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Abstract

Fix an integer p ≥ 1 and refer to it as the number of growing domains. For each i ∈
{1, . . . , p}, fix a compact subset Di ⊆ Rdi where d1, . . . , dp ≥ 1. Let d = d1+ · · ·+dp be
the total underlying dimension. Consider a continuous, stationary, centered Gaussian
field B = (Bx)x∈Rd with unit variance. Finally, let ϕ : R→ R be a measurable function
such that E[ϕ(N)2] <∞ for N ∼ N(0, 1).

In this paper, we investigate central and non-central limit theorems as t1, . . . , tp →
∞ for functionals of the form

Y (t1, . . . , tp) :=

∫
t1D1×···×tpDp

ϕ(Bx)dx.

Firstly, we assume that the covariance function C of B is separable (that is,
C = C1 ⊗ . . . ⊗ Cp with Ci : Rdi → R), and thoroughly investigate under what
condition Y (t1, . . . , tp) satisfies a central or non-central limit theorem when the same
holds for

∫
tiDi

ϕ(B
(i)
xi )dxi for at least one (resp. for all) i ∈ {1, . . . , p}, where B(i)

stands for a stationary, centered, Gaussian field on Rdi admitting Ci for covariance
function. When ϕ is an Hermite polynomial, we also provide a quantitative version of
the previous result, which improves some bounds from [31].

Secondly, we extend our study beyond the separable case, examining what can be
inferred when the covariance function is either in the Gneiting class or is additively
separable.

Keywords: central limit theorem; stationary Gaussian fields; long-range dependance; Malliavin-
Stein method; Hermite rank; p-domain functional.
MSC2020 subject classifications: 60G60; 60G15; 60J55; 60F05.
Submitted to EJP on February 26, 2024, final version accepted on August 28, 2024.

*Nikolai Leonenko was partially supported under the ARC Discovery Grant DP220101680 (Australia),
LMS grant 42997 (UK) and grant FAPESP 22/09201-8 (Brazil). Leonardo Maini was supported by the
Luxembourg National Research Fund PRIDE17/1224660/GPS. Ivan Nourdin and Francesca Pistolato were
partially supported by the Luxembourg National Research Fund (Grant: O22/17372844/FraMStA).

†University of Cardiff. E-mail: leonenkoN@cardiff.ac.uk
‡University of Luxembourg.
§E-mail: leonardo.maini@uni.lu
¶E-mail: ivan.nourdin@uni.lu
||E-mail: francesca.pistolato@uni.lu

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/24-EJP1197
https://ams.org/mathscinet/msc/msc2020.html
mailto:leonenkoN@cardiff.ac.uk
mailto:leonardo.maini@uni.lu
mailto:ivan.nourdin@uni.lu
mailto:francesca.pistolato@uni.lu


Limit theorems for p-domain functionals of stationary Gaussian fields

1 Introduction

Gaussian fields are widely used to model random quantities arising in different
applications, see e.g. [16, 8, 11, 7]. These random quantities may depend for instance
on space x1 ∈ Rd1 and time x2 ∈ R+ (e.g. [11]) or more generally on several variables
x1, x2, x3, . . . belonging to (possibly non-Euclidean) spaces of different dimensions (e.g.
[3, 20, 21]).

Throughout this paper, we consider a continuous, stationary, real-valued, centered
Gaussian field B = (Bx)x∈Rd with unit variance, where d ≥ 2. We denote by C : Rd → R

the covariance function of B, defined as

Cov(Bx, By) = C(x− y), x, y ∈ Rd.

We also consider a non constant measurable function ϕ : R→ R satisfying E[ϕ2(N)] <

∞ for N ∼ N(0, 1). As is well-known, ϕ admits an Hermite decomposition (see, e.g. [23,
Section 1.4]) of the form

ϕ = E[ϕ(N)] +

∞∑
q=R

aqHq, with R ≥ 1 such that aR 6= 0, (1.1)

where Hq is the qth Hermite polynomial and aq = aq(ϕ) = 1
q!E [ϕ(N)Hq(N)]. The integer

R ≥ 1 is called the Hermite rank of ϕ.
Finally, we consider a family of compact subsets Di ⊆ Rdi , 1 ≤ i ≤ p, satisfying

Vol(Di) > 0 for each i. The number d = d1 + · · ·+ dp is called the total dimension.
The main object of interest of our paper is the additive functional

Y (t1, . . . , tp) :=

∫
t1D1×···×tpDp

ϕ(Bx)dx for t1, . . . , tp > 0. (1.2)

We remark that the integral in (1.2) is well defined thanks to the continuity assumption
made on B as well as the square integrability of ϕ with respect to the standard Gaussian
measure (see e.g. [18, Proposition 3]).

Under sufficient conditions ensuring that Var(Y (t1, . . . , tp)) > 0 for every t1, . . . , tp > 0

large enough, we study the limit in distribution as t1, . . . , tp → ∞ of the normalized
version of the functional Y (t1, . . . , tp) defined as

Ỹ (t1, . . . , tp) :=
Y (t1, . . . , tp)− E[Y (t1, . . . , tp)]√

Var(Y (t1, . . . , tp))
. (1.3)

While the case p = 1 has been extensively studied since the eighties (see e.g. the
seminal works [6], [9], [32], [35]), not much literature can be found when the integration
domain of (1.2) does not grow uniformly with respect to all its directions (that is, when
p ≥ 2 and when t1, . . . , tp go to infinity at possibly different rates). In fact, the extended
class of functionals (1.2) has aroused interest only in the past decade (see e.g. [31], [29],
[4], [16], [2], [30]), because of the more and more important role that spatio-temporal
functionals of random fields or random fields with separable covariance function (e.g.
the fractional Brownian sheet) play now in applications.

In our work, the number p of growing domains and their dimensions di can be
arbitrary. This is why we refer to (1.2) as a p-domain (rather than a spatio-temporal )
functional. To give at least one explicit motivation for studying the asymptotic behavior
of this type of functionals, let us consider the case where ϕ = 1[a,∞). It corresponds to
the excursion volume of B at level a ∈ R in the observation window t1D1 × · · · × tpDp,
namely

Y (t1, . . . , tp) = Vol
(
{(x1, . . . , xp) ∈ t1D1 × . . .× tpDp : B(x1,...,xp) ≥ a}

)
,
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Limit theorems for p-domain functionals of stationary Gaussian fields

which is a (random) geometrical object that has been extensively studied in the literature,
see e.g [1, 16]. Our approach offers more flexibility than the usual one (corresponding
to p = 1), as it gives the possibility to study the excursion sets of B when the parameters
are in domains t1D1, . . . , tpDp that can grow at different rates.

In a broader setting, the aim of the present work is to enhance our understanding of
the asymptotic behaviour of p-domain functionals associated with stationary Gaussian
fields, when the covariance function has a specific form. In particular, we will show how,
in some cases, this asymptotic behaviour can be simply obtained from that of 1-domain
functionals, explaining in a new light and in a more systematic way some results from
the recent literature (e.g. those contained in [31]).

1.1 Separable case

In this section, we investigate the asymptotic behavior of (1.3) when we assume that
the covariance function of B is separable.

A covariance function C : Rd → R is said separable when it can be written as
C = C1 ⊗ . . .⊗ Cp, that is, when

C(x1, . . . , xp) =

p∏
i=1

Ci(xi), xi ∈ Rdi , 1 ≤ i ≤ p, (1.4)

for some functions Ci : Rdi → R satisfying Ci(0) = 1 for each i. It is easy to check
that C is non-negative definite if and only if Ci is non-negative definite for every i.
Also, by stationarity of B on Rd, we have that Ci is the covariance function of the
field B(i) := (B(x1,...,xi,...,xp))xi∈Rdi for any fixed values of xj , j 6= i. Since we are only
interested in distributions, we can define the marginal functionals

Yi(ti) :=

∫
tiDi

ϕ(B(i)
xi )dxi, i = 1, . . . p, (1.5)

and their normalized versions

Ỹi(ti) :=
Yi(ti)− E[Yi(ti)]√

Var(Yi(ti))
, i = 1, . . . p, (1.6)

with the convention that, for any given i, the values of xj , j 6= i, in (1.5) are arbitrary but
fixed.

Let us denote by
d→ the convergence in distribution. The main result of this section is

the following.

Theorem 1.1. Let ϕ : R → R be a measurable function satisfying E[ϕ2(N)] < ∞ for
N ∼ N(0, 1), with Hermite rank R ≥ 1. Let B = (Bx)x∈Rd be a real-valued, continuous,
centered, stationary Gaussian field with unit-variance. Let C : Rd → R be the covariance
function of B, assume it is separable in the sense of (1.4), and also that it satisfies, for
each i:

CR ≥ 0 and Ci ∈
∞⋃
M=1

LM (Rdi).

Let us consider Ỹ given by (1.3) and Ỹi given in (1.6). Then, the following two assertions
are equivalent:

(a) Ỹi(ti)
d→ N(0, 1) as ti →∞ for at least one i ∈ {1, . . . , p};

(b) Ỹ (t1, . . . , tp)
d→ N(0, 1) as t1, . . . , tp →∞.
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Limit theorems for p-domain functionals of stationary Gaussian fields

Remark 1.2. The integrability assumptions on Ci for Theorem 1.1 to hold may be
removed when ϕ = Hq; moreover, in this case we also have quantitative results for
the convergence in distribution (see Subsection 3.1).

Remark 1.3. Given a discrete stationary centered Gaussian field B = (Bk)k∈Zd with
unit variance, the definition of separable covariance function C : Zd → R is similar,
i.e. C(z) =

∏p
i=1 Ci(zi) with Ci : Zdi → R for i = 1, . . . , p, whereas the functionals (1.2)

and (1.5) are defined as follows:

Y (n1, . . . , np) =
∑

k∈(
∏p
i=1[0,ni]di )∩Zd

ϕ(Bk), Yi(ni) =
∑

ki∈[0,ni]di∩Zdi

ϕ(Bk1,...,kp),

where ni ∈ N for every i = 1, . . . , p. In this setting, analogous results to Theorem 1.1
could be obtained, see e.g. Remark 3.4 where we highlight that Proposition 3.3 directly
translates with straightforward modifications for a discrete Gaussian field.

Remark 1.4. The previous result provides a large class of fields B with long-range
dependence, i.e. with covariance function C /∈ LR, such that the functional Yt :=

Y (t, . . . , t) exhibits Gaussian fluctuations around its mean. See e.g. Example 4.6. We
refer to [18] and the references therein for a deeper analysis and further examples of
this phenomenon.

Since central limit theorems for 1-domain functionals have been extensively explored
in the literature, it is not difficult to imagine how useful and powerful the implication
(a) ⇒ (b) in Theorem 1.1 can be. It is noteworthy that a specific instance of this
implication had previously been observed in the papers [31] and [29]; however, it was
restricted to a very specific context – rectangular increments of a fractional Brownian
sheet – and was not part of a comprehensive systematic investigation, as we undertake
in this work.

Since Theorem 1.1 establishes that (1.2) displays Gaussian fluctuations (if and only)
if at least one of its marginal functionals does, a natural question arises: what happens
when none of the Yi(ti)’s exhibits Gaussian fluctuations? We investigate this problem in
the classical framework of regularly varying covariance functions.

Given two functions f and g, we write f(x) ∼ g(x) to indicate that

lim
‖x‖→0

f(x)g(x)−1 = 1.

Recalling that R denotes the Hermite rank of ϕ (see (1.1)), we consider the following
conditions:

• Ci is regularly varying with parameter −βi ∈ (−di/R, 0), that is

Ci(zi) = ρi(‖zi‖) = Li(‖zi‖)‖zi‖−βi βi ∈ (0, di/R), (1.7)

where Li : (0,∞)→ R is slowly varying, i.e. Li(rs)/Li(s)→ 1 as s→∞, ∀r > 0.

