
Ultramicroscopy 266 (2024) 114021

A
0

Contents lists available at ScienceDirect

Ultramicroscopy

journal homepage: www.elsevier.com/locate/ultramic

Autoencoder latent space sensitivity to material structure in
convergent-beam low energy electron diffraction
M. Ivanov, J. Pereiro ∗

School of Physics and Astronomy, Cardiff University, United Kingdom

A R T I C L E I N F O

Dataset link: https://doi.org/10.17035/cardiff.
26652991

Keywords:
Low energy electron microscopy
Low energy electron diffraction
Machine learning
Data analysis
Autoencoders
Electron microscopy

A B S T R A C T

The convergent-beam low energy electron diffraction technique has been proposed as a novel method to gather
local structural and electronic information from crystalline surfaces during low-energy electron microscopy.
However, the approach suffers from high complexity of the resulting diffraction patterns. We show that
Convolutional Autoencoders trained on CBLEED patterns achieve a highly structured latent space. The latent
space is then used to estimate structural parameters with sub-angstrom accuracy. The low complexity of the
neural networks enables real time application of the approach during experiments with low latency.
1. Introduction

Low-energy electron microscopy (LEEM) is an established technique
in the field of Material Science that uses electrons in the range of
0 eV 𝑡𝑜 100 eV. The shallow electrons penetration depth of a few atomic
layers lead to a high surface sensitivity. In crystalline samples, LEEM
is accompanied by its complementary technique for surface reconstruc-
tion characterisation — low-energy electron diffraction (LEED), which
obtains structural information at the crystalline surface by accessing
reciprocal space. Varying the energy in that range produces intensity-
voltage 𝐼(𝑉 ) curves, giving a comprehensive view of the electron band
structure at the surface of a crystalline sample. As the electron beam
normally illuminates a large portion of the surface simultaneously,
this information is convoluted over that surface. To extract structural
information for a spatially localised region of interest, the micro-LEED
technique is usually employed, where LEED is routinely used along with
a small and well-positioned aperture, which limits the illumination of
the surface to patches with diameters of down to 10 μm.

While the micro-LEED technique gathers information using planar-
wave electron beams of normal incidence, Held et al. observed that
having a beam approach the surface at different angles results in
significant intensity modulations in the LEED pattern and enables the
gathering of beam-rocking curves, allowing for the analysis of diffrac-
tion with respect to the angle of incidence and providing information
about the orientation of the crystallographic planes [1]. Spence et al.
built on the same concept, suggesting the convergent-beam low energy
electron diffraction (CBLEED) technique, where the converging beam
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geometry has multiple beams approaching the same spot at different
angles, replicating the rocking curve output, but from a significantly
smaller incidence area [2].

The idea of convergent electron beams has been explored in the
past [3]. In practice, convergent-beam electron diffraction (CBED) has
been extensively developed in the context of transmission electron
microscopy (TEM) [4–12]. Over the years, the TEM-based CBED has
been utilised in various applications to a significant impact, such as
characterising crystal defects [13], lattice polarity determination [14,
15], lattice misfit measurement [16], charge-density distribution map-
ping [17], measuring strain fields [18] and more. Although CBED
is a very versatile approach, it predominantly examines the bulk of
crystalline samples, and the relatively high beam irradiation on the
sample during TEM, and especially with CBED, is still a challenging
problem for imaging beam-sensitive materials [19].

Applying convergent beam in LEED in analogy with CBED through
the CBLEED technique mitigates these limitations due to the shallow
penetration depth and the sample-preserving nature of the low energy
electrons. These benefits allow the gathering of detailed structural
information from the surface from localised regions down to several nm
in diameter, much smaller than the minimal region diameters of 250 nm
in micro-LEED imaging [20]. Similarly to the adoption of convergent
beam in TEM, utilising convergent beam in LEEM can open up a new set
of applications for the microscope, such as allowing structural analysis
of nanostructures on the surface and enabling a scanning mode for the
LEEM system for gathering localised structural information.
vailable online 6 August 2024
304-3991/© 2024 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.ultramic.2024.114021
Received 14 May 2024; Received in revised form 25 July 2024; Accepted 1 August
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2024

https://www.elsevier.com/locate/ultramic
https://www.elsevier.com/locate/ultramic
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
https://doi.org/10.17035/cardiff.26652991
mailto:PereiroViterboJ@cardiff.ac.uk
https://doi.org/10.1016/j.ultramic.2024.114021
https://doi.org/10.1016/j.ultramic.2024.114021
http://creativecommons.org/licenses/by/4.0/


Ultramicroscopy 266 (2024) 114021M. Ivanov and J. Pereiro
Fig. 1. Convergent beam formation through modifying the LEEM illumination
column configuration. The last condenser lens (CL3) can be used to have the beam
converge at a point in the sample. A more complete representation of the LEEM lens
system can be seen in [22].

