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OPTIMAL DESIGNS FOR THREE-DIMENSIONAL
SHAPE ANALYSIS WITH SPHERICAL
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We determine optimal designs for some regression models which are
frequently used for describing three-dimensional shapes. These models are
based on a Fourier expansion of a function defined on the unit sphere in terms
of spherical harmonic basis functions. In particular, it is demonstrated that the
uniform distribution on the sphere is optimal with respect to all �p criteria
proposed by Kiefer in 1974 and also optimal with respect to a criterion which
maximizes a p mean of the r smallest eigenvalues of the variance–covariance
matrix. This criterion is related to principal component analysis, which is
the common tool for analyzing this type of image data. Moreover, discrete
designs on the sphere are derived, which yield the same information matrix
in the spherical harmonic regression model as the uniform distribution and
are therefore directly implementable in practice. It is demonstrated that the
new designs are substantially more efficient than the commonly used designs
in three-dimensional shape analysis.

1. Introduction. Over the last decade, tools for acquiring and visualizing
three-dimensional (3D) models have become integral components of data process-
ing in many fields, including medicine, chemistry, architecture, agriculture and bi-
ology. Volumetric shape analysis permits an evalutation of the actual structures
that are implicitly represented in 3D image data. For the analysis, description
and comparison of shapes of various structures, shape descriptors, which are able
to handle very different shapes and to represent their global and local features,
are of increasing interest (see, e.g., Brechbühler, Gerig and Kübler [4], Novotni
and Klein [14], Székely, Kelemen, Brechbühler and Gerig [23], Ding, Nesumi,
Takano and Ukai [5], Funkhouser, Min, Kazhdan, Chen, Halderman, Dobkin and
Jacobs [7] and Kazhdan, Funkhouser and Rusinkiewicz [11], among many oth-
ers). Spherical harmonic shape descriptors usually describe the surface in terms of
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a relatively small number of coefficients of a spherical harmonic expansion of the
radius as a function on the unit sphere (see, e.g., [5] or [4]), that is,

r(θ,φ) =
∞∑

�=0

�∑
m=−�

cm
� Ym

� (θ,φ),(1.1)

where θ ∈ [0, π], φ ∈ (−π,π ], the quantities

cm
� = 1

4π

∫ π

0

∫ π

−π
r(θ,φ)Ym

� (θ,φ) dφ sin θ dθ(1.2)

are the usual “Fourier” coefficients and

{Ym
� (θ,φ)|m ∈ {−�,−� + 1, . . . , �};� ∈ N0}

is a complete orthonormal basis on the unit sphere. Let ri = r(θi, φi) denote
the observed radius of the 3D shape at polar angle θi and azimuthal angle φi

[in other words, the corresponding point of the shape has spherical coordinates
(ri sin θi cosφi, ri sin θi sinφi, ri cos θi)

T ] and assume that data

{(ri, θi, φi)|i = 1, . . . , n}
are available for one object. Usually a truncated expansion of order d is applied
as an approximation of (1.1), where the coefficients cm

� are determined by the least
squares critierion

min
cm
�

{
n∑

i=1

(
ri −

d∑
�=0

�∑
m=−�

cm
� Ym

� (θi, φi)

)2}
(1.3)

and the estimated coefficients in this expansion (appropriately normalized) are then
used for describing and analyzing the 3D shapes. For this purpose typical tools
from multivariate statistics (cluster, discriminant or principal component analysis)
are applied (see Ding, Nesumi, Takano and Ukai [5], Kazhdan, Funkhouser and
Rusinkiewicz [11] and Kelemen, Székely and Gerig [12], among many others).

A common experimental design for this situation is a uniform distribution on
the rectangle [0, π] × (−π,π ] realized by a grid or a uniform design that takes
observations on several circles with equal distance on the z axis (see, e.g., [5]). In
the literature on shape analysis these designs are mainly motivated by their easy
implementation. If the grid is fine enough or a sufficiently large number of cir-
cles on the unit sphere are used, the matrix BT B of the least squares estimate
ĉ = (BT B)−1BT r approximates a diagonal matrix, which simplifies the numer-
ical calculation in the statistical analysis. Here r = (r1, . . . , rn) is the vector of
measured radii and

B = (
Ym

� (θi, φi)
)�,m
i

is the design matrix corresponding to the least squares problem (1.3) (see [4]).
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In the present paper we consider the problem of finding optimal designs for 3D
shape analysis based on spherical harmonic descriptors. In Section 2 we present
some more details on spherical harmonic descriptors and basic results on the
theory of optimal experimental design. In the same section we also demonstrate
that the uniform distribution on the unit sphere is optimal with respect to any of
Kiefer’s [13] �p criteria if the interest of the experimenter is the estimation of the
complete vector

c = (c0
0, c

−1
1 , c0

1, c
1
1, . . . , c

−d
d )T ∈ R

(d+1)2

or a certain subset of the parameters. It is also shown that for any t ≤ (d + 1)2

this design maximizes the pth mean of the r largest eigenvalues of the variance–
covariance matrix (BT B)−1. Therefore the uniform distribution on the sphere is
particularly efficient for principal component analysis, which is the main tool for
summarizing the information contained in the spherical harmonic coefficients ob-
tained by (1.3) (see, e.g., [5] or [11]). Because this design is continuous with den-
sity 1

4π
sin θ dθ dφ, it is not directly implementable in practice. Therefore, for a

finite sample size we determine in Section 3 discrete designs which give the same
information matrix as the uniform distribution on the sphere. For this reason these
designs are also optimal with respect to Kiefer’s [13] �p criteria, and optimal with
respect to a criterion that maximizes a p mean of the r smallest eigenvalues of the
information matrix and is related to principal component analysis. In Section 4 we
present several examples which illustrate the advantages of our approach, and de-
termine optimal uniform designs which take in each direction only one observation
and are for this reason particularly attractive to practitioners. We also reanalyze a
design used by Ding, Nesumi, Takano and Ukai [5] for principal component analy-
sis and demonstrate that the designs derived in the present paper are substantially
more efficient. Finally, some conclusions and directions for future research are
mentioned in Section 5, while more technical details are given in the Appendix.

2. Spherical harmonic descriptors and optimal design. An orthogonal sys-
tem {

Ym
� (θ,φ)|� ∈ N0;m ∈ {−�,−� + 1, . . . , �}}

of functions on the unit sphere satisfies

1

4π

∫ π

0

∫ π

−π
Ym

� (θ,φ)Ym′
�′ (θ,φ) dφ sin θ dθ = 0(2.1)

whenever (m, �) �= (m′, �′). The common system used in shape analysis (see [4]
or [5]) is obtained by the normalization

1

4π

∫ π

0

∫ π

−π

(
Ym

� (θ,φ)
)2

dφ sin θ dθ = 1
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and given by the spherical harmonic functions

Y 0
n (θ,φ) = √

2n + 1P 0
n (cos θ), n ∈ N0,

Ym
n (θ,φ) =

√
2(2n + 1)

(n − m)!
(n + m)!P

m
n (cos θ) cos(mφ),

m = 0, . . . , n;n ∈ N,(2.2)

Y−m
n (θ,φ) =

√
2(2n + 1)

(n + m)!
(n − m)!P

−m
n (cos θ) sin(mφ),

m = −n, . . . ,−1;n ∈ N,

where P m
n (x) is the mth associated Legendre function of degree n satisfying the

differential equation

(1 − x2)P ′′(x) − 2xP ′(x) +
{
n(n + 1) − m2

1 − x2

}
P(x) = 0.(2.3)

It is well known (see [1], Chapter 9) that these functions can be represented as

P m
n (x) = (−1)m

(2m)!
2nm! (1 − x2)m/2C

(m+1/2)
n−m (x),(2.4)

where C
(α)
k (x) is the kth ultraspherical polynomial orthogonal with respect to the

measure (1 − x2)α−1/2 dx (see [22]). Note also that P 0
n (x) is the nth Legendre

polynomial Pn(x) orthogonal with respect to the Lebesgue measure on the inter-
val [−1,1]. Because orthogonal polynomials can be calculated recursively, this
representation allows a fast computation of the functions Ym

� , and the first four
spherical harmonic functions corresponding to the case d = 1 are given by

Y 0
0 (θ,φ) = 1, Y 0

1 (θ,φ) = √
3 cos θ,

(2.5)
Y−1

1 (θ,φ) = √
3 sin θ sinφ, Y 1

1 (θ,φ) = √
3 sin θ cosφ.

