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ABSTRACT
Preference-based decisions often need to combine multiple pieces of information. This study
investigated how the number of information sources and information congruency affect
decision performance. Participants made preference-based choices between two groups of food
items. Increasing the number of items in each option led to slower and less accurate decisions.
Drift-diffusion modelling showed that more information sources relate to a slower rate of
evidence accumulation. Therefore, the additional information impeded rather than improved
the decision accuracy. In Experiment 2, each choice option contained either fully congruent
information or one piece of incongruent information. Decisions with incongruent information is
associated with a lower drift rate than that with congruent information, leading to inferior
behaviorual performance. Further model simulations support that the change in attention
weighting over information sources leads to the observed effects of item numbers and item
congruency. Our results suggest a bounded combination of information sources during
preference-based decisions.
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1. Introduction

Rational decision-making depends on evaluating mul-
tiple options to determine the optimal outcome with
the highest gain relative to potential costs. From ordin-
ary decisions in everyday life to complex policymaking,
choices are made by integrating pieces of information
available to the decision-maker. Previous research has
examined how people integrate different sources of
information in various types of decisions (Noguchi &
Stewart, 2018; Trueblood et al., 2013; Tsetsos et al.,
2010; Usher & McClelland, 2004).

In simple and rapid perceptual decisions, sequential
sampling models postulate that the evidence support-
ing each alternative is integrated over time until
sufficient evidence in support of one alternative
reaches a response threshold (Ratcliff et al., 2016;
Ratcliff & McKoon, 2008; Smith & Ratcliff, 2004). This inte-
gration process provides an optimal strategy for fast and
accurate decisions by reducing the noise in the accumu-
lated evidence (Bogacz, 2007; Zhang & Bogacz, 2010).

A large family of sequential sampling models have
been proposed (Bogacz et al., 2006; Ratcliff et al.,
2016). These models differed in their levels of complex-
ity, the number of evidence accumulators, decision rules,
stochastic versus deterministic evidence accumulation,
and continuous versus discrete time or evidence rep-
resentations. One common feature of most sequential
sampling models is that they can, or at least attempt
to, account for choices as well as the response time of
decisions, because response time has been a key depen-
dent variable of interest in perceptual decision research
in psychology (Ratcliff, 2006) and neuroscience (Gold &
Shadlen, 2007). Most literature on perceptual decisions
considers the decision process involving a single
source of information, although some have examined
how multiple sources of information can influence
behaviour (Krzemiński & Zhang, 2022; Palmer, 1995;
Shaw, 1982).

Another equally fruitful line of research in psychol-
ogy, marketing, political science, and behavioural
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economics is focused on value-based decision-making.
Here, we consider a specific type of value-based
decision-making: preference-based decisions (also
termed as preferential decisions, for reviews see
Spektor et al., 2021; Yoon & Hwang, 1995). Unlike per-
ceptual decisions, in which an objectively correct
choice often exists, preference-based decisions are com-
monly based on subjective preference towards multiple
options, where the relevant preference information
comprises multiple attributes (Busemeyer et al., 2019;
Slovic, 1995). For example, when renting a house, one
may consider several attributes such as preferences for
room size, price, and location. This raises the issue of
how multiple sources of information can be integrated
during preference-based decisions. Traditional decision
theories suggest that multi-attribute choices are
weighted and combined in a way that reaches the
maximum utility (Dawes & Corrigan, 1974; Doyle, 1997;
Lee & Cummins, 2004). Others have proposed alternative
heuristic models, such as the take-the-best model,
assuming that decision-makers focus on a few key attri-
butes while disregarding others (Gigerenzer & Gaissma-
ier, 2010; Gigerenzer & Goldstein, 2011; Gigezenger &
Goldstain, 1999).

Empirical studies on multi-attribute preference-based
decisions have paid special attention to the contextual
influence on choice. That is, when choosing between com-
petitive options, introducing new options to the decision
problem can bias the choice if the new options have
similar (the similarity effect, Tversky, 1972), inferior (the
attraction effect, Huber et al., 1982) or more extreme
(the compromise effect, Simonson, 1989) attribute values
compared with the original options. These choice
context effects are crucial to our understanding of prefer-
ence-based decisions because they challenge the prin-
ciples underpin many normative economic choice
theories such as the independence axiom (Ray, 1973).

Converging research in perceptual and value-based
decision-making promotes the use of sequential
sampling models to explain the choice context effects
(Busemeyer et al., 2019), which has led to several
model extensions specifically for preference-based
decisions, including the multi-alternative decision field
theory (Roe et al., 2001), the multi-alternative leaky com-
peting accumulator model (Bogacz et al., 2007; Tsetsos
et al., 2010; Usher & McClelland, 2004), the multi-attri-
bute linear ballistic accumulator model (MLBA, True-
blood et al., 2014), the associative accumulation model
(Bhatia, 2013), and the model of multialternative
decision (Noguchi & Stewart, 2018). These extended
models predict both choice and response time of prefer-
ence-based decisions (Evans et al., 2019), providing
additional insights into the experimental data (Clithero,

2018; Konovalov & Krajbich, 2019; Webb, 2019). Further-
more, these models open possibilities to using eye
movement data (Krajbich et al., 2012; Krajbich &
Rangel, 2011) or brain imaging (Mohr et al., 2017) to
examine the evidence accumulation process during pre-
ference-based decisions.

In multi-attribute decisions, the attributes of each
option commonly represent different types of infor-
mation (e.g. room sizes, prices, and locations in the
house renting scenario above). The current study con-
siders a different paradigm, in which all attributes of a
choice option contain the same type of information
(Krzemiński & Zhang, 2022). For example, considering a
chocolate assortment box, individual chocolate items
in the box convey the same type of information: the sub-
jective preference of individual items. To choose the box
with the highest overall preference, the decision-maker
needs to combine their preference towards the collec-
tion of items in the box. Interestingly, a recent study
suggested that, in such a scenario, the decision-maker
establishes the group of items as a set, and their prefer-
ence-based decision can be influenced by the similarity
of items within the group (i.e. the set-fit effect, Evers
et al., 2014).

The current study builds on the existing literature. In
two internet-based experiments, we examined (1) how
preference-based decision is affected by the number of
items of each option; and (2) whether a decision-
maker is sensitive to incongruent information between
items. In both experiments, human participants were
instructed to make binary choices based on their prefer-
ences, whereby each choice option consisted of multiple
food items (Figure 1).

