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Cryptocurrency price bubble detection using
log-periodic power law model and wavelet analysis

Junhuan Zhang, Haodong Wang, Jing Chen, and Anqi Liu

Abstract—We establish a method to detect and formulate price
bubbles in the cryptocurrency markets. This method identifies
abnormal crashes through violations of the exponential decaying
property. Confirmations of bubble bursts within these anomalies
are obtained through wavelet analysis. By decomposing the
cryptocurrency price into the high-frequency and low-frequency
factors, we distinguish the price regimes versus the periods with
bubbles and crashes in both time and frequency domains. In
addition, we apply the log-periodic power law (LPPL) model to
fit the bubble formation. In the analysis of eight cryptocurrencies
– Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), Antshares
(NEO), Ethereum Classic (ETC), Dash (DASH), Monero (XMR),
OmiseGO – from 15 May 2018 to 28 November 2022, we
identify 24 bubbles. Some of them exhibit a significant and strong
exponential growth pattern.

Index Terms—Cryptocurrency, Price bubbles, Financial crises,
Wavelet analysis, Log-periodic power law.

I. INTRODUCTION

IN 2008, Nakamoto published “Bitcoin: A Peer-to-Peer

Electronic Cash System”, proposing a new, decentralized

paradigm for money that provides an alternative to the current

centralized banking system. As a result, Bitcoin was launched

and started to operate as “a currency” in the following year. A

few years later, multiple cryptocurrency exchanges launched

and Bitcoin, together with a variety of new cryptocurren-

cies swiftly gain strong investment attention1. Bitcoin has

remained the most dominant cryptocurrency for trading and

investment and has been associated with many episodes of

extreme price movements that triggered turbulence in both

cryptocurrency and general financial market. For instance,

after the Bitcoin price first climbed above $20, 000 on Nov

30, 2020, it soon reached a historical high of $68, 521 on 5

Nov 2021. However, this climax only lasted for a few days

before a sharp stumble to around $42, 000. Since, the Bitcoin

prices are widely witnessed with a general descending trend
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1Bitstamp, founded in 2011, is usually considered as the first cryptocurrency
exchange.

accompanied with frequent and strong short-term fluctuation

until it fell below the $20,000 mark, to $19, 420 on June 18,

2022, representing more than $200 billion market capitaliza-

tion vaporization2 — this had sparked Ethereum price to slide

sharply and caused concerns of wider cryptocurrency market

crash. Renowned scholars such as the Nobel Prize winner

for Economics, Professor Robert J. Shiller, stated that Bitcoin

portrays the best example of speculative bubble and irrational

exuberance3. Many professionals echo Shiller’s view: some

suggest a cryptocurrency bubble could eventually result in

hyperinflation4 and some even call the Bitcoin investment

an epidemic that would expose the originally healthy and

functional monetary system and financial market to a range

of threats and instability5.
While cryptocurrencies differ from fiat currencies, crypto

exchange prices show some similar statistical mechanisms

to the traditional financial assets. For example, using a net-

work approach, [1] concluded that the crypto market is close

to the stock market from a systemic perspective, but it is

more fragile. This similarity can be explained by investors’

unchanged trading habits in this new market. [2] observed

groups of traders in the bitcoin market act alike to market

makers, high-frequency traders, fundamental investors, etc.

[3] replicated properties of bitcoin exchange microstructure

in an agent-based model that includes strategic traders and

their social interactions. Nevertheless, the majority of par-

ticipants in the cryptocurrency market are non-professional

investors who act irrationally, emotionally, and impulsively,

thus leading to more sentiment-induced or speculative bubbles

and crashes [2], [4]–[6]. Understanding the life cycle of

such a bubble traces back to the fundamental drivers of

crypto prices. In an empirical study [7], it has been verified

that, in the long-run, the bitcoin capitalization follows the

Metcalfe’s law —price is proportional to the square of the

number of active users. This finding aligns with the economic

model established by [8], which implies that the bitcoin price

decreases with the velocity and the stock of coins and increases

with the size of Bitcoin economy and its purchasing power.

[8] also pointed out that many investors, albeit are not active

users in the crypto economy, involve in the market based on

their credibility in the security of the blockchain system and

2https://www.forbes.com/sites/siladityaray/2022/06/18/price-of-bitcoin-
drops-below-20000-as-crypto-crash-continues/

3https://qz.com/1067557/robert-shiller-wrote-the-book-on-bubbles-he-says-
the-best-example-right-now-is-bitcoin/

4https://techtelegraph.co.uk/how-a-bubble-in-bitcoin-could-lead-to-
hyperinflation/

5https://www.bloomberg.com/opinion/articles/2021-06-09/don-t-call-
bitcoin-a-bubble-it-s-an-epidemic
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exchanges. They tend to demand and hold cryptocurrencies

due to their belief that the “coins” will be much more valuable

and can always be accepted by exchanges safely, leading to

herding behaviours. This explains why events such as the

FTX hack, CFTC lawsuit against Binance, liquidation of the

stablecoin TerraUSD (UST), and bans on crypto derivatives

trading, among others, often precede crypto market crashes

(see examples in [9]).

As the crypto economy expands, exchanges like Binance,

Coinbase, and Bybit feature well-established market struc-

tures, high trading volumes and reliable liquidity providers,

facilitating smooth trading in the crypto market. Considering

cryptocurrencies as a medium of exchanges among fiat curren-

cies in the financial market, the traditional stochastic pricing

processes such as stochastic volatility models and jump diffu-

sion models should apply in the absence of server sentiment

trading activities [10], [11]. Some empirical studies shed light

on the impact of social media and market sentiment on crypto

bubbles, see, for example, [12]–[14]. The crypto market is also

known for its unregulated speculative environment, foresting

sentiment-driven trading that spreads like a pandemic and

eventually creates bubbles [15]. Hence, regarding technical in-

terpretation of crypto bubbles, [16], [17] introduced a stochas-

tic attention factor into the stochastic volatility model and

demonstrated the theoretical contribution of sentiment-based

trading to bubble behaviours. In a laboratory environment,

another study [18] verified the presences of super-exponential

bubbles are caused by excess speculation in markets where as-

set prices lack fundamental values, such as the crypto market.

Considering the faster-than-exponentially growing bubbles and

volatile swings in the crypto market, several studies extended

the standard augmented Dickey–Fuller (ADF) unit root test to

approaches such as supremum-, generalised supremum- and

backward supremum-ADF to detect crypto bubbles [19], [20].

