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Mesh-Based Double-Sided Freeform Lens Optimization
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Abstract. We present a mesh-based method for optimizing double-sided freeform lenses to control their caustic
effects. Unlike traditional single-sided approaches, we optimize both sides of the lens simultaneously, using
a bijective correspondence between the two sides to control light refraction paths. Our approach balances
image fidelity, geometric compatibility, and physical constraints. Results demonstrate the method’s capability to
accurately produce intricate light patterns, opening new possibilities in optical applications.

1 Introduction

In the field of computer graphics, mesh-based techniques
have been widely used to design freeform lenses for applica-
tions like controlling caustic patterns [1–3]. These methods
model lens surfaces using triangle meshes (i.e., discrete
3D vertices connected by edges to form triangle faces).
This allows for more precise representations of complex ge-
ometries than traditional methods, which typically involve
solving partial differential equations over fixed grid points.
Mesh-based designs have successfully produced lenses ca-
pable of generating complex caustic patterns resembling
specific target images. However, existing approaches are
limited to optimizing only one side of the lens, failing to
fully utilize the degrees of freeform offered by freeform
lenses. Moreover, they only aim at the caustic pattern on
a single plane, which cannot fully control the outgoing
light field. In this paper, we propose a novel approach that
optimizes both sides of the lens. This enables controlling
caustic patterns on more than one plane, providing new
possibilities in light control applications.

2 Method

As an example problem, we consider a square-shaped
double-sided lens, with a uniform parallel white light
source in direction d = (0, 0,−1). The two sides of the lens
are height fields over a domain U = [0, h]2 in the xy-plane.
The lens produces a caustic pattern on a receptive plane
P orthogonal to d. We optimize the lens shape so that the
caustic pattern inside the area I = {(x, y, z) ∈ P | (x, y) ∈ U}
resembles a target image. We assume that there exists a
bijective map between the two sides of the lens, such that
each light ray striking a point on the front surface will then
strike its corresponding point on the back surface. There-
fore, we represent the two sides using two triangle meshes
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M1,M2 with the same topology
(i.e., they have the same num-
ber of vertices connected in the
same way), where the elements
of the two meshes are in one-
to-one correspondence. From
the bijectivity assumption, all in-
coming light rays striking a front
surface triangle △vi

1v j
1vk

1 ∈ M1
are refracted to rays that strike
a back surface triangle △vi

2v j
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2
with corresponding vertices. The
rays are then refracted again at
△vi

2v j
2vk

2 to hit the plane P and
form a caustic pattern. We ap-
proximate the pattern using a tri-
angle ti jk = △qiq jqk ∈ P with
uniform brightness, whose ver-
tices are the intersection points
between P and the refracted rays
emitted from vi

2, v j
2 and vk

2 re-
spectively. Assuming no energy
loss during refraction, the total
flux Ψ(ti jk) of ti jk is proportional
to the projected area of the triangle △vi

1v j
1vk

1 in the xy-plane.
The caustic pattern for the whole lens is obtained by accu-
mulating all such triangles {ti jk}. To determine an intersec-
tion point qi, we note that the incoming ray for vi

2 is in the
direction ai = (vi

2−vi
1)/∥vi

2−vi
1∥. We then introduce an aux-

iliary variable ni
2 ∈ R3 for the surface normal direction at vi

2,
and use Snell’s law to compute the refracted ray direction

at vi
2 as bi = ni

2

√
1 + η2((ni

2 · ai)2 − 1)+ η (ai − (ai ·ni
2)ni

2),

where ni
2 = ni

2/∥ni
2∥, and η is the lens’s reflective index.

