
Review Article
A Review on Expression, Pathological Roles, and Inhibition of
TMPRSS2, the Serine Protease Responsible for SARS-CoV-2 Spike
Protein Activation

Jyotirmoy Sarker ,1,2 Pritha Das,3 Sabarni Sarker,1 Apurba Kumar Roy,4

and A. Z. M. Ruhul Momen1

1Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
2Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL 60607, USA
3Independent Author, Dhaka 1207, Bangladesh
4Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh

Correspondence should be addressed to Jyotirmoy Sarker; jy.sarker@gmail.com

Received 22 June 2020; Revised 30 May 2021; Accepted 14 July 2021; Published 26 July 2021

Academic Editor: S.Y. Seong

Copyright © 2021 Jyotirmoy Sarker et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, uses the host cell membrane receptor angiotensin-
converting enzyme 2 (ACE2) for anchoring its spike protein, and the subsequent membrane fusion process is facilitated by host
membrane proteases. Recent studies have shown that transmembrane serine protease 2 (TMPRSS2), a protease known for similar
role in previous coronavirus infections, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome
(MERS), is responsible for the proteolytic cleavage of the SARS-CoV-2 spike protein, enabling host cell fusion of the virus.
TMPRSS2 is known to be expressed in the epithelial cells of different sites including gastrointestinal, respiratory, and geni-
tourinary system. (e infection site of the SARS-CoV-2 correlates with the coexpression sites of ACE2 and TMPRSS2. Besides,
age-, sex-, and comorbidity-associated variation in infection rate correlates with the expression rate of TMPRSS2 in those groups.
(ese findings provide valid reasons for the assumption that inhibiting TMPRSS2 can have a beneficial effect in reducing the
cellular entry of the virus, ultimately affecting the infection rate and case severity. Several drug development studies are going on to
develop potential inhibitors of the protease, using both conventional and computational approaches. Complete understanding of
the biological roles of TMPRSS2 is necessary before such therapies are applied.

1. Background

(e novel coronavirus disease or COVID-19 emerged in
Wuhan province of China in late 2019 and rapidly spread to
almost every country and territory around the world within
months. According to the interactive online tracker devel-
oped by Center for Systems Science and Engineering at
Johns Hopkins University, the global number of confirmed
cases till 30 May 2021 reached nearly 170,000,000, causing
more than 3,500,000 deaths [1]. Understanding the sequence
of events that lead to the infection of human cells by the virus
can facilitate the process of investigating potential

intervention options. SARS-CoV-2, the virus responsible for
COVID-19, belongs to the Coronaviridae family [2].
Members of this family are single-stranded RNA virus with
glycoprotein spikes attached to envelope [2]. (ese spikes
are responsible for anchoring the virus to the ACE2 receptor
in the host cell surface [2]. Studies have found that the fusion
between virus and host cell membrane is facilitated by some
host cell membrane protease enzymes, which cleaves the
spike protein of the virus envelope and enables the fusion
process [2]. TMPRSS2, a serine transmembrane protease,
has been predicted to play this role for SARS-CoV-2 [2].(is
protease has been known for long for its association with
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prostate cancer and some other viral infections, including
influenza, SARS, and MERS. As a result, TMPRSS2 has been
in the center of attention of drug developers in recent
months, leading to several studies for finding a potential
solution to reduce TMPRSS2 expression or inhibit its ac-
tivity in the host cell membranes, so that the cellular entry of
SARS-CoV-2 can be reduced. Here, the role of TMPRSS2
protease in SARS-CoV-2 infection and its expression sites
and pathological roles are briefly discussed. Furthermore,
some ongoing approaches to inhibit the protease are
highlighted.

