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Abstract. Robot manipulation with simulation has become a main-
stream approach in the robotics field recently. It entails lower risk and
cost compared to direct training a real robot. Various physics engines,
such as MuJoCo, offer simulated environments tailored for robot ma-
nipulation tasks. As the robotics field rapidly grows, model complexity
and training times increase exponentially to meet the demands of di-
verse tasks. Solving this is challenging as it requires complex models and
long training times. Deep Reinforcement Learning (DRL) is the current
best-performing way to solve robot manipulation problems. However,
although certain algorithms utilized automated curriculum learning to
tackle multi-task robot manipulation problems, the models were still too
complex to be solved with one training from scratch with acceptable
accuracy and reasonable training time. To address this, we introduce
a novel few-shot Transfer Learning (TL) technique for DRL that ap-
plies both Forward Transfer (FT) and Reverse Transfer (RT). TL facili-
tates breaking down a complex problem into easier-to-solve sub-problems
and transferring the acquired knowledge to more complex ones. Our TL
method appears able to accelerate the training process for all the Mu-
JoCo Fetch tasks, while even improving performance by 20% and accel-
erating 85% for the most complex FetchSlide environment.
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1 Introduction

In recent years, robotic experiments are often conducted in simulated environ-
ments rather than real ones due to cost and risk concerns, as well as the need
for enhanced control and efficiency [1]. OpenAI Gym [2] is an open-source li-
brary which was created to simplify access to most of the latest Reinforcement
Learning (RL) algorithms and soon became a significant platform for robotic
simulated environments in particular with manipulation tasks (Fetch, Hand) [2,
3]. Among the various physics engines introduced to build simulated environ-
ments for robot manipulation tasks [1], MuJoCo presents high flexibility and
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accuracy for simulating robot dynamics and contact forces [4]. However, many
robot training processes are still extremely time-consuming, thus often result-
ing in under-performing and data-dependent outcomes. Within recent Machine
Learning (ML) developments in robotics, including control systems and motion
planning, significant improvements have been brought about by Deep Reinforce-
ment Learning (DRL) models, which are widely used during the training pro-
cess. This involves models that are large, complex and increasingly sophisticated,
leading to high resource demands and long training processes [5].

State-of-the-art DRL implementations in robotic manipulation tasks obtain
good results, yet certain tasks, including FetchSlide, have only been partially
solved or require excessively long times to accomplish [3, 6]. To enable a more ef-
ficient and better-performing training process, we introduce a Few-shot Transfer
Learning (TL) approach, utilizing a set of robotic MuJoCo tasks as testbeds. In-
stead of starting the learning process from scratch, TL was introduced to break
down a complex problem into sub-tasks and transfer the knowledge acquired
from solving simpler primary tasks to increasingly complex ones. The scope of
this study is to investigate the effectiveness of TL in accelerating the training
process while maintaining or improving performance across all the benchmarks
considered.

2 Related Work

Transfer Learning (TL) is a Machine Learning (ML) technique that involves
leveraging useful features gained from solving one task to improve performance
on a related task. It relates to a number of different subcategories including Im-
itation Learning (IL), Multi-Task Learning (MT) and Goal-oriented Learning.
Current research shows great potential for TL in the ML field [8, 9]. The TL
approach can be categorised into three classes: Zero-shot, Few-shot and Sample-
efficient. Zero-shot TL enables the development of an agent that can be directly
applied to the target domain without requiring any training interaction [10].
The Sample-efficient TL is designed to accelerate the learning process of models
through the rational use of data, thereby reducing data requirements and train-
ing costs [11]. Unlike Zero-shot and Sample-efficient TL, Few-shot TL enables
only a few interactions to keep more useful features and adapts more effectively
to the specific characteristics of the target task [12].

To the best of our knowledge, the application of IL to robotics is mostly
limited to approaches implementing zero-shot and few-shot transfer [9, 13, 14].
However, although IL learns high-quality behavioural policies directly from ex-
pert demonstrations, thus making it particularly suitable for tasks requiring
precise execution, it is still expert-dependent and time-consuming. In addition,
because of the high complexity of these types of robotic problems, traditional
RL solutions are not able to achieve satisfactory results.