[21]–[23] found that various factors, ranging from funda-

mental sources to speculative and technical ones, influence

crypto prices in different time-frequency domains; and social

attention has a long-term impact. It is worth noting that the

idea of using wavelet decomposition in this paper aligns with

the findings on trading behaviours and sentiment impact under

different frequencies mentioned in the literature above.

Our study is motivated by the theoretical background

of cryptocurrencies’ price and bubble formation mentioned

above, as well as the benefits of crypto bubble analysis offers

in helping investors avoid the illusion of wealth and irrational

exuberance. We construct a drawdown-wavelet-LPPL process

to detect and comprehend the full life cycles of crypto bubbles.

To timestamp the peak or bursting of bubbles, we use the

bubble detection technique relates to finding outliers in the

ε-drawdown [24], [25]. The outliers can be defined according

to individual requirements, for example, [25] took the top 2%
samples, and [26] defined a threshold based on the historical

volatility. But the common approach involves assessing how

significantly the “drawdown” diverges from the theoretical tail

model —a stretched exponential distribution or an exponential

law [24], [25], [27]. The effectiveness of ε-drawdown bubble

detection technique in the crypto market is well substantiated

by the presence of super-exponential bubbles and theoretical

stochastic prices, while only one study [28] has applied this

method in existing literature. Given the volatile nature of the

crypto market, we think the method has not been widely

adopted due to its potential tendency to over-count normal

consecutive decreases, such as those seen during market

downturns, as bubble crashes. We involve a multilevel wavelet

decomposition to address this issue.

The rationale of applying wavelet analysis lies on the

observation that various types of traders, strategies, and re-

sponse times inherently generate time-localized oscillations in

price. Several studies adopted the wavelet coherence measure

to examine co-movements among different cryptocurrency

prices [5], [29]–[31]. Multi-resolution analysis of memory,

fractal dynamic, and other spectral properties of the crypto

market were also facilitated by wavelet transform analy-

sis [32]. We find that Daubechies 4 (db4) is commonly used in

decomposing financial time series data, see, for example, [30],

[31], [33]. [34] confirmed that, when extracting prediction

signals from financial data, db4 performs the best among

members of the Daubechies family dbN, where N = 1, 2, ..., 6.

According to these studies and the cryptocurrency price trends,

we think that the support of db4 is small enough to detect

closely spaced features. By removing low-frequency trends

and high-frequency noise, wavelet analysis becomes a useful

tool for exposing bubble formations among normal market

fluctuations. Results from the db4 wavelet analysis and the

ε-drawdown can jointly confirm full bubble cycles. Moreover,

finding the bubble formation regime is a key step that allows

us to go beyond identifying bubbles to further explore the

modelling of the entire life cycle of bubbles.

[35], [36] suggested that the financial bubble pattern is a

power law decorated with log-periodic oscillations, leading

to the construction of the log-periodic power law (LPPL)

model. [37] comprehensively illustrated details of the LPPL

model from its theoretical model construction to empirical

calibrations (also see [38]), resulting in a series of applications

of diagnosing bubbles in financial markets (for example, [39]–

[43]). Several variants of the LPPL model have also been de-

veloped to accommodate markets experiencing higher volatil-

ity and sharper fluctuations within shorter time-frames [38],

[44]. In addition, [45] developed the the DS-LPPLS model that

detects both positive and negative bubbles. The applications

of LPPL models in the cryptocurrency market is limited.

Only a few have studied bitcoin market bubbles through

incorporating with methods like ε-drawdown, extended ADF-

based, the generalized Metcalfe’s Law, and the price-electricity

cost ratio [7], [28], [46], [47]. To model the super-exponential

bubble formation and rapid price surge explosion, we employ

LPPL models with an exponential kernel. These models fea-

ture shape and decay parameters that describe the formation

and development of bubbles.

To summarize, we propose a step-wise approach to fill

the prominent gap of crypto bubble analysis. Our analytical

procedure provides accurate times and scales of crypto bubbles

using the ε-drawdown and the db4 wavelet analysis, then

formulates the growth of bubbles through the LPPL model.

By investigating a variety of highly traded cryptocurren-

cies in the market, including Bitcoin, Ethereum, Litecoin,
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Antshares, Ether Classic, Dash, Monero, OmiseGo, we not

only demonstrate the effectiveness of our methodology but also

contribute to providing a comprehensive bubble profile of the

cryptocurrency market and comparing it to traditional markets.

To capture activities of different types of investors in the

time-frequency domain, we use hourly data for the empirical

analysis. Such high-frequency data ensures that we do not

miss short-lived bubbles with small vibrations. We identify

24 bubbles in the 8 different cryptocurrencies. According

to the LPPL model fitting results, we conclude that crypto

bubbles tend to have weaker periodicity a much faster pace of

expansion than stock bubbles.

The rest of the paper is organized as follows: Section II sets

up the bubble crash identification method using ε-drawdown-

wavelet-LPPL model; Section III explains cryptocurrency data

used in this study; Section IV reports results including bubble

regimes, bubble formation patterns, and timestamps of bubble

bursts; Section V discusses periodicity and growth parameters

in the LPPL model for crypto bubbles and the differences from

the stock market; Section VI draws conclusion of the paper.

II. METHODOLOGIES

To detect a bubble and examine its lifecycle, we apply three

modelling techniques sequentially, namely ε-drawdown outlier

detection, Daubechies wavelet analysis, and the LPPL model.

In the drawdown-wavelet-LPPL process, the ε-drawdown

method is used to find all possible bubble bursting times;

the wavelet analysis is performed to identify the intervals

where the actual bubbles exist; and the LPPL model helps pin

down the exact time of the bubble burst and other lifecycle

features including growth and growth rate of the bubble. To

ensure accurate results from this analysis, the timestamps of

bubble bursts are cross-checked with the results from both ε-
drawdown and LPPL model fitting.

A. Timestamping bubble bursts: the ε-drawdown method

A “drawdown”, in the context of financial markets, gener-

ally means the degree of price drops from a local maximum

to the next local minimum. [24], [25] investigated statistical

properties of drawdowns and proposed a cumulative stretched

distribution N(x) = A · exp
(

−
(

|x|
χ

)z)

, such that outliers

emerge in the presence of market shocks. A special case z = 1
leads to a pure exponential distribution, aligning with the

assumption of normal-like and uncorrelated price variations. In

this paper, we find the outliers in the drawdowns that deviate

the exponential law, (as described in Equation (2)), which

could potentially indicate the bubble crashes.

