, those who failed
the manipulation check had higher false-alarm rates.

List-strength effect. Illustrated in Fig. 5j, for the 51 participants for
whom the manipulation of duration was arguably influencing strength
in the intended direction, an even more robust picture emerged. For
𝑑′, the main effect of Item Strength was significant, 𝐹 (1, 50) = 115.80,
𝑀𝑆𝐸 = 0.10, 𝑝 < 0.001, 𝜂2𝑝 = 0.70, 𝐵𝐹inclusion > 1000. This is of course
unsurprising, because the effect was robust in the full sample and this

subsample was selected based on the individual strength effects. The

https://osf.io/y9dbj
https://osf.io/39cz8
https://osf.io/39cz8
https://osf.io/39cz8
https://osf.io/39cz8
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Table 2
Experiment 2: Hit rates, false alarm rates and 𝑑′ as a function of List and Item type, as well as the ratio-of-ratios. Hit rates, false alarm rates
and 𝑑′ as a function of List (Mixed, Pure) and Item type (Long: 2000 ms, Short: 500 ms ≡ Strong, Weak), as well as the ratio-of-ratios. Note that
false alarms for mixed lists are simply repeated under the mixed-long and mixed-short columns, as lure items are not identified with one or the
other duration in mixed lists. In parentheses are the 95% confidence interval based on standard error of the mean. (a) Before the manipulation-
checks. (b) Participants failing one or both of the manipulation-checks: 𝑑′(Pure-Long)> 𝑑′(Pure-Short) and 𝑑′(Mixed-Long)> 𝑑′(Mixed-Short). (c)
Participants passing both manipulation-checks. Compare with Table 1.
a Before the manipulation-checks

Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.69 (0.66, 0.73) 0.63 (0.60, 0.66) 0.71 (0.68, 0.74) 0.60 (0.57, 0.63)
False Alarm Rate 0.28 (0.25, 0.31) 0.28 (0.25, 0.31) 0.27 (0.23, 0.31) 0.30 (0.27, 0.34)
𝑑′ 1.19 (1.03, 1.35) 1.00 (0.87, 1.13) 1.30 (1.11, 1.49) 0.84 (0.71, 0.97)

Mean Ratio of Ratios: 0.68 (0.44, 0.93) Median: 0.71

b Participants who failed a manipulation-check
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.66 (0.61, 0.71) 0.66 (0.61, 0.71) 0.67 (0.62, 0.73) 0.64 (0.59, 0.69)
False Alarm Rate 0.34 (0.27, 0.41) 0.34 (0.27, 0.41) 0.36 (0.28, 0.43) 0.33 (0.25, 0.40)
𝑑′ 0.89 (0.65, 1.12) 0.89 (0.67, 1.11) 0.90 (0.66, 1.15) 0.89 (0.62, 1.17)

Mean Ratio of Ratios: 0.97 (0.55, 1.39) Median: 0.84

c Participants who pass both manipulation-checks
Mixed-Long Mixed-Short Pure-Long Pure-Short

Hit Rate 0.71 (0.67, 0.75) 0.62 (0.58, 0.66) 0.72 (0.68, 0.77) 0.58 (0.55, 0.62)
False Alarm Rate 0.26 (0.22, 0.29) 0.26 (0.22, 0.29) 0.24 (0.20, 0.28) 0.29 (0.25, 0.33)
𝑑′ 1.32 (1.13, 1.52) 1.04 (0.88, 1.20) 1.47 (1.24, 1.70) 0.82 (0.68, 0.95)

Mean Ratio of Ratios: 0.56 (0.27, 0.85) Median: 0.70
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Mixed/Pure main effect was not significant, 𝐹 (1, 50) = 2.13, 𝑀𝑆𝐸 =
.039, 𝑝 = 0.15, 𝜂2𝑝 = 0.041, although 𝐵𝐹inclusion > 1000. The effect
f interest, the interaction, was even more robust than with the full
ample, 𝐹 (1, 50) = 37.10, 𝑀𝑆𝐸 = 0.05, 𝑝 < 0.001, 𝜂2𝑝 = 0.43, 𝐵𝐹inclusion >
000.

Breaking this down, for hit rates, the main effect of Item Strength
as significant, 𝐹 (1, 50) = 211.25, 𝑀𝑆𝐸 = 0.003, 𝑝 < 0.001, 𝜂2𝑝 = 0.81,
𝐹inclusion > 1000. The main effect of Mixed/Pure was not significant
ut also inconclusive, 𝐹 (1, 50) = 2.42, 𝑀𝑆𝐸 = 0.003, 𝑝 = 0.13, 𝜂2𝑝 = 0.05,
lthough 𝐵𝐹inclusion = 826. Finally, the interaction was very significant,
(1, 50) = 21.58, 𝑀𝑆𝐸 = 0.002, 𝑝 < 0.001, 𝜂2𝑝 = 0.30, 𝐵𝐹inclusion > 1000.

For false alarms, the main effect of the three-level factor was signifi-
ant, 𝐹 (1.8, 88) = 14.80, 𝑀𝑆𝐸 = 0.002, 𝑝 < 0.001, 𝜂2𝑝 = 0.23, 𝐵𝐹inclusion >
000, suggesting the effects on 𝑑′ are driven both by false alarms and
its. Post-hoc pairwise comparisons with the Holm correction revealed
ignificantly more false alarms for Pure-Weak than Pure-Strong lists
𝑝 < 0.001, 𝐵𝐹10 = 720), more false alarms for Mixed than Pure-Weak
ists (𝑝 = 0.002, 𝐵𝐹10 = 36.77) but the greater false-alarm rate for
ixed versus Pure-Strong lists fell just short of significance (𝑝 = 0.055,
𝐹10 = 1.61).

The log of the ratio of ratios was significantly different than zero
i.e., log(1)), based on a 𝑡 test, 𝑡(48) = −6.96, 𝑝 < 0.001 and a Wilcoxon
est (𝑝 < 0.001), 𝐵𝐹10 > 1000.

For the subsample of participants passing both manipulation checks,
he correlation of the strength effect (𝑑′) between mixed and pure lists
emained significant, 𝑟(49) = 0.51, 𝑝 < 0.0001, 𝐵𝐹10 = 176.90.

irror effect. The hit rate was still greater in pure-strong than pure-
eak lists, 𝑡(50) = 12.24, 𝑝 < 0.001, 𝐵𝐹10 > 1000 and the false-alarm rate
xhibited the opposite change was significant, 𝑡(50) = −4.61, 𝑝 < 0.001,
𝐹10 = 720.40, indicating a robust mirror effect. The change in the hit

ate was again significantly greater than the change in false-alarm rate,
(50) = 5.62, 𝑝 < 0.0001, 𝐵𝐹10 > 1000.

esponse times and deep processing

Not pre-registered for Experiment 2, Fig. 6 plots the response times
median was computed for each participant in each trial type) for
articipants who passed the manipulation checks. Again aligning with
 i
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the predictions, response times on pure-strong lists were longer for all
response types but hits, significantly and with conclusive Bayes Factor
(Hits: 𝑡(50) = 0.39, 𝑝 = 0.70, 𝐵𝐹10 = 0.16; Misses: 𝑡(50) = 4.44, 𝑝 < 0.001,
𝐹10 = 439; False alarms: 𝑡(50) = 3.27, 𝑝 = 0.0019, 𝐵𝐹10 = 15.73;
orrect rejections: 𝑡(50) = 3.40, 𝑝 = 0.0013, 𝐵𝐹10 = 22.21). This was
orroborated when all participants were analysed, although with less
onclusive Bayes Factors (Hits: 𝑡(72) = −0.75, 𝑝 = 0.46, 𝐵𝐹10 = 0.17;
isses: 𝑡(72) = 2.72, 𝑝 = 0.0082, 𝐵𝐹10 = 3.84; False alarms: 𝑡(72) = 2.17,
= 0.033, 𝐵𝐹10 = 1.17; Correct rejections: 𝑡(72) = 2.52, 𝑝 = 0.014,
𝐹10 = 2.43).