• Ci admits an absolutely continuous spectral measure Gi(dλi) = gi(λi)dλi on Rdi ,
and for some constant ci > 0 we have

gi(λi) ∼ ciLi(1/‖λi‖)‖λi‖βi−di as ‖λi‖ → 0. (1.8)

If (1.7)-(1.8) hold and R ≥ 2, then it is known that Ỹi(ti) converges in distribution to a
non-Gaussian random variable (see Theorem 2.4). In the following Theorem 1.6, we give
conditions so that Y has non-Gaussian fluctuations either. We introduce the new limiting
object as follows. For any i = 1, . . . , p we define the σ-finite measure νi on Rdi as

νi(dxi) := ‖xi‖βi−didxi,
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Limit theorems for p-domain functionals of stationary Gaussian fields

assuming 0 < βi < di/R. We define ν as the product measure ν1× . . .× νp, which is again
a σ-finite measures on Rd. The so-called multiple Rth Wiener-Itô integral with respect to
ν, denoted by Iν,R can then be constructed as in [19], see also Section 2. Now, we set

H
β1,...,βp
R,D1×...×Dp :=

Iν,R
(
fR,D1×...×Dp

)√
Var

(
Iν,R

(
fR,D1×...×Dp

)) ,
where fR,D1×...×Dp : (Rd)R → C is given by

fR,D1×...×Dp(λ1, . . . , λR) : =

∫
D1×...×Dp

ei〈x,λ1+···+λR〉dx. (1.9)

Remark 1.5. For p = 1, we recover a Hermite random variable. For this reason, the
previous object may be seen as a p-domain Hermite random variable.

Theorem 1.6. Let ϕ : R → R be a measurable function satisfying E[ϕ2(N)] < ∞ for
N ∼ N(0, 1), with Hermite rank R ≥ 1 (in particular, we have aR 6= 0, see (1.1)). Let
B = (Bx)x∈Rd be a real-valued, continuous, centered, stationary Gaussian field with
unit-variance. Let C : Rd → R be the covariance function of B, assume it is separable in
the sense of (1.4), and satisfies

CR ≥ 0 and (1.7)-(1.8) hold ∀i ∈ {1, . . . , p}.

Let us consider Ỹ given by (1.3). Then, as t1, . . . , tp →∞, we have

Ỹ (t1, . . . , tp)
d−→ sgn(aR)H

β1,...,βp
R,D1×...×Dp , (1.10)

In particular, the limit (1.10) is not Gaussian as soon as R ≥ 2.

Theorem 1.6 represents a generalization from 1-domain to p-domain of the celebrated
Dobrushin-Major-Taqqu (see Theorem 2.4). We remark that depending on the choice of
the domains, the function f can be computed explicitly (see e.g. Remark 2.5). In the
particular case of the rectangular increments of a fractional Brownian sheet, we note
that Theorem 1.6 for p = 2 is already proved in [31] and [29].

Remark 1.7. Analogous results (both central and non-central) hold if we fix some of
the domains, i.e. considering t1D1 × · · · × tp−1Dp−1 ×Dp and Y (t1, . . . , tp−1, 1). In this
setting, it is possible to prove the following.

• Under the same assumptions of Theorem 1.1, the following two assertions are
equivalent:

(a) Ỹi(ti)
d→ N(0, 1) as ti →∞ for at least one i ∈ {1, . . . , p− 1};

(b) Ỹ (t1, . . . , tp−1, 1)
d→ N(0, 1) as t1, . . . , tp−1 →∞.

• Analogously to Theorem 1.6, if (1.7)-(1.8) hold for i = 1, . . . , p − 1 and CR ≥ 0, if
Gp is the spectral measure of Cp, then the convergence of Theorem 1.6 still holds
replacing νp with Gp, namely

Ỹ (t1, . . . , tp−1, 1)
d→

sgn(aR)Iν1×...×νp−1×Gp,R
(
fR,D1×...×Dp

)√
Var

(
Iν1×...×νp−1×Gp,R

(
fR,D1×...×Dp

)) , as t1, . . . , tp−1 →∞.

The proofs of these facts follow from similar arguments to the ones of Theorem 1.1 and
Theorem 1.6 (see Section 3).
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Limit theorems for p-domain functionals of stationary Gaussian fields

1.2 Non separable case

It is easy to construct examples illustrating that the normal convergence of functionals
Ỹi(ti) is in general not enough to determine the behavior of Ỹ (t1, . . . , tp) when the
separability of the covariance function (1.4) is dropped. See Example 5.1 for such a
situation.

This is why we examine in Section 5 what can happen when we go beyond the
separable case, by investigating two different classes: Gneiting covariance functions
(Section 5.1) and additively separable covariance functions (Section 5.2).

Although not separable, the covariance functions belonging to the Gneiting class
are wedged between two separable functions. It is therefore not surprising that a
comparable phenomenon can still be proven in this context, see Theorem 5.1.

In contrast, the situation in the additively separable case is much more complicated.
We still manage to prove a kind of “reduction” theorem, see Theorem 5.2, with however
a big difference: the marginal functionals to be considered in the additively separable
case are really different from the Yi’s of Theorem 1.1.

We refer to Section 5 for details.

1.3 Plan of the paper

The paper is organized as follows. Section 2 contain some needed preliminaries. In
Section 3 we prove Theorem 1.1 and Theorem 1.6. In Section 4 we provide several
examples where our results apply, and we compare them with the existing literature.
In Section 5 we go beyond the separability assumption by investigating two other
frameworks. Finally, in the Appendix we prove some auxiliary results.

2 Preliminaries

In this section we briefly present selected results on Malliavin-Stein method and
classical results for 1-domain functionals.

2.1 Elements of Malliavin-Stein method

Theorem 1.1 is proved using the Fourth Moment Theorem by Nualart and Peccati
(see [26]) and its quantitative version by Nourdin and Peccati (see [23, Theorem 5.2.6]).
For all the missing details on Malliavin calculus we refer to [25] or [23].

Let us fix a probability space (Ω,F ,P). Consider a continuous, stationary, centered
Gaussian field B = (Bx)x∈Rd with unit variance and covariance function C : Rd → R. We
assume that F is the σ-field generated by B. By continuity and stationarity of B, the
covariance function C is continuous. As a result, Bochner’s theorem yields the existence
of a unique real, symmetric1, finite measure G on Rd endowed with the Borel σ-algebra
B(Rd), called the spectral measure of B, satisfying

C(x) =

∫
Rd
ei〈x,λ〉G(dλ), x ∈ Rd. (2.1)

We define the real separable Hilbert space

H := L2(G) =

{
h : Rd → C :

∫
Rd
|h(λ)|2G(dλ) <∞, h(λ) = h(−λ)

}
, (2.2)

where | · | denotes the complex norm, endowed with the inner product2

〈h, g〉H =

∫
Rd
h(λ)g(λ)G(dλ) =

∫
Rd
h(λ)g(−λ)G(dλ).

1In the sense that G(A) = G(−A) for every A ∈ B(Rd).
2Note that 〈h, g〉H is real for every h, g ∈ H, because G is symmetric and h, g are even.
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Thanks to [23, Proposition 2.1.1] we may consider an isonormal Gaussian process X on
H, with covariance kernel

E [XG(h)XG(g)] = 〈h, g〉H.

We are going to construct an explicit isomorphism. By (2.1), the field (XG (ex))x∈Rd ,
where ex := ei〈x,·〉, is stationary and Gaussian, with covariance function C and spectral
measure G. Hence, the two fields share the same distribution, that is

(XG (ex))x∈Rd
d
= (Bx)x∈Rd . (2.3)

Since we study limit theorems in distribution, we assume from now on that Bx = XG (ex)

for any x ∈ Rd. For q ≥ 1, we also define the qth Wiener chaos as the linear subspace of
L2(Ω) generated by {Hq(XG(h)) : h ∈ H}, and for every h ∈ H such that ‖h‖H = 1, we
define the qth Wiener-Itô integral as

Iq(h
⊗q) = Hq(XG(h)), (2.4)

where h⊗q : (Rd)q → R is such that

h⊗q(x1, . . . , xq) =

q∏
l=1

h(xl). (2.5)

By density, the definition of Iq can be linearly extended to every function in the space
H�q = L2

s((R
d)q, G⊗q) of the symmetric functions in H⊗q = L2((Rd)q, G⊗q). This fact

implies the following equality, which will be crucial in the next sections. Recalling (2.3)
and (2.4), we may write∫

D

Hq (Bx) dx
d
=

∫
D

Hq (XG(ex)) dx =

∫
D

Iq
(
e⊗qx
)
dx = Iq(f),

where f : (Rd)q → R is defined as

f(λ1, . . . , λq) :=

∫
D

e⊗qx (λ1, . . . , λq)dx =

∫
D

ei〈x,λ1+···+λq〉dx.

In the following, we write IG,q when we need to explicitly refer to the qth Wiener-Itô
integral acting on H�q with respect to the measure G.

For q ∈ N, r = 1, . . . , q − 1 and h, g symmetric functions with unit norm in H, we can
define the rth contraction of h⊗q and g⊗q as the (generally non-symmetric) element of
H⊗2q−2r given by

h⊗q ⊗r g⊗q = 〈h, g〉rH h⊗q−r ⊗ g⊗q−r.

We then extend the definition of contraction to every pair of elements in H�q. We will
denote the norm in this space by ‖ · ‖q.

We are finally ready to state the celebrated Fourth Moment Theorem.

Theorem 2.1 (Fourth Moment Theorem, [26]). Fix q ≥ 2, consider (ht)t>0 ⊂ H�q and
assume that E[Iq(ht)

2]→ 1 as t→∞. Then, the following three assertions are equivalent:

• Iq(ht) converges in distribution to a standard Gaussian random variable N ∼
N(0, 1);

• E[Iq(ht)
4]→ 3 = E[N4], where N ∼ N(0, 1);

• ‖ht ⊗r ht‖2q−2r → 0 as t→∞, for all r = 1, . . . , q − 1.
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Limit theorems for p-domain functionals of stationary Gaussian fields

We will also need a quantitative version of the Fourth Moment Theorem, which can
be stated as follows (see [23, Theorem 5.2.6 and (5.2.6)]). Let us denote by dTV (resp
dW ) the total variation (resp. Wasserstein) distance (see [23, Appendix C] for a rigorous
definition).

Theorem 2.2. Fix q ≥ 2 and consider h ∈ H�q. Then

E[Iq(h)4]− 3E[Iq(h)2]2 =
3

q

q−1∑
r=1

rr!2
(
q

r

)4

(2q − 2r)!‖h⊗̃rh‖22q−2r

=

q−1∑
r=1

q!2
(
q

r

)2{
‖h⊗r h‖22q−2r +

(
2q − 2r

q − r

)
‖h⊗̃rh‖22q−2r

}
,

and, with N ∼ N(0, 1),

dTV (Iq(h), N) ≤ 2√
3

√
E[Iq(h)4]− 3E[Iq(h)2]2,

dW (Iq(h), N) ≤ 2√
3π

√
E[Iq(h)4]− 3E[Iq(h)2]2.

2.2 Classical results for 1-domain functionals

In this section, we state the two most popular results in the framework of limit
theorems for 1-domain functionals. The first result, the celebrated Breuer-Major theorem,
was first proved in [6] in a discrete version, and then extended to several settings. Here
we state the continuous version of the result. Its proof can be found e.g. in [27].

Theorem 2.3 (Breuer-Major). Let B = (Bx)x∈Rd be a real-valued, continuous, centered
Gaussian field on Rd, assumed to be stationary and to have unit-variance. Let C denotes
its covariance function. Let ϕ : R→ R be a measurable function satisfying E[ϕ2(N)] <∞,
N ∼ N(0, 1), with Hermite rank R. Let us consider

Y (t) :=

∫
tD

ϕ(Bx)dx,

where D ⊂ Rd is a compact set, and t ≥ 0. If C ∈ LR(Rd), then, as t→∞,

Y (t)− E[Y (t)]

td/2
d−→ N(0, σ2),

where σ2 = Vol(D)
∑∞
q=R q!a

2
q

∫
Rd
C(x)qdx ≥ 0. In particular, if σ2 > 0, then Var(Y (t)) ∼

σ2td and a central limit theorem holds for (Y (t)− E[Y (t)])/
√

Var(Y (t)).