Experiment 1 investigated the effect of the number of
items per option on behavioural performance. Partici-
pants chose between two options at different levels of
difficulty, with each containing two or four food items.
Importantly, all food items assembled in each choice
option were at the same level of preference rating. We
hypothesised that such within-option consistency may
promote two possible types of behaviour. First, as the
number of items per option increases, participants may
simply accumulate their preferences for all additional
items to build a collective preference for each option.
In this case, more items per option will lead to better
behavioural performance, i.e. higher accuracy and
shorter response time (RT). Alternatively, although pre-
vious research suggests that humans do combine mul-
tiple sources of information (Krajbich et al., 2012,
2010), such processes are inevitably constrained by
limited attentional capacity (Reynolds & Chelazzi,
2004). As a result, more items per option introduce an
attentional cost and lead to inferior behavioural
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performance, i.e. lower accuracy and prolonged RT. In
both predictions, the statistical null hypothesis is the
lack of behavioural change between the choices with
two or four items, implying that participants ignore or
are insensitive to the additional (but redundant)
information.

Experiment 2 examined the effect of information con-
gruency among items of each choice option. Participants
performed preference-based decisions between two
options, each with a collection of four food items. In con-
gruent trials, all food items in each option had the same
level of preference rating (same as in Experiment 1). In
incongruent trials, an incongruent pair was created by
swapping the locations of two food items between the
two options. This design creates a scenario in which
the number of items per option is the same between
congruent and incongruent trials, while the summed
or averaged value difference was lower in incongruent
than that in congruent trials. Since the presence of the
incongruent information should make the decision
task more difficult, we expect incongruent trials to
have inferior behavioural performance (i.e. lower accu-
racy and longer RT) than congruent trials.

In both experiments, we fitted a sequential sampling
model, the drift-diffusion model (DDM) (Ratcliff &
McKoon, 2008), to the behavioural data and inferred
the effects of information sources, information con-
gruency, and task difficulty on model parameters. Fur-
thermore, we examined how our results can be
interpreted in the context of a multi-attribute choice
model, the MLBA (Trueblood et al., 2014).

2. Experiment 1: preference-based decisions
with variable item counts

2.1. Participants

A total of 52 participants were recruited from an online
recruitment portal Prolific (prolific.co) and took part in
the experiment online. Participants’ ages ranged from
19–56 years, with a median age of 24, and 16 were
females. Supplementary Table 1 shows demographic
information about the participants. Prolific users are
aware that they participate in research studies and are
compensated for their participation based on
minimum payment rates (Palan & Schitter, 2018). All

Figure 1. Experimental paradigms. A. The rating task. Participants were instructed to provide a preference rating for each food item,
indicating their level of desire to consume each item. In this example, it shows that participants strongly like pasta. B. The main
decision-making task in Experiment 1. In two-item trials (left), participants were asked to make a binary choice between two alterna-
tives, each containing two food items. In four-item trials (right), each choice alternative contained four food items. All food items in
each option had the same preference rating. C. The main decision-making task in Experiment 2. Participants were instructed to make a
binary choice between two options, each consisting of four food items. In congruent trials, all food items in each option had the same
preference rating. In incongruent trials, one pair of food items was swapped between the two choice options, introducing incongruent
preference information among the items of an option.
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participants received monetary payments for their par-
ticipation. Participants were not paid additional incen-
tives based on their performance. Consent was
obtained from all participants. The study was approved
by the Cardiff University School of Psychology Research
Ethics Committee.

2.2. Apparatus

The experiment was carried out online. Experimental
scripts for stimulus presentation and response collection
are written in HTML with a JavaScript library jsPsych 6.1.0
(de Leeuw, 2015). The online experiment was run on the
Pavlovia web server (pavlovia.org), and participants used
web browsers on their computers to complete the
experiment. It has been shown that online studies
using modern web browsers can be employed as an
efficient tool to accurately measure behavioural
responses and reaction times (Anwyl-Irvine et al., 2021;
de Leeuw & Motz, 2016; Semmelmann & Weigelt, 2017).

2.3. Experimental design

All participants completed two separate experimental
sessions spread over two weeks. In each session,
choice options were comprised of either two or four
food items. Half of the participants completed the
session with two-item options first, whereas the other
half completed the four-item session first. Each session
included a rating part and a decision-making part.

In the rating part, A total of 100 food pictures were
chosen from an online food database (Blechert et al.,
2019) (See Supplementary Figure 1). Participants were
asked to give a preference rating for each food item (i.e.
how much they would like to consume the food item).
The preference rating was on a Likert-type scale, with
five discrete values from –2 to 2, representing five prefer-
ence levels: “strongly dislike” (−2), “dislike” (−1), “neutral”
(0), “like” (1) and “strongly like” (2). Participants were
informed that they needed to rate the food items as
evenly spread as possible. After the rating part, if there
were fewer than 8 items at any preference level, the exper-
iment was terminated without progressing to the main
decision-making part, and the participant’s data was dis-
carded without further analysis. A total of 59 participants
were rejected on the recruitment platform after the
rating part because of their biased ratings. Hereafter, we
reported results from the 52 remaining participants.

In the decision-making part, participants were asked
to make preference-based decisions between two
options, each containing a combination of food items.
They were instructed with the following phrases:
“Please determine which one of the two/four item

combinations you prefer more”. In each trial, two
groups of food stimuli were presented vertically on the
left and right sides of the screen (Figure 1(B): two-item
trial; Figure 1(C): four-item trial). In both two-item and
four-item trials, all food items of each option have the
same level of preference rating (i.e. from –2 to 2).

For two- and four-item trials, there were four prefer-
ence difference levels from 1 to 4, determined by the
absolute difference in the preference ratings between
the items of the two options. That is, for the preference
difference of 1, the two choice options contain items
rated at 0 vs. 1, 0 vs. –1, 1 vs. 2, or –1 vs. –2. For the pre-
ference difference of 4, the two choice options contain
items rated at –2 vs. 2. Note that the task difficulty
decreases as the preference difference between the
two options increases.

2.4. Procedure

Each experimental session comprised 450 trials, which
were divided into 15 blocks of 30 trials. Participants
took short breaks between blocks. In each block, for
each of the preference differences from 1 to 4, there
were 12, 9, 6, and 3 trials, respectively. At each prefer-
ence difference level, each possible pair of preference
ratings was presented in an equal number of trials. The
order of the task difficulty (i.e. preference difference)
was randomised across blocks.