verlap between asymmetric mirror effects and inverted list-strength effects

Of the 51 participants passing both manipulation checks, only 9
ad RoR > 1. The comparison we did for the full sample and in
xperiment 1 is thus underpowered. Given the predominance of RoR

1 in this experiment, those nine participants may have produced
oR > 1 largely by chance. That said, the co-occurrence of a very
obustly inverted list-strength effect and very pronounced mirror-effect
symmetry in this subsample aligns with the idea that the two features
ccur within a common task-space.

ingle-condition symmetry

Although not pre-registered for Experiment 2, consistent with the
imulations and Experiment 1, the hit rate was less than the correct-
ejection rate for all participants, but a supported null for pure-strong
ists, 𝑡(72) = −0.75, 𝑝 = 0.46, 𝐵𝐹10 = 0.17; pure-weak lists, 𝑡(72) = −4.05,
= 0.0001, 𝐵𝐹10 = 161.01 and the difference was significantly smaller

or pure-strong than for pure-weak lists, 𝑡(72) = −6.19, 𝑝 < 0.001,
𝐹10 > 1000. The subset of participants passing both manipulation
hecks produced the same pattern except that the Bayes Factor for pure-
trong lists fell short of conclusive; pure-strong, 𝑡(50) = −1.55, 𝑝 = 0.13,
𝐹10 = 0.47; pure-weak 𝑡(50) = −4.57, 𝑝 < 0.0001, 𝐵𝐹10 = 641; and the
ifference, 𝑡(50) = −5.62, 𝑝 < 0.0001, 𝐵𝐹10 > 1000.

tem analyses (both experiments)

We report analyses of variability across words. Some of the follow-

ng analyses were pre-registered in each experiment, but in retrospect,
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we felt the full sequence of analyses is necessary to obtain a complete
picture of the item-level effects. We advise the reader to view all these
findings as fully exploratory.

A major assumption of our theoretical account of stimulus-duration
effects was that the participant derives the criterion based on real-
time processing of the probe item. Given the existence of effects of
stimulus properties, including stimulus-based mirror effects (Glanzer
& Adams, 1985, 1990; Neath et al., 2021), we know that items differ
in their difficulty in recognition tasks. There must be item-variability
in difficulty at least at the level of those stimulus properties such as
word frequency, concreteness and contextual diversity. If participants
tune their criterion based on characteristics of each individual stimulus,
not only the pattern of hit rate across items should replicate, but also
the pattern of false-alarm rates. We exploited the fact that our two
experiments were quite similar in design, differing only in the stimulus-
duration of the weak condition, to test these predictions. Including only
participants who passed both manipulation checks in each experiment,
all words had at least 7 trials as targets and at least 7 trials as lures, so
we included all words. The Pearson correlation of hit rate across words,
between the two experiments was significant and robust, 𝑟(998) = 0.268,
< 0.0001, 𝐵𝐹10 > 1000. For false alarms, the correlation was even

reater, 𝑟(998) = 0.390, 𝑝 < 0.0001, 𝐵𝐹10 > 1000, where 𝑅2 = 0.15,
ndicating that 15% of the variance in false-alarm rate was attributable
o item-difficulty effects; this would seem non-negligible, and suggests
hat a pre-condition to our account of criterion selection is met.

Next we can ask whether there is something like a stimulus-based
irror effect at the item level — rather than the stimulus-class level, as
as been previously reported starting with Glanzer and Adams (1985)
ecause Neath et al. (2021) found separate influences on hits than false
larms when stimulus-set properties were better controlled. Within
ach experiment, we correlated overall hit rate for a word with its
verall false-alarm rate, still collapsing across list types to avoid too
uch missing data. The correlation was significant (𝑝 < 0.05), and

ven the expected sign (negative) in Experiment 1, but not significant
n Experiment 2. Both correlations were quite small in magnitude and
ccording to the Bayes Factors, inconclusive in Experiment 1 and a
avoured null in Experiment 2;. HR-Experiment 1: 𝑟(998) = −0.0909,
= 0.004, 𝐵𝐹10 = 1.57; Experiment 2: 𝑟(998) = 0.0410, 𝑝 = 0.195,
𝐹10 = 0.058. This seems to take the conclusions of Neath et al.

2021) further, suggesting that different factors influence hit rate versus
alse-alarm rate. This is unlikely to be due to lacking signal-to-noise
atio since the patterns of hit rate and false-alarm rate did replicate
uite robustly between experiments (results in the previous paragraph).
his is informative with respect to stimulus-based mirror effects, but

t neither supports nor challenges attentional subsetting theory. The
heory suggests different factors that could influence hits differently
han false alarms, such as the number of features attended and the
imilarity of those features to other studied items, but the way in which
hose trade off is parameter-dependent.

These findings extend prior findings of item effects in old/new
ecognition. Analysing lists of 60 monosyllabic words (Cortese et al.,
010) or disyllabic words (Cortese et al., 2017) presented for 2000 ms
ach or self-paced, around 1/3 of the variance in hits — false-alarms
as explained by stimulus factors such as word length, frequency,

mageability and orthographic and phonological neighbourhood char-
cteristics and similarity to other items in their stimulus pool (see Lau
t al., 2018 for similar results). This exceeds the between-experiments
ariance explained in our analyses. They also tested for an item-level
irror effect and falsified it. In fact, for mono-syllabic words, Cortese

t al. (2010) found a small but significant positive correlation between
its and false alarms across items (𝑟 = .17 and .15 for 2000 ms/word and
elf-paced, respectively). With disyllabic words, Cortese et al. (2017)
ound a non-significant item-level mirror effect, despite their highly

owered datasets (combined: 𝑟 = −0.017).
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Cox et al. (2018) found item effects that explained similarities and
ifferences between memory tasks, including one item-factor related
o recognition bias and one related to propensity to be produced as

response in a recall task. These may be closely related to factors
e find to separately influence hit and false-alarm rates. Between-

ample consistencies have also been found in the visual domain, with
igh correlations across complex visual stimuli measured by hit rate
or various categories of images (Isola et al., 2011) and both hit and
alse-alarm rate of complex images (Bainbridge, 2020; Bainbridge &
issman, 2017) and faces (Bainbridge et al., 2013).

Finally, we asked if strength influences hit rate and false-alarm rate
n tandem or independently. We correlated, across items, the difference
n hit rate for pure-strong minus pure-weak lists with the difference
n false-alarm rate for pure-strong minus pure-weak lists. For both
xperiments, this correlation was non-significant and a supported null
ffect, Experiment 1: 𝑟(927) = −0.032, 𝑝 = 0.330, 𝐵𝐹10 = 0.042;

Experiment 2: 𝑟(961) = 0.019, 𝑝 = 0.562, 𝐵𝐹10 = 0.030. Although
not a strong test of the theory, this is consistent with our assumption
that strength (here, stimulus-duration) mainly influences attention to
deeper, sparsely subsetted features and that the shallower features com-
mon to both conditions can be largely disregarded when participants
are tested on pure-strong lists.

General discussion

We developed and extended an attentional subsetting theory of
stimulus duration and tested it with two new experiments. The central
assumptions of attentional subsetting theory (Caplan, 2023; Caplan
et al., 2022) are:

Assumption (1) Most features of an item are not attended and thus
not encoded; rather, only a small subset of features are attended
and thus encoded.

Assumption (2) These subsets are stimulus-specific; thus, they tend to
be different vector dimensions for different items.