The idea behind Breuer-Major theorem is that if the fields is not “too correlated”
at infinity (precisely, if

∫
Rd
|C(x)|Rdx < ∞), then the fluctuations of the functional Y

are Gaussian. Conversely, if this is not the case, then one can have non-Gaussian
fluctuations (this does not mean that we necessarily have non-Gaussian fluctuations,
see e.g. [18]). The following Theorem 1.6 provides a non-central limit theorem for
functionals of Gaussian fields having a regularly varying covariance function, see (1.7),
satisfying (1.8). In the discrete case, a first proof for functionals with Hermite rank
R = 1, 2, was given by Taqqu in [34], and then generalized to any R by Dobrushin and
Major in [9]. The following sticks to the continuous case and a proof can be found e.g. in
[15].

Theorem 2.4 (Dobrushin-Major-Taqqu). Let B = (Bx)x∈Rd be a real-valued, continuous,
centered, stationary Gaussian field with unit-variance. Let ϕ : R→ R be a measurable
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function satisfying E[ϕ2(N)] <∞, N ∼ N(0, 1), with Hermite rank R and Rth coefficient
aR 6= 0, see (1.1). Let us consider

Y (t) :=

∫
tD

ϕ(Bx)dx,

where D is a compact set with Vol(D) > 0 and t ≥ 0. Let C : Rd → R be the covariance
function of B and suppose that (1.7)-(1.8) hold for C with parameter −β ∈ (−d/R, 0).
Then, as t→∞, we have

Ỹ (t)
d→ sgn(aR)Iν,R (fR,D)√

Var (Iν,R (fR,D))
,

where ν is the measure on Rd defined as ν(dx) := |x|β−ddx, and fR,D is defined as

fR,D(λ1, . . . , λR) :=

∫
D

ei〈x,λ1+···+λR〉dx.

In particular, the limit Iν,R (fR,D) is not Gaussian as soon as R ≥ 2.

Remark 2.5. The previous theorem shows that the limit Iν,R (fR,D) depends on R, d,
β and the domain D. In fact, the integrand is fR,D(λ1, . . . , λR) = F [1D](λ1 + · · · + λR),
where F [1D] is the Fourier transform of the indicator function of the compact set D. The

most common choices for D are the rectangles D =×d

i=1
[0, ui], ui ∈ R+, with Fourier

transform

F [1D](λ) =

d∏
j=1

∫ uj

0

eiλjxjdxj =

d∏
j=1

eiλjuj − 1

iλj
,

and domains D = {x ∈ Rd : ‖x‖ ≤ u}, u ∈ R+, with Fourier transform

F [1D](λ) = cd Jd/2(u‖λ‖)
(

u

‖λ‖

)d/2
,

where Jd/2 is a Bessel function of the first kind and order d/2, and cd is a positive
constant, see e.g. [18, Section 2.2].

3 Proof of Theorems 1.1 and 1.6

We split the proofs of Theorems 1.1 and 1.6 in four subsections. In Subsection 3.1,
we prove Theorem 1.1 when ϕ = Hq, under weaker assumptions, providing also a
quantitative result. In Subsection 3.2, we extend Theorem 2.3 to p-domain functionals.
Finally, in Subsection 3.3 and 3.4 we prove Theorem 1.1 and Theorem 1.6, respectively.

3.1 Proof of Theorem 1.1 when ϕ = Hq

When ϕ = Hq, the functional (1.2) is given by

Y (t1, . . . , tp) = Y (t1, . . . , tp)[q] :=

∫
t1D1×...×tpDp

Hq(Bx)dx. (3.1)

Therefore, see Section 2, we may express it as follows∫
t1D1×...×tpDp

Hq(Bx)dx = Iq(f(t1, . . . , tp)), (3.2)

where Iq : H�q → L2(Ω) stands for the qth Wiener-Itô integral (2.4), and f(t1, . . . , tp) ∈
H�q is given by

f(t1, . . . , tp) :=

∫
t1D1×...×tpDp

e⊗qx dx.
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Let us recall the definition of the marginal functionals (1.5), and, accordingly, set

Yi(ti)[q] = Iq

(∫
tiDi

(e(i)
xi )⊗qdxi

)
= Iq(fi(ti)), i = 1, . . . , p.

Proposition 3.1. Let B = (Bx)x∈Rd be a real-valued, continuous, centered, stationary
Gaussian field with unit-variance. Let C : Rd → R be the covariance function of B and
assume it is separable in the sense of (1.4). Then

Var(Y (t1, . . . , tp)[q]) = (q!)1−p
p∏
i=1

Var(Yi(ti)[q]). (3.3)

Moreover, the following holds: if there exists i ∈ {1, . . . , p} such that

Ỹi(ti)[q]
d→ N(0, 1) as ti →∞,

then
Ỹ (t1, . . . , tp)[q]

d→ N(0, 1) as t1, . . . , tp →∞.

Proof. Note that Var(Yi(ti)[q]) = q!‖fi(ti)‖2q. As a result, (3.3) follows from the separabil-
ity of C:

Var(Y (t1, . . . , tp)[q]) = q!

∫
(t1D1×...×tpDp)2

C(x1 − y1, . . . , xp − yp)qdx1 . . . dxpdy1 . . . dyp

=

p∏
i=1

∫
(tiDi)2

Ci(xi − yi)qdxidyi = (q!)1−p
p∏
i=1

Var(Yi(ti)[q]). (3.4)

If q = 1 everything is Gaussian and there is nothing more to show. Thus, let us assume
that q ≥ 2 and let us compute the norm of the rth contraction of f(t1, . . . , tp) with itself,
for r = 1, . . . , q − 1:

‖f(t1, . . . , tp)⊗r f(t1, . . . , tp)‖22q−2r = (3.5)

=

∫
(t1D1×···×tpDp)4

C(x− z)rC(y − u)rC(x− y)q−rC(z − u)q−rdxdydudz

=

p∏
i=1

∫
(tiDi)4

Ci(xi − zi)rCi(yi − ui)rCi(xi − yi)q−rCi(zi − ui)q−rdxidyiduidzi,

where xi denotes the projection of x onto the ith block of Rd =
∏p
i=1R

di . Let us define

f̃ := f
‖f‖ . By linearity, it immediately follows that Ỹ (t1, . . . , tp)[q] = Iq(f̃(t1, . . . , tp)) and

Ỹi(ti)[q] = Iq(f̃i(ti)). Then, combining (3.5) and (3.3), we obtain

‖f̃(t1, . . . , tp)⊗r f̃(t1, . . . , tp)‖22q−2r =

p∏
i=1

‖f̃i(ti)⊗r f̃i(ti)‖22q−2r. (3.6)

Since for every f ∈ H⊗q and r = 1, . . . , q − 1, we have

‖f ⊗r f‖22q−2r ≤ ‖f‖4q, (3.7)

we obtain

‖f̃(t1, . . . , tp)⊗r f̃(t1, . . . , tp)‖22q−2r ≤ min{‖f̃i(ti)⊗r f̃i(ti)‖22q−2r : i = 1, . . . , p}.

It remains to apply Theorem 2.1 to conclude that, if Ỹi(ti) → N(0, 1) as ti → ∞, then
‖f̃i(ti) ⊗r f̃i(ti)‖2q−2r → 0 for all r ∈ {1, . . . , q − 1}, implying that ‖f̃(t1, . . . , tp) ⊗r
f̃(t1, . . . , tp)‖2q−2r → 0 for all r ∈ {1, . . . , q − 1}, implying finally that Ỹ (t1, . . . , tp)

d→
N(0, 1).
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The following result provides the converse implication of Proposition 3.1, under
additional assumptions.

Proposition 3.2. Let B = (Bx)x∈Rd be a real-valued, continuous, centered, stationary
Gaussian field with unit-variance. Let C : Rd → R be the covariance function of B and
assume it is separable in the sense of (1.4). Finally, assume either that Cq ≥ 0 or q = 3.
Then, the following holds: if

Ỹ (t1, . . . , tp)[q]
d→ N(0, 1) as t1, . . . , tp →∞,

then there exists at least one i ∈ {1, . . . , p} such that

Ỹi(ti)[q]
d→ N(0, 1) as ti →∞.

Proof. When q = 1, we have that Ỹ and the Ỹi’s are Gaussian, meaning that the statement
is correct but empty.

So, let us assume from now on that q ≥ 2 and that Ỹ (t1, . . . , tp)[q]
d→ N(0, 1). By

the Fourth Moment Theorem 2.1 one has that ‖f̃(t1, . . . , tp)⊗r f̃(t1, . . . , tp)‖2q−2r → 0 as
t1, . . . , tp →∞ for any r ∈ {1, . . . , q − 1}.

When q = 2, there is only one contraction to consider. Looking at (3.6), we deduce
that at least one of the factors in (3.6) must go to 0 which, by Theorem 2.1, implies that
at least one among the Ỹi(ti)’s must have a Gaussian limit.

Consider now the case where q = 3. By Fubini, we have for every i = 1, . . . , p

‖f̃i(ti)⊗1 f̃i(ti)‖24 = ‖f̃i(ti)⊗2 f̃i(ti)‖22,

and (3.6) allows again to conclude.
Finally, let us suppose that q ≥ 4 and Cq ≥ 0, that is either q even, or q odd and C ≥ 0.

Since the second contraction satisfies

‖f̃(t1, . . . , tp)⊗2 f̃(t1, . . . , tp)‖2q−4 −→ 0, as t1, . . . , tp →∞,

we deduce from (3.6) that there exists i ∈ {1, . . . , p} such that

‖f̃i(ti)⊗2 f̃i(ti)‖22q−4 → 0 as ti →∞.

Let us show that this is sufficient to conclude about the asymptotic normality of Ỹi(ti)[q]
when Cq ≥ 0. For this, let us consider a positive sequence (ati)ti>0 with ati → ∞ as
ti →∞ (the exact expression of ati will be made precise later) and define the subset Ati
of R4di by

Ati =
{

(xi, yi, ui, zi) ∈ R4di : |Ci(xi − zi)Ci(yi − ui)| ≤ ati |Ci(xi − yi)Ci(zi − ui)|
}
.

We can then write, for every 3 ≤ r ≤ q − 1:

‖fi(ti)⊗r fi(ti)‖22q−2r =

=

∫
(tiDi)4

Ci(xi − zi)rCi(yi − ui)rCi(xi − yi)q−rCi(zi − ui)q−rdxidyiduidzi

≤
∫

(tiDi)4∩Ati
|Ci(xi − zi)rCi(yi − ui)rCi(xi − yi)q−rCi(zi − ui)q−r|dxidyiduidzi

+

∫
(tiDi)4∩(R4di\Ati )

|Ci(xi − zi)rCi(yi − ui)rCi(xi − yi)q−rCi(zi − ui)q−r|

dxidyiduidzi
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≤ ar−2
ti

∫
(tiDi)4

Ci(xi − zi)2Ci(yi − ui)2|Ci(xi − yi)|q−2|Ci(zi − ui)|q−2dxidyiduidzi

+ a
−(q−r)
ti

∫
(tiDi)4

|Ci(xi − zi)|q|Ci(yi − ui)|qdxidyiduidzi

= ar−2
ti

∫
(tiDi)4

Ci(xi − zi)2Ci(yi − ui)2Ci(xi − yi)q−2Ci(zi − ui)q−2dxidyiduidzi

+ a
−(q−r)
ti

∫
(tiDi)4

Ci(xi − zi)qCi(yi − ui)qdxidyiduidzi

= ar−2
ti ‖fi(ti)⊗2 fi(ti)‖22q−4 + a

−(q−r)
ti ‖fi(ti)‖4q.

Summarizing, we have, for every r ∈ {3, . . . , q − 1},

‖f̃i(ti)⊗r f̃i(ti)‖22q−2r ≤ ar−2
ti ‖f̃i(ti)⊗2 f̃i(ti)‖22q−4 + a

−(q−r)
ti . (3.8)

Now, let us choose ati =
(
‖f̃i(ti)⊗2 f̃i(ti)‖2q−4

) 2
2−q and observe that ati →∞ as ti →∞.

Plugging into (3.8) allows to obtain, for every r ∈ {3, . . . , q − 1},

‖f̃i(ti)⊗r f̃i(ti)‖22q−2r ≤ 2
(
‖f̃i(ti)⊗2 f̃i(ti)‖2q−4

) 2(q−r)
q−2 → 0 as ti →∞,

But this convergence of the rth contraction to zero also holds for r = 1, since the norms
of the 1-contraction and the (q − 1)-contraction are equal. Finally, the desired conclusion
follows from the Fourth Moment Theorem 2.1.