To make the application of CBLEED more functional and seamless,
we demonstrate a method for the analysis and interpretation of the
complex and abstract CBLEED patterns. With this, we aim to help
streamline the adoption of the powerful experimental technique. While
limited published research based on experimental CBLEED patterns
can be found in the literature, the patterns are experimentally achiev-
able [21]. The results presented here aim to increase confidence in the
potential of the CBLEED technique by reducing the analysis barrier as-
sociated to it. Efficient and accurate extraction of insight from CBLEED
patterns can allow more effort and investment in the development of
specialised instrumentation to enable the analysis of nanostructures.

We show that a machine learning (ML) approach is able to learn
and identify key surface structure properties based on the observed
CBLEED pattern. We propose a tool, which enables an automated
real-time read of CBLEED patterns through the joint use of a deep
learning autoencoder-based (AE) architecture and a simpler ML model.
This serves to efficiently inform the researcher during an experiment,
making it a more controlled and explainable process. Furthermore,
the relatively inexpensive and quick analysis gives a valuable pointer
towards the appropriate structures that were observed, mitigating the
need for guesswork and exploration of possible structures when ex-
perimental data is fitted with simulations. The approach increases the
quality of the extracted information from an experiment and miti-
gates the need for intensive and expensive computation in order to
understand the data after its acquisition.

2. Overview

The subject of CBLEED patterns has so far been primarily ap-
proached through scattering simulations. Spence et al. demonstrated
the equivalence of CBLEED to the information from a conventional I-V
curve [2]. The individual LEED spots convolute into disks on a CBLEED
pattern, as shown in Fig. 1. There, multiple scattering calculations
in metals were used to show the effectiveness and sensitivity of the
approach to the surface potential.

Ruben et al. provided a basis for simulating CBLEED patterns on
crystalline surfaces [23]. Through kinematic single electron scattering
simulations, they showed the sensitivity of the CBLEED pattern to
different surface reconstructions and atomic displacements in Si(001)
and established the structural sensitivity of CBLEED patterns. Constanti-
nou et al. performed more sophisticated multiple scattering simula-
tions, which yield much more accurate variations in CBLEED pattern
intensities in response to small atomic displacements [21].
2

The outlined current progress in the research on CBLEED patterns
provides computational methods of reaching a CBLEED pattern from
a determined structure and electron energy, which ripens the field
for new data-driven approaches. The currently available method for
experimental data interpretation is the traditional brute force approach
of producing a range of patterns and matching with experimental
ones. Unfortunately, the cost of the brute-force approach scales sharply
with the complexity of the examined material, where the variational
space quickly becomes large. Furthermore, the convoluted and abstract
nature of the patterns does not allow manual interpretation, by eye, of
a pattern by a researcher. This makes the practical application of the
CBLEED technique quite difficult and expensive. On the other hand, the
availability of simulated CBLEED data enables a data-centric statistical
approach of analysing CBLEED patterns using Machine Learning.

Machine Learning and Deep Learning algorithms have recently been
showing a lot of promise and prowess in their applications on mi-
croscopy data across a variety of microscopy imaging techniques [24].
In particular, ML algorithms have been successful in their applica-
tion in interpreting a variety of diffraction imaging data, such X-ray
diffraction [25–29], reflection high-energy electron diffraction [30,
31], electron backscatter diffraction [32], scanning precession electron
diffraction [33] and more. In particular, we approach the problem
of CBLEED pattern analysis using a convolutional neural network-
based (CNN) AE architecture. The AE architecture was recently used
in the analysis of X-ray diffraction patterns [34,35]. Additionally, the
speed and ability of CNN-based networks for extraction of physical
parameters, have recently been demonstrated in the close context of
CBED by Xu et al. and Zhang et al. [36,37].

3. Methods

3.1. Dataset

The CBLEED dataset we use is generated by Constantinou textitet al.
through multiple scattering simulations of patterns on Si(001) [21].
The simulations adapted the CAVATN package, which is based on the
CAVLEED program [38]. The simulations for the images used here were
performed on the symmetric-dimer and buckled-dimer (2×1) structures.
The electron incidence energy was varied between 30 eV 𝑡𝑜 100 eV and
a range of dimer displacements were introduced to generate a total
of about 5000 images in the dataset, examples of which are shown in
Fig. 2.

