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ABSTRACT

The prevalence of type 2 diabetes continues to
increase, along with a proliferation of glucose-
lowering treatment options. There is universal
agreement in the clinical community for the
use of metformin as the first-line glucose-low-
ering therapy for the majority of patients.
However, controversy exists regarding the
choice of second-line therapy once metformin
is no longer effective. The most recent treat-
ment consensus focuses on the presence of
cardiovascular disease, heart failure or kidney
disease as a determinant of therapy choice. The
majority of patients in routine practice, how-
ever, do not fall into such categories. Heart
failure and kidney disease represent significant
clinical and cost considerations in patients with
type 2 diabetes and have a close

pathophysiological association. Recent data has
illustrated that sodium-glucose transporter 2
(SGLT2) inhibitor therapy can reduce the bur-
den of heart failure and the progression of renal
disease across a wide range of patients including
those with and without established disease,
supported by an increased understanding of the
mechanistic effects of these agents. Further-
more, there is growing evidence to illustrate the
overall safety profile of this class of agents and
support the benefit–risk profile of SGLT2 inhi-
bitors as a preferred option following met-
formin monotherapy failure, with respect to
both kidney disease progression and heart fail-
ure outcomes.
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TYPE 2 DIABETES MELLITUS

Diabetes is a growing global public health con-
cern with patient numbers having quadrupled
over the past three decades [1]. It has been
estimated that currently approximately 425
million adults (1 in 11) worldwide have dia-
betes, 90% of whom have type 2 diabetes mel-
litus (T2DM) [2, 3].
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T2DM is a consequence of a reduction in
both insulin secretion and insulin sensitivity
[4], and results in hyperglycaemia manifesting
with a range of symptoms [5]. The majority of
patients with T2DM have microvascular (kidney
disease, neuropathy, retinopathy) and
macrovascular complications [coronary artery
disease, myocardial infarction, stroke, conges-
tive heart failure (HF), peripheral vascular dis-
ease] which increase mortality [6] and result in a
substantial clinical and economic burden [7]. It
is estimated that diabetes currently accounts for
around 10% of the total UK National Health
Service (NHS) budget, with most of these costs
due to the associated complications, as opposed
to prescribing costs [8]. For example, the cost of
treating cardiovascular disease (CVD) is esti-
mated to comprise 20–49% of the total T2DM
treatment costs [9]. This article is based on
previously conducted studies and does not
contain any studies with human participants or
animals performed by any of the authors.

CURRENT T2DM THERAPEUTIC
APPROACH

In order to achieve normoglycaemia, patients
with T2DM are initially managed with lifestyle
modifications [10–12]. For many patients whose
blood glucose levels cannot be controlled by
diet and exercise alone, glucose-lowering med-
ications are required. Metformin is the most
widely accepted first-line treatment for T2DM
due to its high efficacy in reducing plasma glu-
cose, good safety profile, tolerability and low
cost [13]. It also has beneficial effects beyond
glycaemic control such as improvements in
endothelial dysfunction, haemostasis and
oxidative stress, insulin resistance, lipid profiles
and fat redistribution [14].

Although there is general agreement for the
use of metformin as first-line treatment for
almost all patients with T2DM, there is uncer-
tainty regarding the choice of second-line
therapy once metformin is no longer effective
in achieving recommended glycaemic targets.
Various drug treatments have been approved
[e.g. sulfonylureas, meglitinides, thiazolidine-
diones, dipeptidyl peptidase 4 (DPP-4)

inhibitors and glucagon-like peptide 1 (GLP-1)
receptor agonists]. However, the question of
‘what next after metformin?’, particularly in the
context of the proliferation of therapy options,
remains a complex clinical decision.