Each trial began with the presentation of a fixation
point at the centre of the screen, with a uniformly distrib-
uted latency between 250 and 1500 ms. After the fixation,
two choice options (each with two or four food items)
appeared on the left and right sides of the screen. For
each choice option, its associated food items were ran-
domly drawn from the list that satisfies the preference
rating required in that trial. Each trial was presented for
a maximum of 3000 ms, during which time participants
were instructed to click on one option using a mouse to
indicate their decision. Immediately after each choice
action, the colour of the rectangular border of the
chosen option changed colour to indicate the registration
of a response and the choice stimulus disappeared after
the response. If participants did not respond within
3000 ms, a warning message was given, and the next
trial began. The mouse position was reset to the centre
of the screen after each trial.

2.5. Data analysis

As highlighted in the introduction, preference-based
decisions do not always have an objectively correct
choice. This applies to the current study, because the
same food item may be evaluated differently between
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participants. Here, we use the conventional term accu-
racy to quantify, for each participant, the proportion of
trials in which they chose the option with the higher
subjective preference rating. Hence, this accuracy
measure reflects to what extent participants’ choices
are consistent with their initial ratings.

We quantified the response time (RT) of each trial as
the time between the onset of the food stimulus and
the time of the behavioural response. Trials with RTs
faster than 300 ms were removed to exclude fast
guesses. Furthermore, we removed trials in which par-
ticipants did not respond before the deadline. Together,
0.91% of all trials were discarded after pre-processing. To
make group inferences on mean decision accuracy and
RT, we used JASP (jasp-stats.org) to perform both fre-
quentist and Bayesian ANOVA (Wagenmakers et al.,
2018), with the difficulty level and the number of infor-
mation sources as within-subject factors. In addition to
the conventional frequentist ANOVA statistics, we
reported the inclusion Bayes factor (BFincl) for each
effect, which quantifies the evidence in the data for
including the effect (Van Den Bergh et al., 2020).

2.6. Cognitive modelling of behavioural data

We used the hierarchical drift-diffusion model (HDDM)
toolbox (version 0.9.8) in dockerHDDM (Pan et al.,
2022) with Python version 3.8.13 to fit the DDM to
each participant’s response time distribution and accu-
racy. HDDM is a hierarchical extension of the DDM
(Wiecki et al., 2013). It assumes that model parameters
for individual participants are random examples drawn
from group-level distributions and uses the Bayesian
approach to estimate the posterior distributions of all
model parameters at both individual and group levels
(Wiecki et al., 2013). DDM assumes that a binary choice
is made by a noisy process that accumulates information
over time from a starting point until the accumulated
information reaches one of two decision boundaries,
corresponding to the two choice options (Ratcliff et al.,
2016; Ratcliff & McKoon, 2008). When one of the bound-
aries is reached, a motor response is executed. The
model decomposes behavioural data into four
components:

. The drift rate (v) refers to the average rate of infor-
mation accumulation.

. The decision threshold (a) refers to the distance
between two response boundaries.

. The non-decision time (Ter) refers to the latencies of
stimulus encoding and response execution.

. The starting point (z) refers to a priory bias toward
one of the two options.

The model predicts choice probabilities and RTs (as
the sum of the non-decision time and the duration of
the accumulation process). The two decision boundaries
correspond to the correct (i.e. consistent with preference
rating) and incorrect decisions. Because we presented
the position of the correct option (either left or right)
randomly across trials, the starting point was fixed at
0.5 during model fitting. In addition, we included trial-
by-trial variability in non-decision time st as a group-
level parameter, which has been shown to improve the
model fit to the data (Ratcliff & McKoon, 2008).

To accommodate changes in behavioural perform-
ance, one or more model parameters need to vary
between conditions. We evaluated 16 variants of the
DDM model with different parameter constraints
(Figure 3(A)). In all model variants, we allow the drift
rate v to vary between preference difference levels, as
based on existing literature, the drift rate is sensitive to
the task difficulty (Ratcliff & McKoon, 2008). The
additional constraints of the 16 DDM variants include:
(1) the drift rate v is variable or fixed between 4-item
and 2-item trials; (2) the decision boundary a is variable
or fixed between 4-item and 2-item trials; and (3) the
non-decision time Ter is variable between set size (4-
item vs. 2-item) and/or preference difference levels, or
the non-decision time is fixed in all conditions.

To account for contaminant response, we used the
mixture model, in which 5% of observations were
assumed to be outliers and were not generated from
the drift-diffusion process. The initial values of the
sampling process were set to the maximum a-posterior
value using a gradient ascent optimisation (Wiecki
et al., 2013). We used the default option of informative
priors in the HDDM toolbox, constraining parameter esti-
mates within a range of plausible values.

For each model variant, we generated five indepen-
dent chains of 20,000 samples from the joint posterior
distribution of model parameters using Markov chain
Monte Carlo (MCMC) sampling. The initial 5000
samples of each chain were discarded as burn-in to
provide the stability of posterior estimates (Wiecki
et al., 2013). To assess the convergence of the MCMC
sampling, for each model variant, we calculated the
Gelman-Rubin convergence diagnostic R̂ (Gelman &
Rubin, 1992) from the five MCMC chains, and used
R̂ , 1.1 as a criterion of convergence.

We used two complementary metrics for model com-
parison. First, from all MCMC samples, we calculate the
deviance information criterion (DIC) value (Spiegelhalter
et al., 2002) of each model variant. The DIC value com-
bines a measure of goodness-of-fit and a measure of
model complexity (effective number of parameters),
where lower values indicate a better model fit.
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However, although the DIC is easy to calculate, it may
favour more complex models because of its inaccuracy
in estimating the number of parameters (Spiegelhalter
et al., 2014). Second, we calculate the Pareto-smoothed
importance sampling leave-one-out cross-validation
(LOO-CV) deviance for each model variant. The LOO-CV
is a more robust measure than DIC, with lower LOO-CV
values indicating better out-of-sample predictive
quality of the model (Vehtari et al., 2022, 2017). The cal-
culation of LOO-CV requires the pointwise log-likelihood
of each MCMC sample and each piece of observed data,
which has high computational demands. To address this
issue, we calculated the LOO-CV scores from the last
1000 samples of all MCMC chains.