Due to the consistent vibrations of the market, calibrating

drawdowns are challenging. We use the “loc max vs loc

min” approach applied by [48], which measures the loss

from the last local maximum to the next local minimum. ε
represents the drawdown threshold. According to [24], outliers

in price drawdown, fitting to the exponential distribution,

indicate the timing of a bubble burst. We apply this method

to different cryptocurrency price series that are collected at

hourly frequency. To find the sequential downward trends,

we ignore the small price increases that occur after the local

maximum but within the scale of ε. We follow [49] to decide

on the drawdown threshold ε by examining the volatility of a

cryptocurrency’s log-returns.

Define the price series P = {Pt : t = 0, 1, 2, ..., T}. We start

from the first local maximum PtMax
1

and search for the first

minimum price before an increase exceeding ε is observed.

This local minimum price is denoted by PtMin
1

. Then we find

the next maximum price and repeat this procedure to locate

a series of local maximums and minimums {
(

PtMax
i

, PtMin
i

)

:

i = 1, 2, ...,m} where tMax
i and tMin

i are the times of the ith

local maximum and local minimum, respectively; and m is

the number of drawdowns counted based on each set of local

maximum and local minimum.

This drawdown searching process is illustrated in Fig. 1.

From the first local maximum PtMax
1

on the left, we move the

PtMin
1

forward till the point that a drawup (DU ), defined as

the degree of price increase from the local minimum to the

next local maximum, exceeds the threshold ε. For example,

the DUi > ε in the middle part of Fig. 1 indicates the

local minimum PtMin
i

. In the process, there could be local

“bouncing backs” (e.g., the DUj+1, DUj+2, ... on the right

of Fig. 1). When the local DUj+k is below the threshold

ε, it suggests that the price will continue to decline and the

search for the local minimum needs to carry on (e.g., from

DUj , DUj+1, DUj+2, ... until DUj+∆j > ε).

𝑡

𝑃

0 𝑡1𝑀𝑎𝑥 𝑡1𝑀𝑖𝑛 𝑡𝑖𝑀𝑎𝑥 𝑡𝑖𝑀𝑖𝑛 𝑡𝑗𝑀𝑎𝑥

𝐷𝑈𝑖 > 𝜀

𝑡𝑗+Δ𝑗𝑀𝑖𝑛

𝐷𝑈𝑗 < 𝜀𝐷𝑈𝑗+1 < 𝜀𝐷𝑈𝑗+2 < 𝜀⋯
𝐷𝑈𝑗+Δ𝑗 > 𝜀

𝐷𝐷𝑗
𝐷𝐷𝑖

𝑡𝑗𝑀𝑖𝑛 𝑡𝑗+2𝑀𝑖𝑛

↔

↔

𝑃𝑡1𝑀𝑎𝑥

𝑃𝑡𝑖𝑀𝑖𝑛

𝑡𝑗+1𝑀𝑖𝑛

Fig. 1: ε-drawdown search illustration

With {(PtMax
i

, PtMin
i

) : i = 1, 2, ..., N0} identified, the

drawdown is calculated as below

DDi = − ln

(

PMax
i

PMin
i

)

, i = 0, 1, 2, ...,m, (1)

According to the research of [25] and [49], {DDi : i =
1, 2, ..., N0} should follow the exponential law below.

N(x) = N0 · e
−|x|/DDc , (2)

where N(x) is the number of drawdowns with the value

x (in this paper, x is always negative), N0 is the total

number of drawdowns, DDc is a scale parameter. Obviously, it

represents the cumulative distribution function of the exponen-

tial distribution. Hence, DDc denotes the standard deviation

of drawdowns. Outliers mainly come from market crashes

and will not follow exponential law. We take the largest δ-

quantile as outliers. To avoid their influence on the evaluation

of Equation (2), find the DDc using the remaining normal

drawdown samples. The logarithmic version (see Equation (3))
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of the exponential law is used to confirm the goodness-of-fit.

We present the choice of δ and detailed resutls in Section IV-A.

ln(N(x)) = ln(N0)−
1

DDc
· |x|. (3)

It must be noted that the outliers are not necessarily linked

to bubble bursts — some of them may be shocks in price

downturns (or negative bubbles). But we can say that these

timestamps potentially indicate crashes of bubbles after ab-

normal price drops. We further distinguish the outliers for

bubble bursts through cross-checking with the LPPL model

in Section II-C.

B. Extracting bubble regimes: the Daubechies 4 (db4) wavelet

analysis

We use wavelet analysis to transform the price series at

different frequencies, which further helps us find the bubble

regimes. Wavelets are defined by the wavelet function ψ(t),
acting as a high-pass filter, and the scaling function φ(t),
acting as a low-pass filter, in the time domain. The discrete

wavelet transform (DWT) technique decomposes a signal s (or

a0) into a low-frequency “approximation coefficients” a1 and

a high-frequency “detail coefficients” d1, then a1 is further

decomposed to a2 and d2, and so on. Given the number of

coefficients (also called support width) m, this procedure is

written as below:

ak+1,t =
∑

m

φ(m− 2t+ 2)ak,t

dk+1,t =
∑

m

ψ(m− 2t+ 2)ak,t
(4)

We use the Daubechies 4 (db4) wavelet for three reasons.

Firstly, it is relatively smooth in time domain, which is

an important feature when detecting abrupt changes in the

data. Secondly, we need the number of vanishing moments

to exceed the degree of the polynomial of the signal. By

eyeballing the price trends of the cryptocurrencies, we believe

that a vanishing moment of 4 is sufficient. Thirdly, existing

literature also confirmed that db4 is a suitable wavelet for

financial price decomposition [30], [31], [33], [34]. Fig. 2(a),

2(b) 2(c) and 2(d) show the scaling function, the wavelet

function, the low-pass filter and the high-pass filter of the db4

wavelet, respectively.
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Fig. 2: Daubechies 4 (db4) wavelet

Remark II.1. If the original signal is fast mean-reverting, then

dn converges to 0 as n→ ∞. If the original signal is slowly

mean-reverting or monotonically increasing (or decreasing),

then dn explodes as n→ ∞.

Now, we contextualize the application of DWT under the

context of our research, wherein the logarithmic price of a

cryptocurrency serves as the original signal. We know that an

orderly market under good economic conditions should show

a long-term trend and short-term reversal price pattern, which

is a combination of the two cases in Remark II.1. Hence,

for a healthy price movement, with an appropriate selection

of decomposition level n, we should observe decomposed

properties as below:

• an shows the trend.