2. Host Cell Entry of SARS-CoV-2 and the
Role of TMPRSS2

SARS-CoV-2 is a positive-sense single-stranded RNA virus
of the Betacoronavirus genus of the Coronaviridae family
[3, 4]. (is virus is constructed of four major structural
proteins along with sixteen nonstructural and five to eight
accessory proteins [4].(e transmembrane spike protein (S),
a 150 kDa structural glycoprotein, is associated with host cell
anchoring of the virus [4–6]. (e S protein of SARS coro-
navirus, which was responsible for the 2002-2003 pandemic,
interacts with the angiotensin-converting enzyme 2 (ACE2)
in host cell surface [7]. (e S protein of SARS-CoV and
SARS-CoV-2 has 76% sequence similarity [8]. Due to this
high level of similarity, it was assumed that SARS-CoV-2
also interacts with the ACE2 receptor in host cell for cellular
entry (Figure 1) [8, 9]. Later, studies conducted by Zhou
et al. and Wan et al. showed that SARS-CoV-2 can use the
ACE2 receptor for cellular entry [3, 9]. Specific domains of
the spike protein are responsible for receptor attachment,
protease processing, and cell membrane fusion [10]. (e
extracellular domain, one of three domains of the S protein,
has two functional subunits, S1 and S2 [8, 11]. (e amino
terminal S1 subunit is responsible for bindings with host cell
receptor and the carboxy terminal S2 for membrane fusion
[4, 8]. S1 subunit is further divided into N-terminal domain
(NTD) and receptor binding domain (RBD) [4]. (e virus
attaches with the host cell receptor ACE2 using the RBD [5].
Different domains of the S protein are shown in Figure 2.

(e fusion of SARS-CoV-2 with host cell requires
coordination between receptor binding and proteolysis of
the spike protein (Figure 1) [8]. After spike protein cleavage
by the host cell proteases, at the S1/S2 boundary and at
another cleavage site of the S2 domain, S2′, the fusion
peptide of the spike protein is released (Figure 2) [11].
Different host proteases are associated with the splitting of
coronavirus spike proteins and subsequent cellular entry of
different coronavirus, which eventually is a decisive factor
for host and tissue specificity of the virus [10]. Also, there
are some lines of evidence that the proteases take part in
activating the host cell receptors for coronavirus attach-
ment [10].

TMPRSS2, a type II transmembrane-bound serine
protease constituted of 492 amino acids, is found to be
involved in priming of S protein in SARS coronavirus [12].
In case of MERS virus spike protein, the cleavage at S1/S2
site is carried out by the proteolytic enzyme furin, and the

subsequent S2′ cleavage is carried out by TMPRSS2 [13].
Hoffmann et al. confirmed the presence of similar multibasic
S1/S2 cleavage site in SARS-CoV-2, which requires pre-
cleavage by furin before proteolytic activation of the fusion
domain by TMPRSS2 [13].

(is step is important for the fusion of virus and cellular
membrane. In an earlier study, Hoffmann et al. found
similar involvement of TMPRSS2 in the priming of S protein
in SARS-CoV-2 and concluded that TMPRSS2 is essential
for the cellular entry of SARS-CoV-2 [7]. (e gene coding
for this protease is 44 kB in length and has 14 exons [12, 14].
(e different domains of TMPSSR2 are a type II trans-
membrane domain, a receptor class A domain, a scavenger
receptor cysteine-rich domain, and a protease domain. (e
transmembrane domain has intracellular amino terminal
and extracellular carboxy terminal, to which the protease
domain is attached [15, 16]. For the enzyme to exert its
proteolytic activity, autocleavage of the proteolytic domain
and its subsequent secretion in the cell media are necessary
[12].

3. Expression of TMPRSS2

3.1. Expression in Respiratory Tract. (ere is evidence of
high level of TMPRSS2 expression in epithelial cells of
different sites of the upper and lower respiratory system.
Expression of TMPSSR2 in respiratory epithelial cells was
mentioned in 2001 by Donaldson et al., when they found
evidence of expression in the epithelial lining of the nose,
trachea, and airways [17]. (ey predicted TMPRSS2 ex-
pression in type II pneumocytes of the pulmonary alveoli
[17]. Later, Bertram et al. found that TMPRSS2 along with
another protease is expressed in epithelial cells throughout
the entire respiratory tract including lung, bronchus, larynx,

Spike protein

Activation
Attachment

ACE2 receptor TMPRSS2

Figure 1: TMPRSS2 plays an important role in activation and
conformational change of SARS-CoV-2 spike protein, which leads
to the ACE2 receptor binding of the virus.
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trachea, nasal mucosa, and respiratory sinuses [18]. Evidence
of expression was found in different cells of lung and
bronchial branches, where the expression level in lung tissue
was higher than that in bronchial epithelial cells [19]. Recent
studies confirmed higher level of TMPRSS2 expression in
type II of the lung alveolar epithelium cells than in type I
cells [19, 20].