Figures 1 and 2 show the spherical harmonic descriptors(
Ym

� (θ,φ) sin θ cosφ,Ym
� (θ,φ) sin θ sinφ,Ym

� (θ,φ) cos θ
)T

, m = −�, . . . , �,

for � = 0,1,2,3, when (θ,φ) varies in the rectangle [0, π] × (−π,π ].
Consider the regression model corresponding to the least squares problem (1.3),

E[Y |θ,φ] = cT fd(θ,φ), Var[Y |θ,φ] = σ 2 > 0,(2.6)

where

fd(θ,φ) = (
Y 0

0 (θ,φ), Y−1
1 (θ,φ), Y 0

1 (θ,φ),
(2.7)

Y 1
1 (θ,φ), . . . , Y−d

d (θ,φ), . . . , Y d
d (θ,φ)

)T ∈ R
(d+1)2



2762 H. DETTE, V. B. MELAS AND A. PEPELYSHEV

FIG. 1. Spherical harmonic descriptors (Ym
� (θ,φ) sin θ cosφ,Ym

� (θ,φ) sin θ sinφ,Ym
� (θ,φ) ×

cos θ)T for m = −�, . . . , �, � = 0,1,2.

is the vector of spherical harmonic functions of order d and

c = (c0
0, c

−1
1 , c0

1, c
1
1, . . . , c

−d
d , . . . , cd

d )T ∈ R
(d+1)2

is the corresponding vector of parameters. Note that (d + 1)2 spherical harmonic
functions appear in the model (2.6). An approximate design is a probability mea-
sure on the set [0, π] × (−π,π ]. For a probability measure with finite support, the
support points, say zi = (θi, φi), determine the points on the sphere where the ra-
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FIG. 2. Spherical harmonic descriptors (Ym
� (θ,φ) sin θ cosφ,Ym

� (θ,φ) sin θ sinφ,Ym
� (θ,φ) ×

cos θ)T for m = −�, . . . , �, � = 3.

dius of the 3D shape is observed, and the corresponding weights, say wi, give the
relative proportion of total observations taken in a particular direction. For a given
design ξ with finite support, the covariance matrix of the least squares estimate for
the vector c is approximately proportional to the information matrix

M(ξ) =
∫ π

−π

∫ π

0
f (θ,φ)f T (θ,φ) dξ(θ,φ)(2.8)

(this is essentially the matrix BT B mentioned in the Introduction), and an opti-
mal approximate design maximizes an appropriate function of this matrix. There
are numerous criteria proposed in the literature that can be used to discriminate
between competing designs (see [19] or [16]), and we will restrict ourselves to
the famous family of �p criteria introduced by Kiefer [13], and a new optimality
criterion which has not been considered so far in the literature and is related to
principal component analysis.

To be precise, let K ∈ R
(d+1)2×s denote a given matrix of rank s ≤ (d + 1)2

and assume that the main interest of the experimenter is in the estimation of s

linear combinations KT c. If n observations are taken according to an approximate
design (possibly by applying an appropriate rounding procedure to a design with
finite support or by using a discretization of a continuous design; see [17]), then
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the covariance matrix of the least squares estimate for KT c is approximately given
by

σ 2

n

(
KT M−(ξ)K

)
,

where A− denotes a generalized inverse of the matrix A and we assume that the
linear combinations KT c are estimable by the design ξ, that is,

range(K) ⊂ range(M(ξ));
see [16]. Let −∞ ≤ p < 1. Following [13], we call the design ξ∗ �p-optimal for
estimating the linear combinations KT c if ξ∗ maximizes the expression

�p(ξ) = (
tr

(
KT M−(ξ)K

)−p)1/p(2.9)

among all designs for which KT c is estimable. If K = I(d+1)2 is the identity matrix
of order (d + 1)2 × (d + 1)2, then ξ∗ is briefly called �p-optimal. Note that the
cases p = 0 and p = −∞ correspond to the frequently used D- and E-optimality
criteria, that is,

�0(ξ) = det
(
KT M−(ξ)K

)−1
, �−∞(ξ) = λmin

((
KT M−(ξ)K

)−1)
,(2.10)

while the A criterion is obtained for the choice p = −1, that is,

�−1(ξ) = tr
(
KT M−(ξ)K

)−1
.(2.11)

In the following discussion, we are interested in a design that is particularly effi-
cient for the estimation of the coefficients corresponding to the (2k + 1) spherical
harmonic functions

Y−k
k , Y−k+1

k , . . . , Y k
k

of the vector of regression functions defined in (2.7), where k ∈ {0, . . . , d} denotes
a given “level of resolution.” For this, define 0k,s as the (2k + 1)× (2s + 1) matrix
with all entries equal to 0, let q ∈ N0, consider the indices 0 ≤ k0 < k1 < k2 <

· · · < kq ≤ d and define the matrix

KT = KT
k0,...,kq

= (Ki,j )
j=0,...,d
i=0,...,q(2.12)

by

Ki,j =
{

0ki ,j , if j �= ki,

I2ki+1, if j = k,
(2.13)

(i = 0, . . . , q; j = 0, . . . , d). Note that K ∈ R
(d+1)2×s , where s = ∑q

i=0(2ki + 1),
and that KT c gives the vector with coefficients{

cm
k�

|m ∈ {−k�,−k� + 1, . . . , k�};� = 0, . . . , q
}
.(2.14)
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Two cases are of particular interest here and are therefore mentioned separately. If
q = d, then

KT
0,...,d = I(d+1)2(2.15)

and precise estimation of the full vector of parameters is the main goal for the con-
struction of the optimal design. On the other hand, if q = 0, only the coefficients
corresponding to the (2k0 + 1) spherical harmonic functions Y

−k0
k0

, . . . , Y
k0
k0

are of
interest and the corresponding matrix is given by

KT
k0

= [
0k0,0

... · · · ...0k0,k0−1
...I2k0+1

... · · · ...0k0,d

] ∈ R
(2k0+1)×(d+1)2

.(2.16)

Note that the general matrix defined by (2.12) consists of (q + 1) (block) rows of
the form (2.16). The following result shows that for matrices of this form, the �p

criteria defined in (2.9) are maximized by the uniform distribution on the sphere
independently of p ∈ [−∞,1).

THEOREM 2.1. Let p ∈ [−∞,1), let 0 ≤ k0 < · · · < kq ≤ d be given indices
and denote K = Kk0,...,kq as the matrix defined by (2.12) and (2.13). A �p-optimal
design ξ∗ for estimating the linear combinations KT c in the spherical harmonic
regression model (2.6) is given by the uniform distribution on the sphere, that is,

ξ∗(dθ, dφ) = 1

4π
sin θ dθ dφ.(2.17)

Moreover, the corresponding information matrix in the spherical harmonic regres-
sion model is given by M(ξ∗) = I(2d+1)2 .

PROOF. Let ξ∗ denote the design corresponding to the density (2.17). Then,
due to the orthonormality of the spherical harmonic functions Ym

� , it follows that

M(ξ∗) =
(∫ π

0

∫ π

−π
Ym

� (θ,φ)Ym′
�′ (θ,φ) dφ sin θ

dθ

4π

)
�,�′,m′,m

= I(2d+1)2 .

Assume for the moment that p > −∞. According to Theorem 7.20 in [16], we
obtain that the measure ξ∗ is �p-optimal if and only if the inequality

f T
d (θ,φ)K(KT K)−p−1KT f (θ,φ) ≤ tr(KT K)−p(2.18)

holds for all θ ∈ [0, π] and φ ∈ (−π,π ]. Now the special structure of the matrix K

defined in (2.12) and (2.13) yields

KT K = Is,

where s = ∑q
�=0(2k� + 1). Observing the definition of the vector fd(θ,φ) in (2.7)



2766 H. DETTE, V. B. MELAS AND A. PEPELYSHEV

and again the definition of the matrix K , (2.18) reduces to

s ≥
q∑

�=0

k�∑
m=−k�

(
Ym

k�
(θ,φ)

)2

(2.19)

=
q∑

�=0

(2k� + 1)

{(
P 0

� (cos θ)
)2 + 2

k�∑
m=1

(k� − m)!
(k� + m)!