• The first few levels of high-frequency components, e.g.,

d1 and d2, are noises with cyclic patterns. This is because

trend and reversal produce opposite noises.

• dn is a white noise near zero. This is because in relatively

lower frequency scale, trend and reversal noises cancel

each other out.

However, when a bubble is formed, the market tends to

have an extremely long-term, sharp price increase. Using

Remark II.1, dn of this trend stands out from the normal near-

zero coefficients. [50], [51] also find that the maxima of the

continuous wavelet transform can reveal the structure of the

time series. Hence, we detect peaks of dn to approximate

times of price trend changes which is likely to be bubble

crashes. In other words, the maxima of dn splits the price

series into several regimes. From one peak to the following

one, we say it is one price regime. According to the results

of LPPL model fitting (see Sections II-C and IV-B), we can

confirm whether it is a bubble regime or a stable price regime.

C. Fitting the bubble formation: the log-periodic power law

(LPPL) model

The LPPL model is a widely adopted modelling technique

for financial bubbles. It involves parameters of bubble growth

rate, oscillation frequency, and length of time it takes to form
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a bubble (see Equation (5)). The study by [52] serves as a

crucial reference that explains the construction and calibration

intricacies of the LPPL model. We recap mathematical ratio-

nale for the model in Appendix A and start with the LPPL

equation (5). The LPPL model is given:

ln(Pt) ≈ A+B (tc − t)
β
+C (tc − t)

β
cos (ω ln (tc − t)− φ)

(5)

where a, b, β and φ are parameters, and tc is the time when

the bubble burst. Besides, we have B = −κa/β and C =
−κab/

√

β2 + ω2. To interpret this model from the perspective

of the bubble regime, ln(Ptc) = A given by t = tc, hence,

A is the logarithm of the price when the bubble bursts. B
shows the price trend in the bubble formation. B < 0 indicates

κ > 0 so that represents a positive bubble, and vice versa.

Moreover, β represents the speed of the price increases, ω
reflects the periodicity of price changes, C is the strength of

periodic fluctuation.
Solving the large parameter set of the LPPL model is

computationally complex and at risk of overfitting. Also, non-

linear optimization tends to fall into local optimization with

the increasing number of parameters to be estimated. [52]

addressed this issue by rearranging Equation 5 to Equation 6,

which reduced the number of non-linear parameters and in-

crease the number of linear parameters.

ln(Pt) ≈A+B (tc − t)
β
+ C1 (tc − t)

β
cos (ω ln (tc − t))

+ C2 (tc − t)
β
sin (ω ln (tc − t))

(6)

where C1 = C cosφ and C2 = C sinφ.
To summarize, the parameter set is {ω, β, tc, A,B,C1, C2}.

Recall that we extract the bubble regimes using wavelet analy-

sis (in Section II-B). For each bubble regime, we fit the LPPL

model to present different bubble formation processes under

different market conditions. Regarding parameter constraints,

[53] noted that a positive value of β can guarantee that A
is a finite value, whereas β > 1 may result in an unrealistic

prediction of the asset prices. The common range of β for

the stock market is 0.33 ± 0.18 [36]. A few studies gave the

range of ω for the stock market, e.g., 6.36± 1.56 in [36] and

6 ≤ ω ≤ 13 in [52]. [47] mentioned that the constraint for the

Bitcoin market in their experiment was 2 < ω < 20. In our

model calibrations, we take these restrictions into account but

do not fully “copy” the setting of previous studies.
It is worth noting that the fitted LPPL model may just

describe fast-changing trends and reversal price patterns un-

der volatile market conditions rather than a real bubble.

This is because we face difficulty in distinguishing between

these two scenarios when using wavelet analysis to extract

bubble regimes. Hence, we identify valid LPPL models for

bubbles through the timestamps found by ε-drawdown (in

Section II-A). If the predicted time tc and the ε-drawdown

timestamp are within one day, we believe that the bubble

regime and the LPPL model are good fits for a real bubble

formation.

III. DATA

Our crypto price data is from the Bitfinex — one of the

exchanges that contributes the largest cryptocurrency trading

volume. We select the top-8 cryptocurrencies paired with

USD by trading volumes: Bitcoin (BTC), Ethereum (ETH),

Litecoin (LTC), Antshares (NEO), Ethereum Classic (ETC),

Dash (DASH), Monero (XMR), and OmiseGO (OMG) (see

Table I). In order to perform robust bubble identification

and wavelet analysis, as well as to show some microscopic

properties of crypto trading, we use hourly data to ensure

sufficient observations that cover intraday and high-frequency

trading activities of these typical cryptocurrency markets. The

data is from May 15, 2018 6:00:00 to November 28, 2022

1:00:006.

We present basic statistics of cryptocurrencies’ daily log-

returns and compare those with major Chinese equity indexes7,

including the Hang Seng Index (HSI), Shanghai Stock Ex-

change Composite Index (SSEC), and Shenzhen Component

Index (SZI), in Table II. The same time horizon are used for

these indexes.

It is evident that the kurtosis of cryptocurrencies are sub-

stantially higher than stock indexes. All crypto assets exhibit

fat-tail, or more accurately heavy-tail features, which suggests

the cryptocurrency markets are more likely to experience ex-

treme events. The much greater maximum and lower minimum

returns in cryptocurrency markets, compared to those in stock

markets, further support that the cryptocurrency market is

much more volatile. Most markets have negative skewness,

except DASH and Hang Seng Index. Most cryptocurrencies

are much more negatively skewed than the stock indexes,

indicating the opportunities to grab quick returns if investing

in them. The BTC and ETH are more aligned with the stock

indexes in the skewness, which shows that their risk and return

profiles are becoming similar to traditional assets. While most

skewness are small, we can still say that the returns of these

assets are nearly symmetric. The two exceptions are LTC

and NEO which show extremely strong negative skewness,

−2.2268 and −2.937, respectively. Due to the less than 5

years of data coverage and the common market downturns

of cryptocurrencies in those years, we cannot conclude that

returns of LTC and NEO consistently skew to the left. All

cryptocurrencies and stock indexes have comparable levels of

volatility. In the cryptocurrency market, the volatility of BTC

is the smallest, followed by ETH. Connecting to the discussion

of kurtosis, what we find interesting is that although the risk

levels of these markets are similar, the chances of extreme

events in the cryptocurrency market are prominently higher

than those in the stock market.