Sodium-glucose cotransporter 2 (SGLT2)
inhibitors are the newest class of oral anti-hy-
perglycaemic agents for the treatment of T2DM,
and have demonstrated robust efficacy results
for glycaemia, blood pressure, haemodynamic
outcomes, weight loss and albuminuria [15–22].
On the basis of this efficacy data, the National
Institute for Health and Care Excellence (NICE)
and the Scottish Intercollegiate Guideline Net-
work (SIGN) recommend that treatment with
SGLT2 inhibitors should be considered along-
side other glucose-lowering medicines in
patients with T2DM who have been unable to
achieve glycaemic control with metformin, or
as a first-line treatment in cases of metformin
intolerance [23, 24].

A major area of uncertainty is whether
SGLT2 inhibitors can also be used safely and
effectively across the spectrum of cardiorenal
disease, including for example patients with
T2DM and HF or chronic kidney disease (CKD).
A recent consensus report by the American
Diabetes Association (ADA) and the European
Association for the Study of Diabetes (EASD)
[25] considers outcomes beyond glycaemic
control [25]. Post-metformin the report recom-
mends SGLT2 inhibitors (or GLP-1 receptor
agonists with proven CV benefit) for patients
with T2DM who have established atheroscle-
rotic CVD; SGLT2 inhibitors for patients with
atherosclerotic CVD in whom HF coexists or is
of special concern; and SGLT2 inhibitors (or
GLP-1 receptor agonists shown to reduce CKD
progression) for patients with T2DM and CKD,
with or without CVD.

Even though glycaemic control remains the
main focus for T2DM treatments, given the
clinical burden that HF and CKD have on
patients with T2DM, it is important that treat-
ment approaches consider the joint manage-
ment of T2DM and cardiorenal disease. As such,
the major change in the ADA/EASD recom-
mendations compared to previous guidelines is
based on new evidence that SGLT2 inhibitors
improve CV outcomes, as well as secondary
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outcomes such as HF and progression of renal
disease, in patients with established CVD or
CKD. This approach is further supported by the
recently published results of the DECLARE-TIMI
58 study [17] in which the effects of dapagli-
flozin, compared to standard of care, on CV, HF
and renal outcomes were assessed in patients
with and without established CVD. The results
imply that the HF and renal outcome benefits of
SGLT2 inhibitors observed in patients with
established disease also extend to lower-risk
patients.

HEART FAILURE AND KIDNEY
DISEASE IN T2DM

Heart Failure

Traditionally, concerns around CV outcomes in
patients with T2DM have focused on the end-
points of the atherosclerotic disease process, such
as myocardial infarction, stroke, and limb ische-
mia. However, one of the most common and
serious initial manifestations of CVD in T2DM is
HF, accounting for 14% of CV events [26], and
estimated to affect more than 22% of patients
with T2DM in primary care [27]. HF is of partic-
ular concern in the diabetic population since the
diabetic substrate is a major risk factor for both
HF with reduced ejection fraction (HFREF) and
HF with preserved ejection fraction (HFPEF).

HF prognosis is worse in patients with dia-
betes than in patients without diabetes [28], and
despite advances in care, HF patients continue
to have worse survival (approximately 50%
mortality at 5 years after initial diagnosis) than
patients with some of the most common can-
cers [29, 30]. HF hospitalisation (HFH) is a
marker for significant adverse prognosis with
high in-hospital and post-discharge mortality as
well as significant repeat HFH rates [31–33],
which often worsen clinical outcomes further
[34]. Moreover, hospitalisation stays are expen-
sive for healthcare providers and account for
the majority (60%) of the costs associated with
HF management [35]. Thus, HFH prevention
represents an important therapeutic goal to
alleviate both the clinical and economic burden
of T2DM.