We used the Bayesian hypothesis testing (Gelman
et al., 2013) to make inferences between posterior par-
ameters. Similar to previous studies (Szul et al., 2020;
Zhang et al., 2016; Zhang & Rowe, 2014), we used the
notion Pp|D (stands for the posterior probability given
observed data) to refer to the proportion of posteriors
supporting the testing hypothesis at the group level
from the Bayesian hypothesis testing. For example, to
test if the DDM drift rate v in condition A is larger
than that in condition B (i.e. vA > vB), we calculate the
probability that the difference between the par-
ameter’s posterior distributions larger than zero (Pp|
D= P(vA – vB > 0)). A high posterior probability indicates
strong evidence in favour of the testing hypothesis.
Note that Pp|D is a continuous measure between 0
and 1. To facilitate discussion and follow the conven-
tion (Kelter, 2020), if Pp|D > 0.95, we consider that
there is strong evidence to support the hypothesis of
the statistical test.

2.7. Behavioural results

Participants performed binary preference-based choices
between options incorporating two or four items in
different sessions. Behavioural performance was

quantified by accuracy (choice consistency based on
participants’ preference ratings) and RT.

Preference-based decisions between options with
two items had significantly higher accuracy (Figure 2
(A)) and faster RT (Figure 2(B)) than options with four
items (accuracy: F(1,50) = 8.340, p = 0.006, ηp

2 = 0.143,
BFincl = 7.981; RT: F(1,50) = 22.468, p < 0.001, ηp

2 =
0.310, BFincl = 388.032, repeated measures ANOVA).

As expected, there was a significant main effect of
task difficulty (i.e. preference difference between
options) in accuracy (accuracy: F(3,150) = 217.232, p <
0.001, ηp

2 = 0.813, BFincl = 7.612 × 1050) and RT (RT: F
(3,150) = 162.672, p < 0.001, ηp

2 = 0.765, BFincl =
3.836 × 1043), with larger preference difference leading
to better performance. Furthermore, the behavioural
performance difference between two-item and four-
item decisions became smaller as the task difficulty
decreased, as indicated by a significant interaction
between item numbers per option and task difficulty
(accuracy: F(3,150) = 3.226, p = 0.024, ηp

2 = 0.061, BFincl
= 0.899, RT: F(3,150) = 2.940, p = 0.035, ηp

2 = 0.056,
BFincl = 0.944). It is worth noting that the interaction in
accuracy is mainly driven by the ceiling effects in
easier conditions, as there was no significant interaction
in accuracy if the easiest condition (i.e. the condition
with the largest preference difference) is removed in
the ANVOA.

In an additional analysis, we explored whether choos-
ing between positively rated items differed from
choosing between negatively rated items. In a
repeated-measures ANOVA, we included a within-
subject factor, separating trials with positively rated
items (also including neutral, i.e. items rated at 1/0, 2/0,
and 1/2) from those with negatively rated items (−1/0,
–2/0, and –1/−2). Making choices involving positively
rated items was significantly faster across all difficulty
levels (F(1, 50) = 79.446, p < 0.001, ηp

2 = 0.614, BFincl =
2.055 × 109). No difference was observed in decision accu-
racy (F(1, 50) = 0.279, p = 0.6, ηp

2 < 0.006, BFincl = 0.207).

Figure 2. Behavioural results of Experiment 1. A. Mean decision accuracy (choice consistency) between the two-item and four-item
conditions at each preference difference level. B. Mean RTs of the two types of choices at each preference difference level. Data points
represent individual participants.
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2.8. Cognitive modelling results

We used a hierarchical Bayesian version (Cavanagh et al.,
2011; Vandekerckhove et al., 2011) of the DDM (Bogacz
et al., 2006; Ratcliff & Tuerlinckx, 2002) to decompose
individual participants’ behavioural data into model par-
ameters to infer their latent cognitive processes. We con-
sidered 16 model variants (see Figure 3(A) and Cognitive
Modelling of Behavioural Data section for all model var-
iants). The model variants systematically allowed
model parameters (i.e. the drift-rate v, the decision
threshold a, and the non-decision time Ter) to vary
between preference difference levels (v and Ter), set
size (v, a, and Ter), or both (v and Ter). After completing
5 chains of 20,000 samples, the Gelman-Rubin conver-
gence diagnostic (Gelman & Rubin, 1992) is smaller
than 1.1 for all parameters in all model variants, support-
ing that parameter estimates reached convergence.

The model variant that described the data best (i.e.
the one with the lowest DIC value and the lowest

LOO-CV deviance score) allows all three parameters (v,
Ter, and a) to vary between two-item and four-item
choices, and v and Ter to further vary between the prefer-
ence difference levels (Figure 3(A) and Supplementary
Figure 2A). To assess the model’s fit, we simulated the
model with its posterior parameter estimates. In all con-
ditions, the observed data and model simulations were
in good agreement (Figure 4).

Supplementary Table 2 reports the posterior esti-
mates of all parameters of the best-fitted model. We
used Bayesian statistics to quantify the proportion of
non-overlaps between the posterior distributions of par-
ameters (Gelman et al., 2013; Kruschke, 2011). For the
drift rate, there was strong evidence to support that, at
each preference difference level, the drift rate in 4-item
choices was lower than that in 2-item choices (Pp|D >
0.991 in all preference difference levels, Figure 3(B)
and Supplementary Table 4). In both 4-item and 2-item
choices, the drift rate increases as the preference

Figure 3. Model comparison and model parameters of Experiment 1. A. The deviance information criterion (DIC) value differences
between model variants. The 16 models differ on whether the drift rate v, decision boundary a, and non-decision time Ter can
vary between 4-item vs 2-item trials and between preference difference levels. The model structures are shown below the bar
plot. The value under each bar indicates the DIC value difference between the model variant and the best model. The best model
variant was highlighted with a red box and a black arrow. The best model with the minimum DIC value had variable drift rate
and non-decision time between set size conditions and preference difference levels, as well as variable decision boundaries
between set size conditions. B-D. Posterior group-level parameter estimates from the best-fitted model (B: decision boundary; C:
drift rate; D: non-decision time). In each posterior estimate, the solid black line indicates the full posterior distribution. The coloured
area represents 94% highest density interval. The markers indicate the 0.25, 0.5 and 0.75 quartiles.
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difference between the two options becomes larger (Pp|
D > 0.995 in all pairwise comparisons, Supplementary
Table 4).

For the non-decision time, we did not observe strong
evidence supporting a difference between 4-item and
2-item choices at each level of preference difference (Pp|
D < 0.937 in all comparisons, Figure 3(C) and Supplemen-
tary Table 4), nor between preference difference levels
within each type of choice (Pp|D < 0.908 in all comparisons,
Supplementary Table 4). For the decision boundary, there
was no evidence supporting that it differs between 4-item
and 2-item choices (Pp|D = 0.771 for 4-item vs 2-item com-
parison, Figure 3(D) and Supplementary Table 4).