Proposition 3.3. Let the same notations and assumptions of Proposition 3.1 prevail. In
particular N ∼ N(0, 1). Then, the following estimate holds:

dTV (Ỹ (t1, . . . , tp)[q], N) ≤ cq
p∏
i=1

√
E
[
Ỹi[q]4

]
− 3, (3.9)

dW (Ỹ (t1, . . . , tp)[q], N) ≤ cq√
π

p∏
i=1

√
E
[
Ỹi[q]4

]
− 3,

where cq =
√

4
q

∑q−1
r=1 rr!

2
(
q
r

)4
(2q − 2r)!.

Proof of Proposition 3.3. Recall the result of Theorem 2.2, namely

dTV (Ỹ (t1, . . . , tp)[q], N) ≤ 2√
3

√
E
[
(Ỹ (t1, . . . , tp)[q])4

]
− 3,

and

E
[
(Ỹ (t1, . . . , tp)[q])

4
]
− 3 (3.10)

=
3

q

q−1∑
r=1

rr!2
(
q

r

)4

(2q − 2r)!‖f̃(t1 . . . , tp)⊗̃rf̃(t1 . . . , tp)‖22q−2r

=

q−1∑
r=1

q!2
(
q

r

)2{
‖f̃(t1 . . . , tp)⊗r f̃(t1 . . . , tp)‖22q−2r

+

(
2q − 2r

q − r

)
‖f̃(t1 . . . , tp)⊗̃rf̃(t1 . . . , tp)‖22q−2r

}
.

We deduce

dTV (Ỹ (t1, . . . , tp)[q], N) ≤ 2√
3

√
E
[
(Ỹ (t1, . . . , tp)[q])4

]
− 3
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≤ cq max
r=1,...,q−1

‖f̃(t1 . . . , tp)⊗r f̃(t1 . . . , tp)‖22q−2r.

But, thanks to (3.6) and recalling (3.7), we have

max
r=1,...,q−1

‖f̃(t1 . . . , tp)⊗r f̃(t1 . . . , tp)‖22q−2r = max
r=1,...,q−1

p∏
i=1

‖f̃i(ti)⊗r f̃i(ti)‖22q−2r

≤
p∏
i=1

max
r=1,...,q−1

‖f̃i(ti)⊗r f̃i(ti)‖22q−2r.

Also, as a consequence of the second equality in (3.10) (with Ỹi instead of Ỹ ), we have

‖f̃i(ti)⊗r f̃i(ti)‖22q−2r ≤ E
[
Ỹi[q]

4
]
− 3,

and the desired conclusions now easily follows.

Remark 3.4. In Example 4.1 below we will use the previous result to improve the bound
for the central convergence of the rescaled qth Hermite variation of the rectangular
increments of the fractional Brownian sheet obtained in [31].

Remark 3.5. Rates of convergence for smooth distances can be obtained by means of
Malliavin-Stein method for more general functions ϕ. In the case where CR ∈ L1(Rd),
where R is the Hermite rank of ϕ, (equivalently CRi ∈ L1(Rdi) for every i = 1, . . . , p),
several statements can be found in [24], where no additional smoothness of the function
ϕ is required. However, we remark that in this case all the terms of the chaotic
expansion of the functional contribute to the limit. Conversely, when Ci /∈ LR(Rdi)

for some i = 1, . . . , p, then a bound in Wasserstein distance could be proved. Indeed,
Proposition 3.8 shows how to control E[(Ỹ − Ỹ [R])2], see e.g. (3.15). However, we again
have a non-trivial contribution of every term of the chaotic decomposition, leading to a
sub-optimal and less meaningful rates.

3.2 A Breuer-Major theorem for p-domain functionals

In this subsection, we provide an extension of the celebrated Breuer-Major theorem
from the classical setting of 1-domain functionals (see Theorem 2.3) to the setting of
p-domain functionals.

Theorem 3.6. Let B = (Bx)x∈Rd be a real-valued, continuous, centered, stationary
Gaussian field with unit-variance. Let ϕ : R → R be a measurable function satisfying
E[ϕ2(N)] <∞, N ∼ N(0, 1), with Hermite rank R ≥ 1. Let us consider Ỹ as in (1.3). Let
C : Rd → R be the covariance function of B and assume it is separable in the sense
of (1.4). If Ci ∈ LR(Rdi) for any i ∈ {1, . . . , p}, then, as t1, . . . , tp →∞,

Y (t1, . . . , tp)− E[Y (t1, . . . , tp)]

t
d1/2
1 . . . t

dp/2
p

d→ N(0, σ2),

where

σ2 =
∑
q≥R

a2
qq!

p∏
i=1

Vol(Di)

∫
Rdi

Cqi (zi)dzi.

Moreover, if σ2 > 0 then

Var(Y (t1, . . . , tp)) ∼ σ2 td11 . . . tdpp

and we have a central limit theorem for (1.3), that is

Ỹ (t1, . . . , tp)
d→ N(0, 1) as t1, . . . , tp →∞.
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Remark 3.7. The previous theorem may be seen as a Breuer-Major theorem for p-
domains. Its proof follows from similar arguments to the ones in [23, Theorem 7.2.4].
However, we observe that the separable assumption allows us to recover the rate of the
variance as a function of the (possibly distinct) growth rates of the domains.

Proof of Theorem 3.6. We proceed as in the proof of [23, Theorem 7.2.4], using [23,
Theorem 6.3.1]. First of all, we have

Y (t1, . . . , tp)− E[Y (t1, . . . , tp)]

t
d1/2
1 . . . t

dp/2
p

=

∑∞
q=R aq

∫
t1D1×···×tpDp Hq(Bx)dx

t
d1/2
1 . . . t

dp/2
p

=

∞∑
q=R

Iq(fq(t1, . . . , tp)),

where

fq(t1, . . . , tp) :=
aq
∫
t1D1×···×tpDp e

⊗q
x dx

t
d1/2
1 . . . t

dp/2
p

.

To conclude the proof we only need to check the conditions (a)-(d) of [23, Theorem 6.3.1].

Condition (a): We need to check that

σ2[q] := lim
t1,...,tp→∞

q!‖fq(t1, . . . , tp)‖2

exists in [0,∞) for each q ≥ R. Since Ci ∈ LR(Rdi) (implying Ci ∈ Lq(Rdi)) for every
i ∈ {1, . . . , p}, the change of variable zi = xi − yi yields∫

(tiDi)2
Cqi (xi − yi)dxidyi = tdii

∫
Rdi

Cqi (zi) Vol(Di ∩ (Di + zi/ti))dzi (3.11)

∼ tdii Vol(Di)

∫
Rdi

Cqi (zi)dzi, as ti →∞.

Combining the previous equivalent with the separability of C, we obtain

q!‖fq(t1, . . . , tp)‖2 = q!a2
q

∏p
i=1

∫
(tiDi)2

Cqi (xi − yi)dxidyi

t
d1/2
1 . . . t

dp/2
p

→ σ2[q],

as t1, . . . , tp →∞, where

σ2[q] := q!a2
q

p∏
i=1

Vol(Di)

∫
Rdi

Cqi (zi)dzi.

Condition (b): We need to check that

∞∑
q=R

σ2[q] <∞.

Since ‖Ci‖∞ ≤ 1 for every i = 1, . . . , p, we have

∞∑
q=R

σ2[q] ≤

 ∞∑
q=R

q!a2
q

 p∏
i=1

(
Vol(Di)

∫
Rdi

|Ci(zi)|Rdz
)
.

Thanks to Var(ϕ(N)) =
∑∞
q=R q!a

2
q <∞, the claim follows.

EJP 29 (2024), paper 136.
Page 14/33

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1197
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Limit theorems for p-domain functionals of stationary Gaussian fields

Condition (c): We need to check that for every q ≥ R and every r = 1, . . . , q − 1

‖fq(t1, . . . , tp)⊗r fq(t1, . . . , tp)‖2 → 0 as t1, . . . , tp →∞.

Since C is separable, we deduce from (3.5) that

‖fq(t1, . . . , tp)⊗r fq(t1, . . . , tp)‖2 =

p∏
i=1

‖fi,q(ti)⊗r fi,q(ti)‖2,

where fi,q(ti) is given by

fi,q(ti) :=

∫
tiDi

(e(i)
xi )⊗qdxi.

Therefore, it is enough to prove that

‖fi,q(ti)⊗r fi,q(ti)‖2 → 0 (3.12)

for at least one i ∈ {1, . . . , p} as ti →∞. But (3.12) is actually true for any i ∈ {1, . . . , p},
see indeed point (c) in the proof of [23, Theorem 7.2.4] (which uses that Ci ∈ LR(Rdi)).

Condition (d): We need to check that

lim
N→∞

sup
t1,...,tp≥1

∞∑
q=N+1

q!‖fq(t1, . . . , tp)‖2 = 0.

By (3.11) and since ‖Ci‖∞ ≤ 1 for every i = 1, . . . , p, we have

sup
t1,...,tp≥1

∞∑
q=N+1

q!‖fq(t1, . . . , tp)‖2

= sup
t1,...,tp≥1

∞∑
q=N+1

q!a2
q

∏p
i=1

∫
(tiDi)2

Cqi (xi − yi)dxidyi

t
d1/2
1 . . . t

dp/2
p

≤

 ∞∑
q=N+1

q!a2
q

 p∏
i=1

(
Vol(Di)

∫
Rdi

|Ci(zi)|Rdzi
)
→ 0 as N →∞,

where
(∑∞

q=N+1 q!a
2
q

)
→ 0 being the tail of a convergent series.

3.3 Reduction to Rth chaos and proof of Theorem 1.1

The chaotic decomposition of (1.2) is

Y (t1, . . . , tp) = E[Y (t1, . . . , tp)] +
∑
q≥R

aqY (t1, . . . , tp)[q],

see (3.1)-(3.2). In particular, this decomposition gives

Var(Y (t1, . . . , tp)) =

∞∑
q=R

a2
q Var(Y (t1, . . . , tp)[q]). (3.13)

In order to prove Theorem 1.1, we reduce the study of the functional Ỹ (t1, . . . , tp) to that

of Ỹ (t1, . . . , tp)[R], the normalization of Y (t1, . . . , tp)[R], thanks to the following extension
of [18, Proposition 4].
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Proposition 3.8. Let B = (Bx)x∈Rd be a real-valued, continuous, centered, stationary
Gaussian field with unit-variance. Let ϕ : R → R be a measurable function satisfying
E[ϕ2(N)] < ∞, N ∼ N(0, 1), with Hermite rank R. Let us consider Ỹ as in (1.3), and
Ỹ [R] as above. Let C : Rd → R be the covariance function of B, and assume that it is
separable in the sense of (1.4) and that it satisfies the following two hypotheses:

1. CR ≥ 0, that is, CRi ≥ 0 for every i = 0, . . . , p;

2. for some j ∈ {1, . . . , p}, we have Cj ∈
⋃∞
M=R+1 L

M (Rdj ) \ LR(Rdj ).

Then, with sgn(aR) denoting the sign of the Rth Hermite coefficient in (1.1),

E

[(
sgn(aR)Ỹ (t1, . . . , tp)[R]− Ỹ (t1, . . . , tp)

)2
]
→ 0 as t1, . . . , tp →∞.

Proof. We divide the proof in three steps.

Step 1: upper and lower bounds for the variance. By assumption, there exist j and
M ≥ R + 1 such that Cj /∈ LR(Rdj ), but Cj ∈ LM (Rdj ). Since CRj ≥ 0 by assumption,
by doubling conditions for non-negative definite functions (see [12]) and properties
of covariograms (see [10]), reasoning exactly as in the first step of the proof of [18,
Proposition 9], there exist two positive constants c1 > c2 > 0 such that

c2

∫
{‖xj‖≤tj}

CRj (zj)dzj ≤ t
−dj
j Var(Yj(tj)[R]) ≤ c1

∫
{‖xj‖≤tj}

CRj (zj)dzj .

In particular, this implies

t
−dj
j Var(Yj(tj)[R])→∞ as tj →∞. (3.14)

Step 2: we prove that Var(Y (t1, . . . , tp)) ∼ a2
RVar(Y (t1, . . . , tp)[R]) as t1, . . . , tp → ∞.