Kidney Disease

Kidney disease is one of the most common
complications of T2DM. Approximately
30–40% of patients with T2DM also have CKD
[36, 37], defined as estimated glomerular filtra-
tion rate (eGFR) B 60 ml/min/1.73 m2 and/or
urinary albumin/creatinine ratio C 30 mg/g
[38]. These patients are at increased risk of pre-
mature mortality, CV morbidity and end-stage
renal disease (ESRD) [39]. Five-year survival for
patients with ESRD is less than 40% [37]. Fur-
thermore, healthcare costs for CKD patients are
high: T2DM with CKD has been associated with
mean annual costs 49% higher than T2DM
without CKD [40]. There is a particular inflec-
tion point with respect to disease burden and
cost with progression from CKD stage 3a to 3b
(reduction in eGFR\45 ml/min/1.73 m2) [41]
(Fig. 1). Delaying progression of kidney disease,
on both an individual and population level, is
likely to be rewarded by significant health and
cost benefits. To date, approaches to delay the
progression of renal disease in patients with
T2DM have focused on multiple risk factor
control along with inhibition of the renin–an-
giotensin system [42].

The Cardiorenal Syndrome

Many of the risk factors thought to promote
CVD in T2DM (e.g. hypertension, dyslipidaemia
and obesity) are also common in CKD. Addi-
tionally, there is a close physiological relation-
ship in mechanistic terms between HF and
kidney disease: the cardiorenal syndrome
(Fig. 2). This process is bidirectional between
the heart and kidneys with dysfunction in one
organ promoting dysfunction in the other
organ, and involves many different processes
including sympathetic nervous system activa-
tion, increased venous pressure, renin–an-
giotensin system activation, vasoconstriction,
sodium and water retention [43]. Any inter-
vention in patients with T2DM that could
address the natural history of HF and kidney
disease would have considerable value from
clinical, economic and physiological
perspectives.
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THE POTENTIAL OF SGLT2
INHIBITORS AS TREATMENT
FOR PATIENTS WITH T2DM AND HF
OR CKD

SGLT2 inhibitors are a relatively new class of
treatment that improve glycaemic control in
patients with T2DM by decreasing renal glucose
reabsorption and increasing urinary glucose
excretion [44]. In addition to glycaemic effects,

SGLT2 inhibitors are increasingly recognised to
exert significant cardiorenal outcome benefits.

SGLT2 Inhibitor Cardiovascular Outcome
Trials

Previously, two SGLT2 inhibitor cardiovascular
outcome trials (CVOTs) have shown a reduction
in the risk of major adverse CV events (MACE)
in patients with T2DM and established CVD or
at high CV risk: the EMPA-REG OUTCOME trial

Fig. 1 Increasing disease burden and cost with CKD
progression. There is an increase in adverse outcomes (CV
events per 100 person years) and annual healthcare costs

(USD) with CKD progression. CKD chronic kidney
disease, CV cardiovascular

Fig. 2 The link between heart failure and kidney disease in type 2 diabetes
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with empagliflozin (ClinicalTrials.gov identifier
NCT01131676) [15] and the CANVAS program
with canagliflozin (ClinicalTrials.gov identifier
NCT01032629) [16]. These studies also showed
reductions in the risk of CV death with empa-
gliflozin and the risk of HFH with both empa-
gliflozin and canagliflozin. The results of these
CVOTs are mainly relevant for the prevention
of recurrent CV events rather than the preven-
tion of new CV events as EMPA-REG OUTCOME
enrolled only patients with established CVD,
and in CANVAS, the reduction in the risk of CV
events was considerably less for patients with-
out prior CV events than in the overall popu-
lation or those with prior CV events.

In contrast to EMPA-REG OUTCOME and
CANVAS, the CREDENCE study (ClinicalTri-
als.gov identifier NCT02065791) was designed
to specifically assess effects on clinically
important outcomes in patients with T2DM at
high risk of kidney disease progression [45]. The
study evaluated the efficacy and safety of
canagliflozin versus placebo, when used in
addition to standard of care. All study patients
had an eGFR of 30 to\90 ml/min/1.73 m2 and
albuminuria (urinary albumin/creatinine ratio
[300 to 5000 mg/g) and were treated with
renin–angiotensin system blockade. Patients
receiving canagliflozin had a 30% reduction in
the risk of the primary composite endpoint,
comprising progression to ESRD, doubling of
serum creatinine, and renal or CV death, com-
pared to patients in the placebo group. There
was also a reduced risk of the secondary CV
endpoints, including the risk of CV death and
HFH by 31%, MACE by 20% and the risk of HFH
alone by 39%.