To compare the caustic pattern with the target image,
we divide the imaging area I into a grid of square cells
{pl} corresponding to the target image pixels. The flux
contribution from a caustic triangle ti jk to a cell pl is
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Φl(ti jk) = Ψ(ti jk)·A(ti jk ∩ pl)/A(ti jk),where A(·) denotes the
area. Summing the contributions from all caustic triangles,
we obtain the pixel value at pl as gl = γ−1

(∑
ti jk
Φl(ti jk)

)
,

where γ−1(·) is the inverse gamma correction. We intro-
duce an optimization target term to penalize the difference
between the value gl and image gradient Gl at each pixel pl

and their corresponding values g̃l, G̃l from the target image:
Eimg =

∑
pl (gl − g̃l)2 + ∥Gl − G̃l∥2. Here, the closeness of

the image gradient helps to retain the image features.
In addition, the normals at mesh vertices must be com-

patible with the vertex positions. Thus, we adapt a compat-
ibility term from [4]: Ecomp =

∑
e∈E e · (ne

1 + ne
2)/∥ne

1 + ne
2∥,

where E denotes the set of mesh edges inM1 andM2, ne
1

and ne
2 are the unit normals at the two vertices of the edge e,

and e is the unit vector of e. This term requires the averaged
vertex normal of each edge to be orthogonal to the edge.
The vertex normals forM2 are derived from the auxiliary
variables, while the normal ni

1 at each vertex vi
1 ofM1 is

computed from its incoming and outgoing ray directions d
and ai as: ni

1 = (d + η ai)/∥d + η ai∥.
We also enforce some hard constraints for physical

feasibility: (1) to prevent flipped triangle faces, we require
each triangle on M1 and M2 to have a positive signed
area when projected onto the xy-plane; (2) for each vertex
on M2, we require the angle between its normal and its
incoming ray to be smaller than a threshold, to prevent total
internal reflection. We introduce a term Ebarr that sums a set
of logarithmic barrier functions enforcing the constraints.

Our overall optimization problem is written as

min w1Eimg + w2Ecomp + w3Ebarr, (1)

where w1, w2, w3 are weights. We numerically solve this
problem with an L-BFGS solver. After the optimization,
we use the method of [5] to reconstruct two dense meshes
that smoothly interpolate the vertex positions and normals
ofM1 andM2 respectively, to obtain the final lens shape.

3 Results and Discussion

Fig. 1 shows two examples of lenses designed using our
method with acrylic material (η=1.49). In each example,
both M1 and M2 contain 472,785 vertices and 942,816
triangles. The side length h of the lens is set to 10cm, and its
thickness is approximately 2cm. To verify the lens design,
we simulate the caustic pattern using LuxCoreRender, an
established physically based renderer. We also visualize
the surface shape ofM1 andM2 using a color map of the
relative height function H(x, y) = z(x, y) − zmin, where zmin
is the minimum z-coordinate of the surface.

At the top of Fig. 1, we use a Newton portrait as the
target image, and the receptive plane is 60cm away from
the lens. Similar to existing methods [1–3], the rendered
caustic pattern of our lens closely resembles the target. The
bottom part of Fig. 1 further demonstrates our method’s
capability to control more than one caustic pattern, which
cannot be achieved with existing mesh-based approaches.
Here, we use two target images showing the numbers 5 and
6, at the distance of 60cm and 120cm respectively. For such

multi-target optimization, the term Eimg in Eq. (1) considers
all target images. The rendered caustics of the resulting
lens maintain a strong resemblance to both target images.
This example confirms the effectiveness of our method in
utilizing the full degrees of freedom from freeform lenses
to achieve complex effects.
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Figure 1. Examples of lens design created by our method. Top: a
lens designed with one target image placed 60cm away from the
lens. Bottom: a lens designed with two target images placed at
60cm and 120cm distance, respectively. The color maps show the
relative height function for each side of the lens.

Our method can be improved and extended in the fol-
lowing aspects. First, to achieve even better optimization
results, we will investigate its initialization strategy, such
as the optimal transport approach from [1]. In addition,
our method can be used to create lenses for general light
control. In particular, we may specify a target light field
using its caustics on multiple planes, and use these as tar-
gets to optimize the lens. Such capability can open up new
possibilities for freeform optics design.
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