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Abstract: The management of high-volume (HV) waste poses a persistent challenge in sustainable
materials management and represents an untapped opportunity in circular economy models. This
study proposes a conceptual decision-making framework to operationalise a novel circular economy
strategy for HV waste, involving temporary storage to facilitate nature-based secondary resource
recovery. Using an illustrative case study of a candidate HV waste (legacy mining waste), we
apply a robust multi-objective spatial optimisation approach at a national scale, employing an exact
solution approach. Our methodology integrates mixed-integer linear programming to evaluate the
economic viability, social benefits, and impacts of climate change uncertainties on nature-based
solutions (NbS) implementation across diverse scenarios. The results demonstrate that NbS can
enhance economic feasibility by incorporating carbon sequestration and employment benefits while
demonstrating resilience against climate change projections to ensure long-term sustainability. The
findings suggest that although NbS can improve the circular economy of HV nationally, it is essential
to assess additional ecosystem services and address multiple uncertainties for effective macro-level
sustainability assessment of HV management. This study offers a robust decision-making framework
for policymakers and stakeholders to plan and implement nature-based circular economy strategies
for HV waste streams at a national level while effectively managing long-term planning uncertainties.

Keywords: nature-based solutions; circular economy; resource recovery; climate change resilience;
robust optimisation; multi-objective optimisation

1. Introduction

Sustainable management of high-volume (HV) waste streams remains a significant
challenge within the confines of a linear economy [1], characterised by a ‘take, make,
dispose’ approach resulting in inefficient resource use and increased environmental degra-
dation [2]. The concept of a circular economy (CE) has gained significant traction as a
sustainable alternative to the traditional linear economy [3] where resources are continu-
ously cycled back into the production system, minimising waste and reducing the need
for virgin materials [4,5]. Nature-based solutions (NbS), which engineer natural processes
to address environmental challenges, have emerged as a powerful enabler of the circular
economy, particularly for the recovery of secondary resource materials [6]. NbS leverage
natural processes and ecosystems to address societal challenges, including waste manage-
ment and resource recovery [1]. By engineering natural processes, it is possible to reclaim
valuable materials from waste streams, thereby contributing to resource efficiency and
sustainability [7].
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However, several HV waste flows remain underutilised (e.g., combustion ash, dredg-
ing, alkaline industrial waste, and mine wastes) due to logistic and technical barriers [1]. HV
waste streams are characterised by a low intrinsic value (high ‘place value’) and therefore
can only be effectively utilised in proximity to their source [8]. Hence, the high trans-
portation costs associated with large volumes of waste further undermine the economic
feasibility of material recovery [9]. In addition, conventional resource recovery technologies
are prohibitively expensive for these waste streams [10]. Logistical and technical challenges
in recovering HV waste flows could impede progress toward responsible consumption and
production (SDG 12) [11]. Furthermore, HV waste streams are typically located on former
industrial sites, such as abandoned mines and smelting facilities [12], where the health risks
of exposure to soil contaminants add another layer of complexity to waste recovery [13].
Moreover, improper HV waste management can contaminate soil and water with heavy
metals, harm biodiversity, and disrupt ecological balance [14], challenging SDG 15’s goal to
reverse land degradation [15].

A new CE approach involves temporarily managing HV waste streams through NbS
systems to both recover materials and revitalise degraded landscapes through ecological
restoration [1]. This method leverages NbS to concentrate valuable resources until suitable
markets emerge, addressing the logistical and technical challenges of HV wastes [7]. A
practical approach is the creation of collection hubs to temporarily store materials before
final processing at manufacturing facilities, following the analogy of “soil hospitals” used
in the Queen Elizabeth Olympic Park soil remediation efforts [16] and deep ground storage
of nuclear waste [17].

Accounting for several factors, including economic, environmental, and social con-
siderations [18], is crucial in decision-making processes related to NbS and CE strategies.
Each of these dimensions plays a significant role in the overall feasibility and sustainability
of the implemented solutions [19]. Economic considerations involve cost-effectiveness,
market potential, and long-term economic benefits [20]. Environmental factors encompass
the conservation of biodiversity, reduction in greenhouse gas (GHG) emissions, and overall
ecosystem health [21]. Social factors include the impact on local communities, job creation,
and public health [22]. Determining the most suitable alternative, given multiple objectives,
can be achieved with a multi-objective optimisation approach [23,24]. This approach can
effectively balance various goals, such as revenues from recovered secondary resources,
benefits of NbS ecosystem services, employment opportunities, and reduction in GHG
emissions [25]. These goals are sometimes conflicting; for instance, maximising resource
recovery might conflict with minimising costs or environmental impacts. Multi-objective
optimisation allows for a balanced consideration of these diverse goals, ensuring that the
most holistic and beneficial solutions are selected.

The multi-objective optimisation approach must also account for uncertainties due to
climate change [26]. Climate change introduces significant variability and unpredictability
in environmental conditions such as extreme storms, heatwaves, and altered biogeochemi-
cal processes of nutrient cycles, which can affect the performance and outcomes of NbS [27].
Therefore, it is critical to incorporate methods that can handle this uncertainty, ensuring
that solutions remain robust and effective under varying future scenarios [28].

2. Previous Works

The discussion above indicates that nature-based secondary resource recovery es-
sentially intersects with three scholarly domains: (1) contaminated land remediation,
(2) resource recovery, and (3) nature-based solutions. A recent systematic review found
that only a few decision-making frameworks cover at most two domains (remediation and
resource recovery or remediation and NbS). The review also highlighted the scarcity of
assessing all the sustainability pillars in terms of optimisation objectives, especially in the
remediation and resource recovery optimisation literature [29].
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2.1. Remediation Domain

Studies have focused on minimising exposure risk to contaminants or geotechnical
hazards, as well as remediation costs. For instance, Bayer et al. optimised the groundwater
drawdown rate to protect infrastructure in Duisburg, Germany, using a single-objective
optimisation model that combines groundwater flow simulation with evolutionary op-
timisation [30], focusing exclusively on operational aspects. Other works focused on
minimising remediation costs in urban brownfield redevelopment [31], social housing on
redeveloped brownfields [32], and the bioremediation of chromium-contaminated landfills
in India [33].

2.2. Resource Recovery Domain

The literature focuses primarily on maximising revenues from resource recovery.
Several waste-to-resource value chains were considered, including organic waste, metal
waste, plastic waste, industrial eco-parks, and wastewater treatment. Several studies have
examined resource recovery from organic waste, focusing on different aspects, such as
the management of the biodegradable fraction of municipal solid waste [34], the national
organic waste-to-resource value chain [35,36], and the production of bioenergy through
the co-digestion of kitchen waste and rice straw [37]. Similarly, metal waste was explored
in the context of strategic support planning for waste electrical and electronic equipment
(WEEE) [38]; urban mining of metals, such as scrap iron, non-ferrous waste metals, WEEE,
and end-of-life vehicles [39]; location-routing of end-of-life solar photovoltaic panels in the
USA [39]; and design optimisation of heap leaching systems within mineral processing [40].
Resource recovery from a wastewater treatment industrial eco-park was examined by a
location-routing-network design optimisation model to minimise the total costs of wastew-
ater treatment [41] and was also assessed from an energy-water-waste nexus lens to recover
several resources (e.g., biogas, phosphorus, nitrogen, metals, digestate, solid sludge, and
microalgae oil) [42].