3. Experiment 2: preference-based decisions
with information congruency

3.1. Participants

We recruited another 52 participants from the Prolific
online recruitment portal (prolific.co). Participants’ ages
ranged from 19 to 56 years, with a median age of 23.5
years, and 17 participants were female (Supplementary
Table 1). Informed consent was obtained from all partici-
pants. The study was approved by the Cardiff University
School of Psychology Research Ethics Committee.

3.2. Experimental design

Similar to Experiment 1, Experiment 2 comprised two
parts: an initial rating part and a main decision-making
part. The rating part was the same as in Experiment 1.

In the decision-making part, two groups of food items
were presented on the left and right sides of the screen
in each trial. Each group consisted of four food items
(Figure 1(C)). Participants were asked to choose their
preferred group of food items with the following instruc-
tion: “Please determine which one of the four food item
combinations you prefer more”.

Half of the decision-making trials followed a similar
design as in Experiment 1: all food items in a group
had the same level of preference rating (hereinafter
referred to as “congruent trials”). Different from Exper-
iment 1, Experiment 2 had three preference differences
levels from 1 to 3.

In the other half of the trials, we first generated two
groups of food items in the same way as the congruent
trial. We then swapped the position of food items in a
random row, hereafter referred to as “incongruent
trials”. As a result, the swapped row contains incongru-
ent value information compared with the other rows.
Participants were not informed that the food items
may contain congruent and incongruent information.

Figure 4. Posterior predictive RT distributions for 4-item (A) and 2-item (B) choices in Experiment 1. Each panel shows the normalized
histograms of the observed RT distributions and the model predictions (black lines) across participants. The RT distribution plots are
proportional to decision accuracy: the distribution along the positive x-axis indicates RTs of correct responses, and the distribution
along the negative x-axis indicates RTs of incorrect responses. Posterior predictive were generated from the best-fit model (model
1 in Figure 3). For each participant, we drew 500 samples of all model parameters from the participant’s joint posterior parameter
distribution. Each parameter set of the 500 samples was used to simulate the same amount of model-predicted data as observed
in the experiment. The simulated RT distributions were then used to calculate posterior model predictions across all parameter sets.
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3.3. Procedure

The decision-making task comprised 576 trials, including
288 congruent and 288 incongruent trials in a random-
ised order. The task was divided into 15 blocks of 48
trials. After each block of trials, the decision accuracy
(choice consistency based on the initial preference
rating) was provided on the screen. We included this
feedback between blocks to help participants maintain
focus on the experiment.

Each trial began with the presentation of a fixation
point at the centre of the screen with a uniformly distrib-
uted latency between 250 and 1500ms. After the fixation,
two groups of food items appeared on the left and right
sides of the screen until a response was received.
Different from Experiment 1, participants used a keyboard
(left and right arrow keys) to register their decisions, and
there was no time limit for responses. The choice stimulus
disappeared after the response.

3.4. Data analysis and cognitive modelling

As in Experiment 1, statistical analyses were performed
on RT and accuracy (choice consistency based on partici-
pants’ preference ratings). Trials with RTs faster than 300
ms were removed to exclude fast guesses. Because there
was no response deadline in Experiment 2, we further
removed trials with RTs longer than 10,000 ms. Together,
1.69% of all trials were discarded after pre-processing.

We fitted 8 variants of the DDM to behavioural data in
Experiment 2 (Figure 6(A)). In all model variants, the drift
rate can vary between preference difference levels. The
additional constraints of the 8 DDM variants include: (1)
the drift rate v is variable or fixed between congruent
and incongruent trials; (2) the non-decision time Ter is
variable between congruency conditions (congruent vs.
incongruent) and/or preference difference levels, or the
non-decision time is fixed in all conditions. We used the
same mode fitting procedure, convergence check, and
model comparison methods as in Experiment 1.

3.5. Behavioural results

Participants made binary preference-based choices
between two groups of food items. In half of the trials,
incongruent information was introduced by swapping
a pair of items between the two groups (i.e. incongruent
trials). Compared with congruent trials, incongruent
trials had lower accuracy (F(1,51) = 365.036, p < 0.001,
ηp

2 = 0.877, BFincl = 8.385 × 1021, repeated-measures
ANOVA) and slower RT (F(1,51) = 163.222, p < 0.001,
ηp

2 = 0.762, BFincl = 4.481 × 1014). Hence, the presence
of incongruent information hinders behavioural per-
formance (Figure 5).

We further replicated the effect of task difficulty
observed in Experiment 1. Across incongruent and con-
gruent conditions, a larger value difference was associ-
ated with higher accuracy (F(2,102) = 281.650, p <
0.001, ηp

2 = 0.847, BFincl = 4.332 × 1038) and faster RT
(F(2,102) = 156.963, p < 0.001, ηp

2 = 0.755, BFincl =
6.205 × 1028). There were significant interactions
between congruency and task difficulty. These results
suggest that, as the task difficulty decreases, the con-
gruency effect becomes smaller for accuracy (F(2,102)
= 4.625, p = 0.012, ηp

2 = 0.083, BFincl = 3.824) but larger
for RT (F(2,102) = 35.399, p < 0.001, ηp

2 = 0.410, BFincl =
1.482 × 109). Similar to the Results of Experiment 1,
there was no significant interaction in accuracy if the
easiest condition is removed in the ANVOA. Hence, the
interaction in accuracy is mainly driven by the ceiling
effects in conditions with larger value differences.

Same as in Experiment 1, we explored whether choos-
ing between positively rated items differed from choos-
ing between negatively rated items across congruency
and difficulty conditions. Making choices involving posi-
tively rated items was significantly faster (F(1, 51) =
20.983, p < 0.001, ηp

2 = 0.292, BFincl = 615.513). No
difference was observed in decision accuracy (F(1, 51)
= 0.147, p = 0.703, ηp

2 < 0.003, BFincl = 0.212). Therefore,
we replicated the facilitation effect in RT with positive
options observed in Experiment 1.

Figure 5. Behavioural results of Experiment 2. A. Mean decision accuracy (choice consistency) between the congruent and incongru-
ent conditions at each preference difference level. B. Mean RTs of congruent and incongruent conditions at each preference difference
level. Data points represent individual participants.
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3.6. Cognitive modelling results

Similar to Experiment 1, the HDDM model was used to
decompose each participant’s behavioural data into
internal components of cognitive processing. We
allowed two model parameters (i.e. the drift-rate v and
the non-decision time Ter) to be fixed or vary between
preference difference levels, congruency type (incongru-
ent or congruent options), or both. All parameters in all
models converged after 5 MCMC chains of 20,000
samples (Gelman-Rubin convergence diagnostic
R̂ , 1.1).