3.2. Model training

For this work, we utilise an autoencoder-based architecture to cap-
ture the semantics of the data. AE networks are a type of neural
network techniques that learns how to compress and reconstruct high-
dimensional data in an unsupervised manner. In an autoencoder, the
input data is first encoded into a low-dimensional representation, also
known as the latent space, by a series of non-linear transformations
through a set of encoder layers. This latent representation is then
decoded back to the original high-dimensional space by a series of
decoder layers, producing a reconstruction of the input data. The
key feature of an autoencoder is the size of its latent space that is
normally significantly smaller that the size of the input data, thus
containing much less information. By reconstructing the data from such
a concise latent space representation, the training process optimises
the utilisation of the limited latent space information capacity. During
the training process, the network learns to distil the most significant
features of the data, organising them into a structured and compact
format within the latent space. Since the input data is in the form
of images, the encoder and decoder networks in our architecture are
constructed from convolutional layers, followed by a group of fully
connected layers and the two networks mirror each other. The full deep
convolutional autoencoder (DCAE) architecture is shown in Fig. 3.
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Fig. 2. Examples from the CBLEED dataset. The dataset was generated by introducing sub-angstrom dimer displacements along the dimer-height and dimer-length, relative to
a symmetric-dimer Si(001) - (2 × 1) structure.
Source: Adapted from Constantinou et al. [21].
Fig. 3. Deep Convolutional Autoencoder architecture. All convolutional layers apply ‘‘Same’’ padding, a kernel stride of 1. The encoder convolutions are followed by a
MaxPooling layer and the decoder convolutions are followed by an UpSampling layer.
The encoder and decoder networks are trained simultaneously using
backpropagation to minimise the difference between the input and
output. This reconstruction goal is measured using binary crossentropy
(BCE) loss. BCE is used over simpler loss functions, such as the mean
absolute error (MAE) and mean squared error (MSE), as it generally has
the subtle advantages of better preventing loss saturation and also of
being a convex function. Examples of the reconstructive ability progress
of the DCAE network during its training are shown in Fig. 4.

A consequence of the data flow and a key feature during autoen-
coder learning is that the data must be squeezed through the bottleneck
of the small latent space without losing its essential features. As a result,
the latent space needs to act as a compressed representation of the
input data that preserves the important information while discarding
the redundant or irrelevant information.

4. Analysis

The compressed representation property of the latent space in the
autoencoder can be used to extract valuable information from the
CBLEED pattern images by providing a compressed, lower-dimensional
representation that captures the essential features of the patterns. By
exploring the latent space structure, we can identify patterns, trends
and clusters of similar data points which are not apparent in the
original images. This can give insights onto the parameters of the
structure, which produced the corresponding CBLEED pattern. With
that in mind, the size of the latent space becomes the most important
hyperparameter in our AE architecture for the task.
3

4.1. Latent space size

To get the most out of the latent space, its size must be carefully
chosen. While too small of a latent space will contain too little infor-
mation and may start losing valuable information, too large of a latent
space will hold too much information, lose its generalisation of the data
and start overfitting. To find the latent space size with best trade-off,
networks with a variety of latent space sizes are trained. Their loss
values correspond directly to the quality of the reconstructions they
achieve and are therefore an indirect measurement of how successful
the latent spaces are in preserving information from the original data.
The losses during training of these networks is shown in Fig. 5. As can
be seen in the network training converges after a latent space of size
8. This suggests that 8 dimensions in the latent space are just enough
to encompass all the needed information from the data, and are most
likely to result in the best generalisation of the data. Larger latent
spaces do not bring reconstruction improvements and merely contain
the same information within a larger latent space, going away from the
best generalisation of the data.

4.2. Latent space structure

The CBLEED patterns in the data have been generated by traversing
two physical parameters — the beam energy and the dimer displace-
ment, with a step of 1 eV and 0.1Å respectively. Note that the beam
energy is usually a known variable during an experiment, but is kept
as a parameter to showcase the ability of the proposed algorithm to
generalise multiple physical parameters simultaneously without prior
knowledge of them. Hence, the two parameters used for the generations
can be considered metadata, which is not accessible to the AE algorithm
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Fig. 4. Autoencoder reconstructions at different training epochs. The reconstructions of the data examples get progressively more accurate and sharper with each iteration
over the dataset during training.
Fig. 5. Training loss of autoencoders with different latent space sizes. The AE
architecture between the separate training sessions stays the same, but the dimension-
ality of the latent space is varied between 2- and 24-dimensional. While the 2- and
4-dimensional AE variations even out at a higher loss, the variations with 8 dimensions
and above converge around the same reconstruction loss.

at any time. In order to explore the effectiveness of the latent space
generalisation of the CBLEED data, we visualise the projections of each
CBLEED pattern in the latent space, labelled with its beam energy and
dimer displacement parameters. The structure of the optimal 8 node
latent space after training is shown in Fig. 6, where we see how the
data is ordered internally when compressed into the latent space. The
parameter-based colouring is indicative that the structure of the latent
space encoding follows the underlying parameters of the data very well.
This suggests the autoencoder latent space learns a good generalisation
of the data that can be traced back to the initial data generation process
and parameters, without any prior knowledge of them.
4

Table 1
Comparison of the predictive success of different ML algorithms. Trained
and tested on the latent space projections of the training and testing subsets
of the dataset, respectively.
Algorithm Beam energy Dimer Displ.