The patients included in published studies
such as EMPA-REG [15], CANVAS [16] and
CREDENCE [45], as well as patients in the
VERITS CV study (ClinicalTrials.gov identifier
NCT01986881), which is assessing ertugliflozin
in patients with T2DM and vascular disease and
with results expected later this year [46], are not
particularly representative of the general popu-
lation of patients with T2DM, as most patients
with T2DM (67.8%) do not have established
CVD [47]. Since most CVOTs tend to focus on
the highest-risk patient population, predomi-
nantly with established disease, there is

relatively little data available to inform optimal
treatment approaches in lower-risk individuals.
The only evidence to date is from DECLARE-
TIMI 58 (ClinicalTrials.gov identifier
NCT01730534), a multicentre trial to evaluate
the effect of dapagliflozin on the incidence of
CV events in patients with T2DM [17]. This
study included the largest numbers of patients
with T2DM at lower CV risk among all CVOTs
to date, a population that has not been previ-
ously studied with enough patients to be certain
of the effects of SGLT2 inhibitors in this popu-
lation. The patients in the DECLARE-TIMI 58
trial also had better baseline renal function with
a low proportion of patients with severe CKD.
Table 1 provides a summary of the similarities
and differences between the SGLT2 inhibitor-
based CVOTs.

The DECLARE-TIMI 58 trial population
included 17,160 patients and consisted of
patients that were at least 40 years old with
established atherosclerotic CVD (ischemic heart
disease, peripheral artery disease or cerebrovas-
cular disease (N = 6974, 40.6%) or patients with
multiple (two or more) risk factors (at least 55
years old for men and at least 60 years old for
women plus at least one of the following: dys-
lipidaemia, hypertension or current smoking)
(N = 10,186, 59.4%). The study examined two
primary efficacy endpoints: time to first event of
the composite of MACE (CV death, MI, stroke)
and the composite of CV death or HFH. Sec-
ondary endpoints included time to first event of
renal composite endpoint (at least 40% decrease
in eGFR, ESRD, renal death, CV death) and time
to all-cause mortality.

With regards to MACE, there was a reduction
with dapagliflozin in patients with T2DM and
established CVD only. However, the results
demonstrated prevention of CV events, partic-
ularly HFH, consistently across a broad range of
patients with T2DM, regardless of history of
existing CVD or HF. The majority of patients
(90%) did not have a history of HF, thus the
prevention of future HF is noteworthy. In this
population with low CV risk, patients treated
with dapagliflozin had a significant reduction of
HFH/CV death events: 417 events compared to
496 for those treated with placebo [hazard ratio
(HR) 0.83; 95% confidence interval (CI) 0.73,
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0.95; p = 0.005]. This result was driven by the
HFH outcome: there were 212 HFH events in
the dapagliflozin group compared to 286 in the
placebo group (HR 0.73; 95% CI 0.61, 0.88).
With regards to CV death there were 245 events
in the dapagliflozin group compared to 286 in
the placebo group (HR 0.98; 95% CI 0.82, 1.17).

The results from the DECLARE-TIMI 58 trial
also demonstrated reduced renal disease pro-
gression in patients with T2DM treated with the
SGLT2 inhibitor, most of whom had normal
renal function. Patients in the dapagliflozin
group had fewer renal events [renal composite
endpoint defined as eGFR decrease C 40% to
eGFR \60 ml/min/1.73 m2 and/or ESRD (dial-
ysis C 90 days, kidney transplantation or
eGFR\ 15 ml/min/1.73 m2) and/or renal or CV