Fig. 3 shows the correlation coefficient matrix of the cryp-

tocurrencies. It suggests that most of these cryptocurrencies,

except DASH and OMG, have strong positive correlations.

6The DASH price data is only available from May 15, 2018 to November
15, 2020. In order to make consistency of the time span, we obtain the final
price series by concatenating the DASH/USDT price from May 15, 2020 to
November 28, 2022 on the Binance with the former prices from the Bitfinex.
We are aware the FTX liquidity crisis, within which Binance played an explicit
role. However, this event has not affected us to obtain data. In fact, our results
(e.g., Fig. 7) may have provided insights into the bubble burst linked to this
liquidity event.

7Other indices can surely be selected. We choose these Chinese equity
indexes for pure experimental purposes, especially since it is known that the
cryptocurrency trading is heavily prevalent in China, onshore before some
major regulatory intervention and offshore afterward.
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TABLE I: BASIC DATA INFORMATION

Cryptocurrency Symbol Start Date/Time End Date/Time Num. Obs.

Bitcoin BTC 2018-05-15 06-AM 2022-11-28 01-AM 39779
Ethereum ETH 2018-05-15 06-AM 2022-11-28 01-AM 39779
Litecoin LTC 2018-05-15 06-AM 2022-11-28 01-AM 39779

Antshares NEO 2018-05-15 06-AM 2022-11-28 01-AM 39779
Ethereum Classic ETC 2018-05-15 06-AM 2022-11-28 01-AM 39779

Dash DASH 2018-05-15 06-AM 2022-11-28 01-AM 39779
Monero XMR 2018-05-15 06-AM 2022-11-28 01-AM 39779

OmiseGO OMG 2018-05-15 06-AM 2022-11-28 01-AM 39779

TABLE II: STATISTICS OF LOG-RETURNS

Kurtosis Skewness Variance Mean Maximum Minimum

BTC 45.464 −0.404 0.000062 0.000016 0.181 −0.190
ETH 28.241 −0.602 0.000103 0.000012 0.168 −0.231
LTC 96.590 −2.268 0.000133 −0.000017 0.221 −0.452
NEO 138.120 −2.937 0.000168 −0.000059 0.199 −0.588
ETC 44.979 −0.685 0.000168 0.000000 0.265 −0.327

DASH 40.779 0.234 0.000146 −0.000060 0.335 −0.289
XMR 71.342 −1.683 0.000123 −0.000012 0.246 −0.379
OMG 73.222 −0.914 0.000222 −0.000066 0.399 −0.495

HSI 6.529 0.236 0.000211 −0.000457 0.087 −0.066
SSEC 7.672 −0.585 0.000136 −0.000033 0.056 −0.080
SZI 5.610 −0.488 0.000223 0.000030 0.054 −0.088
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Fig. 3: Correlation coefficients of the cryptocurrencies

This explains the contagion effects among the cryptocurrency

system, which raise concerns about systemic crashes. For

example, when Bitcoin prices crashed in 2021, Ethereum was

also greatly affected and the impact spread over the wider

cryptocurrency markets.

IV. RESULTS

We present the results of bubble detection and the LPPL

models in this section.

A. Outliers of ε-drawdown

We identify outliers of drawdown given δ = 2%, which

has been verified as a suitable choice for financial markets

by [24], [25]. The parameters of the exponential law for each

cryptocurrency are provided in Table III. To recap, N0 is the

number of drawdowns, and DDc is the standard deviation

of the drawdowns. We exclude drawdowns smaller than 1%
as they fall within one standard deviation of returns and

should therefore be considered normal price movements. Fig. 4

verifies the fitting to the exponential law and shows outliers

of ε-drawdown of each cryptocurrency.

TABLE III: PARAMETERS OF THE EXPONENTIAL LAW

ln(N0) 1/DDc N0 DDc RMSE

BTC 7.40792 43.03410 1649 0.02324 0.39752
ETH 7.46965 31.69424 1754 0.03155 0.30969
LTC 7.50329 31.65235 1814 0.03159 0.33576
NEO 7.55538 27.50106 1911 0.03636 0.26752
ETC 7.53636 26.94411 1875 0.03711 0.28160

DASH 7.54908 28.39999 1899 0.03521 0.31638
XMR 7.49665 31.95773 1802 0.03129 0.30379
OMG 7.58579 24.74334 1970 0.04041 0.36706

The largest drawdown of BTC is close to 36% and it is

around 42% for ETH. Compared with other cryptocurrencies,

these are the smallest ones. The consecutive price decreases

of most of the other cryptocurrencies have reached over

60%. In particular, other cryptocurrencies, such as XMR and

OMG, have experienced several severe market fluctuations.

This finding indicates that the BTC price is relatively stable

among the entire cryptocurrency market.

B. Bubble regimes and bubble formations

Recall that we use the detailed coefficient dn from the n-

level DWT filter bank to determine the bubble regimes. We

face trade-offs when selecting the level of the filter bank.

A higher level (i.e., larger n) is helpful for smoothing out

noises and provides a more robust result, however, it is weak

in the time-domain and may miss some short-lived bubbles.

The largest n we can apply in this study is 15 according to
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Fig. 4: Outliers of ε-drawdowns

the number of observations. After examining the results of

selections of n, we find the 10-level filter bank gives the most

reliable bubble regime detection.

Fig. 5 presents decomposition of the Bitcoin price by “db4”

wavelet, in which “s” is the log-price, “d1”,“d2”,· · · ,“d10”

are the 10-level high-frequency factors of the log-price, and

“ca10” is the smoothed trend. We observe that the high-
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Fig. 5: Wavelet analysis of BTC

frequency factors from the first few levels’ decomposition give

some insights on the periods of stable market and abnormal

upturns or downturns. However, these components are still

too volatile to extract bubble regimes. The splits of regimes

become clearer in d9 and d10. In this study, we choose the

local maximum from the component d10. To ignore local

maximum from small vibrations during the period of stable

market, we set a restriction on the bubble regimes — a

minimum of 1500 hours (approximately 2 months). The bubble

regimes for BTC are shown in Fig. 6(a) and 6(b). Further, the

price decomposition of the other seven cryptocurrencies except

for Bitcoin is shown in Appendix B, and the bubble regimes

are shown in Appendices C and D respectively.

We use ti to denote the starting time of the i-th bubble

regime. Let Pi denote the price series from the beginning

of the i-th bubble regime to the beginning of the i + 1-th

bubble regime, i.e., Pi = {Pti , Pti+1, · · · , Pti+k, · · · , Pti+1
}.