We examined both DIC values and LOO-CV scores for
model comparison (Figure 6(A) and Supplementary
Figure 2B). The top two model variants based on DIC
values only had a small difference of 9.1 in their DIC
values (the 2nd and the 4th model in Figure 6(A)). The
two model variants were also the top two based on
the LOO-CV score (Supplementary Figure 2B), and the
one with a slightly higher DIC value (i.e. the 2nd model
in Figure 6(A)) had a substantially lower LOO-CV score.
Taken together, we took the model with the lowest
LOO-CV score as the best model and reported below
the model fit and posterior analyses.

The best model variant allows the drift rate v and the
non-decision time Ter to vary between incongruent and
congruent conditions, and Ter to further vary between
preference difference levels. Posterior predictive RT dis-
tributions from model simulation were in good agree-
ment with the observed data in all conditions (Figure 7).

Supplementary Table 3 and Figure 6 report the pos-
terior estimates of all parameters of the best-fitted

model. For the drift rate, there was strong evidence to
support that, at each preference difference level, the
drift rate in incongruent choices was lower than that in
congruent choices (Pp|D = 1 in all preference difference
levels, Figure 6(B) and Supplementary Table 5). In both
congruent and incongruent trials, the drift rate increases
as the preference difference between two options
becomes larger (Pp|D = 1 in all pairwise comparisons,
Supplementary Table 5).

For the non-decision time, we did not observe strong
evidence supporting a difference between preference
difference levels (Pp|D < 0.730 in all comparisons, Figure
6(C) and Supplementary Table 5).

4. Interpreting drift-rate changes with a
multi-attribute choice model

Our modelling results suggested that increasing the
number of items per option (Experiment 1), as well as
introducing an incongruent pair of items (Experiment
2), led to a decrease in the drift rate, which in turn
resulted in lower decision accuracy and longer RT.
The DDM has been used in many decision paradigms
(Ratcliff et al., 2016), including preference-based
decisions. Nevertheless, the standard DDM is not
specifically designed for multi-attribute decisions (cf.
Dai & Busemeyer, 2014; Harris et al., 2018), or more pre-
cisely for the current study, decisions with options com-
prised of multiple items. Since many combinations of
factors can change the drift rate of the standard
DDM, it is not straightforward to interpret the drift

Figure 6. Model comparison and model parameters of Experiment 2. A. The deviance information criterion (DIC) value differences
between model variants. The 8 models differ on whether the drift rate v and non-decision time Ter can vary between congruent
vs. incongruent trials and between preference difference levels. The model structures are shown below the bar plot. The value
under each bar indicates the DIC value difference between the model variant and the best model. We reported results from the
model with the second lowest DIC value (the 2nd model from the left in panel A, marked with a red box and a black arrow)
because that model also has the lowest LOO-CV score (Supplementary Figure 2B). The best model had variable drift rates
between congruency conditions and preference difference levels, as well as variable non-decision times between preference
levels. B-C. Posterior group-level parameter estimates from the best-fitted model (B: drift rate; D: non-decision time). In each posterior
estimate, the solid black line indicates the full posterior distribution. The coloured area represents 94% highest posterior density inter-
val. The markers indicate the 0.25, 0.5 and 0.75 quartiles.
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rate change in relation to the current experimental
design.

To address this issue, we attempt to interpret our
results with a proper multi-attribute choice model,
the MLBA (Trueblood et al., 2014). Unlike DDM, MLBA
contains multiple independent linear accumulators,
each representing one choice option. Each accumulator
has a drift rate randomly sampled across trials, and the
accumulation process is linear with no momentary
noise (i.e. ballistic). The decision process is simulated
as a horse race among the accumulators, from a uni-
formly sampled starting point to a common decision
threshold (Figure 8(A)). As an extension of the original
linear ballistic accumulator (LBA) model (Brown &
Heathcote, 2008), MLBA in addition defines how the
mean drift rates depend on the attributes of choice
options.

The drift rates of DDM and LBA closely correspond to
each other (Donkin et al., 2011). Hence, instead of fitting
the MLBA to behavioural data, we aim to provide a
synergy between models, by examining how the MLBA

can reproduce the effect of item numbers and con-
gruency on drift rates. Following the definition of
MLBA (Trueblood et al., 2014), for a binary decision,
the mean drift rates for the two accumulators are:.

d1 = I0 + V12 ,
d2 = I0 + V21 ,

{

where I0 is the baseline drift rate. V12 and V21 represent
the comparison between the two options, which is a
weighted sum of all pairwise comparisons between the
n attributes:.

V12 =
∑n
k=1

exp(−l · |P1,k − P2,k|) · (P1,k − P2,k) ,

V21 =
∑n
k =1

exp(−l · |P2,k − P1,k|) · (P2,k − P1,k) .

⎧⎪⎪⎨
⎪⎪⎩

P1,k and P2,k represent the subjective preference of the k-
th attribute in options 1 and 2. The exponential term
refers to the weight of attention given to each attribute
comparison, and the parameter λ is the decay constant
for attention weights.1 More specifically, the attention

Figure 7. Posterior predictive RT distributions for choices with congruent (A) and incongruent (B) items in Experiment 2. Posterior
model predictions were generated in the same way as in Figure 4.

1In the full version of the MLBA, the decay constant differs between positive and negative value differences to allow for similarity asymmetry (Trueblood et al.,
2014; Tversky, 1977). Here, for simplicity, we assume a single decay constant for positive and negative value differences.
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weight is larger when the attribute values of the two
options are more similar, and smaller when the attribute
values are more distinct. Therefore, λ controls relative
attention to small vs. large differences in attribute values.

Without loss of generality, assume that the first
alternative is the correct choice (i.e. the one with
higher rated preference d1 > d2), and denote the prefer-
ence difference between each pair of items as Pdiff = P1,k

– P2,k (Pdiff > 0). In Experiment 1, if participants accumu-
late the preference difference from all pairs of items,
for trials with 4 items per option, the mean drift rates
for the correct (d1,4) and incorrect (d2,4) choices are
given by:.

d1,4 = I0 + 4exp(−l4 · Pdiff ) · Pdiff ,
d2,4 = I0 – 4exp(−l4 · Pdiff ) · Pdiff .