(
P m

k�
(cos θ)

)2
}

for all θ ∈ [0, π] and φ ∈ (−π,π ], where we have used the representation (2.2) and
the trigonometric identity cos2(mφ)+ sin2(mφ) = 1 for the last equality. From the
identity

P 0
k (cosα cosβ + sinα sinβ cosφ)

= P 0
k (cosα)P 0

k (cosβ) + 2
k∑

m=1

(k − m)!
(k + m)!P

m
k (cosα)P m

k (cosβ) cos(mφ)

for the Legendre functions (see [1], page 457) and the fact that P 0
k is the kth Legen-

dre polynomial, it follows (with the choice α = β,φ = 0) that

(
P 0

k (cosα)
)2 + 2

k∑
m=1

(k − m)!
(k + m)!

(
P m

k (cosα)
)2 = P 0

k (1) = 1.

Now the right-hand side of (2.19) simplifies to

q∑
�=0

(2k� + 1) = s

and, consequently, (2.19) or equivalently (2.18) holds for all θ ∈ [0, π] and
φ ∈ (−π,π ]. This proves that the design ξ∗ corresponding to the uniform dis-
tribution on the sphere is �p-optimal for any p ∈ (−∞,1) and any matrix K

of the form (2.12) and (2.13). The remaining case p = −∞ finally follows from
Lemma 8.15 in [16]. �

It should be noted at this point that the E criterion is of particular impor-
tance for the design of experiments in 3D shape analysis, because many au-
thors propose to use principal component analysis for the comparison of different
shapes (see, e.g., Ding, Nesumi, Takano and Ukai [5] or Kazhdan, Funkhouser
and Rusinkiewicz [11], among others). More precisely, it is proposed to summa-
rize the information contained in the spherical harmonic coefficients by a principal
component analysis based on the variance–covariance matrix of the least squares
estimator obtained from (1.3), which explains the 3D shape variation of different
objects by the first, say r, principal components corresponding to the r largest
eigenvalues of the matrix M−1(ξ). Consequently, an efficient design for principal
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component analysis should minimize a function of the largest r eigenvalues of the
matrix M−1(ξ). To be precise, let r ≤ (d + 1)2 and −p ≤ ∞ < 1. Then we call a
design ξ∗ �p,r -optimal if ξ∗ maximizes

�p,r(ξ) =
(

r∑
j=1

{
λ(j)(M(ξ))

}p

)1/p

,(2.20)

where λ(j)(M(ξ)) denotes the j th smallest eigenvalue of the matrix M(ξ∗). Again
the cases p = −∞ and p = 0 are obtained from the corresponding limits, that
is, �−∞,r (ξ) = λ(1)(M(ξ)) and �0,r (ξ) = ∏r

j=1 λ(j)(M(ξ)), respectively. To our
knowledge, optimality criteria of this type have not been considered in the liter-
ature so far. Note also that the E- and A-optimality criteria (with K = I(d+1)2 )
are obtained for the choices r = 1 and r = (d + 1)2 with p = −1, respectively.
The most important case for the choice of the parameter p ∈ [−∞,1) is certainly
obtained for p = −1. In the following corollary, we show that the uniform distrib-
ution on the sphere is also �r,p-optimal.

COROLLARY 2.2. Let p ∈ [−∞,1) and 1 ≤ r ≤ (d + 1)2. Then the uniform
distribution on the sphere defined by (2.17) is �p,r -optimal in the spherical har-
monic regression model (2.6).

PROOF. The case p = −∞ is obtained from Theorem 2.1 with K = I(d+1)2 .
For −∞ < p < 1, note that �p,r(ξ

∗) = r1/p if p �= 0 and �0,r (ξ
∗) = 1. If p �= 0

and ξ∗ were not �p,r -optimal, then there would exist a design, say ξ , with

(
�p,r(ξ)

)p =
r∑

j=1

λ
p
(j)(M(ξ)) < r = (

�p,r(ξ
∗)

)p
.

Consequently, we obtain λ(1)(M(ξ)) < 1 = λmin(M(ξ∗)), which implies that the
uniform distribution on the sphere ξ∗ is not E-optimal and contradicts Theo-
rem 2.1. The case p = 0 is obtained by a similar argument and the assertion of
the corollary has been established. �

3. Discrete optimal designs. Note that the uniform distribution defined
by (2.17) is not directly implementable as a design in real experiments. There-
fore, for practical applications it is important to obtain discrete designs ξ which
are equivalent to the uniform distribution ξ∗(dθ, dφ) = 1

4π
sin θ dθ dφ in the sense

that

M(ξ) = M(ξ∗) = I(d+1)2,(3.1)

where M(ξ) is the information matrix (2.8) of the design ξ in the spherical har-
monic regression model (2.6). Note that due to Carathéodory’s theorem (see [19]),
there always exist discrete designs satisfying (3.1), and in the following we will
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construct a broad class of discrete designs that can easily be implemented in prac-
tice. For this purpose we need an auxiliary result about quadrature formulas, which
will be proved in the Appendix.

LEMMA 3.1. Assume that r ∈ N and let −1 ≤ x1 < x2 < · · · < xr ≤ 1 de-
note r points with corresponding weights w1, . . . ,wr > 0 (

∑r
i=1 wi = 1). The

points xi and weights wi generate a quadrature formula of degree z ≥ r , that
is,

r∑
i=1

wix
�
i = 1

2

∫ 1

−1
x� dx, � = 0, . . . , z,(3.2)

if and only if the following two conditions are satisfied:

(A) The polynomial Vr(x) = ∏r
i=0(x − xi) is orthogonal to all polynomials of

degree z − r with respect to the Lebesgue measure, that is,∫ 1

−1
Vr(x)x� dx = 0, � = 0, . . . , z − r.(3.3)

(B) The weights wj are given by

wj = 1
2

∫ 1

−1
�j (x) dx,(3.4)

where

�i(x) =
r∏

j=1,j �=i

x − xj

xi − xj

denotes the ith Lagrange interpolation polynomial with nodes x1, . . . , xr .

It follows from condition (3.3) that z ≤ 2r − 1 (otherwise there does not exist
a solution of this system). Moreover, there exists at least one set of points that
satisfies condition (3.3), namely

{x|Pr(x) = 0},(3.5)

where Pr denotes the r th Legrendre polynomial orthogonal with respect to the
Lebesgue measure on the interval [−1,1], because it is well known that this poly-
nomial has r distinct roots located in the interval (−1,1) (see [22]). Moreover, the
corresponding weights defined by (3.4) are positive and define a Gaussian quadra-
ture formula, that is, a quadrature formula of degree 2r − 1 with r nodes (see,
e.g., [6] or [8]). In the following discussion we will use this lemma with z = 2d .
Then it follows that for any r ∈ {d + 1, . . . ,2d}, there exists at least one quadra-
ture formula {xi,wi}ri=1 determined by the equations (3.3) and (3.4) that integrates
polynomials of degree 2d exactly [in other words, the system of equations in (3.2)
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is satisfied with z = 2d] and the corresponding weights wi are positive. We con-
sider a quadrature formula of this type. Define

θi = arccosxi, i = 1, . . . , r,(3.6)

and consider the design

µ =
(

θ1 · · · θr

w1 · · · wr

)
(3.7)

on the interval [0, π]. Similarly, we define for any t ∈ N and any α ∈ (− t+1
t

π,−π]
a design ν = ν(α, t) on the interval (−π,π ] by

ν = ν(α, t) =

φ1 · · · φt

1

t
· · · 1

t


 ,(3.8)

where the points φj are given by

φj = α + 2πj

t
, j = 1, . . . , t.(3.9)

The following result shows that designs of the form µ ⊗ ν are discrete �p- and
�p,r -optimal designs for the spherical harmonic regression model (2.6).