Hence, each interval ends with the initial price of the next

interval. The timestamps of some large crashes in Fig. 6(b)

are obvious, while we still need to utilize the LPPL model to

obtain comprehensive descriptions of the bubble growth. Most
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Fig. 6: Bubble regimes of BTC

TABLE IV: THE LPPL MODELS FOR BTC BUBBLES (tacc = 24)

tDD tc ω β A B C1 C2

2708 2726.54 6.974 0.923 8.915 -0.0006 0.000031 -0.000077
9781 9768.41 2.759 0.445 9.454 -0.0299 0.004644 -0.003286

17411 17398.00 3.690 0.617 9.234 -0.0077 0.001374 -0.000187
24352 24349.20 4.885 0.857 10.986 -0.0023 -0.000108 0.000302

of the bubbles start to form at the beginning of each regime.

We search for the timing of bubble burst by fitting the LPPL

model to each subset of the price series Pi. The calibration

method is in the work of [54]. To enhance the efficiency of

model fitting and find realistic growth patterns, we constrain

0.01 ≤ β ≤ 0.99 (also see [41]). Note that after LPPL model

fitting, we confirm that some bubbles are shorter lived than

the bubble regimes we find by wavelet analysis.

We use tDD to denote the timestamp of the crash found

by the ε-drawdown. Here, we set a constraint on tc in the

LPPL model: |tc − tDD| < tacc. When taking tacc = 24, we

ensure that the bubble burst time “errors” between the LPPL

model and the ε-drawdown method are within 24 hours, or a

day. Given this restriction, the LPPL models of BTC bubbles

are in Table IV. Corresponding model fitting results on BTC

price movements in each bubble regime are shown in Fig. 7

and the specific bubble burst time given by tc is presented as

the title of each sub-figure. To better observe the price changes

of cryptocurrencies following the burst of bubbles, we extend

the prices for 168 periods (equivalent to a week) from the

moment of the bubble burst and present them together in the

figures.

C. Robustness checks

We analyse the impact of different choices of δ, Daubechies

wavelet types, and tacc on the results.

Firstly, we expand the choice of δ to 1%, 1.5%, 2.5%,

3% and check the goodness-of-fit for the exponential law. By

examining the values of RMSE in Tables III and VI, we find

that these choices do not generate better fitting than δ = 2%.

We observe that as δ increases (i.e., δ equals 2.5%, 3%),

the number of samples used for parameter fitting decreases,

resulting in an increase in RMSE values. In such cases, a

larger δ value could also lead to normal price fluctuations

being falsely categorized as outliers. Conversely, the smaller

δ (i.e., 1%, 1.5%) results in a bit volatile RMSE. Overall,

δ = 2% manages to maintain all RMSE below 0.4, which

is the best consistent result. Moreover, the additional outliers

given by these choices do not indicate new bubble regimes

from results of the wavelet analysis. So following the study

by [25], we set the value of δ to 2% in this study.

We then investigate the use of different types of Daubechies

wavelets similar to the test conducted by [34]. We find that

db5 and db6 wavelets have too large vanishing moments to

construct price trends, which means they are unable to produce

reliable price regime split results. While the db3 wavelets

are also effective in finding the price regimes, there are no

additional bubble regimes after matching to the ε-drawdown

outlier timestamps.

Lastly, we increase the tacc to 36, 48 (hours) to test the

robustness of the life cycles of bubbles and LPPL model

fitting. When tacc > 24, loosening the constraint on tc
does not lead to the discovery of more valid bubbles. In the

identification of bubbles for the other seven cryptocurrencies,

increasing the value of tacc also does not result in the detection

of additional cryptocurrency bubbles.

From Tables IV and Fig. 7, we confirm that, overall, the

LPPL model fits well to cyclical and exponential bubble

growth patterns and can capture the time when bubbles burst

and the peak prices. We also observe that some bubbles

have obvious periodicity (e.g., Fig. 7(a)), while others are

nearly monotonic (e.g., Fig. 7(b)). For those that have stronger



IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT 9

20
18

-0
8-

13
 1

5:
00

:0
0

20
18

-0
8-

16
 2

2:
00

:0
0

20
18

-0
8-

20
 0

5:
00

:0
0

20
18

-0
8-

23
 1

3:
00

:0
0

20
18

-0
8-

26
 2

0:
00

:0
0

20
18

-0
8-

30
 0

3:
00

:0
0

20
18

-0
9-

02
 1

1:
00

:0
0

20
18

-0
9-

05
 1

8:
00

:0
0

20
18

-0
9-

09
 0

1:
00

:0
0

20
18

-0
9-

12
 0

9:
00

:0
0

date

5800

6000

6200

6400

6600

6800

7000

7200

7400

7600
B

T
C

 p
ri
c
e

exact

fitted

(a): 5 Sep 2018 9:00

20
19

-0
3-

04
 1

5:
00

:0
0

20
19

-0
3-

17
 2

3:
00

:0
0

20
19

-0
3-

31
 0

7:
00

:0
0

20
19

-0
4-

13
 1

7:
00

:0
0

20
19

-0
4-

27
 0

1:
00

:0
0

20
19

-0
5-

10
 0

9:
00

:0
0

20
19

-0
5-

23
 1

8:
00

:0
0

20
19

-0
6-

06
 0

2:
00

:0
0

20
19

-0
6-

19
 1

0:
00

:0
0

20
19

-0
7-

02
 1

9:
00

:0
0

date

2000

4000

6000

8000

10000

12000

14000

B
T

C
 p

ri
c
e

exact

fitted

(b): 26 Jun 2019 19:00

20
20

-0
3-

12
 1

4:
00

:0
0

20
20

-0
3-

19
 1

7:
00

:0
0

20
20

-0
3-

26
 2

0:
00

:0
0

20
20

-0
4-

02
 2

3:
00

:0
0

20
20

-0
4-

10
 0

2:
00

:0
0

20
20

-0
4-

17
 0

5:
00

:0
0

20
20

-0
4-

24
 0

8:
00

:0
0

20
20

-0
5-

01
 1

1:
00

:0
0

20
20

-0
5-

08
 1

4:
00

:0
0

20
20

-0
5-

15
 1

7:
00

:0
0

date

4000

5000

6000

7000

8000

9000

10000

11000

B
T

C
 p

ri
c
e

exact

fitted

(c): 8 May 2020 17:00

20
21

-0
1-

21
 1

3:
00

:0
0

20
21

-0
1-

25
 2

0:
00

:0
0

20
21

-0
1-

30
 0

3:
00

:0
0

20
21

-0
2-

03
 1

0:
00

:0
0

20
21

-0
2-

07
 1

7:
00

:0
0

20
21

-0
2-

12
 0

0:
00

:0
0

20
21

-0
2-

16
 0

7:
00

:0
0

20
21

-0
2-

20
 1

4:
00

:0
0

20
21

-0
2-

24
 2

1:
00

:0
0

20
21

-0
3-

01
 0

5:
00

:0
0

date

2.5

3

3.5

4

4.5

5

5.5

6

B
T

C
 p

ri
c
e

#104

exact

fitted

(d): 22 Feb 2021 5:00

Fig. 7: The LPPL models fitting to BTC bubble regimes
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Fig. 8: The LPPL models fitting to ETH bubble regimes

periodicity, we should get larger values of ω.