Assumption (3) Given the same task-set (cf. Criss & Shiffrin, 2004),
the features subsetted during study of a stimulus will largely
(although not strictly) be the same as those subsetted when the
same stimulus is presented as a recognition probe.

To separately model hit and false-alarm rates, we have introduced
a way in which the response criterion could be derived from the probe
item, itself, adding:

Assumption (4) The participant derives a criterion for each probe
item as they process it.

ssumption (5) The criterion is a simple calculation related to the
number of features processed in real-time (e.g., one half).

Critically, our specific assumptions about stimulus-duration are:

ssumption (6) The earliest features attended are ‘‘shallow’’ or ‘‘su-
perficial’’ such as orthographic or phonological features (or
potentially certain kinds of semantic or elaborative features).
These early-extracted features are selected from a relatively
small feature subspace, so they cannot be sparsely subsetted.
This is the source of confusion due to feature similarity across
items.

ssumption (7) Later features are ‘‘deeper’’ or more ‘‘semantic’’ and
as such, are subsetted from a much larger feature subspace
so that attended subsets are sparse vectors within that deeper
subspace. This avoids most of the confusion due to feature

overlap.
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Assumption (8) In certain circumstances, participants may be able
to disregard feature subspaces, such as orthographic or phono-
logical features when deeper features are sufficient to support
performance. We propose that participants may have a way
to detect the presence of confusion due to superficial features,
leading to this kind of meta-cognitive strategy.

We ran a replication study of the first experiment that was noted
to violate the expected ‘‘upright’’ list-strength effect. The replication
was not perfect, but came close to the original experiment, with some
support that we obtained the original inverted list-strength effect. A
second experiment with a larger manipulation of strength produced a
more robust inverted list-strength effect. This was done by reducing the
weak condition from 1000 ms to 500 ms, focusing the weak condition
even more on superficial features that the theory presumes cannot be
sparsely subsetted, while the strong condition, left at 2000 ms, gives
participants ample time to process deeper features that are sparsely
sampled from a high-dimensional space.

These replications mean that the inverted list-strength effect cannot
be swept aside. Attentional subsetting theory anticipates inverted list-
strength effects under certain conditions. Our empirical findings thus
offer validation to the theory. That said, we cannot rule out other
accounts of inverted list-strength effects. Yonelinas et al. (1992), for
example, proposed that an upright list-strength effect might be partly
due to ‘‘rehearsal-borrowing,’’ where in a mixed list, strong items draw
more rehearsal at the expense of the weak items. It is possible that
we have the opposite kind of rehearsal-borrowing in the mixed lists,
whereby weak items attract compensatory rehearsal, stealing rehearsal
resources from the strong items. As described earlier, the phenomenon
of differentiation produces an inverted list-strength effect. When incor-
porated into SAM (Shiffrin et al., 1990) or REM (Shiffrin & Steyvers,
1997), this can approximately offset the coexisting upright list-strength
effect. In some conditions, it might more than offset the latter and result
in a net inverted list-strength effect (as Ensor et al., 2021 produced;
note that this simulation still produced an upright list-strength effect
for hits, which mismatches the data; that said, REM has numerous
moving parts which might counterbalance in different ways to match
the fine structure of the data), which our data could test. Differentiation
also produces a strength-based mirror effect, so it remains to be seen
whether REM includes sufficient flexibility to produce a net inverted
list-strength effect while simultaneously producing a much larger dif-
ference in hit rate between item-strengths than the difference in false
alarm rate, as in our two experiments and Experiment 1 of Ratcliff et al.
(1990).

We learned an important pragmatic lesson while analysing the
data. While 1 s versus 2 s at first seems like a large experimental
manipulation (twice as much time to study the ‘‘strong’’ items as the
‘‘weak’’ items), it produced very small effects on recognition in the
hands of Ratcliff et al. (1990) as well as in our first experiment.
The main characteristics of the original study replicated, so there is
no reason to suspect the validity of the manipulation. However, the
small magnitude of the manipulation of stimulus-duration on behaviour
produces a dataset with more noise and less sensitivity than one would
like. A specific problem arose because many of the participants did not
even seem to pass a basic manipulation-check, that the longer duration
should produce better memory than the shorter duration. At worst,
it could be possible that some participants are immune to manipula-
tions of stimulus-duration or have a paradoxical effect, where shorter
duration leads to better memory than longer duration, which would
clash with the basic premise that the experiment is a manipulation of
encoded strength. Experiment 2 produced robust results and far fewer
violations of the manipulation-checks, so our view is that it is unlikely
that duration acts differently for some participants. However, the weak
effect of the manipulation in Experiment 1 is a tiny signal amid a large
amount of noise. In this kind of regime, null effects, even Bayes Factors

favouring nulls, may be quite common.
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At a conceptual level, however, we would like to draw attention to
the overloaded nature of the term ‘‘strength’’ in so-called list-strength
effect experiments and strength-based mirror effect experiments. Using
a single term, ‘‘strength,’’ for manipulations as different as duration,
repetition and even qualitatively different processing tasks probably
glosses over a number of very concrete and different mechanisms.
For example, early use of the word ‘‘strength’’ referred to a scalar
multiple of an encoded vector; longer vectors will be remembered
better. This produces the long-expected ‘‘upright’’ list-strength effect,
an advantage for strong items within mixed lists compared to pure
lists, and the corresponding disadvantage for weak items within mixed
lists (Caplan, 2023; Ratcliff et al., 1990). Distinct from that notion
of strength, feature-level models have assumed that some forms of
‘‘strengthening’’ result in more features encoded and/or more features
correctly rather than erroneously encoded (e.g., Caplan, 2023; Nairne,
1990; Shiffrin & Steyvers, 1997) as we have done in our formulation
of stimulus-duration. Strengthening via repetition has been proposed to
result in editing of existing local traces or the formation of a new trace
(e.g., Criss, 2006; Ensor et al., 2021). And finally, some manipulations
viewed as ‘‘strengthening’’ may result in the encoding of additional
features potentially of a different type, such as the account of the
production effect by Jamieson et al. (2016), or for different levels of
processing, potentially completely non-overlapping feature subspaces
(Caplan, 2023). Digging into these various specific mechanisms can
add significantly more specificity and direct connections to model
mechanisms than continuing to use ‘‘strength’’ as a catch-all term.

An attentional subsetting formulation of the effects of stimulus-duration.
In REM, stimulus duration is modelled by increasing the probability
that each feature is encoded (Shiffrin & Steyvers, 1997). We have in-
corporated that assumption into attentional subsetting theory (Caplan,
2023), but extended it as summarized in the previous section. Our
formulation of stimulus-duration can produce a variety of list-strength
effects, including near-null, upright/positive and inverted/negative list-
strength effects. It can also now produce a robust strength-based mirror
effect but also leads to large changes in hit rates with very little change
in false-alarm rates when superficial features can be disregarded (or
in other paradigms, if subsetting is entirely sparse or the two feature
subspaces are non-overlapping).

Published data, including the data reported here, offer constraints
on the putative timecourse of processing of shallow versus deeper
features. The presence of an upright list-strength effect and pronounced
strength-based mirror effect (Yonelinas et al., 1992) when stimulus-
duration was very short (50–200 ms) is consistent with the idea that
at these timescales, superficial features dominate, and very few deep,
sparsely subsetted features are encoded (but the effect may be fragile;
an inverted and null list-strength effect was found by Ratcliff et al.
(1994) with 50 ms versus 200 ms and 100 ms versus 400 ms, re-
spectively, with strength blocked within mixed lists). This book-ends
the continuum alongside the second of experiment of Ratcliff et al.
(1990), who varied stimulus-duration between 2000 ms and 6000 ms.
Their finding of an upright list-strength effect, although small in mag-
nitude, along with strength predominantly influencing hit rate with
very little effect on false-alarm rate, is consistent with the idea that
well before 2000 ms, participants are already able to process a number
of deep, sparsely subsetted features that they can rely primarily on
those features to make recognition judgements. The first experiment
of Ratcliff et al. (1990) and our Experiment 1 compared 1 s to 2 s
stimulus durations. This seems to be close to the transition point.
1000 ms gives participants some, but not much spare time to encode
deep features. 2000 ms offers more time to encode deep features,
but shallow features are still somewhat useful in making recognition
judgements. Consequently, the list-strength effect is close to null but
slightly inverted. Finally, our Experiment 2 produced clearer results

presumably because we designed it to straddle that transition point.
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Reducing the short duration to 500 ms may have further reduced the
availability of deep features during encoding.