MAE 𝑅2 MAE 𝑅2

KNN 0.43 0.999 0.025 0.992
RBF SVM 0.83 0.995 0.050 0.978
NuSVM 0.92 0.994 0.010 0.997
DecisionTree 0.85 0.995 0.024 0.980
ExtraTree 0.87 0.997 0.028 0.973
XGBoost 0.75 0.998 0.028 0.986

4.3. Latent space parameter extraction

We use the trained and structured latent space to extract the pa-
rameters of the surface via a follow-up training of a regression model.
Several regression approaches, such as nearest neighbours, support
vector machines, decision trees and ensembles, were trained using
scikit-learn [40] and benchmarked, and the most successful algorithms
are presented in Table 1. Their accuracy was measured by the average
MAE on the latent representations of a test set of simulated CBLEED
patterns, and the robustness of the methods is measured through the
Coefficient of Determination (𝑅2) metric, which represents how well
unseen examples are likely to be predicted by the model by relating
variances in the predictions to variations in the initial inputs. In par-
ticular, it is an indication of how predictive the latent representation
placements of the CBLEED patterns are for the regression model, and
as a consequence — how well new points in the latent space can be
quantified.

The methods show a sensitivity of less than 1 eV in predicting the
beam energy and less than 0.1Å with high robustness. The K-nearest
Neighbours (KNN) algorithm showed the best robustness and a mean
error of 0.43 eV in predicting the Beam Energy in the test examples. The
Nu Support Vector Machine (NuSVM) Regression had the best dimer
displacement prediction accuracy with a mean error of just 0.01Å,
going well into the sub-angstrom levels of sensitivity.



Ultramicroscopy 266 (2024) 114021M. Ivanov and J. Pereiro
Fig. 6. Latent space structure of the 8-dimensional autoencoder architecture after
training. Hessian Locally Linear Embedding [39] is used for dimensionality reduction
to three dimensions while preserving the latent space structure. The illustrated data
points are from a testing dataset.

4.4. Performance

Training the AE network takes around 1.5 h on an RTX-3080 GPU
and i9-11900H CPU machine. Inference from the full pipeline includes
a pass of the encoder network to project the image into latent space,
and a pass on the regression network to quantify the point. It takes
0.1 sec, giving a processing performance of 10 fps. This performance
suggests a quick enough execution time for continuous local inference
on a standard lab computer for a real-time structure estimation feed,
and alternatively enables instant inference on-demand during an ex-
periment. The performance points towards the suitability of such an
algorithm to be trained in advance for an experiment, and be used both
in real-time during the experimental run, and after it, to point towards
the appropriate structures and enable their confirmation with a single
simulations run, rather than a full lengthy exploration of all possibilities
in the simulation parameters.

5. Conclusion

A DCAE network was developed and trained on simulated CBLEED
patterns, generated with sub-angstrom dimer displacements. The net-
work was shown to be able to generalise the data well with only an
8-dimensional latent space. The well-defined and explainable structure
of the latent space is able to learn and identify key physical surface
properties and parameters based on the observed CBLEED pattern. The
latent space projection of a CBLEED pattern is used to estimate both the
5

beam energy and dimer displacements with high accuracy through sec-
ondary regression algorithms, showcasing the ability of the approach
to capture multiple parameters at once. With that, the approach is able
to provide means of quick and efficient interpretation of a CBLEED
pattern, providing a basis for experimental tools for real-time surface
structure determination through the CBLEED technique.

The demonstrated approach carries some computational intensity,
but even in the relatively narrow use case we used, it mitigates the
need for extensive analysis through more straightforward, but laborious
approaches that often still rely on simulated data, along with manual
inspection methods such as overlaying experimental images, looking
for symmetries and other methods that could be applied, in analogue
to CBED in STEM. Furthermore, LEEM has been traditionally targeted at
a reduced number of material systems due to the limitations on sample
properties that allow the use of LEEM imaging. Experiments in stand-
alone LEEM systems are usually aimed at understanding the growth
and structural behaviour of one particular material system at a time,
and they tend to involve a significant amount of time and resource.
Integrating the CBLEED analysis framework proposed here, including
the training of the autoencoders for the particular material system
under study in this scenario, or scenarios with similar challenges, is
feasible and can prove beneficial, enabling real-time analysis during
experiments. We believe that the general approach we demonstrate is
applicable to a broad range of use cases in microscopy. On a higher
level, our results show that relatively simple neural networks are able to
interpret this patterns, which is an incentive to make more generalised
models on broader data.
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