Overall, we apply the same method to all eight cryp-

tocurrencies. In total, we find 24 bubbles (see Table V).

Generally speaking, the growth of some bubbles has a specific

cyclical nature and multiple peaks, troughs and eventually

collapses. The other part of the bubble generation process

has no apparent periodicity. The bubble growth process only

reflects exponential growth, which is somewhat different from

the situation in the stock market.

The bubble burst times tDD in Table V indicate three

sequential bubble crashes. The first event starts with the OMG

price bubble burst at tDD = 5351 (i.e., 23 Dec 2018 4:00),

closed followed by the bursts of ETH and DASH within a day.

The second event starts with the ETC price bubble burst at

tDD = 15881 (i.e., 5 Mar 2020 23:00), LTC, ETH and OMG

also experienced bubble crashes within 5 days. Interestingly, a

BTC bubble starts to form right after this and finally crashed

two months later at tDD = 17411 (i.e., 8 May 2020 17:00).

But NEO, DASH and XMR do not exhibit any bubbles in

the near future. The third event is “initiated” by a DASH

bubble burst, at tDD = 24131 (i.e., 12 Feb 2021 23:00),

closely followed by ETC and BTC. Similar to the second

event, the NEO market starts to build a bubble that lasts for

2 months. It is worth emphasizing that not all bubbles have

leaders or laggers. Most bubbles are individual market events,

such as BTC at tDD = 9781, which does not have contagion

effect or spillover to the broader cryptoeconomy. As further

analyse of the mechanism of sequential bubble formations and
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TABLE V: THE LPPL MODEL PARAMETERS FOR CRYPTO BUBBLES

tDD tc ω β A B C1 C2

BTC 2708 2726.54 6.974 0.923 8.915 -0.0006 0.000031 -0.000077
BTC 9781 9768.41 2.759 0.445 9.454 -0.0299 0.004644 -0.003286
BTC 17411 17398.00 3.690 0.617 9.234 -0.0077 0.001374 -0.000187
BTC 24352 24349.20 4.885 0.857 10.986 -0.0023 -0.000108 0.000302

ETH 5361 5342.08 3.307 0.262 5.164 -0.1592 0.000036 0.020058
ETH 16001 15978.00 2.138 0.914 5.410 0.0000 0.000607 0.000010

LTC 15917 15894.00 8.738 0.658 4.158 -0.0027 -0.000533 0.000740
LTC 22206 22214.00 4.496 0.310 4.520 -0.0614 -0.016009 -0.007373
LTC 30694 30681.50 5.137 0.682 5.445 -0.0023 0.000684 0.000791
LTC 34507 34490.00 3.884 0.800 4.691 0.0005 0.000287 -0.000585

NEO 25647 25624.00 4.295 0.626 4.382 -0.0111 -0.000609 -0.001580
NEO 31139 31134.50 2.329 0.318 3.520 0.0324 -0.002364 0.010395

ETC 11927 11906.00 2.822 0.551 1.826 0.0008 -0.000685 -0.001851
ETC 15881 15866.70 4.368 0.798 2.109 -0.0005 0.001277 -0.000667
ETC 24322 24319.60 2.967 0.660 2.934 -0.0132 -0.000950 0.003365

DASH 5361 5338.04 2.210 0.729 4.548 -0.0060 -0.001757 0.002789
DASH 24131 24108.00 3.418 0.616 4.882 -0.0035 -0.000099 -0.001080
DASH 39304 39312.40 4.540 0.063 4.978 -0.9020 0.006514 0.022440

XMR 23562 23541.60 4.093 0.441 5.123 -0.0083 0.000798 0.005234
XMR 27159 27136.00 3.841 0.782 5.551 0.0008 0.000089 0.001288

OMG 5351 5332.14 2.741 0.495 0.562 -0.0230 -0.000262 -0.010207
OMG 16001 15978.00 2.740 0.742 -0.128 0.0007 -0.000373 -0.002036
OMG 26118 26095.40 3.453 0.386 2.228 -0.0198 -0.020069 0.004624
OMG 29703 29680.40 2.441 0.265 3.050 -0.1984 -0.022961 0.019910
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Fig. 9: The LPPL models fitting to LTC bubble regimes
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Fig. 10: The LPPL models fitting to NEO bubble regimes

bursts or lead-lag effects are beyond the scope of this study,

we will not discuss them in this section. We further compare

the entire process from bubble formation to rupture of all

identified bubbles, as shown in Fig. 15. We mark the moments

of bubble bursts, corroborating the occurrence of sequential

bubble crashes.

We specifically investigate the two key parameters ω and β
in the LPPL model that control the shape of bubble growth.

Histograms of these two parameters are shown in Fig. 16

and 17. Among all the cryptocurrency bubbles, 21 out of

24 have ω falling in (2, 5), indicating weaker periodicity

compared with the stock bubbles. Meanwhile, more than
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Fig. 15: Periods of cryptocurrency bubble formation and bursts
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V. DISCUSSION

Considering the underlying trading mechanism and the

market microstructure of cryptocurrencies, we speculate about

various factors that may contribute to the weak periodicity and

strong growth of crypto bubbles.

First of all, the cryptocurrency market lacks an efficient

price correction mechanism. This market opens 24/7. In the

absence of after-hours trading, there may be no mechanism to

halt or temper the accumulation of buying power following a

rapid price surge. In contrast, transactions in the stock market

can only be executed during the market open hours, which, to

some extent, prevent the herding effect or positive feedback

from holding overnight. On the other hand, unlike foreign

exchange rates which are also traded 24/7, cryptocurrencies

are not backed by any government or central bank. Essentially,

when a crypto price rockets, it develops a monotonic rapid

growth pattern rather than a cyclic, constrained growth.