death] compared to those in the placebo group;
370 events compared to 480 (HR 0.76; 95% CI
0.67, 0.87; p\0.001). Excluding death from CV
causes, the HR for the renal-specific outcome
was 0.53 (95% CI 0.43, 0.66; p\0.0001). Indi-
vidual components of the renal composite
outcomes were also significantly reduced with
dapagliflozin compared to placebo: patients in
the dapagliflozin group had lower event rates
for an eGFR decline of at least 40% below the
60 ml/min/1.73 m2 threshold (HR 0.54; 95% CI
0.43, 0.67; p\ 0.001) and for ESRD or renal
death (HR 0.41; 95% CI 0.20, 0.82; p = 0.012)
compared with the placebo group [48]. The
renal benefits associated with dapagliflozin were
demonstrated across eGFR subgroups and in
both patients with and without established

Table 1 Comparison of CVOTs

EMPA-REG
outcome [15]

CANVAS
program [16]

CREDENCE [45] VERTIS CV
[46]

DECLARE-
TIMI 58 [17]

SGLT2 inhibitor Empagliflozin Canagliflozin Canagliflozin Ertugliflozin Dapagliflozin

Number of

patients

7020 10,142 4401 8238 17,160

Mean age (years) 63.1 (8.6) 63.3 (8.3) 63.0 (9.2) 64.4 (8.1) 63.8 (6.8)

Male (%) 71.2 64.2 66.1 70.0 62.6

Key inclusion

criteria

HbA1c C 7%

and B 10%

eGFRa C 30 ml/

min/1.73 m2

HbA1c C 7%

and B 10.5%

eGFRa[ 30 ml/

min/1.73 m2

HbA1c C 6.5% and

B 12%

eGFRa[ 30 and

\ 90 ml/min/

1.73 m2

HbA1c C 7%

and B 10.5%

HbA1c C 6.5%

and\ 12%

CrCla C 60 ml/

min

Median follow-up

(years)

3.1 5.7 2.6 TBD 4.5

CVD (%) 100 65.6 50.4 99.9 40.6

Mean eGFR (ml/

min/1.73 m2)

74.1 (21) 76.5 (20.5) 56.2 (18.2) 76.0 (20.9) 86.1 (21.8)

History of HF

(%)

10.1 14.4 14.8 23.1 10.0

Numbers between parentheses are standard deviations
CVD cardiovascular disease, CrCl creatinine clearance, eGFR estimated glomerular filtration rate, SGLT2 sodium-glucose
transporter 2, TBD to be determined
a Glomerular filtration rate (GFR) describes the flow rate of filtered fluid through the kidney. Creatinine clearance rate
(CCr or CrCl) is the volume of blood plasma that is cleared of creatinine per unit time and is a useful measure for
approximating the GFR
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CVD highlighting the value of SGLT2 inhibitors
for both prevention and treatment of CKD
among patients with T2DM.

The cardio- and renoprotective results
observed in the DECLARE-TIMI 58 clinical trial
have been externally validated in a real-word
setting. In a nationwide observational study,
using a Swedish population with T2DM
(N = 28,408) similar to those included in the
DECLARE-TIMI 58 study, dapagliflozin resulted
in lower event rates of HFH and CV mortality
compared to other glucose-lowering drugs: HR
0.79 95% CI 0.67–0.93 and HR 0.75 95% CI
0.57–0.97, respectively [49].

A meta-analysis of the EMPA-REG OUT-
COME, CANVAS and DECLARE-TIMI 58 trials
with a total of 34,322 patients (60.2% with
established atherosclerotic CVD and 39.8% with
multiple risk factors but no known atheroscle-
rotic CVD) further supports the role of SGLT2
inhibitors in reducing the risk of HFH (HR 0.69;
95% CI 0.61–0.79) and progression of renal
disease (HR 0.55; 95% CI 0.48, 0.64), with

results of similar magnitude regardless of the
presence of established CVD [50].