THEOREM 3.2. Let p ∈ [−∞,1), let 0 ≤ k0 < · · · < kq ≤ d and denote
by K = Kk0,...,kq the matrix defined by (2.12). For any t ≥ 2d + 1 and any
r ∈ {d + 1, . . . ,2d}, the design µ ⊗ ν with factors given by (3.7) (correspond-
ing to a quadrature formula of degree 2d) and (3.8) is �p-optimal for estimating
the coefficients KT c, and is �p,r -optimal in the spherical harmonic regression
model (2.6).

PROOF. Observing the proofs of Theorem 2.1 and Corollary 2.2, the assertion
can be established by showing the identity

M(µ ⊗ ν) = I(d+1)2 .(3.10)

For this let

ψ(φ) = (
ψ−d(φ),ψ−d+1(φ), . . . ,ψd(φ)

)T
= (√

2 sin(dφ), . . . ,
√

2 sinφ,1,
√

2 cosφ, . . . ,
√

2 cos(dφ)
)T

.

Then the regression functions in the spherical harmonic regression model of de-
gree d are given by

γijP
|j |
i (cos θ) · ψj(φ), j = −i, . . . , i, i = 0, . . . , d,(3.11)
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where P
j
i is the Legendre function defined by (2.4) and the constants γij are given

by

γij =
√

(2i + 1)
(i − |j |)!
(i + |j |)! .

[Note that the different scaling of the cases j = 0 and j �= 0 in (2.2) has been
accommodated by introducing the factor

√
2 in the definition of the functions ψj .]

Therefore, the identity (3.10) is equivalent to the system of equations

γij γk�

∫ π

−π

∫ π

0
P

|j |
i (cos θ)ψj (φ)P

|�|
k (cos θ)ψ�(φ)dµ(θ) dν(φ) = δikδj�(3.12)

(j = −i, . . . , i; i = 0, . . . , d;� = −k, . . . , k;k = 0, . . . , d), where δik denotes
Kronecker’s symbol. Observing Fubini’s theorem, this system is satisfied if the
equations

γij γk�

∫ π

0
P

j
i (cos θ)P �

k (cos θ) dµ(θ) = δikδj�(3.13)

(j = 0, . . . , i; i = 0, . . . , d;� = 0, . . . , k;k = 0, . . . , d) and∫ π

−π
ψj (φ)ψ�(φ)dν(φ) = δj�, j, � = −d, . . . , d,(3.14)

can be established. It is well known (see Pukelsheim [16]) that the last identity is
satisfied for measures of the form (3.8). To prove the remaining identity (3.13),
recall that the measure µ corresponds to a quadrature formula that integrates poly-
nomials of degree 2d exactly. Moreover, it follows from the representation (2.4)
that for an even m ∈ {0, . . . , n}, the Legendre function P m

n (x) is a polynomial
of degree n, while for any odd m ∈ {0, . . . , n}, the function P m

n (x)/
√

1 − x2 is a
polynomial of degree n − 1. Observing the equation (3.14), we can restrict our-
selves to the case j = � for which the integrand P

j
i (x)P

j
k (x) in (3.13) is always a

polynomial of degree i + k ≤ 2d , which contains the factor (1 − x2) if j is odd.
Consequently, we obtain from (3.2) (with p = 2d)∫ π

0
P

j
i (cos θ)P

j
k (cos θ) dµ(θ) =

r∑
�=1

w�P
j
i (x�)P

j
k (x�)

= 1

2

∫ 1

−1
P

j
i (x)P

j
k (x) dx = δik

γij γkj

,

where the last property follows from the orthogonality of the Legendre functions
(see [1]). This implies (3.12) [or equivalently (3.10)] and proves the theorem. �

REMARK 3.3. It should be noted that the mapping (θ,φ) → (sin θ cosφ,

sin θ sinφ, cos θ) from the rectangle [0, π] × (−π,π ] onto the unit sphere S2
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maps all points of the form (0, φ) and (π,φ) with φ ∈ (−π,π ] onto the points
(0,0,1) and (0,0,−1) on S2, respectively. Moreover, it is easy to see that the
vector fd(θ,φ) defined in (2.7) satisfies, for all φ ∈ (−π,π ],

fd(0, φ) = (1,0, . . . ,0)T ∈ R
(d+1)2

,

fd(π,φ) = (−1,0, . . . ,0)T ∈ R
(d+1)2

.

As a consequence, various points of the designs µ⊗ν constructed by Theorem 3.2
can be identified on the unit sphere if the support of the factor µ contains the point
0 or π . To be precise, let µ̄ denote the measure obtained from µ by omitting the
points 0 and π , and define µ0 as the measure that puts masses µ({0}) and µ({π})
at the points (0,0)T and (π,0)T , respectively. Then the measure

µ0 + µ̄ ⊗ ν

has the same information matrix as the measure µ ⊗ ν. Note that in the case
µ({0}) + µ({π}) = 0 it follows that µ̄ = µ, because the points 0 and π are not
support points of the design µ.

EXAMPLE 3.4. Consider the spherical harmonic regression model of degree
d = 1 and the case r = d + 1 = 2. From Lemma 3.1 with p = 2d = 2 it follows
that the polynomial V2(x) = (x − 1)(x + 1/3) satisfies∫ 1

−1
V2(x) dx = 0.

The points x1 = −1/3 and x2 = 1 generate a quadrature formular of degree 2 on
the interval [−1,1] with corresponding weights

w1 =
∫ 1

−1

x − 1

(−4/3)

dx

2
= 3

4
, w2 =

∫ 1

−1

x + 1/3

4/3

dx

2
= 1

4
.

According to Theorem 3.2 any design of the form

µ ⊗ ν(α, t) =
(

0 arccos
(−1

3

)
1
4

3
4

)
⊗ ν(α, t)

with t ≥ 3, α ∈ (− t+1
t

π,−π] is �p-optimal for estimating the parameters
KT

k0,kq
c (q ≤ 1) and �p,r -optimal in the first-order spherical harmonic regression

model (2.6). A typical example is given by the six-point design

µ ⊗ ν =




0 arccos
(
−1

3

)
1

4

3

4


 ⊗


−π

3

π

3
π

1

3

1

3

1

3


 ,

and by Remark 3.3 the design with equal masses at the points (arccos(−1
3),−π

3 ),
(arccos(−1

3), π
3 ), (0,0) and (arccos(−1

3),π) has the same information matrix as
the design µ ⊗ ν, namely the identity matrix I4.
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REMARK 3.5. Note that there are numerous possible ways to construct a
discrete design with an information matrix equal to I(d+1)2 in the spherical har-
monic regression model (2.6). According to Theorem 3.2, a quadrature formula
with r ∈ {d + 1, . . . ,2d} nodes x1, . . . , xr with positive weights is required, which
integrates polynomials up to degree 2d exactly. By (3.7), this formula gives the
factor µ of the optimal design µ ⊗ ν, where the second factor is any design of the
form (3.8) with t ≥ 2d + 1. By Lemma 3.1, the quadrature formula is determined
by the equations ∫ 1

−1
Vr(x)x� dx = 0, � = 0, . . . ,2d − r.(3.15)

If Pj (x) denotes the j th Legendre polynomial orthogonal with respect to the
Lebesgue measure on the interval [−1,1], then the polynomial Vr(x) can be repre-
sented as a linear combination of the Legendre polynomials P0(x), . . . ,Pr(x) and
the orthogonality in (3.15) implies, for some constants a2d−r+1, . . . , ar ,

Vr(x) =
r∑

j=2d−r+1

ajPj (x).(3.16)

Note that the constants a2d−r+1, . . . , ar have to be chosen such that Vr(x) has r

real roots in the interval [−1,1] and such that the corresponding weights defined
by (3.4) are positive. This is in general a nontrivial problem. However, one can
easily describe a class of quadrature formulas for which this property is satisfied.
For this, let P

(α,β)
j (x) denote the j th Jacobi polynomial orthogonal with respect

to the measure (1 − x)α(1 + x)β dx on the interval [−1,1] (see [22]). For any
r ≥ d + 1, it follows from these orthogonality properties that the identity (3.15) is
satisfied for the polynomials

P (0,0)
r (x), (1 − x)P

(1,0)
r−1 (x),

(3.17)
(1 + x)P

(0,1)
r−1 (x), (1 − x2)P

(1,1)
r−1 (x).