Since |C| ≤ 1 and by assumption CRi ≥ 0 for i ∈ {1, . . . , p}, we have that, for any q > R

and any j ∈ {1, . . . , p},

Var(Y (t1, . . . , tp)[q])

Var(Y (t1, . . . , tp)[R])
=

q!

R!

p∏
i=1

∫
(tiDi)2

Cqi (xi − yi)dxidyi∫
(tiDi)2

CRi (xi − yi)dxidyi

≤ q!

R!

∫
(tjDj)2

Cqj (xj − yj)dxjdyj∫
(tjDj)2

CRj (xj − yj)dxjdyj
=

Var(Y (tj)[q])

Var(Y (tj)[R])
.

Now, by applying Cauchy-Schwarz n times, we obtain∫
(tjDj)2

Cqj (xj − yj)dxjdyj∫
(tjDj)2

CRj (xj − yj)dxjdyj
≤

(∫
(tjDj)2

|Cj(xj − yj)|2q−Rdxjdyj∫
(tjDj)2

CRj (xj − yj)dxjdyj

)1/2

≤

(∫
(tjDj)2

|Cj(xj − yj)|4q−3Rdxjdyj∫
(tjDj)2

CRj (xj − yj)dxjdyj

)1/4

≤ . . .

≤

(∫
(tjDj)2

|Cj(xj − yj)|R+2n(q−R)dxjdyj∫
(tjDj)2

CRj (xj − yj)dxjdyj

)1/2n

≤

(
Vol(Dj)t

dj
j

∫
{‖xj‖≤diam(Dj)tj} |Cj(zj)|

R+2ndzj∫
(tjDj)2

CRj (xj − yj)dxjdyj

)1/2n
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=

(
Vol(Dj)t

dj
j R!

∫
{‖xj‖≤diam(Dj)tj} |Cj(zj)|

R+2ndzj

Var(Yj(tj)[R])

)1/2n

where the last inequality follows by a change of variable xj − yj = zj , and the fact that
q − R ≥ 1. Since Cj ∈ LR+2n(Rdj ) for n sufficiently large, we deduce from (3.14) for
every q > R

Var(Y (t1, . . . , tp)[q])

Var(Y (t1, . . . , tp)[R])
≤ cq!

(
t
dj
j /Var(Yj(tj)[R])

)1/2n

,

where c > 0 depends on R and n but not on q. Combining this with (3.13), we get

∣∣∣∣ Var(Y (t1, . . . , tp))

Var(Y (t1, . . . , tp)[R])
− a2

R

∣∣∣∣ ≤ c
 ∞∑
q=R+1

a2
qq!

(tdjj /Var(Yj(tj)[R])
)1/2n

.

Using (3.14), this implies Var(Y (t1, . . . , tp)) ∼ a2
RVar(Y (t1, . . . , tp)[R]) as t1, . . . , tp →∞.

Step 3: E

[(
sgn(aR)Ỹ (t1, . . . , tp)[R]− Ỹ (t1, . . . , tp)

)2
]
→ 0. To prove this last step,

considering the decomposition

Ỹ (t1, . . . , tp)− sgn(aR)Ỹ (t1, . . . , tp)[R]

=
sgn(aR)(Y (t1, . . . , tp)− E[Y (t1, . . . , tp)]− aRY (t1, . . . , tp)[R])

aR
√

Var(Y (t1, . . . , tp)[R])

+
Y (t1, . . . , tp)− E[Y (t1, . . . , tp)]√

Var(Y (t1, . . . , tp))

{
1− 1

|aR|

√
Var(Y (t1, . . . , tp))

Var(Y (t1, . . . , tp)[R])

}
,

we get that

E

[(
Ỹ (t1, . . . , tp)− sgn(aR)Ỹ (t1, . . . , tp)[R]

)2
]

(3.15)

≤ 2
E[(Y (t1, . . . , tp)− E[Y (t1, . . . , tp)]− aRY (t1, . . . , tp)[R]))2]

a2
RVar(Y (t1, . . . , tp)[R])

+ 2

(
1− 1

|aR|

√
Var(Y (t1, . . . , tp))

Var(Y (t1, . . . , tp)[R])

)2

.

By the previous step, the second addend converges to 0. Regarding the first addend,
since by (3.13) we have

E

[
(Y (t1, . . . , tp)−E[Y (t1, . . . , tp)]− aRY (t1, . . . , tp)[R])2

]
=

∞∑
q=R+1

a2
q Var(Y (t1, . . . , tp)[q]),

we deduce from the previous step that

E[(Y (t1, . . . , tp)− E[Y (t1, . . . , tp)]− aRY (t1, . . . , tp)[R]))2]

a2
RVar(Y (t1, . . . , tp)[R])

→ 0.

This concludes the proof of Step 3 and Proposition 3.8.

We are now in a position to prove Theorem 1.1.
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Proof of Theorem 1.1. Let us recall that B = (Bx)x∈Rd is a stationary and continuous
Gaussian random field, and that its covariance function is

C(x) = C1(x1) . . . · Cp(xp), xi ∈ Rdi , i = 1, . . . , p,

where Ci : Rdi → R is a non-negative definite function such that Ci(0) = 1 for every
i = 1, . . . , p.

The functionals Ỹ (t1, . . . , tp) and Ỹi(ti) are well-defined when CR is positive. Indeed,
by the decomposition (3.13) and the formula (3.4), we get that their variances are strictly
positive.

Let us now distinguish two cases:
(i) The first one is when Ci ∈ LR(Rdi) for every i. In this case, each functional Yi(ti)

satisfies Theorem 2.3, hence Ỹi(ti) has a Gaussian limit. Moreover, Theorem 3.6 applies,
too, and we can conclude the same for Ỹ (t1, . . . , tp).

(ii) Secondly, let us suppose that for at least one i one has Ci ∈ LM (Rdi) \ LR(Rdi)

with M > R. Then, by Proposition 3.8, it is equivalent to study the limit in distribution of
Ỹ (t1, . . . , tp)[R] only. Being in a fixed chaos and because CRj ≥ 0, both Proposition 3.1
and Proposition 3.2 apply. Hence, if there exist j (possibly equal or distinct from i)
such that Ỹj(tj)[R] converges in distribution to a standard Gaussian, we can deduce the

same for the functional Ỹ (t1, . . . , tp)[R], and vice-versa. To conclude, it remains to show

that Ỹj(tj) converges in distribution to a standard Gaussian random variable if and only

if Ỹj(tj)[R] does. When Cj ∈ LR(Rdj ), it is a consequence of the usual Breuer-Major

theorem (Theorem 2.3), since in this case both Ỹj(tj) and Ỹj(tj)[R] are converging to
N(0, 1). When, on the contrary, we have Cj ∈ LM (Rdj ) \ LR(Rdj ), it is a consequence of
the reduction theorem proved in [18, Proposition 4].

3.4 Proof of Theorem 1.6

We state two results on Wiener-Itô integrals, which are needed for our proof of
Theorem 1.6. We note that they should not be considered as new, but rather as a
generalization of well-known results contained in, e.g., [19]. However, for completeness
we provide their detailed proofs in the Appendix.

Lemma 3.9 (Change of variable formula). Let ν, ν′ be real, σ-finite measures on Rd

endowed with the Borel σ-algebra B(Rd) and let us define the real separable3 Hilbert
spaces Hν := L2(ν),Hν′ := L2(ν′) as in (2.2). Let us suppose that

ν(dx) = |a(x)|2ν′(dx)

where a is a complex valued, even function (i.e. a(−x) = a(x)). Then, for every h ∈ Hν�q
we have

Iν,q(h)
law
= Iν′,q(a

⊗qh),

where a⊗q is as in (2.5).

Lemma 3.10. Let us denote by Iq the Wiener-Itô integral acting on H�q, with respect
to the Lebesgue measure dx on Rd. Then, for every h ∈ H�q = L2

s((R
d)q, dx) and

s1, . . . , sd > 0, we have

Iq(h)
law
= s

−q/2
1 . . . s

−q/2
d Iq

(
h̃(s1, . . . , sd)

)
,

where h̃(s1, . . . , sd) ∈ H�q is such that

h̃(s1, . . . , sd)(x1, . . . , xq) := h(x11/s1, . . . , x1d/sd, . . . , xq1/s1, . . . , xqd/sd).
3Note that if ν is real, σ-finite and symmetric, thenHν is a real separable Hilbert space, and we can consider

an isonormal Gaussian process on it, as well as every notion and result introduced in Section 2.1 for L2(G).
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Proof of Theorem 1.6. We divide the proof in four steps. In the sequel, c will denote a
positive constant which may vary depending on the instance.

Step 1: Reduction to the Rth chaos. Since CR ≥ 0 and Ci ∈
⋃∞
M=R+1 L

M (Rdi) \
LR(Rdi) for every i, by Proposition 3.8 we are left to study the limit in distribution of
Ỹ (t1, . . . , tp)[R].

Step 2: Variance analysis. It is a standard fact (see e.g. [14], [15], [13] or [17]) that
if (1.7) holds for i, then

Var(Yi(ti)[R]) ∼ cLi(ti)Rt2di−Rβii as ti →∞.

We conclude that

Var(Y (t1, . . . , tp)[R]) =
1

(R!)p−1

p∏
i=1

Var(Yi(ti)[R]) ∼ c
p∏
i=1

Li(ti)
Rt2di−Rβii .

Step 3: A suitable expression (in law) for Y (t1, . . . , tp)[R]. Recall the definition (1.9).
By assumption (1.8), we have Gi(dλi) = gi(λi)dλi for every i. Let us define g : Rd → R+

as

g(x1, . . . , xp) =

p∏
i=1

gi(xi).

We get from Lemma 3.9 that

Y (t1, . . . , tp)[R] = IG,R(fR,t1D1×···×tpDp)
law
= IR((

√
g)⊗RfR,t1D1×···×tpDp),

where IR is the Rth Wiener-Itô integral with respect to the Lebesgue measure. By
applying Lemma 3.10, we also obtain

IR((
√
g)⊗RfR,t1D1×···×tpDp) =

(
p∏
i=1

t
di−

Rdi
2

i

)
IR

((√
g(t1, . . . , tp)

)⊗R
fR,D1×···×Dp

)

where g(t1, . . . , tp) : Rd → R+ is given by

g(t1, . . . , tp)(x1, . . . , xp) =

p∏
i=1

gi(xi/ti).

Then, we have obtained the following expression in distribution for Ỹ (t1, . . . , tp)[R]:

Ỹ (t1, . . . , tp)[R]
law
=

IR

((√
g(t1, . . . , tp)

)⊗R
fR,D1×···×Dp

)
√

Var

(
IR

((√
g(t1, . . . , tp)

)⊗R
fR,D1×···×Dp

)) .

Step 4: Proving the L2 convergence. The last step of the proof consists in showing
the following L2 convergence:

IR

((√
g(t1, . . . , tp)

)⊗R
fR,D1×···×Dp

)
√

Var

(
IR

((√
g(t1, . . . , tp)

)⊗R
fR,D1×···×Dp

))
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L2(Ω)−→
IR((
√
g′)⊗RfR,D1×···×Dp)√

Var
(
IR((
√
g′)⊗RfR,D1×···×Dp)

) law
=

Iν1×···×νp,R
(
fR,D1×···×Dp

)√
Var

(
Iν1×···×νp,R

(
fR,D1×···×Dp

)) ,
where the equality in distribution follows from Lemma 3.9 and where

g′(x) :=

p∏
i=1

‖xi‖βi−di .

By the previous steps, it is enough to prove that for some positive constant c we have

c

p∏
i=1

t
R(βi−di)

2
i Li(ti)

−R/2IR

((√
g(t1, . . . , tp)

)⊗R
fR,D1×···×Dp

)
L2(Ω)→ IR

(
(
√
g′)⊗RfR,D1×···×Dp

)
.