SGLT2 Inhibitor Cardiorenal Protection
Mechanisms

The mechanisms of CV and renal protection
observed in the SGLT2 inhibitor CVOTs are yet
to be fully elucidated. They are likely to be
multifactorial and include effects such as
osmotic diuresis and natriuresis (leading to
reductions in plasma volume, interstitial fluid,
blood pressure and arterial stiffness) and meta-
bolic responses (leading to increases in gluco-
suria and reductions in HbA1c, glucotoxicity,
weight gain, adiposity, inflammation and vas-
cular dysfunction). Improved cardiac fuel ener-
getics may be of particular relevance with
respect to the observed effects on both renal
and HF outcomes [51, 52] (Fig. 3). More mech-
anistic studies are, however, required to better
understand the role of SGLT2 inhibition with
respect to cardiorenal protection.

Fig. 3 SGLT2 inhibitor cardiorenal protection mechanistic overview. SBP systolic blood pressure
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Cost-Effectiveness of SGLT2 Inhibitors

With regards to the cost-effectiveness of the
SGLT2 inhibitors, compared to other oral anti-
diabetes therapies and insulin, for the treatment
of individuals with uncontrolled T2DM, a
recent systematic review that included 37
pharmacoeconomic studies (15 dapagliflozin;
10 canagliflozin; 12 empagliflozin) demon-
strated SGLT2 inhibitors to be the most cost-
effective option [53]. However, the cost-effec-
tiveness was generally thought to be as a con-
sequence of reduction in HbA1c. Furthermore,
there is limited cost-effectiveness evidence
aligned to SGLT2 inhibitor CVOTs. There have
been two economic analyses, both utilising
EMPA-REG [54, 55]. As described above the
EMPA-REG study recruited patients with estab-
lished CV disease only, thereby limiting the
generalisability of these cost-effectiveness
results to a wider population with T2DM.

SUMMARY: WHAT NEXT AFTER
METFORMIN? ARE SGLT2
INHIBITORS THE ANSWER?

HF and CKD in patients with T2DM represent a
significant clinical and economic burden. Cur-
rent treatment strategies for these patients are
based on established disease. Preventing HFH
events or renal disease progression even before
disease develops remains a large unmet need
and important consideration when escalating
therapy following metformin failure.

DECLARE-TIMI 58 is the broadest, largest
and longest SGLT2 inhibitor CVOT to date,
with the largest proportion and numbers of
patients with T2DM at lower risk. In this pop-
ulation, dapagliflozin was found to be both
cardio- and renoprotective: dapagliflozin-trea-
ted patients had fewer MACE events and a sig-
nificant reduction of HFH/CV death and
dapagliflozin also slowed renal disease progres-
sion in patients with T2DM and relatively pre-
served baseline renal function. The results of
this study demonstrate that using SGLT2 inhi-
bitors in T2DM not only improves glycaemic
control, for which these drugs are currently

indicated [56–58], but also reduces HFH and
delays renal disease progression in both patients
with and without existing CVD. Many of the
current T2DM guidelines prioritize the use of
SGLT2 inhibitors in patients with T2DM and
established atherosclerotic vascular disease, HF
or CKD. However, with the disease burden of HF
and CKD, the results of studies such as
DECLARE-TIMI 58 provide persuasive evidence
that SGLT2 inhibitor therapy may influence the
natural history of these complications across
the spectrum of T2DM, with the potential to
translate into both clinical benefits and health
cost savings. Consequently, treatment with an
SGLT2 inhibitor may be considered the most
appealing option following metformin
monotherapy failure.