3.2. Expression in Gastrointestinal Tract. A northern blot
analysis conducted by Paoloni-Giacobino et al. first pre-
dicted the expression of TMPSSR2 in the small intestine
[12, 21]. Significant expression of TMPRSS2 was observed in
epithelial and gland cells of the upper esophagus, but ex-
pression level was low in the stratified epithelial cells [22]. In
stomach, the gene is highly expressed in the basal gland
mucous cells, pit mucous cells, and chief cells [22].
TMPRSS2 expression was also observed in the epithelial cells
of ileum and enterocytes of the colon [22]. Overall, the
expression levels in upper esophagus, ileum, and colon
enterocytes were higher than those in other cells [22]. From
RNA-seq data, it was found that the gene was highly
expressed in stomach, small intestine, and transverse colon,
but the expression level was low in the sigmoid colon [22].
Burgueño et al. mentioned the significant expression of
TMPRSS2 in human ileum and colon and the high level of
expression inmouse duodenum [23]. Another recent in vitro
study found that the human colorectal epithelial cell line
Caco-2 can express TMPRSS2 [7].

3.3. Expression in Prostate. Lin et al. reported that the serine
protease TMPRSS2 expression is much higher in prostate
epithelium cells than in other human tissues [24]. Applying
in situ hybridization technique, they found localized ex-
pression in the prostate basal cells but failed to observe any
expression in the luminal secretory cells [24]. (e same
study also mentioned the androgen-dependent expression
pattern of TMPRSS2 [24]. Later, Vaarala et al. found ex-
pression in luminal epithelial cells but no expression in basal
cells [21]. Studies conducted afterwards supported the
findings of Vaarala et al. that TMPRSS2 expression is found
in the luminal cells of the prostate [15, 25]. Another group
found that the exact expression of TMPRSS2 in prostate is
from the apical surface of the luminal epithelial cells and this

protease is also released in the prostasomes of the seminal
fluid [26].

3.4. Expression in Ocular Tissue. Whether the cornea is an
expression site of ACE2 and associated proteins has been of
particular interest in recent times due to its possible im-
plication in predicting the vulnerability of conjunctiva as an
infection site for SARS-CoV-2. Zhang et al. found significant
expression of TMPRSS2 in corneal epithelium, conjunctival
epithelium, and lacrimal gland serous cells of mice with
higher level of expression in conjunctiva than in cornea [27].
Later, another study on human conjunctiva tissue showed
absence of TMPRSS2 expression [28]. Ma et al. found higher
level of TMPRSS2 expression in mouse cornea than in
conjunctiva [29].

3.5. Expression in Olfactory Epithelium. (e olfactory epi-
thelium of the nasal cavity is another location where this
protease is expressed [30]. A study conducted in mouse
models found that expression level is higher in the sus-
tentacular cells of olfactory epithelia than in the receptor
neurons [30]. (e expression level of the protease increases
with age [30]. It is predicted that TMPRSS2 is expressed in
both neuronal and nonneuronal epithelial cells of the ol-
factory epithelium and the expression level is higher in
comparison with the expression of ACE2 receptor protein in
these sites [31]. Another RNA-seq study found expression
only in subpopulation of the olfactory receptor neurons
[31, 32]. Association between the expression patterns in
these cells with reported cases of Anosmia is predicted.

4. TMPRSS2 Expression and Relation to SARS-
CoV-2

4.1. Respiratory Tract. In case of SARS-CoV-2, researchers
observed that the viral activation requires proteolytic action
of TMPRSS2 and furin [33]. Laporte et al. claimed that the
spike protein of the virus was adaptive to adjust the poly-
morphism of proteases of human airways, both TMPRSS2
and TMPRSS13 [34]. In some studies, the exact role of
proteases and relation to ACE2 binding in nasopharyngeal
was not linear [35]. However, in a case study, Rossi et al.
observed that expression of proteases and ACE2 in naso-
pharyngeal region had a direct relation to the severity of the

S1 S2

N-terminal

SP NTD RBD FP TACP

C-terminal

S1/S2 S2′
Protease cleavage sites

Figure 2: Schematic diagram of the domain structure of SARS-CoV-2 spike (S) protein. SP� signal peptide, NTD�N-terminal domain,
RBD� receptor binding domain, FP� fusion peptide, TA� transmembrane anchor, and CP� cytoplasmic domain [11].
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disease [36]. Some conditions such as obesity were observed
to be responsible for the expression level of TMPRSS2, thus
influencing the rate of the viral infection [37].