Note that P
(0,0)
r (x) is proportional to the Legendre polynomial Pr(x) and con-

sequently the representation of the form (3.16) is obvious, in this case choosing
ar−1 = · · · = a2d−r+1 = 0. Moreover, if p is the degree of one of these polyno-
mials, it follows from classical results on orthogonal polynomials that each of the
polynomials in (3.17) has precisely p roots in the interval [−1,1]. It is shown
in [2] that the weights corresponding, by formula (3.4), to these roots are positive
(see also [8]), and as a consequence we obtain a quadrature formula of degree 2d

on the interval [−1,1], say {xj ,wj }j=1,...,p . The corresponding design µ obtained
from (3.6) and (3.7) gives, in combination with any design ν of the form (3.8),
a �p-optimal design µ ⊗ ν for estimating the parameters KT

k1,...,kq
c in the spher-

ical harmonic regression model (2.6). This design is also �p,r -optimal by Corol-
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lary 2.2. We finally note that the zeros of the polynomials in (3.17) are the sup-
port points of D-optimal designs in heteroscedastic polynomial regression models
(see [20]).

Although there are numerous designs on the rectangle [0, π] × (−π,π ] with
information matrix in the spherical harmonic regression model (2.6) given by
I(d+1)2 , the support points of the factor corresponding to the polar angle θ have
to cover a sufficiently large range of the interval [0, π] in order to obtain a
�p-optimal design in the sense of Theorem 3.2. This is the statement of the fi-
nal theorem of this section, which will be proven in the Appendix.

THEOREM 3.6. Let x∗
1 denote the smallest zero of the Legendre polynomial

Pd+1(x) and define z∗ = arccos |x∗
1 |. If z > z∗, then there exists no design on the

rectangle [z,π − z] × (−π,π ] with information matrix I(d+1)2 in the spherical
harmonic regression model (2.6).

4. Further discussion.

4.1. The second-order spherical harmonic model. Consider the case d = 2
corresponding to the second-order spherical harmonic model with nine regression
functions. We calculate the designs corresponding to the four cases in (3.17) for
the choice r = d +1 = 3. From P3(x) = x(5x2 −3)/2 we obtain the support points
of the probability measure µ corresponding to the polar angle θ as

θ1 = arccos

√
3

5
, θ2 = arccos 0 = π

2
, θ3 = arccos

(
−

√
3

5

)
,(4.1)

and the corresponding weights are given by

w2 = 1

2

∫ 1

−1

x2 − 3/5

(−3/5)
dx = 4

9
, w1 = w3 = 1 − w2

2
= 5

18
.(4.2)

Similarly, if the polynomial (x2 − 1)P
(1,1)
2 (x) = 3

4(x2 − 1)(5x2 − 1) is used for
the construction of a quadrature formula, we obtain

θ1 = arccos 1 = 0, θ2 = arccos

√
1

5
,

(4.3)

θ3 = arccos

(
−

√
1

5

)
, θ4 = arccos(−1) = π,

and the weights are obtained from the representation (3.4) and given by

w1 = w4 = 1
12 , w2 = w3 = 5

12 .(4.4)
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FIG. 3. Projections of the suppport points of the optimal design in the second-order spherical
harmonic regression model (2.6). The left panel corresponds to the optimal design defined by (4.1),
while the right panel represents the design (4.3).

The measure ν corresponding to the azimuthal angle φ is given by (3.8), where
t ≥ 5. The projections of the support points of the two measures onto the unit
sphere are depicted by the left and right panels of Figure 3, where for the second
component a design with t = 5 support points and α = −π is used. It should be
noted that it follows from Remark 3.3 that the design µ ⊗ ν obtained from (4.3)
and (4.4) for the factor µ and ν = ν(α,5) corresponds to uniform design on the
sphere with 12 support points. A general construction of uniform designs will
be discussed in the following paragraph. We finally illustrate the two other non-
symmetric cases in (3.17). For the supporting polynomial we obtain

(1 − x)P
(1,0)
2 (x) = 1 − x

2
(5x2 + 2x − 1),

which gives, for the support points of the factor µ of the product design µ⊗ν(α, t),

θ1 = arccos 1 = 0,

θ2 = arccos
(−1 + √

6

5

)
,(4.5)

θ3 = arccos
(−1 − √

6

5

)
,

with corresponding weights

w1 = 1
9 , w2 = 1

36

(
16 + √

6
)
, w3 = 1

36

(
16 − √

6
)
.

The fourth case of a factor µ of a design µ⊗ν(α, t) yielding I9 as information ma-
trix in the second-order spherical harmonic model (2.6) is obtained by symmetry,
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FIG. 4. Projections of the suppport points of the optimal design in the second-order spherical
harmonic regression model (2.6). The left panel corresponds to the optimal design defined by (4.5),
while the right panel represents the design (4.6).

that is,

θ1 = arccos
(

1 + √
6

5

)
,

θ2 = arccos
(

1 − √
6

5

)
, θ3 = arccos(1) = π,(4.6)

w1 = 1
36

(
16 − √

6
)
, w2 = 1

36

(
16 + √

6
)
, w3 = 1

9 .

The projections of the support points onto the unit sphere of the corresponding
product designs µ × ν(α, t) with α = −π and t = 5 are depicted by the left and
right panels of Figure 4. Note that the two cases are related by a reflection of the
support points at the equator.

4.2. Optimal designs with equal weights. Note that the designs provided by
Theorem 3.2 are in general not uniform designs, which would have equal weights
at their support points. Because designs with this structure are particularly attrac-
tive from a practical point of view, we will briefly discuss the possibility of their
construction in this section. Note that for the determination of an optimal design in
the spherical harmonic regression model (2.6) with equal weights at its supports by
the procedure introduced in Section 3, it is necessary to find a quadrature formula
that has equal weights at its support points and integrates polynomials of degree 2d

exactly. This problem has a long history in mathematics (see [6]).
It follows from Lemma 3.1 that such a formula must have at least d + 1 nodes.

Moreover, quadrature formulas with the minimal number of n nodes and equal
weights which integrate polynomials of degree n exactly only exist in the cases n =
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TABLE 1
Quadrature formulas with equal weights at their nodes∗

d x0 ±x1 ±x2 ±x3 ±x4 ±x5 ±x6 ±x7 ±x8 ±x9 ±x10 ±x11

1 — 0.577 — — — — — — — — — —
2 — 0.188 0.795 — — — — — — — — —
3 — 0.267 0.423 0.866 — — — — — — — —
4 0 0.168 0.529 0.601 0.912 — — — — — — —
5 0 0.223 0.247 0.443 0.671 0.724 0.939 — — — — —
6 0 0.008 0.282 0.358 0.458 0.566 0.760 0.778 0.954 — — —
7 0 0.174 0.177 0.186 0.328 0.502 0.533 0.542 0.712 0.797 0.852 0.965

∗These formulas correspond to a uniform design µu of the form (3.7) for the polar angle θ . The
resulting design µu ⊗ ν(α, t) with ν(α, t) defined by (3.8), t ≥ 2d + 1, is a �p- or �p,r -optimal
design in the spherical harmonic regression model (2.6) of degree d with equal weights at its support
points.

0,1, . . . ,7,9 (see [6], page 58). In the present context these formulas correspond
to uniform designs for the polar angle θ in the case d = 1,2,3,4, which give, in
combination with a design of the form (3.8), a �p- or �p,r -optimal design in the
spherical harmonic regression model (2.6) with equal weights at its support points.
The corresponding nodes of the quadrature formula required for the factor µ are
depicted in the first four rows of Table 1. If d ≥ 5, quadrature formulas with equal
weights on 2d points integrating polynomials of degree 2d exactly do not exist
and more nodes are required for the construction of such formulas. We determined
formulas of this type numerically for d = 5,6,7 and depicted them in the last
three rows of Table 1. Note that these formulas use the origin and that the number
of nodes increases rapidly. For example, if d = 7, we only found a quadrature
formula with 23 support points and equal weights which integrates polynomials of
degree 14 exactly.