It is equivalent to show that(
p∏
i=1

Qti(λ1i, . . . , λqi)

)
fR,D1×···×Dp(λ1, . . . , λR)

R∏
j=1

p∏
i=1

‖λji‖
βi−di

2 (3.16)

L2((Rd)R)−→ fR,D1×···×Dp(λ1, . . . , λR)

R∏
j=1

p∏
i=1

‖λji‖
βi−di

2 ,

where the Qti : (Rdi)R → C are defined as

Qti(λ1i, . . . , λRi) :=

√√√√ R∏
j=1

‖λji/ti‖di−βic−1
i L−1

i (ti)gi(λji/ti),

and ci are some positive constant. In particular, we will prove (3.16) with the constant
ci given by assumption (1.8). To prove (3.16), we proceed by induction on p. If p = 1,
then (3.16) reduces to∫

(Rd1 )R
|Qt1(λ11, . . . , λR1)− 1|2 |fR,D1

(λ11, . . . , λR1)|2 dλ11 . . . dλR1∏R
j=1 ‖λj1‖d1−β1

→ 0,

and this convergence is shown in the proof of [15, Theorem 5]. Now, let us assume
that (3.16) holds for p− 1, and let us prove the result for p. For this, note that xy − 1 =

(x− 1)(y − 1) + (x− 1) + (y − 1), implying(
p∏
i=1

Qti(λ1i, . . . , λRi)

)
− 1 =

((
p−1∏
i=1

Qti(λ1i, . . . , λRi)

)
− 1

)(
Qtp(λ1p, . . . , λRp)− 1

)

+

((
p−1∏
i=1

Qti(λ1i, . . . , λRi)

)
− 1

)
+

(
Qtp(λ1p, . . . , λRp)− 1

)
.

Then, by applying the triangular inequality in L2((Rd)R), we get that (3.16) holds by
inductive hypothesis.

4 Examples

In this Section we collect some examples.
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Example 4.1 (Hermite variations of a fractional Brownian sheet (fBs)). Let us consider a
fBs

Wα,β = (Wα,β)(x1,x2)∈R2
+

with parameter (α, β) ∈ R2
+ and its rectangular increments:

Rx1,x2
:= Wα,β

x1+1,x2+1 −W
α,β
x1,x2+1 −W

α,β
x1+1,x2

+Wα,β
x1,x2

.

The field R defined as above is a stationary centered Gaussian field, with covariance
function given by

Cov(Rx1,x2
, Ry1,y2) = rα(x1 − y1)rβ(x2 − y2)

where

rH(u) =
1

2

(
|u+ 1|2H + |u− 1|2H − 2|u|2H

)
, u ∈ R, H ∈ (0, 1). (4.1)

Notice that the covariance function of R is separable in the sense of (1.4). Moreover,
rα (resp. rβ) is the covariance function of the process defined as the (one-dimensional)
increments of a fractional Brownian motion (fBm) with Hurst index α (resp. β). We
briefly recall some results about this process, see e.g. [23]. A fractional Brownian motion
WH = (WH

t )t∈R of Hurst index H, is a centered Gaussian process such that

E[WH
x1
WH
y1 ] =

1

2

(
|x1|2H + |y1|2H − |x1 − y1|2H

)
, x1, y1 ∈ R.

Its increment process
Xu = WH

u+1 −WH
u , u ∈ R+

is known as fractional Gaussian noise. It is a centered, stationary Gaussian process
with covariance function as in (4.1). Note that (4.1) is regularly varying with parameter
2H − 2 (see [23, (7.4.3)], or [17, Example 1]), i.e. it behaves asymptotically as

rH(u) = H(2H − 1)|u|2H−2 + o(|u|2H−2), as |u| → ∞.

Breuer-Major theorem (see Theorem 2.3) and [23, Theorem 7.4] allow us to deduce that
the sequence

YN =

N−1∑
k=0

Hq(Xk), N ≥ 1,

under a proper renormalization, converges to a Gaussian distribution if H ≤ 1− 1/2q.
Moreover, in [22] and [5], the authors quantify the convergence in total variation
distance.

Theorem 4.2 (Theorem 1.1, 1.2 in [5]). If H ∈ (0, 1− 1/2q] and VN = YN√
Var(YN )

, then

dTV (VN , N(0, 1)) ≤ cH,q



N−1/2 if H ∈ (0, 1
2 )

NH−1 if H ∈
[

1
2 ,

2q−3
2q−2

]
NHq−q+1/2 if H ∈

(
2q−3
2q−2 , 1−

1
2q

)
(logN)−1/2 if H = 1− 1

2q

=: cH,q · g(q,H,N). (4.2)

In the previous, cH,q a positive constant, that may vary, only dependent on q and H.

If H > 1− 1/2q, we have convergence towards a non Gaussian distribution (see [9]).
In [31], the authors show that a proper renormalization of

VN,M =

N−1∑
x1=0

M−1∑
x2=0

Hq(Rx1,x2
), N,M ∈ N (4.3)
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converges to a Gaussian distribution as N,M →∞ when α ≤ 1− 1/2q or β ≤ 1− 1/2q4.
Moreover, they bound the total variation distance between VN,M and its Gaussian limit.

Theorem 4.3 (Theorem 3.1 in [31]). Let us denote by cα,β a generic positive constant
which depends on α, β and q, but which is independent of N and M . We have

(1) If both 0 < α, β < 1−1/2q, then ṼN,M converges in law to N(0, 1) with normalization

ϕ(α, β,N,M) =
√

q!
sαsβ

Nαq−1/2Mβq−1/2. In addition

dTV (ṼN,M , N(0, 1))

≤ cα,β
√
N−1 +N2α−2 +N2αq−2q+1 +M−1 +M2β−2 +M2βq−2q+1.

(2) If 0 < α < 1 − 1/2q and β = 1 − 1/2q, then ṼN,M converges in law to N(0, 1) with

normalization ϕ(α, β,N,M) =
√

q!
sαιβ

Nαq−1/2Mq−1(logM)−1/2. In addition

dTV (ṼN,M , N(0, 1)) ≤ cα,β
√
N−1 +N2α−2 +N2αq−2q+1 + (logM)−1.

If 0 < β < 1 − 1/2q and α = 1 − 1/2q, then we get an analogous estimate as the
previous one.

(3) If both α = β = 1− 1/2q, then ṼN,M converges in law to N(0, 1) with normalization

ϕ(α, β,N,M) =
√

q!
ιαιβ

Nq−1(logN)−1/2Mq−1(logM)−1/2. In addition

dTV (ṼN,M , N(0, 1)) ≤ cα,β
√

(logN)−1 + (logM)−1.

(4) If α < 1 − 1/2q and β > 1 − 1/2q, then ṼN,M converges in law to N(0, 1) with

normalization ϕ(α, β,N,M) =
√

q!
sακβ

Nαq−1/2Mq−1. In addition5

dTV (ṼN,M , N(0, 1)) ≤ cα,β
√
N−1 +N2α−2 +N2αq−2q+1 +M−(2βq−2q+1).

(5) If α = 1 − 1/2q and β > 1 − 1/2q, then ṼN,M converges in law to N(0, 1) with

normalization ϕ(α, β,N,M) =
√

q!
ιακβ

Nq−1(logN)−1/2Mq−1. In addition

dTV (ṼN,M , N(0, 1)) ≤ cα,β
√

(logN)−1 +M−(2βq−2q+1)

Our Theorem 1.1 translates in the discrete setting, too, and returns the same qual-
itative phenomenon described above. Moreover, by using the bounds obtained in the
proof of [22, Theorem 4.1], Proposition 3.3 allows us to improve the previous rates,
by replacing a sum of powers or logarithmic functions of N and M with their product.
This results in a smaller bound and, more interestingly, clarifies that the growth rate of
every domain (the sums in (4.3)) contributes multiplicatively to the speed of convergence
rather than additively.

Corollary 4.4. Recall the definition of g in (4.2).

(1) If both 0 < α, β ≤ 1− 1/2q, then

dTV (ṼN,M , N(0, 1)) ≤ cα,β,q g(q, α,N) · g(q, β,M).

4More precisely, they showed it for the Hermite variations of the field NαMβRα,β
i/N,j/M

. However, by

self-similarity of the process R (see [31, Definition 2.3]), the two share the same law.
5The exponent in red is the correction of a typo in [31, Theorem 3.1].
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(2) If α ≤ 1− 1/2q and β > 1− 1/2q, then

dTV (ṼN,M , N(0, 1)) ≤ cα,β,q g(q, α,N),

where cα,β,q are constants depending on α, β, q that may differ from the ones in [31,
Theorem 3.1], and the normalization terms are as before.

Example 4.5 (Tensor product of regularly varying covariance functions). Let us define
a centered Gaussian field B = (Bx)x∈Rd with separable covariance function as in (1.4),
with p ≥ 2 and Ci : Rdi → R defined as

Ci(xi) :=
1

(1 + ‖xi‖2)βi/2
, βi > 0, i = 1, . . . , p.

Let us consider the quadratic variation of this field, that is, the functional Y (t1, . . . , tp)[2]

as in (3.2) as well as its rescaled version Ỹ . The parameters βi determine the behavior
of the functional. Indeed, combining Theorem 2.3 and Proposition 3.1, it is enough to
have βi > di/2 for at least one i for Ỹ (t1, . . . , tp)[2] to have a Gaussian limit. Moreover,
by the application of Proposition 3.3, we may also deduce an upper bound for the rate
of convergence in total variation. For a fixed i satisfying βi > di/2, an upper bound
for the rate of convergence in total variation distance of Ỹi(ti)[2] (recall (1.6)) towards
a Gaussian distribution is given by the rate of convergence to 0 of the norm of the
contraction:

‖f̃i(ti)⊗1 f̃i(ti)‖22 .

(∫
‖xi‖≤ti Ci(xi)dxi

)2

tdii
�


t−dii if βi > di

log(ti)
2t−dii if βi = di

tdi−2βi
i if βi ∈ (di/2, di)

=: g(βi, ti)
2,

where we denote by . the inequality up to a positive constant. From the above equiva-
lence and (3.9), we obtain that, if βi > di/2,

dTV (Ỹi(ti)[2], N(0, 1)) . g(βi, ti).

Denoting J = {i ∈ {1, . . . , p} : βi > di/2}, we can deduce that

dTV (Ỹ (t1, . . . , tp)[2], N(0, 1)) .
∏
i∈J

g(βi, ti).

Example 4.6 (Gaussian fluctuations in a long-range dependence setting). Let us define
a centered Gaussian field B = (Bx)R2 with separable covariance function

C(x1, x2) =
1

(1 + |x1|2)1/4
· 1

(1 + |x2|2)3/2
.

Let us consider

Y (t1, t2) =

∫
t1D1×t2D2

H2(Bx)dx, t1, t2 > 0,

where H2 is the second Hermite polynomial and Di ⊂ R are compact sets. Then, R = 2.
We have that C /∈ L2(R2), hence we are in the long-range dependence case. However,
the marginal functional

Ỹ2(t2) =

∫
t2D2

H2(B
(2)
x )dx√

Var
(∫

t2D2
H2(B

(2)
x )dx

) ,
see also (1.5), where (B

(2)
x )R is centered Gaussian field with covariance function C2(x2) =

1
(1+|x2|2)3/2

, exhibits Gaussian fluctuations as t2 →∞ by Theorem 2.3. Hence, by Theo-

rem 1.1 also Ỹ (t1, t2) does.
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5 Going beyond the separability assumption

While the separability assumption holds true in numerous applications (see, e.g.,
[7, Chapter 5] for examples in hydrology and fluid dynamics, or think of the many
frameworks where the fractional Brownian sheet arises, see, e.g., [28, 33]), there also
many instances where it does not.

In this section, we aim to examine what can happen when we go beyond the separable
case. First, let us give a counterexample that shows that we cannot always expect a
result as simple as Theorem 1.1 in the non separable context.

Counterexample 5.1 (Separability matters!). Let us consider p = 2, d1 = d2 = 1, and
thus d = 2. Fix R ≥ 2 and consider α ∈ (1/R, 2/R). Let B = (Bx)Rd be a centered
stationary Gaussian field with unit-variance and covariance function C : Rd → R as

C(x) =
L(‖x‖)
‖x‖α

, x ∈ Rd \ {0},

with L a slowly varying function, such that C is continuous in 0. Assuming that C
satisfies (1.8), since α < 2

R , Theorem 2.4 applies to the functional

Y (t, t)[R] =

∫
t(D1×D2)

HR(Bx)dx

and we obtain that Ỹ (t, t)[R] is asymptotically not Gaussian. Considering the two induced
covariance functions C1(x1) := C(x1, 0) and C2(x2) := C(0, x2), we may construct two

stationary centered Gaussian random fields (B
(i)
xi )xi∈Rdi , i = 1, 2, having Ci as covariance

function and the corresponding additive functional Ỹi(t)[R] on the domain Di, as also
described in (1.6). However, both Ỹ1(t)[R] and Ỹ2(t)[R] have Gaussian fluctuations as
t→∞. Since

Ci(xi) =
L(|xi|)
|xi|α

, i = 1, 2;

with α > 1/R, they both satisfy Theorem 2.3. This counterexample shows how the
convergence of both functionals Yi(ti) is in general not enough to determine the behavior
of Y (t1, . . . , tp), when the separability of the covariance function (1.4) is not satisfied,
even in the particular case t1 = t2 = t.