More recently, Deep Reinforcement Learning (DRL) has been introduced to
empower robots with a greater awareness and understanding of the environ-
ment. DRL appears successful in learning adaptive strategies from interactions
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with the environment, which makes it applicable to various robotic tasks [15].
Current mainstream DRL algorithms have been divided into two types: on-policy
and off-policy algorithms [16, 17]. The latest on-policy DRL algorithms include
Proximal Policy Optimization (PPO) [18], enabling better convergence and ro-
bustness of robots, especially in policy optimization. However, due to the scale
of most robotic models being quite large, off-policy DRL algorithms including
Soft Actor-Critic [19] and Truncated Quantile Critics (TQC) [20] were created
to tackle this problem. Hindsight Experience Replay (HER) [21] was also intro-
duced to help the challenges related to inaccuracies and large action spaces by
replacing the desired goal with the achieved goal and storing their experience
replay in the replay buffer [3]. To ensure a fair result comparison and make RL
algorithms easy to use, the Stable-Baselines3 (SB3) and RLlib libraries were
designed and assembled with most of the mainstream DRL algorithms and sim-
ulated environments, including robotic environments [22, 23].

Finally, a set of simulated MuJoCo Fetch environments (Reach, Push, PickAnd-
Place and Stack) were implemented with alternative Goal-Oriented approaches
[7, 24, 25]. These are often based on intrinsically motivated and curiosity-driven
rewards while other proposed solutions applied forms of Multi-task Learning
primarily focused on training a single model with multiple tasks with shared
knowledge flow [26, 27].

Although all the methods and techniques mentioned in this section were
able to produce some improvements on the state of the art, as the complexity
of RL algorithms grows exponentially there is still a need for enhancing the
performance of the current single-environment techniques.

3 Proposed Approach

Our proposed approach aims to solve simulated robotic manipulation tasks using
TL (transferring the weights and biases of the first layer to the target tasks) as an
alternative to DRL model training in isolation from scratch. The experiments
considered are the set of MuJoCo manipulation Fetch environments provided
by OpenAI Gym [2]. These include FetchReach-v2 (reaching a target point),
FetchPush-v2 (pushing a block to a target point), FetchSlide-v2 (hitting a puck
to reach a target point on a long and slippery table) and FetchPickAndPlace-v2
(picking an object from a source point and placing it to a target point). RL
Baselines3 Zoo is a benchmark with metrics created by SB3 [22] showing that
TQC [20] currently has the best performance on success rate and rewards metrics
on all of the above environments [19]. This method accepts states, actions and
goals as the input of the ‘critic’ network to calculate the inputs to the hidden
‘actor’ layers while the related goals and rewards are computed applying the
HER technique [3, 21].

Fig. 1 shows an example of the TL process with Forward (Single and Double)
and Reverse Transfer with the FetchReach environment selected as the primary
task. Unlike the weights and biases that need to be initialized as random values
when applying a DRL model in isolation, in TL a proportion of the pre-trained
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Fig. 1. Forward (Single, Double) and Reverse Transfer Learning.

parameters, i.e. weights and biases, are transferred between the models solving
the primary and target tasks. To explain these operations in simpler terms we
can observe that more complex tasks such as Pick-and-Place can be reduced
to a combination of sub-tasks, one being the Reach tasks itself. Therefore if a
model has already learnt through training how to complete the reaching action,
then TL aims to exploit this already acquired knowledge so that the remaining
training process (or indeed retraining) could only focus on the remaining sub-
tasks. This is expected to require shorter training times and eventually also lead
to gains in performance. It is worth noting that once some knowledge has been
acquired, the related pre-trained parameters could be transferred to a number of
different target tasks in parallel potentially producing further significant gains
in runtime.

Existing research showing affinity to TL focuses either on trying to balance
the training of the same model by using different tasks to compute the losses,
similar to multi-objective optimization approaches (multi-task learning [26, 27]),
or on exploiting the benefits of training a model through a sequence of increas-
ingly complex tasks (goal-oriented computing [7, 24, 25]). On the contrary, the
principal aim of our research switches the focus to the actual mechanisms used
to transfer the knowledge, namely identifying what subsets of the pre-trained
parameters need to be transferred, and how these stand in relation to the differ-
ent tasks and sub-tasks. When only one transfer for each training is performed
this is referred to as Single Transfer. Double Transfer obtains the useful features
from a trained non-primary model to another non-primary model and finally
Reverse Transfer transfers the useful features from a non-primary model back to
the primary one. The latter seeks to validate to what extent the features learnt
during more complex tasks will remain useful to solve basic ones (in other terms
if solving complex tasks could cause some basic knowledge loss).