4.3. Some efficiency considerations. It might be of interest to compare some
of the commonly used designs from the literature on the analysis of 3D shapes with
the �p,r - and �p-optimal designs obtained in the present paper. As an example,
we consider two uniform designs of the form µ ⊗ ν, where the components are
given by

µ =




i

n1 + 1
1

n1




i=1,...,n1

, ν =




2iπ

n2
− π

1

n2




i=1,...,n2

,(4.7)
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and the designs are given by

µ =




arccos
(

1 − 2i

n1 + 1

)
1

n1




i=1,...,n1

, ν =




2iπ

n2
− π

1

n2




i=1,...,n2

,(4.8)

respectively. Note that the design µ ⊗ ν defined by (4.7) corresponds to a uniform
distribution on the grid in the rectangle [0, π] × [−π,π ], while a design µ ⊗ ν

of the form (4.8) yields a design on the sphere that takes observations on several
circles with equal distance on the z axis. This design was used by Ding, Nesumi,
Takano and Ukai [5] for a principal component analysis of the variance–covariance
matrix of the least squares estimator (1.3) in the spherical harmonic regression
model of degree 7. In Tables 2 and 3 we consider the problem of designing an ex-
periment to estimate the full parameter vector c or the principal component analy-
sis in the spherical harmonic regression model (2.6). We show the D, E and A effi-
ciencies of these designs for various values of n1 and n2 in the spherical harmonic
models of degree 1, 2, 3 and 4. The tables also contain the �−1,r -efficiencies,
which are defined by

eff�,p,r (ξ) = �p,r(ξ)

supη �p,r(η)
.(4.9)

For the sake of brevity we choose the design for the azimuthal angle φ as the design
defined by (3.8)—other uniform designs for this component will yield substantially
lower efficiencies and are therefore not depicted. As a consequence, the efficiencies
of the design µ ⊗ ν do not depend on n2 (provided that n2 ≥ 2d + 1, which will
be assumed throughout this section).

TABLE 2
D, E, A and �−1,r efficiencies (r = 2,3) of the uniform designs (4.7) and (4.8) in first- and

second-order spherical harmonic models

Design (4.7) Design (4.8)

d n1 effD effE effA eff�−1,2 eff�−1,3 effD effE effA eff�−1,2 eff�−1,3

1 3 1.000 1.000 1.000 1.000 1.000 0.940 0.500 0.870 0.667 0.789
4 0.997 0.938 0.994 0.938 0.957 0.964 0.600 0.923 0.750 0.857
5 0.993 0.900 0.986 0.900 0.931 0.976 0.667 0.949 0.800 0.894
6 0.989 0.875 0.979 0.875 0.913 0.983 0.714 0.964 0.833 0.916
7 0.986 0.857 0.973 0.857 0.900 0.987 0.750 0.973 0.857 0.931

2 4 0.991 0.801 0.982 0.838 0.851 0.902 0.229 0.745 0.331 0.427
5 0.987 0.805 0.974 0.824 0.831 0.935 0.323 0.838 0.435 0.539
6 0.981 0.794 0.964 0.807 0.811 0.954 0.399 0.888 0.512 0.617
7 0.976 0.782 0.955 0.793 0.796 0.965 0.461 0.918 0.571 0.674
8 0.972 0.772 0.947 0.782 0.785 0.973 0.511 0.937 0.617 0.716
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TABLE 3
D, E, A and �−1,r efficiencies (r = 2,3) of the designs (4.7) and (4.8) in spherical harmonic

models of degree 3 and 4

Design (4.7) Design (4.8)

d n1 effD effE effA eff�−1,2 eff�−1,3 effD effE effA eff�−1,2 eff�−1,3

3 5 0.980 0.799 0.961 0.802 0.803 0.874 0.094 0.600 0.146 0.199
6 0.975 0.784 0.953 0.784 0.787 0.911 0.155 0.733 0.223 0.296
7 0.970 0.768 0.944 0.768 0.772 0.934 0.214 0.811 0.292 0.377
8 0.965 0.756 0.936 0.756 0.760 0.948 0.269 0.859 0.352 0.444
9 0.961 0.747 0.929 0.747 0.751 0.959 0.318 0.891 0.404 0.500

4 6 0.969 0.739 0.942 0.755 0.761 0.851 0.035 0.434 0.057 0.081
7 0.965 0.747 0.936 0.751 0.753 0.890 0.067 0.600 0.102 0.142
8 0.961 0.739 0.929 0.742 0.743 0.916 0.103 0.709 0.149 0.203
9 0.956 0.731 0.922 0.733 0.734 0.933 0.142 0.781 0.196 0.261

10 0.952 0.724 0.915 0.726 0.727 0.945 0.180 0.830 0.240 0.314

For the first-order spherical harmonic regression model, we observe very good
D and A efficiencies of the designs (4.7) and (4.8). However, the E efficiencies and
the �p,r efficiencies of these designs are substantially smaller, in particular those
efficiencies obtained for the design (4.8) with moderate values of n1. For spherical
harmonic models of larger degree both designs will still yield high D efficiencies,
the designs defined by (4.7) yield reasonable A efficiencies, but the E and �−1,r

efficiencies are substantially smaller. Moreover, the A and E efficiencies of the
design (4.8) are very low. The �−1,r efficiencies of this design are slightly larger
but still not satisfactory. It is also interesting to note that the efficiencies of the
design (4.7) are decreasing with the number n1 while they are increasing for the
design (4.8).

From these calculations and additional results, which are not depicted for the
sake of brevity, we observe that designs with a uniform distribution on a grid in
the rectangle [0, π] × (−π,π ] should be used only if maximization of the D cri-
terion is the preliminary goal of the design of the experiment. Whenever principal
component analysis is the main goal of the experiment or precise estimates of the
parameters themselves are required, some more care is necessary in the design of
an experiment for analyzing 3D shapes. In this case, the loss of efficiency when
using uniform designs on a grid in the rectangle [0, π] × [−π,π ] or a uniform
design taking observations on several circles with equal distance on the z axis can
be substantial. In most cases there exist substantially more efficient designs for
the analysis in a spherical harmonic regression model. The advantages of the op-
timal designs derived in the present paper will also be illustrated in the following
example.
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TABLE 4
D, A, E and efficiencies eff�−1,r

(r = 1, . . . ,10) in the spherical harmonic regression model of
degree 7 used by Ding, Nesumi, Takano and Ukai [5]∗

eff�−1,r

1 2 3 4 5 6 7 8 9 10 effA effD

0.003 0.006 0.008 0.011 0.013 0.016 0.019 0.021 0.024 0.026 0.149 0.840
0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.987 0.992

∗The first row is the design given by (4.8) with n1 = 10 and n2 = 36. The second row gives the
efficiencies of the design defined by (4.10), which takes one observation at each point of the set U.

4.4. A concluding example. To demonstrate the benefits of our designs, we fi-
nally reanalyze the design used by Ding, Nesumi, Takano and Ukai [5] for shape
analysis of Citrus species. These authors used observations at 360 points measured
in 10 circles using the equal height sampling method for the z axis. By choosing
d = 7 the data for the surface shape were expanded into the first 64 terms of spher-
ical harmonic functions. The information contained in the spherical harmonic co-
efficients was summarized by a principal component analysis using the first seven
principal components. Note that the design of Ding, Nesumi, Takano and Ukai [5]
corresponds to a design of the form (4.8) with n1 = 10 and n2 = 36. In the first
row of Table 4 we show the efficiencies of this design with respect to the optimal
designs obtained in this paper. The first factor of an optimal (uniform) design can
be obtained from the quadrature formula corresponding to the spherical harmonic
regression model of degree 7 in Table 1. We observe a reasonable efficiency only
for the D-criterion. For all other criteria the design used by Ding, Nesumi, Takano
and Ukai [5] is very inefficient. The optimal designs proposed in this paper (or
appropriate approximations) will yield substantially smaller variances of the least
squares estimates for linear combinations of the parameters.