2.3. NbS Domain

NbS optimisation studies have primarily addressed sustainable stormwater man-
agement and wastewater treatment. Several investigations have evaluated sustainable
stormwater drainage systems from economic and environmental perspectives, such as a
micro-catchment in Costa Rica [43], an urban catchment in St. Maarten in the Caribbean [44],
a sub-catchment in São Carlos, Brazil [45], and regional rural-urban catchment planning
in the UK [46]. Another study investigated pathways to net zero carbon emissions at the
city level by optimising urban land use to maximise carbon sequestration through NbS in
Beijing, China, while adhering to urban planning constraints [47]; however, the study did
not consider social aspects. Two studies incorporated all the sustainability pillars in the
context of SuDS using a Gini coefficient-based optimisation framework [48] and trade-off
benefits assessment of green infrastructure [49].

2.4. Interdisciplinary Studies

Few studies have evaluated multiple domains, with contaminated land remediation
being the primary focus. Two studies addressed NbS-based remediation, while the other
two focused on resource recovery. The first NbS-based study proposed a bi-objective
optimisation model to reduce the total nitrogen load at the Tippecanoe River watershed
by minimising NbS implementation costs (wetland restoration and buffer strips) [50]. The
second study utilised a spatial index system with seven weighted attributes to assess
converting brownfields into green infrastructure for ecosystem services like stormwater
management and heat island mitigation in Xuzhou, China [51].

The remaining two studies centred on remediation and resource recovery. The first
employed a multi-objective optimisation framework with a memetic algorithm to maximise
landfill mining profits while minimising carbon emissions and time [52]. The second study
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evaluated brownfield redevelopment in the oil industry, using a bi-objective optimisation
framework to maximise oil production and minimise the production of water [53].

2.5. Research Gaps and Objectives

While several waste-to-resource value chains were examined in the reviewed literature,
none evaluated an NbS resource recovery system or combined resource recovery with soil
remediation. Most resource recovery studies focused primarily on economic objectives,
often neglecting a holistic sustainability assessment. This economic focus tends to overlook
important social and environmental benefits of NbS, such as community involvement,
biodiversity enhancement, and climate resilience [54]. Additionally, while all three pillars
of sustainability received varying degrees of coverage in the assessed NbS works, economic
and environmental objectives were more frequently evaluated. No study has assessed an
NbS-based resource recovery system.

Furthermore, few studies have analysed uncertainty explicitly in optimisation. Han-
dling uncertainty in optimisation can be approached through robust optimisation or stochas-
tic optimisation [55]. Robust optimisation aims to find solutions that perform well across
a range of possible scenarios, ensuring reliability even under adverse conditions [56].
Stochastic optimisation, on the other hand, involves probabilistic modelling of uncertain-
ties, allowing for solutions that optimise expected outcomes based on the likelihood of
different scenarios [57]. For instance, waste generation variability in the organic waste-to-
resource context was assessed through a stochastic optimisation framework [35,36], while
another study applied a robust optimisation approach for geological uncertainties related
to oil brownfield redevelopment [53]. Overlooking the impacts of uncertainties in NbS
assessment could undermine the robustness of decision-making analysis outcomes [58].

Given the complexities and uncertainties in recovering HV waste streams through
NbS, this study aims to develop a methodological framework to assess the macro-level
(national scale) sustainability based on a novel two-stage facility allocation optimisation
framework for nature-based secondary resource recovery of HV secondary resources. By
integrating robust optimisation to account for long-term climate change projections, the
framework ensures solution reliability under various future scenarios. It addresses sus-
tainability by balancing economic, environmental, social, and climate resilience objectives.
This study provides a holistic framework for long-term planning in managing HV waste
value chains by maximising net profits from resource recovery, enhancing social well-
being through increased employment, and minimising climate risks to facilities, thereby
advancing alternative circular economy strategies through nature-based resource recovery.

3. Methodology

This section presents the macro-level sustainability assessment framework method-
ology, starting with the problem statement in Section 3.1. The deterministic and robust
mathematical formulations are presented in Sections 3.2 and 3.3, respectively. The solution
approach and illustrative case study are outlined in Sections 3.4 and 3.5, while the sensitiv-
ity analysis and computational implementation of the optimisation model are described in
Sections 3.6 and 3.7.

3.1. Problem Statement

As discussed previously, the natural-based recovery of secondary resources and long-
term planning is a complex problem involving the location, allocation, and routing of the
various echelons of the resource recovery network while balancing sustainability pillars on
a national/regional scale (see Figure 1). The development of a conceptual methodological
approach capable of considering multiple stakeholders while handling the uncertainty
associated with long-term planning is necessary to assess the sustainability of the secondary
resource recovery network and promote temporary waste storage-based CE strategies. The
value of HV waste is constrained by geography (longer transportation distances increase
transport costs); therefore, the location of HV waste must be taken into account alongside
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social and environmental aspects. Additionally, the uncertainties associated with long-
term planning (e.g., the impacts of climate change on nature-based systems) must also be
considered to ensure the viability of CE strategies for HV waste.
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3.2. Deterministic Mathematical Formulation

In this paper, we adapted the mixed-integer linear (MILP) deterministic formulation
of a two-stage capacitated facility location problem [59] to develop a robust multi-objective
optimisation model (see Figure 1). The first objective is to maximise the economic revenues
while minimising associated costs. The second objective aims to improve social well-being
by maximising NbS-related employment. The third objective aims to minimise the potential
risks of climate change on brownfields and processing facilities. The optimisation model is
described in the following sections and summarised in Tables A1–A6.

3.2.1. Economic Objective

The first objective in this multi-objective optimisation model aims to maximise the net
profit from resource recovery and associated activities. The profit items in the first objective
include revenue from the recovery of valuable materials based on their market prices
and estimated quantities from legacy sites, as well as revenue from carbon sequestration
and storage (CSS) provided by NbS on brownfield sites. The cost items include capital
expenditures for implementing NbS, transportation costs for moving materials from legacy
sites to brownfields and from brownfields to processing facilities, and the costs associated
with loading materials at brownfields for transportation to processing facilities.

Maximise ∑j∈J ∑k∈K REVrec · wjk + ∑j∈J REVCSS · period · areaNbS
j · yj

−∑j∈J CAPEXNbS · areaNbS
j · yj − ∑i∈I ∑j∈J Aij · xij

−∑j∈J ∑k∈K Bjk · wjk − ∑j∈J ∑k∈K Cloading· wjk

(1)

where REVrec is the revenue from recovered materials; wjk is a continuous decision variable
that denotes the amount of materials transported from brownfield site j to processing facility
k; REVCSS is the monetized value of carbon sequestration and storage from NbS; period is
the time duration of the project; areaNbS

j is the area of NbS implementation at brownfield
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j; yj is a binary variable indicating whether brownfield site j is selected; CAPEXNbS is the
capital expense of NbS implementation per hectare; xij is a continuous decision variable
that represents the fraction of materials from legacy site i allocated to brownfield site j;
Aij and Bjk represent the transportation costs between legacy sites and brownfield sites
(A) and from brownfield sites to processing facilities (B), incorporating operational costs
of transportation as well as monetised greenhouse gas emissions from transportation per
distance unit; and Cloading is the loading unit price to load NbS biomass from brownfield j to
be transported to processing facility k. The units and values of the parameters are described
in Table A7.