{
(1)

Figure 8. MLBA model simulation. A. The LBA model. On each trial, for each accumulator, the drift rate is sampled from a normal
distribution with mean d and standard deviation s. The starting point is sampled from a uniform distribution between 0 and A.
The accumulation process is a linear race towards the response threshold b with no noise. The sum of the accumulation time and
the non-decision time t0 is the predicted RT. B. MLBA model simulation comparing decision accuracy (left) and RT (right) difference
between hypothetical 4-item and 2-item choices. The mean drift rates in 4-item and 2-item choices were set according to Equations 1
and 2, respectively. The decay constants λ4 and λ2 varied from 0.05 to 4 with a step size of 0.05. For each pair of λ4 and λ2 values, the
MLBA model was simulated for 1,000,000 trials, from which the difference in decision accuracy and mean RT were calculated. Other
MLBA parameters were chosen based on a previous study (Trueblood et al., 2014) and were fixed during the simulation (b = 2, A = 1, s
= 1, t0 = 0.3, I0 = 0.31). The value difference between items Pdiff was set to 1. Note that the simulation results largely depend on λ4 and
λ2 and their difference. The red line on the contour plots indicates the critical threshold λ4 – λ2 = log(2)/Pdiff. For λ4 larger than the
critical value, MLBA yields consistent results observed in Experiment 1: 4-item choices have lower accuracy and longer RT than 2-item
choices. The simulation results are consistent with this theoretical prediction. C.MLBA model simulation comparing decision accuracy
(left) and RT (right) difference between hypothetical choices with congruent vs. incongruent item pairs. The decay constant λ4 varied
from 0.05–4 with a step size of 0.05. The rest model parameters were the same as in Panel B. For each λ4 value, the mean drift rates for
options including congruent and incongruent items were calculated according to Equation 3. The MLBA model was then simulated for
1,000,000 trials to obtain the difference in decision accuracy and RT. Across all λ4 values, model simulations are consistent with the
results in Experiment 2: incongruent item pairs hinder behavioural performance.
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Similarly, the mean drift rates for options with 2 items
(d1,2 and d1,2) are given by:.

d1,2 = I0 + 2exp(−l2 · Pdiff ) · Pdiff ,
d2,2 = I0 – 2exp(−l2 · Pdiff ) · Pdiff .

{
(2)

λ4 and λ2 represent the decay constants in 4-item and 2-
item trials, respectively. Comparing Equations 1 and 2
above, it is clear that, when λ4 – λ2 = log2 / Pdiff,
options including 4 and 2 items have the same set of
mean drift rates (i.e. d1,4 = d1,2 and d2,4 = d2,2). If all
other model parameters remain unchanged between
4-item and 2-item trials (as observed in our DDM
results), for the MLBA to reproduce the effect of item
numbers in decision accuracy and RT, the decay con-
stant λ needs to increase as the number of items per
option becomes larger. In the case of options with 4 –
vs. 2-item, the increase in λ must satisfy the minimum
amount of λ4 – λ2 > log2/Pdiff > 0.

To validate this theoretical conclusion, we vary λ4 and
λ2 over a range of values. For each combination of λ4 and
λ2, we used Equations 1 and 2 to define the mean drift
rates and simulated the MLBA for 1,000,000 trials of 4-
item and 2-item decisions. We then identify parameter
regimes that qualitatively satisfy the behavioural per-
formance observed in Experiment 1 (lower accuracy
and longer RT in 4-item than 2-item trials). Model simu-
lations confirmed our prediction (Figure 8(B)): as the
number of items per option increases, if the amount of
attention allocated to each item is reduced below a criti-
cal value (via the increase in the decay constant), the
decision process becomes less accurate and lasts
longer. It has been proposed that the attention weight-
ing of value comparison is associated with visual fixation
(Krajbich & Rangel, 2011). In the context of the current
experiments, when the value difference between item
pairs remains the same, increasing the set size (i.e. 4-
item vs. 2-item per option) may constrain the frequency
and duration of fixation on each item, which leads to
reduced attentional weighting, and in turn, a more
error-prone decision process.

Note that the drift rate definition in Equation 1 natu-
rally predicts the effect of information congruency
observed in Experiment 2. For the congruent condition,
the mean drift rates are the same as in Equation 1. For
the incongruent condition, the presence of the incon-
gruent item pair leads to a change in the accumulated
preference information, and the mean drift rates are
given by:.

d1,4 = I0 + 2exp(−l4 · Pdiff ) · Pdiff ,
d2,4 = I0 – 2exp(−l4 · Pdiff ) · Pdiff .

{
(3)

Compared with Equation 1, for the incongruent con-
dition, the accumulator representing the correct option

had a lower mean drift rate (d1), and the difference
between the two accumulators was also reduced. This
change in the mean drift rate will lead to lower decision
accuracy and longer RT, as observed in Experiment 2 and
confirmed by model simulation (Figure 8(C)).

We conducted further model simulations, in which
we varied the value difference Pdiff. Increasing Pdiff led
to a higher decision accuracy and faster mean RT (Sup-
plementary Figure 3), in line with the observed behav-
ioural results from different difficulty conditions in
Experiments 1 and 2.

5. Discussion

In two independent experiments, we investigated how
the existence of multiple information sources impacts
preference-based decisions in terms of behavioural per-
formance and its underlying cognitive mechanism.
Experiment 1 investigated the impact of the number
of information sources on decision-making. When the
number of items in each choice option increased,
human participants made slower and less accurate
choices. Experiment 2 extended the main results of the
first experiment. When the number of items remains
the same, incongruent information among each option
leads to less accurate and slower decisions. In both
experiments, decisions were slower and less accurate
in more difficult conditions, in which preference
ratings between options were closer.

Our experimental design and procedure are similar to
those used by (Philiastides & Ratcliff, 2013), who sought
to identify how branding bias affects behavioural and
decision processes. When making preference-based
decisions between options associated with single
items, they reported that behavioural performance
varied according to the difference in the preference
ratings of items. Instead, both experiments in the
current study replicated the main finding of (Philiastides
& Ratcliff, 2013), with the extension to options associ-
ated with two and four items. Taken together, these
results suggest that the value difference influences
both the speed and accuracy of preference-based
decisions, which calls for the need for computational
modelling to combine these behavioural measures.