We finally note that the optimal designs obtained in this paper are approximate
and do not have masses that are multiples of 1/360. However, a very efficient
design for the inference in the spherical harmonic regression model of degree 7
using 360 different points can easily be obtained as follows. The quadrature for-
mula obtained from Table 1 has equal masses at 23 nodes and yields a design of the
form (3.7), say {θi,1/23}23

i=1, where θi = arccosxi and x1, . . . , x23 are the points
listed in Table 1 for the case d = 7. We propose to combine this design with two
designs of the form (3.8) to obtain an efficient exact design. More precisely, we
propose to use the uniform distribution ξ∗

U at the points

U =
{(

θi,
π(2j − 15)

15

)∣∣∣i = 1, . . . ,8; j = 1, . . . ,15
}

(4.10)

∪
{(

θi,
π(2j − 16)

16

)∣∣∣i = 9, . . . ,23; j = 1, . . . ,16
}
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FIG. 5. Implementation of the design (4.10) on the unit sphere.

as the design for the spherical harmonic regression model of degree 7. The im-
plementation of this design is illustrated in Figure 5. The efficiencies of the exact
design ξ∗

U are depicted in the second row of Table 4 and we observe that this de-
sign, which advises the experimenter to take one observation at each point of U,
is highly efficient with respect to all optimality criteria under consideration.

5. Conclusions and some directions for future research. In this paper we
tried to provide a starting point for studying design problems for 3D shape analy-
sis. There are many issues in this area which can be addressed by the choice of
an experimental design and we concentrated on spherical harmonic descriptors,
with special emphasis on classification. This direction was motivated by recent
work of Ding, Nesumi, Takano and Ukai [5], who used the coefficients in a spher-
ical harmonic expansion to classify different fruit shapes by principal component
analysis. Other authors compare different shapes by simply computing the Euclid-
ean distance between their corresponding spherical harmonic descriptors (see [7]).
If classification is the main object in 3D shape analysis, precise estimation of the
coefficients in the spherical harmonic expansion is of particular importance and
should be addressed by the choice of an experimental design, whenever this is
possible. In the present paper we have constructed optimal designs for this pur-
pose by considering Kiefer’s �p criteria and a new criterion which is directly
related to principal component analysis. It is demonstrated that the new designs
are substantially more efficient for parameter estimation and principal component
analysis than the commonly used designs by reanalyzing a typical data example
from the literature.
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As pointed out by a referee, there are several other design issues concerning
image analysis that are not addressed in this work, but are important topics for fu-
ture research in this direction. In the following list we briefly mention the—in our
opinion—most important directions in image analysis, where the generalization of
our approach could be profitable.

1. The main motivation of our work stems from the fact that spherical harmonic
descriptors are used for classification by principal component analysis. There
are many other statistical tools for this purpose, for example, independent
component analysis (see the recent monograph by Hyvärinen, Karhunen and
Oja [10]). Therefore, it is important to determine efficient designs for alterna-
tive classification rules and to compare these with the designs derived in this
paper.

2. In addition to the problem of classification, another important goal of 3D shape
analysis is the reconstruction of shapes. In such cases the number of basis func-
tions is usually very large and an optimality criterion should focus on the close-
ness between the original shape and the reconstructed shape. A suitable opti-
mality criterion for this purpose is to minimize the expected mean squared error
with respect to the choice of an experimental design. This problem is closely
related to the question of model uncertainty. Since the pioneering work of Box
and Draper [3], several authors have addressed the problem of incorporating the
bias in the optimality criterion (see, e.g., Wiens [24] and the references therein).
We note, however, that by Theorem 2.1 the uniform distribution on the sphere is
�p-optimal in the model (2.6) for any order d ∈ N. Therefore, from a theoreti-
cal viewpoint, the question of model uncertainty does not exist for the uniform
distribution on the sphere (it is the optimal design for any d ∈ N). However,
these problems arise if a design has to be implemented for a fixed sample size.
If the main goal of the analysis is the reconstruction of shapes, we recommend
choosing d as large as possible. In Section 4.4 we have indicated how such a
design can be found in the case d = 7, which was given in a concrete applica-
tion of spherical harmonic descriptors in biology. In principle this method can
be adapted to larger values of d . However, the numerical difficulties of find-
ing quadrature formulas of degree 2d with equal weights increase substantially
with the value d and suitable software has to be developed for this purpose. We
also note that the sample size n always provides an upper bound for the degree
of the model (2.6). Therefore—in principle—the problem of model uncertainty
is caused by a limited sample size, not by our approach of constructing optimal
designs.

3. It is remarkable that the approach developed in this paper does not require any
distributional assumptions, because it is based on the least squares method and
the covariance matrix of the corresponding estimator. However, the assumption
of uncorrelated observations is important for the calculation of this matrix. Ob-
servations from image analysis are usually taken from one object and therefore
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this assumption has either to be checked or to be taken into account by the con-
struction of the design. Note that many authors working in image analysis do
not consider an error in distribution. In our model (2.6), the error refers to a
nonsystemtatic measurement error, for which the assumption of no correlation
may be justified. In general, the construction of optimal designs for models with
correlated observations is a very hard problem even in less sophisticated models
than considered in this paper (see, e.g., [18]). The incorporation of correlation
structures in the construction of optimal designs is probably one of the most
challenging problems in future research on optimal designs for image analysis.

4. It seems to be desirable to extend the methods derived in this paper to other
problems in image analysis, in particular to the problem of 2D image recon-
struction. We note that the design problem for 3D shape analysis is substan-
tially simpler than design problems for general image analysis. The reason for
this is the specific structure of the system of spherical harmonic functions used
in (1.1), which is not available for 2D image analysis. A reasonable system for
the two-dimensional case is the Zernike polynomials (see [14]), and research
to construct good designs in this case is still ongoing. Initial results in this di-
rection indicate that there are substantial differences between the two- and the
three-dimensional cases.

APPENDIX: TECHNICAL DETAILS

PROOF OF LEMMA 3.1. Assume that conditions (A) and (B) of Lemma 3.1
are satisfied and let Q(x) denote an arbitrary polynomial of degree z. By Bezout’s
theorem the polynomial Q can be represented in the form

Q(x) = P(x)Vr(x) + R(x),(A.1)

where Vr(x) = ∏r
j=1(x − xj ), the polynomial P(x) is of degree z − r and the

degree of R(x) is less than r . Because the degree of R is at most r − 1, it can be
represented as

R(x) =
r∑

j=1

�j (x)R(xj ),(A.2)

and we obtain from the conditions (A) and (B) of the lemma that

1
2

∫ 1

−1
Q(x)dx = 1

2

∫ 1

−1
R(x)dx

= 1
2

r∑
j=1

R(xj )

∫ 1

−1
�j (x) dx

=
r∑

j=1

R(xj )wj =
r∑

j=1

Q(xj )wj .
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Using the functions Q(x) = x� (� = 0, . . . , z − r) yields the identities in (3.2).
For a proof of the converse, we assume that (3.2) is valid and obtain for

� = 0, . . . , z − r , ∫ 1

−1
Vr(x)x� dx =

r∑
j=1

Vr(xj )x
�
jwj = 0,

which gives condition (A). On the other hand, condition (B) follows from the iden-
tity

1
2

∫ 1

−1
�j (x) dx =

r∑
i=1

wj�j (xi) = wj ,

observing the property �j (xi) = δij for the Lagrange interpolation polynomi-
als. �

PROOF OF THEOREM 3.6. Let ξ denote an arbitrary discrete design on the
rectangle [0, π] × (−π,π ] and denote by θ1, . . . , θN the distinct first coordinates
of the corresponding support points of ξ . Obviously ξ can be represented as

ξ =
N∑

i=1

ξi,(A.3)

where the designs ξi are defined by

ξi =
(

(θi, φi1) · · · (
θi, φiNi

)
wi1 · · · wiNi

)

(with Ni ∈ N) and represent the part of ξ corresponding to the support points with
first coordinate equal to θi (i = 1, . . . ,N). Define xi = cosφi and wi = ∑Ni

j=1 wij

(i = 1, . . . ,N), and consider the design

η = ηξ =
(

x1 · · · xN

w1 · · · wN

)
.(A.4)

If the design ξ satisfies the condition M(ξ) = I(d+1)2 , it follows for the submatrix
corresponding to the (d + 1) regression functions Y 0

� (θ,φ) = √
2� + 1P 0

� (cos θ)