3.2.2. Social Well-Being Objective

This objective focuses on maximising social benefits in terms of employment generated
by NbS at recovery brownfields.

Maximise ∑j∈J EMPNbS
j · areaNbS

j · yj (2)

where EMPNbS
j is an employment multiplier per hectare of NbS implementation.

3.2.3. Climate Risk Resilience Objective

This objective aims to minimise climate risk by considering the climate scenarios
and their impacts on brownfield and processing facility sites. The objective function
is multiplied by −1, so that all the objective functions have the optimisation direction
(maximisation) as required by the solution approach.

Maximise − 1 ×
(
∑j∈J Riclimate

j ·yj + ∑k∈K Riclimate
k ·zk

)
(3)

where Riclimate
j and Riclimate

k are climate risk factors associated with each brownfield site j
and processing facility k derived from climate change scenarios.

3.2.4. Constraints

Selection constraints
This constraint limits the number of selected brownfield sites and processing facilities.

Exactly N1 brownfield sites should be selected, while the number of selected processing fa-
cilities should be equal to or less than the total number of existing processing facilities (N2).

∑j∈J yj = N1 (4)

∑k∈K zk ≤ N2 (5)

Capacity constraints
This constraint ensures that the total volume of materials transported from legacy sites

to each brownfield site must not exceed the brownfield site’s capacity. Si represents the
volume of materials available at each legacy site i, and cj is the temporary storage capacity
at recovery brownfield j.

∑i∈I si·xij ≤ cj·yj ∀j ∈ J (6)

This constraint ensures that the total volume of materials processed by each facility
must not exceed the facility’s capacity. dk is the processing capacity at a processing facility k.

∑j∈j wj·xij ≤ dk·zk ∀k ∈ K (7)

Flow balance constraint
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This constraint ensures that the total volume of materials from legacy sites allocated
to a brownfield site equals the volume of materials transported from that brownfield site to
processing facilities. This maintains the balance of material flow across the supply chain.

∑i∈I si · xij = ∑k∈K wjk ∀ k ∈ K (8)

Service constraint
The service constraint ensures that all the material demand from legacy sites is fully

serviced by brownfield sites. This constraint mandates that the total amount of materials
from each legacy site must be distributed entirely to the brownfield sites.

∑j∈J xij = 1 ∀ i ∈ I (9)

Decision variables’ constraints
These constraints specify the permissible values and types of the decision variables xij,

wjk, yj, and zk, respectively.

xij ∈ [0, 1], ∀ i ∈ I, ∀ j ∈ J, (10)

wjk ≥ 0 ∀ j ∈ J, ∀ k ∈ K, (11)

yj ∈ {0, 1}, ∀ j ∈ J, (12)

zk ∈ {0, 1}, ∀ k ∈ K, (13)

The following assumptions are made when developing the model:
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misation (RO) model, given that Riclimate

j and Riclimate
k are the only uncertain parameters

representing climate change risk indicators, we need to reflect the impact of different
climate change scenarios on these parameters. Thus, we consider three climate change
scenarios described in [60]:

1. No global mean temperature increases by 2080 (1961–1990 baseline as assumed
in UKCP09).

2. Approximately 2 ◦C global mean temperature increases by 2080.
3. Approximately 4 ◦C global mean temperature increases by 2080.

Each s ∈ S will have its own set of values for the climate risk indicators Riclimate
j

and Riclimate
k .

Given that our objective is to understand how changes in the spatial configuration
of recovery brownfields and processing facilities due to climate change might affect the
profitability of resource recovery (i.e., the impact of location of the selected sites), we
assume that the economic and social well-being factors are not dependent on climate
change scenarios. Therefore, we update the climate risk resilience objective to consider the
risk indicators under each scenario as follows:

Minimise ∑j∈J Riclimate,s
j ·yj + ∑k∈K Riclimate,s

k ·zk (14)

where s represents the climate change scenario, namely, p (present), 2c (2 ◦C increase), and
4c (4 ◦C increase).
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3.4. Solution Approach

The augmented e-constraint method (AUGMECON2) is an efficient multi-objective op-
timisation algorithm derived from the original AUGMECON method [61] and is designed
to handle problems with multiple conflicting objectives [62].

The primary distinction of AUGMECON2 lies in its enhanced ability to reduce the
computational burden by avoiding repetitive solutions [63]. AUGMECON2 manages trade-
offs between different objectives by prioritizing them, augmenting the objective function
with penalty terms, using the epsilon parameter to control surplus variables, and efficiently
exploring the solution space to identify a diverse set of Pareto-optimal solutions [63].

maximise
(

f1(x) + eps ×
(

S2

r2
+ 10−1 × S3

r3
+ · · ·+ 10−(p−2) ×

Sp

rp

))
(15)

Such that f2(x)− S2 = e2 f3(x)− S3 = e3 . . . fp(x)− Sp = epx ∈ SSi ∈ R+ (16)

All the e values are the parameters for the right-hand side and all the r values represent
the ranges of the corresponding objective functions. Additionally, S values denote the
surplus variables. The eps is a variable that is limited as [10−6, 10−3] [63]. An eps value of
10−3 is assumed in this study.

3.5. Illustrative Case Study

The legacy of the iron and steel industry in the United Kingdom (UK) has resulted in
substantial slag deposits scattered across the country. This study leverages the comprehen-
sive database compiled by Riley et al. (2020) [64], which documents the location, volume,
and composition of 113 slag deposits in mainland UK (henceforth referred to as legacy
sites). These legacy sites represent the supply points in the secondary resource recovery
network. We utilised the UK brownfield land spatial dataset, which initially contained
33,710 records. However, the dataset was filtered to exclude data points smaller than
1 hectare and those outside the borough boundaries of the legacy sites. This filtering pro-
cess resulted in a dataset containing 1302 brownfield candidate sites, which were selected
as NbS temporary storage sites for subsequent recovery (henceforth referred to as recovery
brownfields). The recovery brownfields represent the first echelon of the two-echelon
secondary resource recovery network. The processing facilities of critical materials spatial
dataset (59 sites), produced by the UK Critical Minerals Intelligence Centre, were used
as the second echelon of the secondary resource recovery network (henceforth referred
to as processing facilities). We applied the QGIS network analysis toolbox using the Ord-
nance Survey’s (GB) road network to compute the distance matrix of legacy sites, recovery
brownfields, and processing facilities. The profit factors listed in Table 1 were employed to
compute the potential profits from recovered materials and monetised GHG sequestration
benefits by NbS. The cost factors described in Table 1 were used to calculate the NbS capital
expenses, transporting costs, monetised transport GHG emissions, and loading expenses.
Social well-being in terms of NbS employment was calculated using NbS employment
multipliers. The potential climate change risks were estimated based on three UK climate
change scenarios by 2080: present temperature (2016), a 2 ◦C increase, and a 4 ◦C increase.
The following assumptions are made for the case study:
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The bulk materials’ (blast furnace) density is assumed to be 1.5 t/m3, and around 85%
is assumed to be inert materials (i.e., not containing critical materials).
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All the recovery brownfields will be remediated within the 30-year project dura-
tion [65].
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Bulk materials will be layered vertically to a depth of 2 m over an area of 1 m2 on
brownfields.
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The recoverable resources are NiO and CoO due to their biomining potential [66,67]
and criticality to the UK [68] and EU [69].
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The land value of the remediated recovery brownfields is not considered due to the
high variability of real estate value at the national scale [70].
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Exactly N1 = 50 recovery brownfields should be selected, and up to N2 ≤ 59 processing
facilities can be selected.