The second reason lies in the capability to model short-lived

bubbles and their microscopic behaviours using hourly data

frequency. The successive price increase for several hundreds

of hours (i.e., a few days) may be considered reasonable.

However, if the data frequency is daily, we should not accept

a model showing a successive price increase for hundreds of

days. Therefore, if daily data is used for this experiment, we

may obtain weaker growth and stronger cyclic parameters.

Finally, the cryptocurrency market is immature and there

are no universally adopted methods to value cryptocurrencies.

Investors are primarily speculative, hoping to gain profits from

the rapid price increase and the perpetual market fluctuations,

and targeting short-term holdings. Due to these irrational

trading activities, a large amount of hot money flows into

the cryptocurrency market rapidly when prices rise, which

promotes sustained and rapid price growth. Such a scenario

is uncommon in a fair and orderly market.

VI. CONCLUSION

The rapid fluctuations in cryptocurrency prices suggest a

volatile market with immature patterns of growth and decline,

potentially indicating the presence of financial bubbles. Exten-

sive literature on cryptocurrency bubbles asserted the existence

of bubbles and highlighted that the market is not ordered.

While some behavioural aspects of cryptocurrency trading

suggest that traditional modelling techniques are applicable,
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the statistical characteristics of the cryptocurrency market

differ significantly from those of traditional stock markets.

This study contributes to enhancements in bubble studies to

better align with the unique dynamics of the cryptocurrency

market. Using the intraday hourly data allows us to adapt to

the unique microstructure and nuances of the cryptocurrency

market.

In this paper, we establish a bubble modelling technique

through combining the wavelet analysis and the LPPL model.

By applying the drawdown-wavelet-LPPL bubble analysis

process to eight cryptocurrencies, we not only verify that

this is a robust methodology for the cryptocurrency market,

but also explore properties of crypto bubble formation. We

find 24 bubble regimes of eight cryptocurrencies and fit the

corresponding LPPL growth models. We find that, comparing

with stock market bubbles, crypto bubbles exhibit weaker

periodicity and faster expansion. The typical LPPL parameter

ranges are ω ∈ (2, 5) and β ∈ (0.5, 1). We also observe three

sequential bubble crash events starting with the OMG market,

the ETC market, and the DASH market, respectively. Another

interesting finding is that the DASH market sometimes isolates

from others, as revealed not only by smaller correlations

but also by bubbles occurring while others remain in stable

price regimes. To conclude, our comprehensive bubble analysis

using the drawdown-wavelet-LPPL process presents several

typical bubbles in the cryptocurrency market and contributes

to enriching both the technical modelling and empirical un-

derstanding of cryptocurrency markets.

APPENDIX A

MATHEMATICAL DETAILS OF THE LOG-PERIODIC POWER

LAW (LPPL) MODEL

The Johansen–Ledoit–Sornette (JLS) model in Equation 7

includes the bubble crash term dj: j = 0 before the crash and

j = 1 after the crash.

d ln(Pt) = µtdt+ σtdWt − κdj, (7)

where µt is the drift term, σt is the volatility and Wt is the

standard Brownian motion. The expectation of dj is E[dj] =
htdt where ht is the crash hazard rate modeled as below:

ht = a (tc − t)
β−1

(1 + b cos (ω ln (tc − t)− φ)) , (8)

where a, b, β and φ are parameters, and tc is the time when

the bubble burst.

APPENDIX B

THE RESULT OF WAVELET ANALYSIS AND HIGH

FREQUENCY FACTOR EXTRACTION

APPENDIX C

THE RESULT OF HIGH FREQUENCY FACTOR EXTRACTION

‘D10’

APPENDIX D

THE RESULT OF PRICE REGIMES

APPENDIX E

PARAMETERS OF THE EXPONENTIAL LAW
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TABLE VI: PARAMETERS OF THE EXPONENTIAL LAW

ln(N0) 1/DDc N0 DDc RMSE δ

BTC 7.41818 39.33515 1666 0.02542 0.28776 1%
ETH 7.47986 28.32095 1772 0.03531 0.36164 1%
LTC 7.51371 28.37219 1833 0.03525 0.27396 1%
NEO 7.56528 24.94305 1930 0.04009 0.36112 1%
ETC 7.54645 24.26581 1894 0.04121 0.43996 1%

DASH 7.55904 25.56332 1918 0.03912 0.38777 1%
XMR 7.50659 28.56308 1820 0.03501 0.29958 1%
OMG 7.59589 21.99107 1990 0.04547 0.65043 1%

BTC 7.41276 41.37778 1657 0.02417 0.31949 1.5%
ETH 7.47477 30.12593 1763 0.03319 0.32586 1.5%
LTC 7.50879 30.06532 1824 0.03326 0.27640 1.5%
NEO 7.56008 26.35956 1920 0.03794 0.29011 1.5%
ETC 7.54168 25.58877 1885 0.03908 0.37689 1.5%

DASH 7.55381 27.10193 1908 0.03690 0.30037 1.5%
XMR 7.50163 30.42591 1811 0.03287 0.27834 1.5%
OMG 7.59085 23.36207 1980 0.04280 0.53491 1.5%

BTC 7.40245 44.80789 1640 0.02232 0.41536 2.5%
ETH 7.46451 33.06034 1745 0.03025 0.66743 2.5%
LTC 7.49832 32.96246 1805 0.03034 0.42567 2.5%
NEO 7.55014 28.64994 1901 0.03490 0.19602 2.5%
ETC 7.53155 28.15216 1866 0.03552 0.23352 2.5%

DASH 7.54380 29.69925 1889 0.03367 0.34554 2.5%
XMR 7.49165 33.37846 1793 0.02996 0.38386 2.5%
OMG 7.58070 26.09039 1960 0.03833 0.44172 2.5%

BTC 7.39756 46.40594 1632 0.02155 0.50759 3%
ETH 7.45934 34.20314 1736 0.02924 0.46431 3%
LTC 7.49332 34.21873 1796 0.02922 0.54331 3%
NEO 7.54486 29.78598 1891 0.03357 0.27047 3%
ETC 7.52618 29.49500 1856 0.03390 0.25178 3%

DASH 7.53849 30.94190 1879 0.03232 0.39431 3%
XMR 7.48605 34.84109 1783 0.02870 0.49903 3%
OMG 7.57558 27.12916 1950 0.03686 0.23376 3%
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