(� = 0, . . . , d) that

Id+1 =
(∫ π

0

∫ π

−π
Y 0

� (θ,φ)Y 0
k (θ,φ) dξ(θ,φ)

)d

�,k=0

=
(

N∑
i=1

Ni∑
j=1

wij

√
2� + 1

√
2k + 1P 0

� (xi)P
0
k (xi)

)d

�,k=0

(A.5)

=
(√

2� + 1
√

2k + 1
N∑

i=1

wiP�(xi)Pk(xi)

)d

�,k=0

.
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[Note that P 0
� (x) = P�(x) is the �th Legendre polynomial.] On the other hand, the

orthogonality relation for the Legendre polynomials (see [22]) yields

1

2

∫ 1

−1
P�(x)Pk(x) dx = δ�k

2� + 1
, �, k = 0, . . . , d,(A.6)

and it follows from (A.5) that the quadrature formula defined by the design η

in (A.4) integrates polynomials of degree 2d exactly. The assertion of Theorem 3.6
now follows from the following auxiliary lemma. �

LEMMA A.1. For any n ∈ N, let � denote the set of all probability measures
on the interval [−1,1] of the form (A.4) which integrate polynomials of degree n

exactly, that is,

1
2

∫ 1

−1
x� dx =

n∑
j=1

wjx
�
j , � = 0, . . . , n.(A.7)

Then

min
η∈�

min{v ∈ R
+| suppη ⊂ [−v, v]} = |x∗

1 |,
where x∗

1 is the smallest zero of the r th Legendre polynomial Pr(x) and r =
n/2� + 1. Moreover, the minimum is attained by the measure

η∗ =
(

x∗
1 · · · x∗

r

w∗
1 · · · w∗

r

)
,(A.8)

where the points x∗
1 , . . . , x∗

r are the zeros of the Legendre polynomial Pr(x), wi =
1
2

∫ 1
−1 �i(x) dx (i = 1, . . . , r) and �i(x) is the Lagrange interpolation polynomial

with nodes x∗
1 , . . . , x∗

r .

PROOF. For a design η on the interval [−1,1], let

u(η) := min{v ∈ R
+| suppη ⊂ [−v, v]}(A.9)

denote the half of the minimal length of intervals that contain the support of η and
define for each N ∈ N the set �N ⊂ � as the set of all probability measures with N

support points satisfying (A.7) (note that � = ⋃
N∈N �N). Because for a design η

of the form (A.4) the equations in (A.7) can be written as

1
2

∫ 1

−1


 1

...

xn


 dx =

N∑
j=1

wj


 1

...

xn
j


 ,(A.10)

it follows from Carathéodory’s theorem (see [19]) that there exists a measure,
say η̃, with at most n+1 support points xj1, . . . , xjn+1 (1 ≤ j1 < j2 < · · · < jn+1 ≤
N) such that (A.7) is satisfied. Consequently, we obtain

inf
η∈�

u(η) = inf
η∈�n+1

u(η).(A.11)
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If

η =
(

x1 · · · xn+1
w1 · · · wn+1

)
∈ �n+1

with −1 ≤ x1 < · · · < xn+1 ≤ 1 is any probability measure on the interval [−1,1]
that satisfies (A.7), then by Lemma 3.1 the weights can be represented as

wi = 1
2

∫ 1

−1
�i(x) dx,

where �i(x) is the ith Lagrange interpolation polynomial with nodes x1, . . . , xn+1.
Assume that |x1| = u(η) and, for ε > 0, define η̃ as the measure with weights

w̃i = 1

2

∫ 1

−1

n+1∏
j=1,j �=i

x − x̃j

x̃i − x̃j

dx, i = 1, . . . , n + 1,(A.12)

at the points x̃1 = x1 + ε, x̃2 = x2, . . . , x̃n+1 = xn+1. If ε is sufficiently small, it
follows that all weights w̃j are positive, which implies η̃ ∈ �n+1 and x̃1 > x1. In
the case |xn+1| = u(η) we apply exactly the same argument to the point xn+1 and
obtain a measure η̃ with u(η̃) < u(η). Consequently, the infimum in (A.11) cannot
be attained in �n+1, that is,

inf
η∈�

u(η) = inf
η∈�n

u(η).(A.13)

We now prove that the infimum on the right-hand side cannot be attained in �t

whenever t > n/2� + 1 = r . For this, consider a measure

η =
(

x1 · · · xt

w1 · · · wt

)
∈ �t.

Recall from Lemma 3.1 that the weights have to satisfy (3.4) (with t = r) and that
by (3.3) the support points satisfy∫ 1

−1

t∏
j=1

(x − xj )x
� dx = 0, � = 0, . . . , n − t.(A.14)

Without loss of generality we assume that |x1| = u(η) and we will again con-
struct a design with a smaller value of u(η). For this we define x̃1 = x1 +ε, x̃j = xj

(j = 3 + n − t, . . . , t),

ψ(x) = (x − x̃1)

t∏
j=3+n−t

(x − x̃j )(A.15)

and construct the remaining points, say x̃2, . . . , x̃n−t+2, such that the resulting
measure with weights of the form (3.4) at the points x̃1, . . . , x̃t defines a quadrature
formula of degree n. A necessary condition for this property is given by∫ 1

−1
ψ(x)

n−t+2∏
j=2

(x − x̃j )x
� dx = 0, � = 0, . . . , n − t,(A.16)
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and a straightforward calculation shows that these equations are equivalent to the
system

∂

∂x̃i

∫ 1

−1
ψ(x)

n−t+2∏
j=2

(x − x̃j )
2 dx = 0, i = 2, . . . , n − t + 2,(A.17)

which determines the points x̃j = x̃j (ε) (j = 2, . . . , n − t + 2) implicitly as a
function of the parameter ε, where x̃j (0) = xj (j = 2, . . . , n − t + 2). We now
consider the Jacobi matrix of the system (A.17),

J (x̃, ε) =
(

∂2

∂x̃j ∂x̃j

∫ 1

−1
ψ(x)

n−t+2∏
k=2

(x − x̃k)
2 dx

)n−t+2

i,j=2

,(A.18)

where we use the notation x̃ = (x̃2, . . . , x̃n−t+2). This matrix can be calculated
using the quadrature formula corresponding to the measure η. For this, note that
x̃(0) = (x2, . . . , xn−t+2) and define the polynomial

gi(x) = 2ψ(x)

n−t+2∏
j=2,j �=i

(x − xj )
2 dx.(A.19)

Note that the degree of gi is less than or equal to n. If ei ∈ R
i denotes the ith unit

vector, we obtain

eT
i J (x̃(0),0)ei =

∫ 1

−1
gi(x) dx =

t∑
j=1

gi(xj )wj = gi(xi)wi

= 2wi(xi − x1)

t∏
j=n−t+3

(xi − xj )

n−t+2∏
j=2,j �=i

(xj − xi)
2 �= 0,

and by a similar calculation, eT
i J (x̃(0),0)ej = 0 whenever i �= j (i, j = 2, . . . , n−

t +2). Consequently, J (x̃(0),0) is diagonal with detJ (x̃(0),0) �= 0. It now follows
from the implicit function theorem (see [9]) that for sufficiently small ε there exist
analytic functions x̃2(ε), . . . , x̃n−t+2(ε) such that (A.16) is satisfied for the points
x̃1, . . . , x̃t . This implies that for sufficiently small ε, the weights defined by (A.12)
are positive and the design

η̃ =
(

x̃1 · · · x̃t

w̃1 · · · w̃t

)
(A.20)

defines a quadrature formula of degree n with positive weights, that is, η̃ ∈ �t .
If necessary [in the case |xt | = u(η)] we use a similar argument for the largest
support point of the probability measure η and finally obtain a probability measure
η̃ ∈ �t such that u(η̃) < u(η). In other words, the infimum on the right-hand side
of (A.13) cannot be obtained in �t if t > n/2� + 1. From (A.15) it is easy to
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see that this construction is not possible if t < r = n/2� + 1. Moreover, it is
well known (see, e.g., [8]) that a quadrature formula that integrates polynomials of
degree n exactly must have at least r support points. Moreover, if it has r support
points, it is uniquely determined and given by the probability measure η∗ defined
in (A.8), which completes the proof of Lemma A.1. �
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