Table 1. Case study data sources.

Parameter Description Category Source

Brownfield sites Locations of brownfields Spatial data [71]
Capital expenses of nature-based solutions Capital expense factor of NbS per unit area Cost [46]
Climate change risk indicators spatial dataset Climate change risk factors per climate change projections Hydroclimatic data [60]
Earthmoving cost factors Loading cost per unit volume Cost [72]
Transport GHG emission factor Carbon emission factors of transport Cost [73]
Legacy industrial sites Locations of legacy industrial sites Spatial data [74]
Nature-based solution employment multiplier Implementation and maintenance phases Area multiplier [75]
Passive carbon sequestration by brownfield factor Carbon sequestered by unit area of brownfields Area multiplier [76]
Processing facilities Locations of processing facilities Spatial data [77]
Recoverable resources prices Low, central, and high estimates Profit [78–81]
UK borough boundary lines Vector dataset of UK roads Spatial data [82]
UK road network vector spatial dataset Vector dataset of UK roads Spatial data [83]
Valuation of greenhouse gas emissions Low, central, and high estimates Cost [84]

3.6. Sensitivity Analysis

This section presents the input parameters used in the sensitivity analysis conducted to
evaluate the performance of the optimisation model outcomes in terms of computational perfor-
mance, impacts of variable market dynamics on revenues, and decision-maker preferences.

3.6.1. Number of Grid Points for AUGMECON2

AUGMECON2 requires a grid of points to discretize the range of the objective func-
tions, allowing the method to systematically explore the trade-offs between conflicting
objectives [63]. Finding the appropriate grid size is crucial for balancing computational
efficiency and accuracy in optimisation problems [61]. It ensures precise representation of
the solution space, reduces redundant calculations, avoids weakly optimal solutions, and
optimises computational resources usage [85].

To determine the appropriate grid size, we implemented AUGMECON2 with increas-
ing grid sizes of 5 × 5, 10 × 10, 20 × 20, and 30 × 30 while using central values of cost and
revenue factors and climate change risk factors. We then compared the grid sizes in terms
of solution time, number of optimal solutions, number of infeasibilities, and number of
skipped solutions, as well as the value of the hypervolume indicator. The hypervolume
indicator measures the volume of the objective space dominated by a Pareto front approxi-
mation, providing a single scalar value (the higher, the better in the case of maximisation
problems) that reflects both the convergence and diversity of the solution set [86–88]. A
slightly worse than the nadir point is often is selected a reference for maximisation optimi-
sation problems [89]. We assumed the reference points to be less than the nadir point by 1%
for CoO and NiO model realisations, as recommended in [90].

3.6.2. Variability in Recovery Revenue, Resource Concentration, and Carbon Pricing

To understand the impacts of operational and market variability on profitability, we
conducted a sensitivity analysis on three key factors: resource concentration in ores, market
variability of recovered resources, and carbon pricing. Resource concentration reflects the
variability in the availability and quality of materials at legacy sites, affecting recovery costs
and revenues. Market variability assesses the economic uncertainty of fluctuating prices for
recovered materials, impacting the overall financial viability. Carbon pricing examines the
monetized benefits of ecosystem services provided by NbS. The ranges of the investigated
parameters are presented in Table A7.
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3.6.3. Weights of Ranking Methods

In our study, we employed compromise programming to analyse multi-objective
Pareto sets. Compromise programming is a multi-objective optimisation method that iden-
tifies solutions closest to an ideal point by minimising the distance between the solution and
this ideal point within the Pareto front, thus balancing multiple conflicting objectives [91].
To apply compromise programming, we utilized the technique for order of preference by
similarity to ideal solution (TOPSIS) and VIKOR and PROMETHEE-II methods [92], which
have been used extensively in sustainable engineering applications [93]. These methods
are designed to rank and select from a set of alternatives by comparing the distance to
an ideal solution, where TOPSIS focuses on the geometric distance. VIKOR incorporates
a ranking index based on the closeness to the ideal solution and the maximum group
utility [94]. PROMETHEE-II (preference ranking organization method for enrichment
evaluations) ranks alternatives based on a pairwise comparison approach, providing a
complete ranking of alternatives [95,96]. Recognizing that the weight assigned to each
objective can significantly influence the selection of the ideal solution [97], we conducted a
sensitivity analysis by varying the weights (i.e., reflecting decision-maker preference) in
increments of 10% from 0 to 100% to observe how changes affect the selection of the ideal
solution using the following equation:

W2,3 =
100% − W1

2
(17)

where W1 is the weight of the first objective and W2,3 are the weights of the second and
third objectives, respectively, with W2 and W3 having equal values (e.g., if W1 is 20%, then
W2 and W3 would be each 40%). The Spearman’s rank correlation and Kendall’s Tau tests
were used to assess the strength and direction of similarity between the solution rankings
by TOPSIS, VIKOR, and PROMETHEE-II, with values close to +1 or −1 indicating a strong
positive or negative similarity, and values near 0 indicating little to no similarity [98,99].

3.7. Computational Implementation

In this study, we developed the optimisation model using the Python-based PuLP
library [100]. To calculate the origin–destination matrix between legacy sites, recovery
brownfields, and processing facilities, we used the QGIS Network Analysis Toolbox 3 with
Ordnance Survey (GB) road network data [101] (p. 3). We solved the PuLP-formulated
optimisation model with the IBM CPLEX 22.1 solver [102]. The SciPy Python package was
employed for statistical analysis of the results [103], while the PYMCDM Python package
was used for the multi-criteria [104].

4. Results

This section presents the deterministic model outcomes in Section 4.1, while Section 4.2
analyses the sensitivity analysis results of the deterministic model. The robust optimisation
model results are examined in Section 4.3.

4.1. Pareto Sets of AUGMECON2

In this section, we analyse the values of the objective functions across various grid
sizes, highlighting the differences in economic, social well-being, and climate change risk
minimisation objectives. Tables 2 and 3 show the statistical analysis results that were
obtained for CoO and NiO, respectively, across varying grid sizes (5 × 5, 7 × 7, 10 × 10,
15 × 15, 20 × 20, 30 × 30) and three objectives (economic objective, social well-being
objective, climate change risk minimisation objective) assuming central values of economic
factors (see Figures S1–S6). The results reveal distinct patterns in the data, highlighting
differences and similarities between the resources and objectives. For both resources, CoO
and NiO, the observed patterns across grid sizes and objectives were consistent.
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Table 2. Descriptive statistics of Pareto fronts of CoO for various grid sizes.