There are of course many caveats to such a
statement, most notably the absence of any
direct comparative studies between agents and
between drug classes in this indication, with
respect to both clinical and economic out-
comes. A pragmatic, unmasked clinical trial,
aiming to compare commonly used diabetes
medications, when combined with metformin,
on glycaemia-lowering effectiveness and
patient-centred outcomes is in progress
(GRADE. ClinicalTrials.gov identifier
NCT01794143) [59]. Medications representing
four classes (sulfonylureas, DPP-4 inhibitors,
GLP-1 receptor agonists and insulin) will be
randomly assigned and added to metformin
(minimum–maximum 1000–2000 mg/day);
there is no SGLT2 inhibitor comparison. The
results of this study will add further fuel to the
debate of ‘what next after metformin?’ since the
primary metabolic outcome is the time to pri-
mary failure defined as an HbA1c C 7%
(53 mmol/mol), subsequently confirmed over
an anticipated mean observation period of
4.8 years (range 4–7 years). Other long-term
metabolic outcomes include the need for the
addition of basal insulin after a confirmed
HbA1c[ 7.5% (58 mmol/mol), and ultimately
the need to implement an intensive basal/bolus
insulin regimen. The four drugs will also be
compared with respect to selected microvascu-
lar complications, CVD risk factors, adverse
effects, tolerability, quality of life and cost-ef-
fectiveness. Furthermore, from a mechanistic
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perspective, in terms of both CV and renal
outcomes, the optimal approach may include a
combination of GLP-1 receptor agonists with
CV outcome benefits such as semaglutide,
liraglutide or dulaglutide, with an SGLT2 inhi-
bitor. Indeed, considering the observed out-
come benefits in studies such as LEADER
[60, 61], SUSTAIN 6 [62] and REWIND [63, 64]
alongside those observed in the SGLT2 inhibitor
CVOTs implies potential for complementary
outcome benefits in terms of atherosclerotic
disease, HF and renal disease progression.

If we are to advocate the use of a relatively
new therapeutic entity such as an SGLT2 inhi-
bitor as widely as the preferred treatment option
following metformin failure, then safety is an
extremely important consideration. Some con-
cerns have been raised regarding the safety of
SGLT2 inhibitors, particularly adverse events
including mycotic genital infections, Fournier
gangrene, diabetic ketoacidosis (DKA), acute
kidney injury, lower-limb amputation and
fracture [15–17, 65–68]. There has been con-
siderable focus on the safe and optimal use of
the SGLT2 inhibitors in clinical practice [69].
Data from the DECLARE-TIMI 58 study further
supports the safety profile of the SGLT2 inhibi-
tors. Dapagliflozin was not associated with any
excess in amputation, bone fracture, urinary
tract infection, malignancy, Fournier gangrene,
volume depletion or hypoglycaemia compared
with placebo, and there were numerically fewer
cases of acute kidney injury with dapagliflozin
(1.5% vs. 2.0%). Genital mycotic infections and
adjudicated DKA were both higher in dapagli-
flozin-treated subjects (0.9% vs. 0.1% and 0.3%
vs. 0.1%, respectively); however, these adverse
events occurred at a very low frequency and as
such the benefit–risk profile remains over-
whelmingly in favour of the SGLT2 inhibitor.
The risk of adverse events should not mask the
CV and renal benefits of SGLT2 inhibitors as
results from the majority of studies indicate that
the safety profile of SGLT2 inhibitors is good.
However, SGLT2 inhibitor clinical studies have
been of relatively short duration, with
DECLARE-TIMI 58 having the longest median
follow-up of over 4 years [17]. As such, further
studies assessing both efficacy and safety of

SGLT2 inhibitors in longer-term trials are now
needed.

Any widespread therapy implementation
should ideally be supported by robust mecha-
nistic data. The mechanisms of action of SGLT2
inhibitors that drive the observed cardiorenal
benefits are yet to be fully determined but are
likely to include systemic and metabolic effects
[70–73]. Mechanistic clinical trials such as
DapaMech [74] are currently being undertaken
in patients with HF and CKD, both with and
without T2DM, to advance our understanding
of the underlying science behind the CV and
renal effects of SGLT2 inhibitors.

On the basis of current data, SGLT2 inhibi-
tors certainly appear a very attractive option
following metformin monotherapy failure.
Further clinical research and real-world studies
investigating SGLT2 inhibitors across the spec-
trum of patients with T2DM are, however,
needed to fully define both the clinical and
economic value of SGLT2 inhibitors following
metformin monotherapy failure.
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