This may explain why clear, significant and robust inversions of the
list-strength effect in recognition have been so elusive. Fig. 2 shows
how, according to our model, the inverted list-strength effect is a fragile
finding, that is highly parameter-dependent. Comparing 500 ms to
2000 ms durations of visually presented words appears to be a sweet
spot for further understanding inverted list-strength effects.

The assumption that shallower features are processed earlier than
deeper features has some support, and with similar timescales, during
the test phase of recognition experiments using the response-deadline
procedure. In a response-deadline experiment, participants are trained
to make a decision by a particular time following stimulus-onset. For
example, Gardiner et al. (1999) trained participants on response dead-
lines of 500 ms and 1500 ms. These deadlines are close to the range
of durations we investigated (500, 1000 and 2000 ms). When studied
with a shallow, ‘‘phonemic’’ processing task (rate how easy it is to find
a rhyme to the word), the hit rate increased from 0.48 to 0.59 from
the short to the long response deadline. For lists studied with a deeper,
‘‘semantic’’ processing task (rate how easy it is to find a semantic
associate of the word), performance was overall better, but the increase
with longer response deadline was also bigger, with hit rate increasing
from 0.56 to 0.77. Mulligan and Hirshman (1995), sampling more
response deadlines, found evidence for levels of processing influencing
primarily the asymptotic accuracy (𝑑′) level reached, with very little
nfluence on evidence-accumulation rate.

Brockdorff and Lamberts (2000) have an interesting take on response
eadline data. They assumed features are sampled with some probabil-
ty, but different features had different sampling probabilities per unit
ime, to explain different timecourses for different forms of information.
heir first target finding was an experiment by Hintzman and Curran
1994), testing recognition of target words, dissimilar lures and similar
ures that varied only in whether they were singular or plural (frog
ersus frogs). The results showed a non-monotonicity in the false-alarm
ate to those similar lures: at early response deadlines, false-alarms to
imilar lures increased, then decreased at later deadlines. Hintzman
nd Curran (1994) reasoned that this non-monotonicity was evidence
f two distinct processes used to drive recognition, familiarity, which
ccumulates early, and recollection, which is possible only later, that
upports a recall-to-reject strategy. Brockdorff and Lamberts (2000)
howed that two processes are not needed to explain the data, and
nstead proposed different rates of feature sampling. They adapted the
eneralized Context Model (Nosofsky, 1986) that had been developed

or categorization behaviour. They modelled the word stimuli with
inary vectors of six features, where the sixth feature stood in for
lurality. The model produced the non-monotonic function of false
larms to similar lures by fitting the sampling probability of the sixth
eature to be much lower (about 1/10 smaller) than the remaining
eatures. Their account has a lot in common with our theory of stimulus
uration. It includes more detailed temporal dynamics which we have
mitted, but which would presumably be compatible with our account.
hat our theory adds, however, are two things. First, Brockdorff and

amberts (2000) had very low-dimensional representations of stim-
li. Such a model would quickly break down if the list length were
ubstantially greater than 6 (the list length they modelled was 12).
hey assumed that all features were encoded, and that probabilistic
ampling only occurred at test. To make this more realistic and add
robabilistic sampling, increasing the vector dimensionality would
ave the same problem as Glanzer et al. (1993), for example, that
he chance of randomly sampling the same features at test that were
ncoded becomes quite small. In our framework, a subset of features is
tored, but they will tend to be similar upon repeated presentations of
n item, including between a study and a test trial. This reiteration is

hat supports high performance levels even while item dimensionality
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increases. Second, we add the idea that later-sampled features will tend
to be sparse, derived from a high-dimensional feature-space.

Our theory suggests an addendum to the Brockdorff and Lamberts
(2000) account of the Hintzman and Curran (1994) data, which in a
sense, harmonizes the two accounts. We assume that later-attended
features tend to be more sparse. Two stimuli differing only in one letter,
frog and frogs, are highly similar within the orthographic feature-space,
since they have almost identical spelling. What is retrieved later is
not the letter ‘s’ or its omission, but semantic or imagery information
as the participant more deeply contemplates a frog or many frogs.
A visual image involving a single frog may be quite dissimilar to a
visual image of many frogs. This is a concrete way we can understand
how semantic of deeper feature spaces can offer distinctiveness through
sparseness that is generally not available in the more superficial, but
earlier processed feature space.

Feature depth or dimensionality of the subspace. In expressing the effect
of feature-space dimensionality, we have used as shorthand the idea
that perceptual features are densely subsetted from a low-dimensional
feature space whereas semantic or imagery-related features are sparsely
subsetted from a high-dimensional space. However, there may be fea-
tures we would like to think of as ‘‘deep’’ that are nonetheless within
a low-dimensional subspace, such as, perhaps, attributes like animacy,
pleasantness, function (furniture, tool, etc.). The early availability of
semantic features in response-deadline data offers some support for
the idea that semantic features are available as rapidly as perceptual
features (Mulligan & Hirshman, 1995) and an early interaction of
different levels of features was expressed by Gibson (1971). Conversely,
it is possible that in some conditions, some perceptual features are
sparsely subsetted from within a very large feature space. Along these
lines, Johnson (1975) provided evidence that the whole word can
be identified before all the composite features, such as letters, have
been processed. This raises the interesting possibility that semantic or
elaborative information about an item may even feed back to prioritize
attention to particular low-level features of the stimulus. The deeper
logic we present is that as time unfolds, to a large degree, the earlier
features will be extracted from lower-dimensional feature spaces than
those that are extracted later. The denseness versus sparseness of those
features determines the form of the list-strength effect.

How duration may differ from repetition. Although both have been
described as manipulations of ‘‘strength,’’ manipulations of spaced
repetition may function differently than manipulations of stimulus-
duration. For example, Caplan (2023) suggested that repetition forces
more attention to the superficial features, because the additional study
time is also accompanied by a new stimulus-onset. Before noticing the
repetition, the participant must surely need to process its superficial
features anew, which may result in stronger encoding of superficial
features with, say, two presentations at 1 s/word than one presentation
at 2 s/word. Moreover, holding constant total duration, the need to re-
process the superficial features upon repetition would displace a few
hundred ms of study time that would otherwise be used to process
deeper features. Reduced encoding of deeper features combined with
additional obligatory encoding of superficial features may reduce the
potential benefit of disregarding superficial features in pure-strong lists.
This may explain why inversions of the list-strength effects are rare or
non-significant when strength is manipulated via repeated presentation,
and remains to be tested.