Resource Grid Size Objective Mean Std. Dev. Min. Max. Range

CoO

5 × 5 Objective 1 −7.97 × 106 1.57 × 107 −3.31 × 107 1.57 × 107 4.88 × 107

5 × 5 Objective 2 7.03 × 102 1.36 × 102 5.26 × 102 8.80 × 102 3.54 × 102

5 × 5 Objective 3 −3.01 × 102 5.08 × 102 −9.62 × 102 3.59 × 102 1.32 × 103

7 × 7 Objective 1 −9.89 × 106 1.78 × 107 −4.39 × 107 1.89 × 107 6.28 × 107

7 × 7 Objective 2 7.03 × 102 1.46 × 102 4.92× 102 9.14 × 102 4.21 × 102

7 × 7 Objective 3 −3.01 × 102 5.45 × 102 −1.09 × 103 4.85 × 102 1.57 × 103

10 × 10 Objective 1 −1.25 × 107 2.21 × 107 −6.48 × 107 2.08 × 107 8.56 × 107

10 × 10 Objective 2 7.03 × 102 1.53 × 102 4.67 × 102 9.39 × 102 4.72 × 102

10 × 10 Objective 3 −3.01 × 102 5.72 × 102 −1.18 × 103 5.79 × 102 1.76 × 103

15 × 15 Objective 1 −1.97 × 107 4.00 × 107 −1.47 × 108 2.23 × 107 1.69 × 107

15 × 15 Objective 2 7.03 × 102 1.59 × 102 4.47 × 102 9.59 × 102 5.11 × 102

15 × 15 Objective 3 −3.75 × 102 5.51 × 102 −1.26 × 103 5.06 × 102 1.76 × 103

20 × 20 Objective 1 −1.15 × 107 2.10 × 107 −6.51 × 107 2.26 × 107 8.77 × 107

20 × 20 Objective 2 7.03 × 102 1.62 × 102 4.38 × 102 9.69 × 102 5.31 × 102

20 × 20 Objective 3 −3.56 × 102 5.08 × 102 −1.18 × 103 4.69 × 102 1.65 × 103

30 × 30 Objective 1 −1.67 × 107 3.33 × 107 −1.47 × 108 2.28 × 107 1.70 × 108

30 × 30 Objective 2 7.03 × 102 1.65 × 102 4.28 × 102 9.78 × 102 5.51 × 102

30 × 30 Objective 3 −4.11 × 102 5.08 × 102 −1.26 × 103 4.33 × 102 1.69 × 103

Table 3. Descriptive statistics of Pareto fronts of NiO for various grid sizes.

Resource Grid Size Objective Mean Std. Dev. Min. Max. Range

NiO

5 × 5 Objective 1 −5.30 × 106 1.57 × 107 −3.03 × 107 1.83 × 107 4.85 × 107

5 × 5 Objective 2 7.03 × 102 1.36 × 102 5.26 × 102 8.80 × 102 3.54 × 102

5 × 5 Objective 3 −3.01 × 102 5.08 × 102 −9.62 × 102 3.59 × 102 1.32 × 103

7 × 7 Objective 1 −7.21 × 106 1.78 × 107 −4.12 × 107 2.16 × 107 6.28 × 107

7 × 7 Objective 2 7.03 × 102 1.46 × 102 4.92 × 102 9.14 × 102 4.21 × 102

7 × 7 Objective 3 −3.01 × 102 5.45 × 102 −1.09 × 103 4.85 × 102 1.57 × 103

10 × 10 Objective 1 −9.81 × 106 2.21 × 107 −6.21 × 107 2.34 × 107 8.56 × 107

10 × 10 Objective 2 7.03 × 102 1.53 × 102 4.67 × 102 9.39 × 102 4.72 × 102

10 × 10 Objective 3 −3.01 × 102 5.72 × 102 −1.18 × 103 5.79 × 102 1.76 × 103

15 × 15 Objective 1 −1.71 × 107 4.00 × 107 −1.45 × 108 2.49 × 107 1.70 × 108

15 × 15 Objective 2 7.03 × 102 1.59 × 102 4.47 × 102 9.59 × 102 5.11 × 102

15 × 15 Objective 3 −3.75 × 102 5.51 × 102 −1.26 × 103 5.06 × 102 1.76 × 103

20 × 20 Objective 1 −8.80 × 106 2.10 × 107 −6.24 × 107 2.53 × 107 8.77 × 107

20 × 20 Objective 2 7.03 × 102 1.62 × 102 4.38 × 102 9.69 × 102 5.31 × 102

20 × 20 Objective 3 −3.56 × 102 5.08 × 102 −1.18 × 103 4.69 × 102 1.65 × 103

30 × 30 Objective 1 −1.40 × 107 3.32 × 107 −1.45 × 108 2.55 × 107 1.70 × 108

30 × 30 Objective 2 7.03 × 102 1.65 × 102 4.28 × 102 9.78 × 102 5.51 × 102

30 × 30 Objective 3 −4.11 × 102 5.08 × 102 −1.26 × 103 4.33 × 102 1.69 × 103

The economic objective exhibited the highest variability, with large standard devia-
tions and ranges for all the grid sizes. The mean values for the economic objective were
significantly negative, increasing in magnitude with larger grids, indicating a considerable
negative skew. For instance, the mean for CoO ranged from approximately £−7.97 × 106

(5 × 5) to £−1.97 × 107 (15 × 15), with the range increasing from £4.88 × 107 to £1.70 × 108.
Similar trends were observed for NiO, with mean values ranging from £−5.30 × 106 to
£−1.71 × 107 and the range increasing from £4.85 × 107 to £1.70 × 108.

The social well-being objective (objective 2) demonstrated minimal variability across
all the grid sizes for both resources. The mean values remained consistently around 702–703,
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with small standard deviations and ranges. This stability suggests that objective 2 is less
affected by changes in grid size compared to the economic objective and climate change
risk minimisation objective. Although the standard deviation and range for objective
2 increased slightly with the grid size, the increase was not as pronounced as for the
economic objective.

The climate change risk minimisation objective (objective 3) showed moderate vari-
ability, with mean values ranging from −300 to −400. The range of objective 3 increased
with the grid size, indicating higher variability in larger grids. For CoO, the mean values
ranged from £−3.01 × 102 (5 × 5) to £−4.11 × 102 (30 × 30), and the range increased from
£1.32 × 103 to £1.76 × 103. NiO exhibited similar trends, with mean values ranging from
£−3.01 × 102 to £−4.11 × 102 and the range increasing from £1.32 × 103 to £1.76 × 103.

Overall, the analysis reveals that the economic objective is characterised by high vari-
ability and extreme negative mean values, especially as the grid size increases. The social
well-being objective remains stable across all the grid sizes, showing minimal variability.
Objective 3, while demonstrating moderate variability, also shows an increased range with
larger grid sizes, indicating more variability in larger grids.

4.2. Sensitivity Analysis

This section presents the sensitivity analysis results, evaluating the optimisation model
outcomes in terms of AUGMECON2 computational performance, revenues under variable
market dynamics, and decision-maker preferences.