One noteworthy addition is that our research was
carried out in an online setting, suggesting the validity
and reproducibility of online experiments to investigate
the integration of subjective value during decision-
making. When compared with trials with negatively
rated items, the presence of positively rated items with
the same value difference facilitates RT, but not decision
accuracy. These results are akin to the effect of reward
magnitude, which also demonstrates a facilitating
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effect on RT in probabilistic reward tasks (Chen & Kwak,
2017; Schurman & Belcher, 2013) and preference-based
decisions (Shevlin et al., 2022).

As highlighted above, in Experiment 1, the number of
items per option affected behavioural performance, and
the negative impact of multiple information sources on
accuracy is more prominent in difficult trials. Since
choices with four-item options consist of more pieces
of information than those with two-item options, the
prolonged RT associated with four-item options may
reflect the additional time required to evaluate more
information sources. However, more items per option
also led to less accurate decisions. This may appear to
be counterintuitive, as all items within an option had
the same level of subjective value (i.e. preference
rating). Previous research on consumer behaviour
lends conceptual support to our results (Jacoby et al.,
1974a, 1974b): when consumers are provided with
more information, such as more choice alternatives
and attributes per choice, the increase in information
load undermines their decision quality (Lurie, 2004).

Experiment 1 manipulated task difficulty by having
different levels of preference difference between
options. In Experiment 2, we examined the effect of
task difficulty further with the additional manipulation
of information congruency. In the incongruent con-
dition, one pair of items had their value difference oppo-
site to the rest of the item pairs, but the magnitude of
their value difference was the same as the remaining
pairs. As expected, in addition to the sensitivity of the
average value difference between options, participants
showed lower accuracy and longer RT in the incongru-
ent than the congruent trials.

Previous studies support the integration of multiple
information sources during food choices (Krajbich
et al., 2010; Krajbich & Rangel, 2011). Similarly, infor-
mation from different domains, such as price and prefer-
ence, can jointly guide decision-making (Krajbich et al.,
2012). Indeed, small attentional variations during the
decision process, measured by visual fixation, impact
the final choice, suggesting that people tend to consider
all items when making a choice. This hypothesis is also
closely linked to theoretical models of multi-attribute
choice: preference formation is driven by attention
switching between different attributes, as suggested
by the decision field theory (Roe et al., 2001), and the
value-based LCA model (Usher & McClelland, 2004).

Using a Bayesian hierarchical implementation of the
DDM, our findings confirm that sequential sampling
models provide a good fit for response accuracy and
RT data in preference-based decisions, expanding the
application of sequential sampling models (Bhatia,
2013; Krajbich & Rangel, 2011; Noguchi & Stewart,

2018; Trueblood et al., 2014; Tsetsos et al., 2010, 2012).
Bayesian inferences from the best-fitted model support
that the number of information sources and item con-
gruency affect the drift rate of the DDM.

First, increasing the amount of information reduces
the drift rate across all difficulty levels. In other words,
as the number of information sources increases, partici-
pants would, on average, accumulate evidence at a
slower pace to reach the decision threshold, and the
accumulation process is more susceptible to the
influence of momentary noise. The magnitude of
the drift rate has been associated with the allocation
of attention (Schmiedek et al., 2007). It is possible that
an additional cost of attention allocation is present
with more information sources (Palmer, 1995; Reynolds
& Chelazzi, 2004), which in turn leads to a lowered
drift rate. Our simulation of the MLBA model provides
additional support to this proposition: when the
number of items per option increases, if the decay con-
stant of attention weighting in the MLBA model is
increased over a critical value, the model consistently
predicts hindered behavioural performance over a
large range of parameter values.

Second, in Experiment 2, the incongruent condition
had a lower drift rate than the congruent condition at
all difficulty levels. In the incongruent condition, the
four items contained conflicting information. In addition
to decreasing the total value score, this conflict of infor-
mation may have a distracting effect on attention.
Thereby the rate of evidence accumulation was
adversely affected.

This would be in accordance with the findings of a
previous multi-attribute study, which investigated how
differential attention to positive and negative features
of a product affects purchasing decisions (Fisher,
2017). It was found that consumers give more weight
to negative features than positive features in their
choices, and attention is paid to negative features for a
longer period during the choice process. In our case,
the incongruent condition involved one non-preferred
item in each choice option; hence, there may be an
additional attentional cost associated with the incongru-
ent pair during the integration of values (Fisher, 2017).

Third, in both experiments, the drift rates vary with the
difference in the preference level between options (i.e.
task difficulty). The easiest task (with the highest differ-
ence in preference ratings) had the highest drift rate,
and the drift rate decreased as task difficulty increased.
These expected results are in line with the definition of
the drift rate, which represents the difference in the
average evidence in favour of two choice alternatives.

Fourth, non-decision time is considered as the delay
period during the decision process (Ratcliff & McKoon,
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2008). Cognitive modelling often considers non-decision
time to be fixed between experimental conditions
within a session. Brain imaging studies suggested that
the non-decision time estimated from accumulation
models represents the latencies of early sensory proces-
sing (Nunez et al., 2017) and motor preparation (Karahan
et al., 2019), both of which are external to the evidence
accumulation process but susceptible to value-based
information. Hence, we considered an extended model
space, including model variants that allow variable
non-decision time between conditions. In both exper-
iments, the models with variable non-decision time
produced a superior fit (as confirmed by the DIC and
LOO-CV scores). However, there was no strong evidence
to support that non-decision time changes between task
difficulty levels or different information sources. Hence,
our experimental manipulation did not influence visual
encoding and motor preparation latencies during pre-
ference-based decisions.

One issue requires further consideration. Our two
experiments used different response modalities and
response deadlines (mouse with a 3000 ms deadline in
Experiment 1, and keyboard with no response deadline
in Experiment 2). Mouse response latencies are known
to be longer and more variable than key presses (Gatti
et al., 2024; Plant et al., 2003). With the presence of a
response deadline, participants may alter their baseline
level speed-accuracy trade-off, and the RT measures
from mouse clicks may be further contaminated by
mouse movements. In Experiment 1, all participants
quickly adapted to the response deadline, because
they only missed the deadline in a small fraction of
trials (<1%). Nevertheless, further studies are needed
to confirm whether the effect of item numbers is
robust across a wide range of response deadlines, and
whether participants’ decision strategies are altered by
their adaptation to response deadlines.

In summary, when choosing between options com-
prised of multiple items, both the number of information
sources and the averaged value difference influence pre-
ference-based decisions. Such behavioural change
relates to the quality of evidence required for rational
and speeded actions, but not to the latency of sensori-
motor encoding.
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