The ‘‘one-shot’’ contextual encoding hypothesis. The ‘‘One-Shot’’ hypoth-
esis, as integrated within the REM framework by Malmberg and Shiffrin
(2005) for free recall, proposes that a fixed amount of context is stored
during an initial brief exposure to an item, typically for at least 1
or 2 s, and this storage is deemed sufficient for supporting necessary
context information for later retrieval. This was particularly effective
in explaining list-strength effect in free recall. According to their hy-

pothesis, additional study duration or deeper levels of processing do
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not substantially increase the amount of context information stored
beyond this initial ‘‘shot’’; instead, they enhance content knowledge,
such as meanings and associations. According to Malmberg and Shiffrin
(2005), context information should continues to accumulate within this
timeframe, which suggests that our short, 500-ms duration in experi-
ments might encode less context than a 2000-ms duration. However,
the one-shot hypothesis posits that initial brief context capture should
suffice for later retrieval, so it may not be able to explain the inverted
list-strength effect observed in our experiments. When differentiation
based on item-features becomes dominant, as proposed, it could lead to
inverted list-strength effects, especially under conditions where context
features are either down-weighted or not used, which might be the
case in our experiments. This mismatch between their hypothesis and
observed data suggests a need to further explore whether variations in
context encoding between short and long durations might underpin the
mirror effects and inverted list-strength effects observed, calling for a
nuanced application or reconsideration of the one-shot hypothesis in
these contexts.

The list-strength effect. Despite the label, ‘‘null list-strength effect,’’
there is in fact a range of published list-strength effects, including
inversions (Ratcliff et al., 1990, 1994; Sahakyan, 2019). Our modelling
and findings suggest these cannot be dismissed as due to noise, but must
be taken seriously and addressed by models.

Local-trace differentiation models, including REM, are able to pro-
duce upright list-strength effects. Specifically, Criss (2006) noted that
for spaced repetitions, the null list-strength effect occurs because of
the assumption (Shiffrin & Steyvers, 1997) that upon repetition, the
participant notices the repetition and this allows the participant/model
to edit the earlier trace rather than forming a new one. Additional
features can be stored (and in some versions of REM, features that
were copied erroneously can be corrected). As Criss (2006), Ensor et al.
(2021) demonstrated, if the participant does not notice the repetition,
they presumably form a new local trace for the same item instead of
editing. This reduces the benefit of the differentiation process, so a
list-strength effect emerges. Inspiration for this came from Sahakyan
and Malmberg (2018) and Sahakyan (2019) who found pronounced
list-strength effects in recognition under divided attention. We do not
rule out the trace-editing account, so it may very well be valid. But it
may be straight-forward to explain effects of divided attention without
local traces or notions of participants ‘‘noticing’’ repetitions. A plausible
account of divided attention is that it reduces the participant’s ability
to attend to deeper features, or at least sparsely subsetted features. This
would place the divided-attention data within the regime of very short
presentation duration (Yonelinas et al., 1992) or our account of the
production effect (MacLeod et al., 2010), which do produce pronounced
upright list-strength effects (Caplan, 2023; Caplan & Guitard, 2024).

That said, although the trace-editing account has an air of plausi-
bility for spaced repetitions, it does not immediately seem amenable
to manipulations of stimulus-duration. It does not seem likely that
participants would fail to notice an extended duration and thereby
encode two traces rather than one. This leaves it unclear how local-
trace differentiation models might explain upright list-strength effects
due to strength manipulations such as reported by Ratcliff et al. (1990),
Experiment 2 with 2 s versus 6 s per item, or by Yonelinas et al.
(1992), with 50 ms versus 200 ms per item. Our attentional subsetting
account expects an upright list-strength effect in the former conditions
because the two strength levels are both within the sparse regime, and
in the latter because the two strength levels are both within the non-
sparse regime. Likewise, for the production effect, it is not obvious why
participants might occasionally store two traces for a single presenta-
tion read aloud versus read silently, whereas our attentional subsetting
perspective would anticipate an upright list-strength effect, as is the
case (MacLeod et al., 2010), because of the assumption that production
acts primarily on orthographic or phonological features, which are not

sparsely subsetted.
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Moreover, trace-editing does not explain inverted list-strength ef-
fects, first reported as significant by Ratcliff et al. (1990) and now here.
But the differentiation mechanism in REM produces an inverted list-
strength effect, which was proposed to approximately cancel out an
upright list-strength effect produced by ambiguity in the context cue.
As in most models, a strong item produces more evidence than a weak
item in favour of a hit. But differentiation means that the strong traces
also produce more evidence than weak traces against the likelihood that
a lure item was on the list. The false-alarm rate, therefore, is positively
related to the number of weak items in the list and negatively related
to the number of strong items in the list. This produces an intermediate
rate of false alarms in mixed lists, between pure-strong and pure-weak
lists. This in fact does resemble the pattern of false alarms we observed
in our two experiments. The idea that two opposite list-strength effects
coexist leaves open the idea that in cases such as Ratcliff and colleagues
(and our) manipulations of duration, there is a net dominance of the
pattern produced by differentiation. Additional experiments could test
the two accounts directly, bearing in mind that they may both coexist.

Finally, one reason list-strength effects have been so challenging
to models is that the near-null effect in recognition is found despite
robust upright list-strength effects in free recall and cued recall; this
contrasting pattern was already shown by Ratcliff et al. (1990). Briefly,
although we have not yet developed attentional subsetting theory for
recall tasks, Caplan (2023) pointed out that clear that positive list-
strength effects would generally be predicted. To summarize: the reason
sparse attentional subsetting produces near-null list-strength effects is
because in item recognition, the probe is the item, itself. Given the item,
the model produces the item-specific attentional mask (in many condi-
tions, the same mask as was produced when first studying the item,
in the case of a target). Sparseness makes overlapping features quite
rare, sidestepping most opportunities for other list items to introduce
noise into the judgement. In recall tasks, the probe is an item (cued
recall) or an instruction to recall (free recall; usually it is implied that
the participant self-cues with some sort of representation of context)
but the participant’s goal is to find an item to produce as a response.
Without a specific item in hand, there is no item-specific mask. Thus,
cueing with an attentional mask determined by general task-context
or plausibly, something like the union of all attended features during
the study phase, there will inevitably be a fan effect. What makes
the task a recall task is precisely what prevents the cue from being
item-specific. Supporting this reasoning, Caplan (2023) indeed found
sizeable positive list-strength effects even in the ‘‘sparse’’ regime when
the full vector was used as the recognition probe. Although Caplan
rejected this (in favour of the idea that probes are also masked) as a
plausible model of recognition, it demonstrates the mathematical effect
that would presumably be operating in recall. This account also implies
a near-null list-strength effect for associative recognition; although it
is associative like cued recall, because both items are presented at
test, both items could be fully masked. Indeed, associative recognition
produces negligible list-strength effects (Osth & Dennis, 2014, 2015).

Criterion tuned based on the probe, itself. Prior accounts of the strength-
based mirror effect have differed in whether they assume differentiation
based local traces or criterion shifts. Criterion-shift accounts assume
participants use their meta-knowledge of the expected distribution of
target and lure strengths to set an approximately optimal criterion
between them. Differentiation accounts assume that a stronger trace
provides both more evidence for the corresponding target probe having
been studied, and more evidence for lure probes having not been
studied, thus moving hits and false alarms in opposite directions
without invoking any metacognitive strategy. Numerous articles have
gone back and forth over whether participants in fact are able to adjust
their criterion for different types or strengths of items, and whether or
not they can make use of knowledge about expected strength distri-
butions. Attentional subsetting could be entirely compatible with both

accounts, without the need for a new mechanism. But in extending the
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formulation of the theory to produce separate estimates of hit rates and
false-alarm rates, we noticed an opportunity, provided by attentional
subsetting, to consider a third mechanism. Namely, we suggest that the
participant customizes the criterion for each item, based upon real-time
processing of the item, itself. This retains some desirable characteristics
of each of the two positions. The criterion changes from one item to
the next, but the principle by which the criterion changes may be fixed
cross an entire list (or block of test trials; see below).