4.2. Gastrointestinal Tract. Expression of the protease
TMPRSS2 is well documented in the intestinal tract [12]. In
fact, DNA analysis revealed that the high expression of the
protease in lung and intestine makes both organs vulnerable
to SARS-CoV-2 [38]. Around a quarter of SARS-CoV-2
cases were marked by gastrointestinal (GI) tract infections
[39]. Expression of the protease in various GI cells was one of
the reasons behind this. For instance, intestinal enterocytes,
especially those having well-defined brush borders, were
found to be more susceptible to the virus due to higher
expression of the protease [40–42]. Lee et al. experimented
with an enterocyte cell line and reported the fact that
enterocytic differentiation influenced viral propagation [42].

4.3. Genitourinary System. TMPRSS2 gene is expressed in
male spermatogonia besides prostate cells [43]. (is fact
indicated that male reproductive system should be vulner-
able to the SARS-CoV-2 infection. However, there is no
direct evidence of infection being present in the semen of
infected patients [44]. Nevertheless, scientists suggested that
the several gonad diseases such as orchitis have a direct
correlation with SARS-CoV-2 infection [45]. More possible
alterations of gonad function due to the disease are debated
and possible involvements of TMPRSS2 need to be sorted
out [46].

4.4. Ocular andOlfactory System. In an early study in China,
only 8 patients in 1000 showed ocular inflammation asso-
ciated with SARS-CoV-2 [47]. However, relatively high
expression of TMPRSS2 and ACE2 in conjunctiva suggests a
possible transmission pathway in ocular tissue [48]. Another
investigation reported that coexpression of ACE2,
TMPRSS2, and mitochondrial genes could make cornea a
potential and important contributor for the viral infection
[49]. It seemed that, despite having a considerable con-
centration of proteases, SARS-CoV-2-associated conjunc-
tivitis is rare while conjunctiva and cornea can be
responsible for the transmission of the virus [50]. On the
other hand, different types of cells express TMPRSS2 gene in
the olfactory epithelium [30]. Researchers found that odor
disturbance of SARS-CoV-2 patients is due to the presence
of proteases and ACE2 receptors in nonneuronal olfactory
cells [51].

4.5. Correlation between TMPRSS2 Expression Pattern and
Disease Severity. Some known variables of COVID-19
predisposition and disease severity are correlated with
TMPRSS2 expression pattern. It is assumed that age-, race-,
or gender-specific variation of TMPRSS2 expression can
explain the disease severity of SARS-CoV-2. In the case of
pediatric patients, with the same level of viral loads,
TMPRSS2, and ACE2 level as adults, they tend to express less
severity of the disease. According to a recent study, this was

due to the strong innate immune response of the children
[52]. Another hypothesis was that children before puberty
have lower levels of steroid hormones which are necessary
for the upregulation of TMPRSS2 and thus are less sus-
ceptible to the severity of the disease [53].

It was observed that severity of COVID-19 is associated
with the polymorphisms of ACE2 and TMPRSS2 expressing
genes [54]. Studies showed that Asians showed higher ex-
pression of ACE2 gene and that might made them more
vulnerable to COVID-19 than African and Caucasian races
[55, 56]. As the expression of TMPRSS2 is regulated by
androgen, it can have a potential role in the male pre-
dominance of the infection [24, 25, 57]. (e absence of
androgen in preadolescents can be a reason behind the low
incidence in this age group [57].

(ere were early reports that smokers are more prone to
serious forms of COVID-19 infection than nonsmokers,
with more frequent need of ventilation and ICU support
[58, 59]. Previous studies have shown that smoking increases
androgen-to-estrogen ratio [57]. As TMPRSS2 is androgen-
regulated, smoking increases TMPRSS2 expression level,
which might eventually be responsible for the increased
predisposition of smokers to SARS-CoV-2 infection. A re-
cent systematic review by Hou et al. supports this as-
sumption and states that smoking is independently related to
increased mortality due to COVID-19 [60].