4.2.1. AUGMECON2 Performance Sensitivity to Grid Size

In this section, we varied the grid size of AUGMECON2 to investigate the model
performance and the characteristics of the Pareto fronts.

Table 4 shows the sensitivity analysis results of the AUGMECON2 grid size in terms
of the number of optimal solutions, infeasibilities (i.e., no optimal solutions were found),
skipped solutions (i.e., redundant iterations), hypervolume indicator (HV), and solution
time. We noticed that the choice of the recoverable resource did not affect the solutions’
numerical characteristics (e.g., number of optimal solutions), as they were identical in both
the CoO and NiO model runs.

Table 4. Sensitivity analysis results of AUGMECON2 grid size.

Grid Size

CoO 5 × 5 7 × 7 10 × 10 15 × 15 20 × 20 30 × 30
Optimal
solutions 16 36 81 182 304 696

Infeasibilities 4 6 9 14 38 58
Skipped solutions 5 7 10 29 58 146
Hypervolume 9.279 × 1015 1.083 × 1016 1.248 × 1016 1.423 × 1016 1.482 × 1016 2.088 × 1016

Solution time (s) 1324 2468 5220 11,754 14,368 47,881

NiO 5 × 5 7 × 7 10 × 10 15 × 15 20 × 20 30 × 30
Feasible solutions 16 36 81 182 304 696
Infeasibilities 4 6 9 14 38 58
Skipped solutions 5 7 10 29 58 146
Hypervolume 9.366 × 1015 1.093 × 1016 1.259 × 1016 1.435 × 1016 1.482 × 1016 2.100 × 1016

Solution time (s) 1006 3019 5574 12,927 14,086 32,403

However, the HV indicator values were slightly different due to variations in reference
points, which differ because the first objective value depends on the revenues of recovered
materials. The HV values for grid sizes (10 × 10) to (20 × 20) were close to those of the
5 × 5 grid size. Therefore, we introduced the 7 × 7 grid size to determine if a satisfactory
HV value could be obtained in a shorter solution time. Considering that AUGMECON2
is an exact solution approach and the large size of the employed case study (113 legacy
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sites, 1302 recoverable brownfields, and 59 processing facilities), we determined that the
7 × 7 grid size offers an ideal trade-off between adequate resolution of the Pareto and
solution time (2468–3019 s). For comparison of location–allocation–routing optimisation
literature, a heuristics approach solved an 81-nodes two-echelon network multi-objective
optimisation approach in 251 s [105], while a metaheuristics approach achieved solution
times of 364–602 s for a 30–25–125 network transportation–location–routing tri-objective
optimisation problem [106].

4.2.2. Variability in Recovery Revenue, Resource Concentration, and Carbon Pricing

In this section, we examine the impact of market price and resource concentration of
CoO and NiO in ores, as well as the monetised carbon storage and sequestration (CSS)
benefits of NbS. Figure 2 presents box plots of the sensitivity analysis results concerning
market price and concentration of the recovered resource. Observing the box plots of the
minimum resource concentration in Figure 2a,b, we found that they are identical regardless
of the market price estimates. This is because the minimum concentration is indeed zero, as
reported in [74]; hence, the positive values in the box plots represent the monetised carbon
sequestration by NbS.
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In the case of mean and high concentrations, the differences between central and high
market prices of CoO are minor, while they are more pronounced for NiO. For example, in
Figure 2b, the upper whisker of the box plot for high market price and high concentration
of NiO is significantly higher than the other box plots. Additionally, comparing Figure 2a,b
reveals that the overall revenues of NiO are higher than those of CoO across all the market
price estimates. This difference stems from the higher range of the assumed market prices
for NiO compared to CoO.

It was also important to consider the sensitivity of the overall revenues to changes in
the monetisation factor of the carbon sequestration and storage (CSS) by the implemented
NbS. Figure 3 presents the sensitivity analysis results of the monetised CSS benefits and
market prices of the recovered resources. Observing the blue-dotted horizontal line in
Figure 3a,b, which represents the breakeven line (i.e., profitability vs. losses), we noted that
the low CSS estimate simulations did not yield profitable solutions for either CoO or NiO.
In the case of the central CSS estimate, while some solutions (i.e., spatial configuration of
the recovery brownfields and processing facilities) are profitable, the mean of the solutions
across all the chemical concentrations of CoO and NiO are below the breakeven line.
On the other hand, the high CSS simulations produced a higher number of profitable
spatial configurations regardless of the chemical concentration level, suggesting that the
profitability of the nature-based secondary resources is highly sensitive to the monetary
estimation of the ecosystem services generated by NbS.
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4.2.3. Multi-Criteria Analysis of Pareto Sets: Compromise Programming

In this section, we investigate the sensitivity of solution outranking to weights used in
TOPSIS, VIKOR, and PROMETHEE-II. The weights were varied in increments of 10% for
the economic, social, and climate risk objectives, ranging from 10% to 100%, with equal
weighting for the remaining two objectives. The Spearman and Kendall Tau coefficients
were applied to assess the similarity of the rankings produced by TOPSIS, VIKOR, and
PROMETHEE-II. Figure 4a,b depict the correlation coefficients for both CoO and NiO,
respectively, across the range of weights (10–100%) for each objective. We observe high
positive correlations, ranging from 0.86 to 1.0, across all weights, indicating a high similarity
of TOPSIS, VIKOR, and PROMETHEE-II rankings, with almost perfect similarity at higher
weights of 70–100%. These findings corroborate similar observations in the literature [107]
and suggest that the solutions produced are robust to a wide range of decision-maker
preferences [108].
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TOPSIS, VIKOR, and PROMETHEE-II are often used to select an optimal solution
from the Pareto front by weighting each objective based on decision-maker preferences (see
Tables S1–S6 for ranking outcomes). Figure 5 shows the Pareto front of the optimisation
model, where the optimal solutions are highlighted with ‘x’ markers in blue, lime, and red
(assuming 100% weight for each), illustrating the trade-offs among the objectives.
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Examining Figure 5a,c, we observe that the selected optimal solutions for both CoO and
NiO are similar, indicating that the value of the objective functions is significantly sensitive
to the spatial configuration of the resource recovery network rather than the economic
factors of the model. Furthermore, examining the TOPSIS, VIKOR, and PROMETHEE-II
rankings in Tables S1–S6, we notice that certain solutions frequently appear as optimal for
all the objectives. This suggests that a subset of the Pareto front (solutions 31–37) contains
the most preferred solutions. Therefore, this subset could be analysed further for additional
insights (e.g., the optimal solutions could be presented in a map similar to Section 3.3) [109].
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4.3. Robust Optimisation of Climate Change Uncertainty