That said, the idea that the criterion changes from one item to the
ext may seem at odds with numerous findings that have been viewed
s evidence that participants do not change their criterion, at least
ithin a single list (e.g., Starns et al., 2010; Verde & Rotello, 2007)
lthough they may have this ability because Verde and Rotello (2007)
ound that accuracy feedback did induce a criterion shift, as evidenced
y a change in false-alarm rates over the course of multiple test trials.
tretch and Wixted (1998) (continued by Morrell et al., 2002) tried over
everal experiments to neutralize or reverse word-frequency effects on
ecognition by strengthening (with spaced repetitions) high-frequency
tems, and then cueing participants as to the strength/frequency during
he recognition probes. Participants were apparently unable or unwill-
ng to adjust their criterion, given those cues. However, in separate lists
e.g., different in strength), there was support for a change in criterion.
orroborating findings were reported by Singer and Wixted (2006).

n lists composed of multiple categories, where some categories were
tudied in one list and the other categories in a list presented after a
elay, making it more recent. Recognition probes were intermixed from
he two lists. The authors thought that the category structure would
nable participants to adjust their criterion based on meta-knowledge
f the recency of the category, but findings were inconsistent with
articipants making use of that knowledge when the delay was 20
r 40 minutes. When the delay between the two lists was two days,
inally there was evidence of participants using a more lenient criterion
or the less recent categories, producing more false alarms. This result
ay be evidence of participants scaling their criterion to account

or forgetting, as we speculate about in the future-directions section.
owever, the lack of adjustment of the criterion for shorter but still

ubstantial delays (20 and 40 minutes) suggests that such scaling may
ften not vary across a set of recognition probes of a single list. Hicks
nd Starns (2014) also found little effect of strength-cueing or even
erformance feedback, but blocking test trials by strength did seem to
nduce criterion shifts (see also Verde & Rotello, 2007). This suggests
ome adaptation of the participant to their experience with test probes,
lthough apparently not in response to explicit information about
trength or performance. In contrast, Koop et al. (2019) found a reliable
trength-based mirror effect only after a few trials, and argued that this
s not long enough to expect participants to adjust their criterion.

In our account, the criterion depends on the number of features
f the current probe that are attended. This is presumably readily
ccessible information. If the criterion depends primarily on the probe,
tself, and how the participant typically processes it, that would ex-
lain why different stimulus classes can have systematically different
alse-alarm rates, but also why within a list, across a set of probes,
he criterion appears relatively invariant (with the exception of the
locked strengths of Hicks and Starns 2014). However, from one list
o another, assumptions about the task or the contents of memory
ould change. We have already proposed that in a pure list of strong
long-duration) items, participants figure out that they have the luxury
f being able to disregard superficial features such as orthography or
honology, which would otherwise introduce a lot of feature overlap
roducing similarity-based confusion. Selective attention in a pure-
trong list thus benefits from this meta-knowledge, and results in fewer
eatures being evaluated — although those features are more diagnostic
ecause they dwell within a high-dimensional feature space and are
hus sparse. The criterion follows from that, and the false-alarm rate

educes a lot because the shallow features that produce confusion due

22 
to feature overlap are disregarded. So in our view, the way in which
the criterion is calculated may not change, which might explain the
apparent invariance of ‘‘the’’ criterion (although we presume a different
criterion for each probe item). Rather, selective attention influences the
set of features attended on a probe item, which can then produce a
downstream effect on the criterion. We think this is broadly consistent
with the findings we just summarized. In other words, the criterion
adapts or varies from one probe to the next, but this is based on
selective attention; factors that influence selective attention, which
should usually be invariant over the course of a list, may influence the
set of attended features, and by that route, potentially influence the
final criterion used.

Finally, consider that for lists of mixed strengths, there is a distinc-
tion between a strong and a weak target, but lures are not distinguished
by strength, because strength is determined by processing of the stim-
ulus during the study phase. For a given probe item, the participant
must select the criterion without knowledge of the possible strength.
For the nested model, where the 𝐷 feature subspace includes the 𝑆
feature subspace, Caplan (2023) assumed that when testing mixed lists,
the probe item would be based on the 𝐷 condition, the greater of the
two. This leads to a prediction of no difference in hit rate for strong
items in mixed versus pure lists, but a reduction in hit rate for weak
items. The false-alarm rate should be the same as for pure-strong lists.
If some 𝑆 features can be disregarded, the hit rate should still change
but far less. This does, in fact, resemble our findings (Tables 1 and 2
and Fig. 5).

Response times and access speed for shallow versus deep features. A critical
assumption of our model implementation of stimulus-duration was
that the shallower, more fully subsetted features are accessed earlier
than the deeper, more sparsely subsetted features. Paired with our
assumption that probe stimuli are processed largely the same as study
items, this led us to expect a speed–accuracy tradeoff, where more
processing time, and thus longer response time, should result in greater
accuracy when judgements are based more often on those deeper
features. Ratcliff and Murdock (1976) reported this kind of effect in
a between-subjects manipulation of stimulus duration. In our data,
response times were longer for many probe types following pure-strong
than pure-weak lists (note that for a manipulation of strength via
spaced repetitions, Criss, 2010 found response times were generally
faster for pure-strong than pure-weak lists, so repetition may function
differently, perhaps if shallow features cannot be disregarded, as we
suggested above). The main exception was response times for hits in
Experiment 2, which was equivalent for pure-strong and pure-weak
lists, which suggests some additional nuance. Adding to the model a
formal process to produce response times, such as the diffusion model
(like Cox, 2024; Criss, 2010; Osth et al., 2017) may shed further light
on this. And of course, the response-time effects may be well explained
in numerous other ways, so although we view them as supportive of our
theoretical account of stimulus-duration, they might also be unrelated
to attentional subsetting.

Mirror effects based on stimulus class and at the item level. In the in-
troduction, we cited Neath et al. (2021) to justify a focus on the
strength-based mirror effect, setting aside the older findings of mirror
effects when stimulus properties such as word-frequency were manip-
ulated. This was because Neath et al. (2021) found that when they
put more effort than previous researchers into controlling stimulus
characteristics that were not of interest, manipulations of single item-
properties affected predominantly the hit rate or predominantly the
false alarm rate but not both. The main lesson from their findings
is that in manipulations that compare two sets of stimuli, the mirror
effect is often mimicked by two separable effects that happened to both
differentiate the two stimulus sets. This was reinforced by our finding
of a null mirror effect at the item-level, corroborating similar reports

by Cortese et al. (2010, 2017).
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The Neath et al. (2021) experiments would suggest that there could
be two separable factors influencing primarily hit rate or primarily
false alarm rate, respectively. In our formulation, hit rate is primarily
influenced by 𝑛𝐶,𝑖 (Fig. 7). Because 𝜃𝐶,𝑖 is proportional to 𝑛𝐶,𝑖, items

ith a greater number of attended features in the test phase will have
reater strengths, which will be partly (but not entirely) offset by the
hreshold being greater, increasing the hit rate for the item.

False alarms are produced by accidental matches of attended fea-
ures of the probe item to features stored in memory — i.e., attended
ecause of the presence of other items. If attentional subsetting were
trictly sparse, this would never happen — there would be no false
larms at all, thus no mirror effect. So if items are processed primarily
ithin a large, sparsely subsetted feature space, we expect to see

ome items with a higher hit rate than others, but with no associated
eduction in false-alarms — because the false-alarm rate is virtually
ero. In most recognition experiments (presumably tuned based on ex-
erimenter’s intuition, precedent, and the desire to calibrate the task to
chieve sensitivity), participants do make false alarms. If the attentional
ubsetting framework is valid, then the fact that participants produce
alse alarms at any reasonable rate suggests that features common to
he lure items do get encoded. Encoding of features attended in a lure
tem will happen when there are common features across the stimuli
nd those features are attended (subsetted). This will occur frequently
hen the attended feature space is relatively low-dimensional, so that

ubsetting cannot be sparse, such as with shallow encoding conditions
r short stimulus duration during study. Matching features to lure items
ill also be more prevalent for stimuli that have more features in

ommon with other words in the stimulus pool, which is how word fre-
uency has been modelled (e.g., Criss & Shiffrin, 2004; Malmberg et al.,
002; Shiffrin & Steyvers, 1997). If other factors are controlled, high-
requency items would be expected to produce more false alarms, with
ittle effect on hit rate, which is the pattern reported by Neath et al.
2021) in their third experiment. When uncontrolled for other stimulus
roperties, their fourth experiment replicating a classic manipulation of
ord-frequency produced a mirror effect, which we would presume is
ecause an uncontrolled factor resulted in greater 𝑛𝐶,𝑖 for items within
he ‘‘high-frequency’’ set compared to the ‘‘low-frequency’’ set.