Chaklader et al. found upregulation of TMPRSS2 ex-
pression in the lung and oral epithelium tissue of smokers
after analysing RNA sequencing data from (e Cancer
Genome Atlas [59]. Prostatic hypertrophy, a common
problem of the elderly men, may have a role in increased
TMPRSS2 expression, which may account for the increased
severity of the infection in this age group [57]. In a recent
case-control study, it was shown that TMPRSS2 expression
along with ACE2 in the nasopharyngeal area has a direct
relation to necessity of oxygen supply in COVID-19 patients
[36].

5. TMPRSS2 in Other Human Diseases

5.1. SARS. Similar to SARS-CoV-2, SARS-CoV docks in the
ACE2 receptor of host cell membrane, using its S1 subunit
for binding and the S2 subunit for fusion [61]. Few proteases
such as cathepsin L, elastase, trypsin, factor Xa, thermolysin,
and plasmin were thought to have roles in activating the S2
subunit of the viral spike protein [62–65]. Matsuyama et al.
first presented data on the correlation between TMPRSS2
expressions in the lung with SARS-CoV, indicating that the
protease may have significant contribution in activating the
virus spike protein to induce its fusion with cell membrane
[66]. (eir study further suggested that opposite spatial
orientation of the proteins is necessary for membrane fusion
and TMPRSS2 can only act on spike proteins already at-
tached to the receptor, as the cleavage site in the spike
protein is only exposed after the receptor docking of the
protein [66]. Later, a series of studies strengthened this
prediction that TMPRSS2 plays a more significant role in
comparison with the other proteases in SARS-CoV infection
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[61, 62]. Glowacka et al. showed that, aside from assisting the
fusion of the virus cells, TMPRSS2 protein reduces the ability
of the neutralizing antibodies to recognize the virus [67].

5.2. Influenza. (e fusion of influenza virus and host cell
membrane is facilitated by the binding of the viral surface
glycoprotein hemagglutinin (HA) with the receptor [68].
(e host proteases play an important role in processing of
the hemagglutinin precursor into HA1 and HA2 subunits, a
step essential for the fusion process [69]. (e protease has
been found to play this role for different subtypes of in-
fluenza A and influenza B virus, and several studies carried
out in knockout and knockdown mice have proved that
absence of TMPRSS2 expression leads to resistance against
the influenza virus [68–73]. Limburg et al. suggested that the
potential inhibition of TMPRSS2 can be an effective ther-
apeutic option against human influenza as TMPRSS2 is
essential for the activation and multiplication of the virus
[69]. Further studies found that polymorphism in the
TMPRSS2 protein can affect the severity of influenza in
humans [74, 75].

5.3.MERS. (e spike protein (S) of MERS-CoV, the Middle
East respiratory syndrome virus, attaches itself with the cell
surface receptor of host cell. Instead of ACE2, the MERS
virus uses the dipeptidyl peptidase 4 (DPP4) receptor, which
is abundantly present in epithelial and endothelial tissues for
binding [76]. (is process is carried out by the spike protein
(S) anchored in the virus cell membrane. Matsuyama et al.
observed that TMPRSS2 along with cathepsin L is respon-
sible for the priming of MERS virus spike protein and is,
therefore, responsible for the successful cellular entry of the
virus [77]. As TMPRSS2 has been found to be expressed in
higher level in the respiratory epithelium, in comparison
with cathepsin L, Kleine-Weber assumed that TMPRSS2
plays the primary role among these two proteases in the S
protein priming, which ensures the viral fusion with the host
cells [78].

5.4. Metapneumovirus Infection. Aside from the respiratory
viral diseases discussed above, TMPRSS2 has also been
found to be involved in human metapneumovirus (HMPV)
infection, which is responsible for bronchiolitis and pneu-
monia [79]. Shirogane et al. reported that TMPRSS2 cleaves
the HMPV fusion protein and actively assists in viral
multiplication in host cell [79].