In this section, we analyse the results of a robust optimisation model under three
climate change scenarios projected for 2080 (i.e., present temperatures remain unchanged, a
2 ◦C increase, and a 4 ◦C increase). Figure 6a–c present the values of the objective functions
for CoO and NiO across the climate change scenarios. Figure 6a depicts the value of the first
objective function (maximising revenues). It is immediately noticeable that the revenues
from recovering CoO and NiO remain constant across all the climate change scenarios,
indicating that the optimal solutions are robust to climate change uncertainties. A similar
observation is seen in Figure 6b, which shows that full-time NbS-related employment is
robust to climate change uncertainty and remains consistent regardless of the choice of
recoverable resource due to the assumed NbS employment multiplier. Figure 6c displays
the climate change risk factors for both CoO and NiO across climate change scenarios.
It is apparent that the climate risk factors are similar for both CoO and NiO, suggesting
that the value of the climate risk minimisation objective is not sensitive to the choice of
recoverable resource.
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The selected recovery brownfields and processing facilities for each optimal solu-
tion across the climate change scenarios are illustrated in Figures S5–S7 for CoO and
Figures S8–S10 for NiO. Figures S5–S7 represent the present, 2 ◦C, and 4 ◦C climate change
scenarios for CoO, respectively. Upon examining the first objective maps of CoO in Fig-
ures S1–S3, it is apparent that the spatial configuration for the optimal solution of the
first objective is the same for all the climate scenarios (i.e., the selected recovery brown-
fields and processing facilities are robust to climate change uncertainty when optimised
to maximise revenues). The spatial configuration of the optimal solutions for the social
well-being objective was identical for the 2 ◦C and 4 ◦C climate change projections, whereas
the present temperature scenario was slightly different. In the case of the climate risk
minimisation objective, the selected recovery brownfields and processing facilities were
geographically similar for the 2 ◦C and 4 ◦C scenarios but showed some variation for the
present temperature scenario.

In the case of NiO, Figures S8–S10 represent the present, 2 ◦C, and 4 ◦C climate
change scenarios, respectively. The spatial configuration of the optimal solutions for the
first objective and third objective was identical across the climate change scenarios, as
shown in Figures S4–S6. However, the spatial configurations for maximising NbS-related
employment (2nd objective) were slightly different between the present temperature and
2 ◦C and 4 ◦C scenarios, with minor variations located in western Scotland and northeast
and southeast England.

The comparison of the CoO and NiO maps across the climate change scenarios revealed
that the spatial configurations for the first objective were identical in both cases. For the
second objective, the selected sites in CoO and NiO were similar for the present temperature
scenarios but showed slight differences in the 2 ◦C and 4 ◦C scenarios. For the climate
change risk minimisation objective (3rd objective), the selected sites for NiO and CoO were
slightly different for the present and 4 ◦C scenarios, particularly in northeast England,
whereas a higher degree of variation was observed in the 2 ◦C scenario.

5. Discussion

In this section, we discuss the performance of the AUGMECON2 algorithm and
the implications of resource value and carbon pricing on the economic objectives, as
well as the impact of decision-maker preferences and robust optimisation under climate
change uncertainty.

5.1. Performance of AUGMECON2

The performance of the AUGMECON2 algorithm in addressing a tri-objective location–
allocation–routing optimisation of nature-based resource recovery was tested, focusing on
the impact of grid points in achieving an optimal balance between solution quality and
computational efficiency. As noted in Section 4.2.1, the solution times and HV values were
considered reasonable given the conceptual purpose of the paper, the number of optimi-
sation objectives, and the case study size (national level). That said, the AUGMECON2
approach might not be able to generate a higher-resolution Pareto front or handle additional
objectives or more scenarios (e.g., alternative transport modes) within reasonable solution
times. Therefore, future efforts might consider using novel exact solution approaches,
such as the AUGMECON-R [85], or metaheuristics approaches, such as NSGA-III [110] or
memetic algorithms (i.e., combining evolutionary algorithms with local search) for larger
data instances [52,111]. The comparison of several solution approaches is recommended to
enhance robustness, improve convergence, and provide a more diverse and high-quality
set of solutions for complex location–allocation–routing optimisation problems [112].

5.2. Impacts of Resource Value and Carbon Pricing

The sensitivity of the economic objective function (i.e., revenue) to three relevant
input factors was analysed in Section 4.2.2. The economic-related factors included the
market price of recovered resources, the chemical concentration of resources in ore, and the
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carbon pricing of carbon sequestration by NbS. The revenue sensitivity to market price and
chemical concentration of resources was analysed first. The results suggested that revenues
were more sensitive to the market price of recovered resources, with slight variations in
sensitivity based on the price range of the recovered resource.

Considering that the revenue from recovered resources also depends on the recovery
efficiency of the nature-based system, a conservative assumption was made in Section 3.2.4
that only 15% of the bulk material contained recoverable compounds (i.e., 85% of the
bulk materials are assumed to be inert). Therefore, revenues are likely to increase with
more efficient nature-based secondary resource recovery systems. Additionally, the current
model did not account for the recovery of multiple secondary resources, such as ferrous
metals or cleaned aggregates reused in construction, which is more realistic based on
existing conventional primary mining supply chains. Furthermore, the results suggest that
revenues from secondary resources recovery alone do not support the economic feasibility,
corroborating previous findings [9].

Therefore, a coupled resource recovery–land remediation NbS is considered, in ad-
dition to natural capital accounting of NbS systems. In this study, we only considered
one ecosystem service: carbon sequestration and storage by NbS. The sensitivity analysis
results of resource market pricing and carbon pricing in Figure 3 indicate that revenues
were more sensitive to carbon pricing, assuming the same amount of carbon dioxide was
sequestered in all the cases. Given the potentially large scale and long-time horizons of
such projects, additional ecosystem services and disservices (e.g., non-edible crop provision
or harmful impacts on biodiversity) should be considered using varying discount rates to
generate a diverse range of likely solution sets that are robust to market dynamics.

5.3. Impact of Decision-Maker Preferences on Selected Solutions

The Pareto front of multi-objective optimisation represents the trade-offs among the
optimisation objectives; therefore, ranking methods are employed to prioritize the solutions
by weighting each objective based on the decision-maker’s preferences or priorities. The
sensitivity of solution rankings to objective weighting was presented in Section 4.2.3. The
high correlation coefficient of the solution rankings indicated that the optimal solutions
are robust to a wide range of decision-maker preferences. Ranking methods are useful for
exploring the solution space to identify the most optimal subset of solutions for further
analysis. For instance, solutions 31–37 appeared most frequently with higher weights across
all the optimisation objectives (see Tables S1–S4), suggesting that a specific set of recovery
brownfield’s locations offers the best trade-off among all the optimisation objectives, and
further planning efforts could be focused on these regions.

Although a wide range of weights was assessed in this work, in practice, the weights
should be assigned based on expert judgement or a consensus-building process [113,114].
Future efforts should consider additional criteria to reflect the values and concerns of a
broader spectrum of stakeholders, typical of national-scale projects. Additionally, TOP-
SIS, VIKOR, and PROMETHEE-II were used in this study to rank the solutions; further
ranking methods could be employed to mitigate the risk of any single method’s bias dis-
proportionately influencing the selection of the optimal solution [115]. Finally, the weights
are inherently subjective and sometimes difficult to obtain [116]. Hence, fuzzy ranking
methods could be utilised to handle the uncertainty of weights and offer a more nuanced
selection of optimal solutions [117,118].