When we treated our two experiments roughly as replications of
ach other, we found that there was indeed quite a lot of replication of
oth hit rate and false-alarm rate across items, between experiments,
eplicating verbal recognition studies, resonating with what has been
ound in both hit rate and false-alarm rate of continuous recognition of
aces and complex visual images (Bainbridge, 2020; Bainbridge et al.,
013; Bainbridge & Rissman, 2017; Isola et al., 2011). That suggests
hat in tasks similar to these, item-difficulty effects are strong relative
o subject-variability. Especially the reproducibility of the pattern of
alse-alarms across words aligns well with our assumption that par-
icipants tune their criterion based on the current probe word, so
hat the criterion effectively changes from one word to the next. The
emaining item-level analyses weakened the argument that a single
actor influences both hit and false-alarm rates in tandem, and that
trength manipulations also influence hits differently than false-alarms
cross items.

uture direction: forgetting and scaling the criterion by an estimate of
he dimensionality of the memory. In deriving the mirror effect, we
voided making use of any meta-knowledge of the memory, itself, but
n practice, some knowledge of the characteristics of the memory would
e necessary to adjust the criterion effectively. There is evidence that
articipants have some knowledge of ensemble properties of stimuli
e.g., Dubé et al., 2019; Tong & Dubé, 2022a, 2022b; Tong et al.,
019). For simplicity, we have omitted forgetting from the model.
orgetting would have the tendency to either reduce the amplitude
f each encoding term in the memory (multiplication by a scalar)
r potentially the degradation of individual features, so the number

f encoded features of any given item would be effectively reduced.

23 
ithout adjusting the criterion to account for forgetting, the current
euristic would eventually place the criterion too high, leading to a
igh (or 100%) rate of misses. Movement in this direction was seen
y Singer and Wixted (2006) in probe sets mixed from one list just
tudied and a second list studied 20 or 40 minutes prior, where lists
ere composed of different categories. For any non-negligible delay,

he heuristic would need to be adjusted downward to reflect this, but
his might be achieved simply by a scalar factor, not demanding any
etailed knowledge of the forms of the expected strength distributions.
n their last two experiments, Singer and Wixted (2006) used a delay
f 48 h and found evidence for a criterion adjustment depending on
ist-recency. So for delays up to tens of minutes, participants may not
ubstantially adjust their criterion, but for long enough delays, they
vidently do. In the current formalism, there are two ways in which
orgetting might perturb the memory of a list.

First, suppose that forgetting results simply in a gain factor, scaling
own the overall length of the memory vector,

𝑇 = 𝜌(𝑇 )𝐦, (8)

where 𝜌(𝑇 ) < 1 and is a monotonic function decreasing with increasing
study–test time, 𝑇 . Scaling the criterion the same way,

𝜃𝑇 = 𝜌(𝑇 )𝜃 = 𝜌(𝑇 ) 1
2
𝑛𝐶,𝑖

𝑛
(9)

will compensate for this, placing the criterion midway between the
expected mean strength for targets and lures, taking into account
forgetting. Moreover, 𝜌(𝑇 ) can be derived with a simple calculation
from 𝐦𝑇 . Without further assumptions, the full dimensionality of the
memory is 𝑛1 = 𝑛𝐶 for one item (where now 𝑛𝐶 = E

[

𝑛𝐶,𝑖
]

, the average
across items) and about 𝑛2 = 2𝑛𝐶 − 𝑛2𝐶∕𝑛 for 2 items. This iterates, such
that 𝑛𝑚 = 𝑚𝑛𝐶 − 𝑛𝑚−1𝑛𝐶∕𝑛. In the sparse limit (small 𝑛𝐶∕𝑛), 𝑛𝐿 = 𝐿𝑛𝐶 ,
linear in 𝑛𝐶 . But the more we deviate from sparseness, the more overlap
there will be in attentional masks across items, and the lower 𝑛𝑚 will
be. Thus, 𝑛𝐿 is a sublinear function of 𝐿 and of 𝑛𝐶 . If the participant
has a reasonable estimate of 𝐿, and of 𝑛𝐶 (using the 𝑛𝐶,𝑖 for the current
probe item), then 𝜌𝑇 ∼ (𝑛𝐿∕𝐿)∕𝑛𝐶,𝑖, where 𝑛𝐿 is the number of non-zero
(attended) features in the memory.

Second, suppose that forgetting results not in a scaling down of 𝐦,
but of zeroing out of features with some probability, 𝛱𝑇 , dependent
on study–test time, 𝑇 . In this scenario, 𝑛𝐿 ≃ (1 −𝛱𝑇 )𝐿𝑛𝐶 . Thus, if the
participant has access to an estimate of the number of attended features
in the memory, that becomes the scale factor.

Conclusion. In sum, the attentional subsetting account of manipula-
tions of duration anticipated (retroactively) an inverted list-strength
effect. This was in fact a feature of the first experiment in the long line
of results viewed as ‘‘null’’ list-strength effects (Experiment 1 of Ratcliff
et al., 1990). We reproduced the inverted list-strength effect in a
replication of that experiment and a follow-up experiment designed to
increase the effectiveness of the duration manipulation, suggesting it is
not a statistical accident but needs explaining. This provides support for
our model account. We extended attentional subsetting theory to model
hits and false alarms separately, introducing the idea that participants
customize their response criterion based on the number of features
extracted from a probe stimulus. This avoids past criticisms of criterion-
shift account of mirror effects, because the participant does not need
to have unrealistic levels of knowledge of the expected distributions
of matching strengths. And yet, the item-wise customization of the
criterion can explain why it has appeared that participants must flexibly
adapt their criterion (or local-trace differentiation mechanisms are at
play). Finally, our theory of duration draws direct attention to how
the dimensionality of the attended feature space may unfold over the
course of processing of a stimulus from dense to sparse subsetting. This
account is compatible with a range of models that assume a vector
representation of items: The attentional mask can be applied by elemen-
twise multiplication, to most vector representations with similar effect.
Then the subsequent computations applied to the vector (e.g., echo
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strength for MINERVA 2 or likelihood ratio for REM) can be carried
out as usual. The threshold would need to be adapted to align with
the nonlinearities of nonlinear matching functions. It will therefore
be interesting, in the future, to investigate how attentional subsetting
might be productively combined with current well developed and more
complete local trace and global matching models.
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ppendix. Preliminary models

To increase the coverage of the theory, we derive hit and false alarm
ates for two variants of the model as formulated by Caplan (2023)
ith potential application to experimental manipulations other than

timulus duration, such as two different processing tasks. In the first
ariant, the probe consists of the full lexicon vector (length 𝑛). In the

second, attentional subsetting is applied to the recognition probe.