4 Experiments and Results

The MuJoCo Fetch environments have been implemented for TL. The latest
version-2 release has been adopted because of its wider MuJoCo support. Because
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Fig. 2. Success rate vs timesteps for
FetchPush-v2 with Single (Reach->Push
and Pick->Push) and Double TL (Reach-
>Pick->Push) and without TL.

Fig. 3. Success rate vs timesteps for
FetchPickAndPlace-v2 with Single (Reach-
>Pick and Push->Pick) and Double TL
(Reach->Push->Pick) and without TL.

of its simplicity and reliability, the Stable-Baselines3 (SB3) has been utilized
as a benchmark for performance comparison. To prevent uncertainty, all the
experiments gathered the models with the best performance from 3 training
sessions. The learning rate and batch size remain unchanged for all environments,
which are 0.001 and 256 as suggested by the benchmark RL Baselines3 Zoo
from SB3. We use TQC with HER as the main Deep Reinforcement Learning
algorithm for environments with sparse rewards. The total training timesteps
are different due to the complexity of each task. They are set to match the value
of the benchmark SB3. The experiments were performed on a PC, with 64GB
RAM, an Intel Core i7-14700K 2.5GHz CPU and an RTX 4060 GPU.

Forward Transfer Figures 2, 3 and 4 present the results of Single and Dou-
ble Transfer from FetchReach to the other Fetch environments. By analyzing
Figures 2 and 3, we can observe that the training approaches applying models
pre-trained on both FetchPush and FetchPickAndPlace environments outper-
form those without any pre-training in runtime terms. Whether it is a Single
or Double Transfer, from FetchPickAndPlace to FetchPush and vice versa, TL
is always able to produce a faster convergence. Furthermore, by analyzing Fig.
4, on the FetchSlide task (the most complex of the Fetch environments), the
model pre-trained with FetchPick is able to achieve the best overall performance
by producing the highest success rate. It is worth noting that the pre-trained
models with Double Transfer outperform those with Single Transfer, although
even a simple pre-training with FetchReach produces a better performance than
the model trained from scratch without any transfer applied.

Reverse Transfer Fig. 5 presents the result of Reverse Transfer from non-
primary models (FetchPush, FetchSlide and FetchPickAndPlace) to FetchReach.
It shows that the models pre-trained by FetchPush, FetchPickAndPlace and
FetchSlide all outperform the original single-environment model by scoring suc-
cess rates equal to or near to 1 compared with 0.91. However, the pre-trained
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Fig. 4. Success rate vs timesteps for
FetchSlide-v2 with Single (Reach->Slide,
Push->Slide and Pick->Slide) and Double
(Reach->Push->Slide and Reach->Pick-
>slide) TL and without TL.

Fig. 5. Success rate vs timesteps for
FetchReach-v2 with Reverse Transfer
(Push->Reach, Pick->Reach and Slide-
>Reach) and without TL.

models from FetchPickAndPlace and FetchSlide converge slower than the model
trained from scratch. This is because their complexity is higher than FetchPush
indicating that a potential overtraining might have happened. As a result, mod-
els starting with pre-training on more complex tasks may eventually result in
affecting the converging speed, although eventually leading to higher success
rates.

5 Conclusion and Future Works

This study presents some preliminary results demonstrating encouraging im-
provements in applying both Forward (Single, Double) and Reverse TL to the
robot training process. The proposed TL methods accelerate the original train-
ing process on single environments and are able to at least equalize the cur-
rent benchmarks for each of the MuJoCo Fetch environments, while also scoring
higher success rates for the most complex task (FetchSlide). This suggests great
potential for further TL applications to simulated Robotic tasks. Our research
aims to provide more insights on the actual mechanism of transfer, by focusing
on which subsets of pre-trained parameters need to be transferred between tasks
and how this can be achieved.

Future work will focus on the application of the TL method to more complex
robotic environments (putting objects on a shelf [28]) and alternative physical
engines such as Gazebo [29]. In addition, future research will also attempt to close
the gap from simulation to real environments through the so-called Sim2Real
Transfer [11]. Finally, we can also consider transfer between models solving the
same task, albeit implementing different forms of rewards. These could be based
on different principles, such as novelty and curiosity, or on auxiliary intermediate
goals, for example generated using large language models [30, 31].
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