5.5. Inhibitors of TMPRSS2. Host protease inhibition has
been under consideration as a low risk option for inhibiting
some viral infections in recent years [80]. (e role of
TMPRSS2 in the pathogenesis of cancer and various in-
fectious diseases of viral origin has led to several attempts to
inhibit its activity as a way of preventing and treating disease
progression. Soon after the emergence of COVID-19,
hundreds of clinical and preclinical trials started to inves-
tigate the effectiveness of drugs on multiple targets and
protease inhibition is one of the popular approaches.

Camostat and nafamostat are two protease inhibitors
which have shown successful inhibitory effect on TMPRSS2 in
both in vitro and in vivo studies [81]. Hoffmann et al. sug-
gested the potential application of camostat mesylate for
TMPRSS2 inhibition [7]. Camostat is approved in Japan for
chronic pancreatitis and had been investigated for other
therapeutic options including cancer and dyspepsia [82]. A
previous study showed that it can interfere with influenza
virus replication by inhibiting TMPRSS2 and other serine
proteases [83]. Another similar drug, nafamostat mesylate, is
approved in Japan for the treatment of acute pancreatitis [82].
It had shown successful TMPRSS2 inhibition in MERS-CoV
infection [82, 84]. As the SARS-CoV-2 spike protein had
similarity with the S protein of the formerly mentioned
coronavirus, this drug has considerable potential against the
SARS-CoV-2 spike protein and is under investigation for this
purpose [82]. Nafamostat mesylate has already shown success
in inhibiting the protease in simian Vero E6 cells [82, 85].
(ere are sufficient data on the safety of this molecule at a
dose level of 240mg for 5 days [82, 86]. (e widely applied
cough suppressant bromhexine hydrochloride is another
compound with considerable potential for TMPRSS2 inhi-
bition based on large-scale screening data [87, 88]. Based on
the evidence that TMPRSS2 has a role to play in cancer
metastasis, bromhexine was administered systemically to
cancer patients to observe its effectiveness in reducing the
metastasis [25, 88]. (e study outcome was positive in favour
of bromhexine use with no potential systemic side effects
[25, 88]. Aprotinin is another serine protease inhibitor known
to be effective in inhibiting TMPRSS2 and few other proteases
in cell culture studies [89]. Numerous in silico studies were
undertaken in the recent months after the emergence of
COVID-19 to investigate new molecules, few of which are
studying protease inhibitors for TMPRSS2. (ese include
screening of commercially available compounds for their
possible inhibitory effect [90]. Screening of natural product
database using computer-aided strategies is also under con-
sideration [91]. It was found that steroids help in upregulation
of TMPRSS2 [52]. A study found that treatment with par-
ticular estrogens can decrease the severity of the disease
through suppressing the expression of the protease hormone
[92]. In the abovementioned theoretical basis, it is hypoth-
esized that antiandrogen therapy in males could be effective
against the viral disease [93]. Studies conducted so far have
not shown any significant role of TMPRSS2 in biological
processes leading to the assumption that other serine pro-
teases might compensate for its absence [67]. A study found
that the gene is dispensable for normal development, growth,
and organ function in knockout mouse model [94]. (ese
findings increase the possibility that inhibiting TMPRSS2
expression will not have any significant side effect. Contrarily,
furin, the other protease involved in the proteolytic processing
of the spike protein, is known to be involved in several bi-
ological processes [13]. (is makes TMPRSS2 a more feasible
target of choice for drug development. Still there is a pos-
sibility that some biological roles of the protease have not been
fully elucidated yet. So, before targeting the protease activity
of TMPRSS2, further studies on its role in physiological
processes are essential.
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6. Conclusion

(e expression pattern and the role of TMPRSS2 in several
infectious diseases render significant level of safety in as-
suming that the protease has a major role in cellular entry of
SARS-CoV-2 in human cells. (is idea has given new im-
petus to the protease inhibitor development projects. Studies
conducted so far have proved the safety profile of few
protease inhibitors, some of which are discussed in this
article. COVID-19 clinical trials using protease inhibitors
have already started to enroll patients. Concurrent studies
on the physiological role of TMPRSS2 in humans will
produce better evidence in favour of the application of
protease inhibitors for COVID-19. If molecules with satis-
factory safety and efficacy profile can be developed, those will
have high potential of reducing the infection rate and se-
verity of the disease.
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