Preliminary model 1: no attentional subsetting of the probe

Using solutions from Caplan (2023), we start with the simplest
case, where we (unrealistically) assume the full vector representation
of the probe is matched against memory. Each item stored in memory
contributes a term to the variances. We denote the variance due to the
dot produce a target item with itself 𝑉𝑥𝑥, and the variance due to the
dot product of the probe item (target or lure) with each other list item
𝑉𝑥𝑦. We find

𝑉𝑥𝑥 = 2𝑛𝐶∕𝑛2 (A.1)
𝑉𝑥𝑦 = 𝑛𝐶∕𝑛2, 𝑦 ≠ 𝑥. (A.2)

Targets will be subject to one 𝑉𝑥𝑥 term (itself) and 𝐿 − 1 𝑉𝑥𝑦 terms
all other studied items). Lures will be subject to 𝐿 𝑉𝑥𝑦 terms since no
tudied item is an exact match. The expressions for the variances are
hus
2
target = 𝑉𝑥𝑥 + (𝐿 − 1)𝑉𝑥𝑦 (A.3)

𝜎2lure = 𝐿𝑉𝑥𝑦. (A.4)

hus, 𝜎2target = 2𝑛𝐶∕𝑛2+(𝐿−1)𝑛𝐶∕𝑛2 = (𝐿+1)𝑛𝐶∕𝑛2 and 𝜎2lure = 𝐿𝑛𝐶∕𝑛2.
or large 𝐿, the variances approach equality. The numerator within the
rf() function for hits is 𝑛𝐶∕2𝑛− 𝑛𝐶∕𝑛 = −𝑛𝐶∕2𝑛 and for lures is simply
𝑐∕2𝑛, and note that 𝑛 in the numerator and denominator of the fraction
ancel.

𝑃 (hit) = 1 −

(

0.5 + 0.5 erf

(

− 1
√

√

𝑛𝐶
))

(A.5)

2 2 𝐿 + 1

24 
𝑃 (false alarm) = 1 −

(

0.5 + 0.5 erf

(

1

2
√

2

√

𝑛𝐶
𝐿

))

(A.6)

The absence of 𝑛 in these expressions offers some realism to the
odel; the full set of knowledge (full vector representation of an

tem) is immaterial to hit versus false-alarm rates. What matters is the
imensionality of the attentional masks, as well as list length.

Importantly, without differentiation and without knowledge of the
xpected distributions of strengths, this produces a mirror effect. These
losed-form expressions show with 𝜃 chosen as the midpoint between
he expected matching strength for lures (0) and that for the probe
which we here are assuming is determined by the participant’s own
mmediate meta-knowledge of the approximate number of attended
eatures of the probe), that the chief difference between the hit rate and
he false alarm rate is the sign of the expression within the erf(). Given
hat erf(𝑥) = −erf(𝑥), as 𝐿 becomes arbitrarily large, as we vary 𝑛𝐶 ,
𝑃 (false alarm) will move nearly symmetrically in the opposite direction
o 𝑃 (hit), a nearly symmetric mirror effect (Fig. A.1a). For small 𝐿, the
𝐿 + 1 versus

√

𝐿 in the denominator means that a given change in
𝑛𝐶 will produce a larger shift in the 𝑃 (false alarm) than in 𝑃 (hit), a
opsided mirror effect. If we add realism by assuming participants either
nder-estimate or over-estimate the number of features they attend, the
irror effect can easily become more asymmetric, resembling published
ata.

reliminary model 2: masked probe

The second model considered by Caplan (2023) adds realism by as-
uming that the probe is attentionally subsetted in the identical manner
s it would have been had it been an item presented for study. Bearing
n mind that we are considering pure lists only (for the purposes of the
irror effect), it is plausible to presume the participant processes the
robe stimulus in the same manner as they had been doing generally
uring the study phase. This also suggests how the participant might
ave more or less direct access to 𝑛𝐶 . Having processed a probe item,
he participant might (a) have conscious access to the number of
eatures extracted from the stimulus (with expectation equal to 𝑛𝐶 )
r (b) have the ability to compute 𝜈 = ‖𝐰𝐶,𝑥 ⊗ 𝐟𝑥‖, where 𝐟𝑥 is the
robe item, 𝐰𝐶,𝑥 is the item-specific mask in condition 𝐶, and ‖ ⋅ ‖
s the norm (vector-length). Because E [𝜈] = 𝑛𝐶∕𝑛, if 𝜃 = 𝜈∕2, overall
his will result in 𝜃 being set midway between the expected target and
ure distributions. If participants derive 𝜃 in real-time for each probe,
his would optimize the criterion at the item-level, and might influence
ccuracy to the extent that 𝑛𝐶 varies across items.

The masked model produced a (near-)null list-strength effect when
𝐶 was low enough relative to 𝑛 to produce sparse subsets. This was
ecause the masked probe was unlikely to overlap with other list items.
s 𝑛𝐶 increased, mask overlap was more probable, and list-strength
ffects became large. The proposed criterion, midway between 𝜇target
nd 𝜇lure, is still 𝜃𝐶 = 𝑛𝐶∕2𝑛, because the mean matching strengths are
dentical for the masked probe as for the full probe. Only the variances
eed to be adjusted for the variance due to cross-terms. These cross-
erms are non-zero only where there is chance overlap between the
ask of the probe with the mask of other items, 𝛺𝐶𝐶 = 𝑛2𝐶∕𝑛 features.
ach non-target list item contributes 𝑉𝑥𝑦 = 𝑛2𝐶∕𝑛

3 to the variance.
argets are subject to 𝐿− 1 of these (plus variance due to the encoded
arget item, itself) and lures are subject to the full 𝐿 of these. Thus:

2
target =

2𝑛𝐶
𝑛2

+ (𝐿 − 1)
𝑛2𝐶
𝑛3

(A.7)

𝜎2lure = 𝐿
𝑛2𝐶
𝑛3

. (A.8)

Substituting these expressions for the means and variances into
Eqs. (6) and (7):

𝑃 (hit) = 1 −

(

0.5 + 0.5 erf

(

−
√

𝑛𝐶
√

))

(A.9)

2 2(2 + (𝐿 − 1)𝑛𝐶∕𝑛)
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Fig. A.1. Hit rate (blue) and false alarm rate (red) as a function of the number of item features subsetted by selective attention (𝑛𝐶 ), for list lengths varying from 𝐿 = 5 items
(thinnest line) to 𝐿 = 100 items (thickest line), in steps of 5 items. (a) Full-probe model. (b) Masked-probe model. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)
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C

C

C

(false alarm) = 1 −

(

0.5 + 0.5 erf

(
√

𝑛𝐶

2
√

2
√

𝐿𝑛𝐶∕𝑛

))

= 1 −

(

0.5 + 0.5 erf

(

1

2
√

2
√

𝐿∕𝑛

))

. (A.10)

The
√

𝑛𝐶 in the numerator and denominator cancel in the expression
or false alarms. In other words, although hit rate increases with in-
reasing 𝑛𝐶 , the false alarm rate is invariant in 𝑛𝐶 (although it increases
ith 𝐿 and decreases with 𝑛), so we have lost the mirror effect.

Interestingly, consider the effect of list length. The false-alarm rate
s influenced by

√

𝐿 in the denominator of the expression inside the
rf (). For the hit rate, (𝐿 − 1) multiplies 𝑛𝐶∕𝑛 but is then added to

the number 2. If we vary 𝐿 but hold 𝑛𝐶 fixed, recalling that our
assumption is that in general, 𝑛𝐶 ≪ 𝑛, (𝐿 − 1)𝑛𝐶∕𝑛 ≪ 2 so varying
𝐿 will have negligible effect. The list-length effect is thus expected to
have a substantial influence on false-alarms with very little effect on
hits. This is what Ratcliff et al. (1990) found in their paradigm with
lists composed of many categories, where ‘‘list-length’’ was effectively
manipulated by varying the number of items within a given category. A
strength manipulation (via spaced repetition) produced a large shift in
hit rate with little effect on false-alarm rate, also resembling this model
variant (the dependence on 𝑛𝐶 in Fig. A.1b).
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