In what follows, we drop the separability assumption by examining two different
classes: Gneiting covariance functions (Section 5.1) and additively separable covariance
functions (Section 5.2). We will explore whether, akin to the separable case, it is possible
to simplify the asymptotic study of Y (t1, . . . , tp) given by (1.2) by reducing it to that of
simpler functionals Yi(ti).

5.1 Gneiting covariance functions

The class of Gneiting covariance functions was first introduced by Gneiting in [11].
These functions are very popular in many applications, including geostatistics, envi-
ronmental science, climatology and meteorology. A Gneiting covariance function
C : Rd → R has the form

C(x1, x2) = ψ
(
‖x2‖2

)−d1/2
ϕ

(
‖x1‖2

ψ (‖x2‖2)

)
, x1 ∈ Rd1 , x2 ∈ Rd2 , (5.1)

where ϕ : [0,∞)→ (0,∞) is a completely monotone function, that is

(−1)nϕ(n)(t) ≥ 0 ∀n ∈ N, t ≥ 0,
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and ψ : [0,∞) → R+ has completely monotone derivative. The fact that (5.1) defines
a non-negative definite function on Rd1+d2 if d2 = 1 was proved in [11], and can be
extended to d2 ≥ 1 using similar arguments. Assuming that B is a centered Gaussian
random field with unit-variance and covariance function as in (5.1), we may infer that
C(0, 0) = ψ(0)−d1/2ϕ(0) = 1, and suppose, without loss of generality, that ϕ(0) = ψ(0) = 1.

As a consequence, the Gaussian fields (B
(1)
x1 )x1∈Rd1 := (Bx1,0)x1∈Rd1 and (B

(2)
x2 )x2∈Rd2 :=

(B0,x2)x2∈Rd2 have the following covariance functions

C1(x1) := C(x1, 0) = ϕ
(
‖x1‖2

)
; (5.2)

C2(x2) := C(0, x2) = ψ
(
‖x2‖2

)−d1/2
.

For this reason, we rewrite (5.1) as

C(x1, x2) = C2(x2)C1

(
x1C2(x2)2/d1

)
, x1 ∈ Rd1 , x2 ∈ Rd2 . (5.3)

From the expression (5.3), since C1(x1), C2(x2) are positive and non-increasing in the
norms ‖x1‖, ‖x2‖, we deduce that

C2(x2)C1(x1) ≤ C(x1, x2) ≤ C2(x2)C1

(
x1 C2(D2)2/d1

)
, (5.4)

where D2 denotes the domain of the variable x2, and

C2(D2) = inf
x2∈(D2−D2)

C2(x2) = ψ
(
diam(D2)2

)−d1/2
.

Therefore, C(x1, x2) is wedged between two separable covariance functions, the product
C1(x1)C2(x2) and the function C1(x1 C2(D2)2/d1)C2(x2). This suggests that the Gneiting
case may be studied combining the bounds (5.4) and Theorem 1.1. We will partially
formalize this intuition in Theorem 5.1, and we conjecture that the latter could be
extended to more general functionals, growing domains and classes of non-separable
covariance functions satisfying properties analogous to (5.4). These extensions are left
for future research.

Analogously to the version of Theorem 1.1 explained in Remark 1.7, Theorem 5.1
allows to reduce the study of

Y (t1, t2)[q] =

∫
t1D1×t2D2

Hq(Bx)dx, as ti →∞,

for only one index i ∈ {1, 2} (i.e. only the i-th domain is growing), to that of the respective
marginal functional

Yi(ti)[q] =

∫
tiDi

Hq(B
(i)
xi )dxi, as ti →∞,

where Di ⊆ Rdi are compact sets with Vol(Di) > 0 and (B
(i)
xi )xi∈Rdi are Gaussian fields

with covariance functions Ci, as defined in (5.2).

Theorem 5.1. Let B = (Bx)x∈Rd be a real-valued, continuous, centered, stationary
Gaussian field with unit-variance. Let C : Rd → R be the covariance function of B, and
assume that C is a Gneiting covariance function, see (5.1)-(5.3). Let Y (t1, t2)[q], Yi(ti)[q]
be defined as above, and Ỹ , Ỹi their normalized versions (see e.g. (1.3)). Fix j ∈ {1, 2}.
Then, the following holds:

Ỹj(tj)[q]
d→ N(0, 1), as tj →∞

implies

Ỹ (t1, t2)[q]
d→ N(0, 1), as tj →∞

where tk is fixed, for k 6= j.

EJP 29 (2024), paper 136.
Page 25/33

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1197
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Limit theorems for p-domain functionals of stationary Gaussian fields

Proof of Theorem 5.1. The case q = 1 is trivial because everything is Gaussian, so let
us focus on q ≥ 2. We will show the convergence by means of the Fourth Moment
Theorem 2.1. First, recall that

Var (Y (t1, t2)[q]) = q!

∫
(t1D1×t2D2)2

Cq(x− y)dxdy.

Thus, by (5.4) and (3.3), we have

Var (Y1(t1)[q]) Var (Y2(t2)[q]) ≤ q! Var (Y (t1, t2)[q]) .

For the sake of brevity, let use denote h(x2) := C2(x2)2/d1 . We have

‖f(t1, t2)⊗r f(t1, t2)‖2

=

∫
(t1D1×t2D2)4

C2(x2 − y2)rC2(z2 − u2)rC2(x2 − z2)q−rC2(y2 − u2)q−r

× C1((x1 − y1)h(x2 − y2))rC1((z1 − u1)h(z2 − u2))r

× C1((x1 − z1)h(x2 − z2))q−rC1((y1 − u1)h(y2 − u2))q−rdx dy dz du.

If we fix t1 and let t2 →∞, we get from 0 ≤ C1 ≤ 1 that

‖f(t1, t2)⊗r f(t1, t2)‖2 ≤ ‖f2(t2)⊗r f2(t2)‖2 Vol(t1D1)4.

If we fix t2 and let t1 →∞, setting A := C2(t2D2)2/d1 <∞, by (5.4) we obtain

‖f(t1, t2)⊗r f(t1, t2)‖2

≤
∫

(t1D1×t2D2)4
dx dy dz du

× C2(x2 − y2)rC2(z2 − u2)rC2(x2 − z2)q−rC2(y2 − u2)q−r

× C1((x1 − y1)A)rC1((z1 − u1)A)r C1((x1 − z1)A)q−rC1((y1 − u1)A)q−r

= A−4d1

∫
(At1D1×t2D2)4

C2(x2 − y2)rC2(z2 − u2)rC2(x2 − z2)q−rC2(y2 − u2)q−r

× C1(x1 − y1)rC1(z1 − u1)rC1(x1 − z1)q−rC1(y1 − u1)q−rdx dy dz du

≤ A−4d1 Vol(t2D2)4‖f1(t1)⊗r f1(t1)‖2,

where the first inequality is due to (5.4) and (5.2), which imply C1(x1h(x2)) ≤ C(x1A) for
all xi ∈ Rdi , i = 1, 2; the equality in the middle follows by change of variable x← Ax; and
the last inequality follows since C2 ≤ 1 and recalling the definition of ‖f1(t1)⊗r f1(t1)‖2.
Applying the Fourth-Moment Theorem 2.1 leads to the desired conclusion.

5.2 Additively separable covariance functions

In this subsection we consider additively separable covariance functions of the
form

C(x1, x2) = K1(x1) +K2(x2), x1 ∈ Rd1 , x2 ∈ Rd2 , (5.5)

where K1 and K2 are the covariance functions of two stationary, continuous, centered
Gaussian fields (B(1))x1∈Rd1 and (B(2))x2∈Rd2 , with K1(0),K2(0) > 0. From the point of
view of applications, the study of Gaussian fields with additively separable covariance
function (5.5) is motivated by the fact that they can model the sum of two independent
Gaussian fields. Unlike the Gneiting class considered in the previous subsection, which
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is comparable to the separable case (see (5.4)), here reduction theorems have to be
developed in a different way. In this case, we define the marginal functionals as

Ai(ti)[q] =

∫
tiDi

Hq

(
B

(i)
xi

Ki(0)

)
dxi. (5.6)

We introduce new quantities to describe the interplay between the growth rates of the
volumes and the variances, that are the quotients

γiti [q] :=

∫
(tiDi)2

Kq
i (xi − yi)dxidyi

Vol(tiDi)2
. (5.7)

Theorem 5.2. Let B = (Bx)x∈Rd be a real-valued, continuous, centered, stationary
Gaussian field with unit-variance. Let C : Rd → R be the covariance function of B, and
assume it is additively separable in the sense of (5.5), with K1,K2 ≥ 0. Let Ỹ be as
in (1.3). For i = 1, 2, let Ai(ti)[q] be as in (5.6), Ãi its normalized versions (see e.g. (1.3)),
and recall the definition (5.7) of γiti [q]. Finally, assume that

γ1
t1 [q]

γ2
t2 [q]

→ 0 as t1, t2 →∞.

Then, the following holds:

Ã2(t2)[q]
d→ N(0, 1), as t2 →∞,

if and only if

Ỹ1(t1, t2)[q]
d→ N(0, 1), as t1, t2 →∞.

Remark 5.3. Note that, by symmetry, the roles of K1 and K2 can be exchanged in the

statement of Theorem 5.2, obtaining an equivalence between Ã1(t1)[q]
d→ N(0, 1) and

Ỹ (t1, t2)[q]
d→ N(0, 1) as t1, t2 →∞, if

γ2
t2

[q]

γ1
t1

[q]
→ 0.

Remark 5.4. To ease the computation of the quotients γiti [q], i = 1, 2, as noted in
Equation (5.10), assuming that Ki is both non-negative and non-negative definite, one
can observe that

γiti [q] �

∫
{‖x‖≤ti}K

q
i (xi)dxi

ti
di

.

Just like Theorem 1.1 and Theorem 5.1, Theorem 5.2 should be interpreted as a
reduction theorem, since it allows to reduce the asymptotic problem of a 2-domain
functional Y (t1, t2)[q] to that of a 1-domain functional. The difference here is that the
marginal functionals to be considered in the additively separable case are not the same
considered for the separable and Gneiting classes. Moreover, unlike the latter cases, here
the growth rates of the integration domains come into play by means of the quotients
γiti [q] in (5.7) (see also Example 5.6). In order to prove Theorem 5.2, we state and prove
the following lemma.

Lemma 5.5. Under the notations and assumptions of Theorem 5.2, we have that

Var(Y (t1, t2)[q]) = Vol(t1D1)2 Var(A2(t2)[q]) + Var(A1(t1)[q]) Vol(t2D2)2

+

q−1∑
k=1

(
q

k

)2

Var(A1(t1)[k]) Var(A2(t2)[q − k]). (5.8)

In addition, assuming q ≥ 2, we have that

Var(Y (t1, t2)[q])

Vol(t1D1)2 Var(A2(t2)[q])
−→ 1 as t1, t2 →∞.
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Proof. Recall q ≥ 2. Applying Newton’s binomial formula, we may write

Var(Y (t1, t2)[q]) = q!

∫
(t1D1×t2D2)2

C(x− y)qdxdy

= q!

∫
(t1D1×t2D2)2

(K1(x1 − y1) +K2(x2 − y2))qdx1dx2dy1dy2

=

q∑
k=0

q!

(
q

k

)∫
(t1D1)2

K1(x1 − y1)kdx1dy1 ·
∫

(t2D2)2
K2(x2 − y2)q−kdx2dy2,

which is (5.8). Now assume that γ1
t1 [q]/γ2

t2 [q]→ 0. Then, as t1, t2 →∞

Var(Y (t1, t2)[q])

Vol(t1D1)2 Var(A2(t2)[q])
−→ 1.