5.4. Robust Optimisation under Climate Change Uncertainty

The aim of the RO employed in this paper was to guide macro-level sustainability
decision-making for nature-based secondary resource recovery from legacy industrial sites
under climate change uncertainty. The results of the RO indicate that the proposed solutions
maintain their performance despite the variations in climate change projections, indicating
the robustness and reliability of the solution set. Therefore, adopting an RO approach
can provide designers and decision-makers insights to design and implement NbS-based
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circular economy strategies that are not only economically viable but also resilient to
future climate scenarios. This ensures HV does not remain overlooked as a potential
source of revenue and mitigates the environmental risks associated with legacy industrial
sites. Moreover, the RO results could help decision-makers shift from a reactive, business-
as-usual mindset to a forward-looking perspective [119], enabling the development of
climate-aware regional NbS CE strategies for HV waste.

In this study, a static RO approach (now-and-then) was implemented that considered
the worst-case scenario within a predefined discrete uncertainty set [55], focusing on
one uncertain parameter related to climate change risks. While this approach provides
valuable insights, additional uncertainties should be considered in future works, such as
resource concentration (demand uncertainty), economic factors like transportation costs,
and operational uncertainties, such as uncertain capacities in processing facilities and
occupational safety considerations. Furthermore, future efforts could benefit from applying
a two-stage optimisation approach that combines robust and stochastic methods to manage
multiple uncertainties for complex problems by balancing adaptability and computational
feasibility [120].

6. Conclusions

The aim of this paper was to propose a robust multi-objective optimisation framework
to assess the sustainability and enable the nature-based secondary resource recovery of
HV waste under climate change uncertainty. Using an illustrative national-scale case study
of legacy mining waste, this research developed a multi-objective mixed-integer linear
programming to optimize economic revenues and social well-being and minimise climate
change risks using an exact solution approach.

The main findings of this illustrative case study indicate that NbS could significantly
enhance the economic feasibility of HV waste management by incorporating carbon se-
questration benefits and generating employment. The optimisation results demonstrate the
resilience of NbS-based strategies despite climate change variations. Additionally, while
NbS can improve the circularity potential of HV waste nationally, it is crucial to consider
additional ecosystem services and uncertainties for effective macro-level sustainability.
The proposed framework provides valuable insights for policymakers and stakeholders
in developing regional and national nature-based circular economy strategies for HV
waste streams.
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Appendix A

Table A1. Sets of the optimisation model.

Set Description

I Set of legacy sites where materials are available.
J Set of recovery brownfield sites available for nature-based solutions.
J Set of processing facilities available for final processing of materials.
K Set of climate change scenarios.

Table A2. Input parameters of the optimisation model.

Parameter Description

REVrec Revenue from recovered materials based on market prices.
REVCSS Monetised value of carbon sequestration and storage from NbS.

CAPEXNbS Capital expense for NbS implementation per hectare.
Aij Transportation cost from legacy site i to brownfield site j.
Bjk Transportation cost from brownfield site j to processing facility k.

Cloading Loading cost for materials at brownfields for transportation.
EMPNbS

j . Employment multiplier per hectare of NbS implementation at brownfield j.

Riclimate
j Climate risk factor for brownfield site j.

Riclimate
k Climate risk factor for processing facility k.
si Volume of materials available at legacy site i.
cj Temporary storage capacity at brownfield site j.
dk Processing capacity at processing facility k.

period Duration of the project.
N1 Number of brownfield sites to be selected.
N2 Maximum number of processing facilities that can be selected.

Table A3. Decision variables of the optimisation model.

Variable Description

xij
Continuous variable representing the fraction of materials from legacy site iii
allocated to brownfield site j.

wjk
Continuous variable representing the amount of materials transported from
brownfield site j to processing facility k.

yj Binary variable indicating whether brownfield site j is selected.
zk Binary variable indicating whether processing facility k is selected.
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Table A4. Deterministic mathematical formulation.

Objective Description

Economic objective
Maximise ∑j∈J ∑k∈K REVrec · wjk + ∑j∈J ∑k∈K REVCSS · period · areaNbS

j · yj

−∑j∈J CAPEXNbS · areaNbS
j · yj − ∑i∈I ∑j∈J Aij · xij

−∑j∈J ∑k∈K Bjk · wjk − ∑j∈J ∑k∈K Cloading· wjk
Social well-being objective Maximise ∑j∈J EMPNbS

j . areaNbS
j . yj

Climate risk resilience objective Maximise − 1 ×
(

∑j∈J Riclimate
j ·yj + ∑k∈K Riclimate

k ·zk

)

Table A5. Robust mathematical formulation.

Objective Description

Robust climate risk resilience objective Minimise ∑j∈J Riclimate,s
j ·yj + ∑k∈K Riclimate,s

k ·zk

Table A6. Constraints of the optimisation model.

Constraint Description

Selection constraint (1) Exactly N1 = 50 brownfield sites should be selected : ∑j∈J yj = N1
Selection constraint (2) The number of selected processing facilities should be at most N2 = 59 : ∑k∈K zk ≤ N2

Capacity constraint (1) The total volume of materials transported to each brownfield site must not exceed its capacity:
∑i∈I si·xij ≤ cj·yj∀j ∈ J

Capacity constraint (2) The total volume of materials processed by each facility must not exceed its capacity:
∑j∈j wj·xij ≤ dk·zk∀k ∈ K

Flow balance constraint Ensure material flow balance from legacy sites through brownfields to processing facilities
∑i∈I si · xij = ∑k∈K wjk ∀ k ∈ K

Service constraint Ensure all material from legacy sites is allocated to brownfield sites:
∑j∈J xij = 1 ∀ i ∈ I

Decision variable constraint (1) Decision variable xij must be between 0 and 1 : xij ∈ [0, 1], ∀ i ∈ I, ∀ j ∈ J
Decision variable constraint (2) Decision variable wjk must be non − negative : wjk ≥ 0 ∀ j ∈ J, ∀ k ∈ K
Decision variable constraint (3) Binary decision variable yj :yj ∈ {0, 1}, ∀ j ∈ J
Decision variable constraint (4) Binary decision variable zk: zk ∈ {0, 1}, ∀ k ∈ K

Table A7. The Economic, social, and environmental factors used in this study.

Parameter Low Central High Unit Source

Capital expenses of nature-based solutions n.a. * 123 n.a. GBP/hectare [46]
Earth-moving cost factor (a 1 m3 crawler
assuming 10 loadings per hour)

n.a. 26.84 n.a. GBP/hour [72]

Transport GHG emission factor (assuming
average laden rigid lorry) n.a. 0.9635 n.a. kgCO2e/km [73]

Nature-based solution employment multiplier
(implementation phase) n.a. 0.04 n.a. Full-time equiva-

lent/hectare/year [75]

Nature-based solution employment multiplier
(maintenance phase) n.a. 0.01 n.a. Full-time equiva-

lent/hectare/year [75]

Passive carbon sequestration by
brownfield factor n.a. 4 n.a. tCO2e/hectare [76]

Recoverable resources prices (CoO) 2000 4500 6000 GBP/ton [78,79]
Recoverable resources prices (NiO) 2500 5000 7500 GBP/ton [80,81]
Valuation of greenhouse gas emissions 189 378 568 GBP/tCO2e [80]

* n.a.: not available.
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