Indeed,
Var(A1(t1)[q]) Vol(t2D2)2

Vol(t1D1)2 Var(A2(t2)[q])
=
γ1
t1 [q]

γ2
t2 [q]

−→ 0

by assumption. By Jensen inequality in ti and recalling that Ki ≥ 0, we have that

Var(Ai(ti)[k]) = k!

∫
(tiDi)2

Kk
i (xi − yi)dxidyi . Vol(tiDi)

2(q−k)/q Var(Ai(ti)[q])
k/q.

Therefore, the proof is concluded by observing that, for k > 0, we have

Var(A1(t1)[k]) Var(A2(t2)[q − k])

Vol(t1D1)2 Var(A2(t2)[q])
.

Var(A1(t1)[q])k/q Vol(t2D2)2k/q

Vol(t1D1)2k/q Var(A2(t2)[q])k/q
=
γ1
t1 [q]k/q

γ2
t2 [q]k/q

−→ 0.

Proof of Theorem 5.2. By assumption, γ1
t1 [q]/γ2

t2 [q]→ 0. By Lemma 5.5, as t1, t2 →∞ we
have

Var(Y (t1, t2)[q]) ∼ Vol(t1D1)2 Var(A2(t2)[q]).

Regarding contractions, by using the Newton binomial formula, we have

‖f(t1, t2)⊗r f(t1, t2)‖2

=

∫
(t1D1×t2D2)4

C(x− y)rC2(z − u)rC(x− z)q−rC2(y − u)q−rdx dy dz du

=

∫
(t1D1×t2D2)4

dx dy dz du

(K1(x1 − y1) +K2(x2 − y2))r(K1(z1 − u1) +K2(z2 − u2))r

× (K1(x1 − z1) +K2(x2 − z2))q−r(K1(y1 − u1) +K2(y2 − u2))q−r

=

r∑
k1,k2=0

q−r∑
k3,k4=0

(
r

k1

)(
r

k2

)(
q − r
k3

)(
q − r
k4

)
∫

(t1D1)4
dx1 dy1 dz1 du1

K1(x1 − y1)k1K1(z1 − u1)k2K1(x1 − z1)k3K1(y1 − u1)k4∫
(t2D2)4

dx2 dy2 dz2 du2

K2(x2 − y2)r−k1K2(z2 − u2)r−k2K2(x2 − z2)q−r−k3K2(y2 − u2)q−r−k4
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=

r∑
k1,k2=0

q−r∑
k3,k4=0

1{(k1,k2,k3,k4) 6=(0,0,0,0)}

(
r

k1

)(
r

k2

)(
q − r
k3

)(
q − r
k4

)
∫

(t1D1)4
dx1 dy1 dz1 du1

K1(x1 − y1)k1K1(z1 − u1)k2K1(x1 − z1)k3K1(y1 − u1)k4∫
(t2D2)4

dx2 dy2 dz2 du2

K2(x2 − y2)r−k1K2(z2 − u2)r−k2K2(x2 − z2)q−r−k3K2(y2 − u2)q−r−k4

+ Vol(t1D1)4‖f2(t2)⊗r f2(t2)‖2 .

Moreover, we have

r∑
k1,k2=0

q−r∑
k3,k4=0

1{(k1,k2,k3,k4) 6=(0,0,0,0)}

(
r

k1

)(
r

k2

)(
q − r
k3

)(
q − r
k4

)
∫

(t1D1)4
dx1 dy1 dz1 du1

K1(x1 − y1)k1K1(z1 − u1)k2K1(x1 − z1)k3K1(y1 − u1)k4∫
(t2D2)4

dx2 dy2 dz2 du2

K2(x2 − y2)r−k1K2(z2 − u2)r−k2K2(x2 − z2)q−r−k3K2(y2 − u2)q−r−k4

.
r∑

k1,k2=0

q−r∑
k3,k4=0

1{(k1,k2,k3,k4) 6=(0,0,0,0)}

(
r

k1

)(
r

k2

)(
q − r
k3

)(
q − r
k4

)
×

×
∫

(t1D1)2
K1(x1 − y1)k1+k3dx1dy1

∫
(t2D2)2

K2(x2 − y2)q−k1−k3dx2dy2

×
∫

(t1D1)2
K1(z1 − u1)k2+k4dz1du1

∫
(t2D2)2

K2(z2 − u2)q−k2−k4dz2du2,

where the last inequality follows from the positivity of K1,K2 and Lemma 5.7 applied to
every term of the sum. Then, using Jensen as in the proof of Lemma 5.5, we obtain that,
as t1, t2 →∞,

‖f̃(t1, t2)⊗r f̃(t1, t2)‖22q−2r = (q!)2
‖f(t1, t2)⊗r f(t1, t2)‖22q−2r

Var(Y (t1, t2))2

∼ ‖f(t1, t2)⊗r f(t1, t2)‖2

Vol(t1D1)4 Var(A2(t2))2

=
‖f2(t2)⊗r f2(t2)‖2

Var(A2(t2))2

+O

 r∑
k1,k2=0

q−r∑
k3,k4=0

1{(k1,k2,k3,k4)6=(0,0,0,0)}

(
γ1
t1 [q]

γ2
t2 [q]

)(k1+k3)/q (
γ1
t1 [q]

γ2
t2 [q]

)(k2+k4)/q


∼ (q!)2
‖f2(t2)⊗r f2(t2)‖22q−2r

Var(A2(t2))2
= ‖f̃2(t2)⊗r f̃2(t2)‖22q−2r.

Therefore, the proof is again concluded by means of the Fourth Moment theorem 2.1.

We conclude the section with an example.
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Example 5.6. Let us consider a Gaussian random fieldB = (Bx)x∈Rd1+d2 with covariance
function of the form (5.5), choosing

K1(x1) =
1

(1 + ‖x1‖2)β1/2
, K2(x2) =

1

(1 + ‖x2‖2)β2/2
.

and consider its quadratic variation, that is

Y (t1, t2)[2] =

∫
t1D1×t2D2

H2(Bx)dx.

Suppose that β1 ∈ (0, d1/2) and β2 > d2/2. Note that K1 satisfies both (1.7) and (1.8)
(see [14, Example 3]). Then, by Theorem 2.4 the functional Ã1(t1)[2], see (5.6) properly
normalized, is not asymptotically Gaussian; on the other hand, Ã2(t2)[2] is asymptotically
Gaussian, thanks to Theorem 2.3. Note that, up to constants, recalling Remark 5.4,

γ1
t1 [2]

γ2
t2 [2]

∼ t−2β1

1

t−d22

.

Therefore, we may observe two different behaviors depending on the choice of the rate
for t1 and t2: applying Theorem 5.2, whenever t−2β1

1 = o(t−d22 ), we have that Ỹ (t1, t2)

is not asymptotically Gaussian; conversely, when t−d22 = o(t−2β1

1 ) we have a Gaussian
limiting behavior.

Appendix

Proof of Lemma 3.9. The following proof is merely a reformulation of [19, Theorem 4.5]
with our notation. Since h ∈ H�qν , we have the equality

h =

∞∑
i1,...,iq=1

ci1,...,iq Sym(ei1 ⊗ · · · ⊗ eiq ),

where {ei}∞i=1 is an orthonormal basis of Hν and Sym is the symmetrization operator. If
we define e′i(x) := ei(x) a(x) ∈ L2

E(ν′), then {e′i}∞i=1 is an orthonormal basis of Hν′ and
we obtain

a⊗qh =

∞∑
i1,...,iq=1

ci1,...,iq Sym(e′i1 ⊗ · · · ⊗ e
′
iq ).

Applying the operators Iν,q and Iν′,q we obtain

Iν,q(h) =

∞∑
i1,...,iq=1

ci1,...,iq Iν,q
(
Sym(ei1 ⊗ · · · ⊗ eiq )

)
and

Iν′,q(a
⊗q h) =

∞∑
i1,...,iq=1

ci1,...,iq Iν′,q

(
Sym(e′i1 ⊗ · · · ⊗ e

′
iq )
)
.

Therefore, we conclude by means of product formula (see e.g. [23]), observing that

Iν,q(h) =

∞∑
i1,...,iq=1

ci1,...,iqXν(ei1) . . . Xν(eiq )
d
=

∞∑
i1,...,iq=1

ci1,...,iqNi1 . . . Niq

and

Iν′,q(a
⊗qh) =

∞∑
i1,...,iq=1

ci1,...,iqXν(e′i1) . . . Xν(e′iq )
d
=

∞∑
i1,...,iq=1

ci1,...,iqNi1 . . . Niq ,

where {Ni}∞i=1 is a sequence of i.i.d. standard Gaussian random variables.
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Proof of Lemma 3.10. Acting as in the proof of Lemma 3.9, we have

Iq(h(·)) =

∞∑
i1,...,iq=1

ci1,...,iq X(ei1(·)) . . . X(eiq (·))),

where {ei}∞i=1 is an orthonormal basis of Hλ. Note that using the multi-index nota-
tion sα =

∏
i s
α
i for s ∈ Nd and α ∈ R, also the family {s−1/2ei(·/s1, . . . , ·/sd)}∞i=1 is

an orthonormal basis of Hλ. Therefore, the two Gaussian families (X(ei(·)))∞i=1 and
(X(s−1/2ei(·/s1, . . . , ·/sd)))∞i=1 share the same law, and, by extension, the following ran-
dom variables are equally distributed:

Iq(h(·)) law
=

∞∑
i1,...,iq=1

ci1,...,iq X(s−1/2ei1(·/s1, . . . , ·/sd)) . . . . . . X(s−1/2eiq (·/s1, . . . , ·/sd)).

Moreover, by product formula (see e.g. [23]), we have that

∞∑
i1,...,iq=1

ci1,...,iq X(s−1/2ei1(·/s1, . . . , ·/sd)) . . . X(s−1/2eiq (·/s1, . . . , ·/sd))

d
= Iq(s

− q2 h̃(s1, . . . , sd)).

By linearity, Iq(s−
q
2 h̃(s1, . . . , sd)) = s−

q
2 Iq(h̃(s1, . . . , sd)), which concludes the proof.

Lemma 5.7. Let K : Rd → R be a non-negative definite function such that K ≥ 0.
Suppose that D ⊆ Rd compact with Vol(D) > 0. Then, for every k1, k2, k3, k4 ∈ N,
there exists a positive constant c, depending on K,D and the exponents ki, i = 1, 2, 3, 4,
satisfying for all t > 0 the following inequality:∫

(tD)4
K(x− y)k1K(z − u)k2K(x− z)k3K(y − u)k4dxdydzdu

≤ c
∫

(tD)2
K(x− y)k1+k3dxdy

∫
(tD)2

K(z − u)k2+k4dzdu. (5.9)

Proof. First, by using the inequality xayb ≤ xa+b + ya+b, the LHS of the inequality (5.9)
can be bounded by

2

∫
(tD)4

K(x− y)k1+k3K(z − u)k2+k4dxdydzdu

+ 2

∫
(tD)4

K(x− y)k1+k3K(y − u)k2+k4dxdydzdu.

Then, by the change of variable a = x−y and b = y−u and compactness of the domain D,
we may also bound the second term in the previous equation, up to a positive constant,
by

Vol(tD)

∫
(tD−tD)2

K(a)k1+k3K(b)k2+k4 Vol(tD ∩ (tD − a) ∩ (tD − b))dadb

≤ Vol(tD)2

∫
tD−tD

K(a)k1+k3da

∫
tD−tD

K(b)k2+k4db.

To conclude, we need to show that

Vol(tD)

∫
tD−tD

K(a)k1+k3da .
∫

(tD)2
K(x− y)k1+k3dxdy.
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By positivity of the integrand and the doubling conditions for non-negative definite
functions that are also non-negative proved in [12], we deduce that∫

tD−tD
K(a)k1+k3da ≤

∫
{‖x‖≤t·diam(D)}

K(a)k1+k3da .
∫
{‖x‖≤t}

K(a)k1+k3da.

Reasoning as in [18, Proof of Proposition 9, Step 1], we have that

td
∫
{‖x‖≤t}

K(a)k1+k3da �
∫

(tD)2
K(x− y)k1+k3dxdy, (5.10)

which is enough to conclude.
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