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Abstract
With the growth of the fashion and textile industries into the twenty-first century, associated pollution has become pervasive. 
Fibre-based microplastics are the most common types of plastics recovered from aquatic ecosystems encouraging the move 
towards organic fibre usage. Often marketed as biodegradable and ‘environmentally friendly’, organic textile fibres are seen 
as less harmful, but their impacts are understudied. Here, we assess the health effects of reconstituted bamboo-viscose fibres, 
processed bamboo-elastane fibres (both at 700 fibres/L) and their associated dye (Reactive Black-5, at 1 mg/L) on fish, with 
an emphasis on disease resistance utilising an established host-parasite system: the freshwater guppy host (Poecilia reticulata) 
and Gyrodactylus turnbulli (monogenean ectoparasite). Following 3 weeks exposure to the bamboo fibres and associated dye, 
half the experimental fish were infected with G. turnbulli, after which individual parasite trajectories were monitored for a 
further 17 days. Overall, exposures to reconstituted bamboo-viscose fibres, processed bamboo-elastane fibres or dye were 
not associated with any change in host mortality nor any significant changes in parasite infection burdens. When analysing 
the routine metabolic rate (RMR) of fish, uninfected fish had, on average, significantly impacted RMR when exposed to 
processed bamboo-elastane (increased RMR) and reconstituted bamboo-viscose (decreased RMR). Hosts exposed to recon-
stituted bamboo-viscose and the associated dye treatment showed significant changes in RMR pre- and post-infection. This 
study bolsters the growing and needed assessment of the potential environmental impacts of alternative non-plastic fibres; 
nevertheless, more research is needed in this field to prevent potential greenwashing.
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Introduction

The fashion and textile industries contribute significantly 
to environmental pollution via wastewater containing addi-
tives and other associated chemicals, in addition to fibres 
shed from clothing. This presents potential health concerns 
for humans, other animals and their environments due to 
direct or indirect exposure to textile waste (Kishor et al. 
2021). Around 35% of oceanic microplastic pollution is 
attributed to the fashion industry, mostly non-biodegrad-
able (i.e. unable to break down into substrates usable for 
microbial aerobic or anaerobic metabolism), synthetic origin 

(i.e. produced via chemical synthesis) and petroleum-based 
polymers (i.e. polymers derived from hydrocarbons) such 
as nylon, spandex and polyester (Boucher and Friot 2017; 
Suaria et al. 2020). Global textile production is dominated 
by petroleum-based synthetic fibres (~ 60% of total produc-
tion) compared to naturally derived (~ 30% of total pro-
duction) and other fibre types (~ 10% of total production) 
(Carr 2017). Petroleum-based fibre usage has risen with the 
advent of ‘fast fashion’ that produces billions of clothing 
items per year (Niinimäki et al. 2020). Fast fashion gar-
ments are only worn on average ten times before throwaway, 
where they are sent to landfill more often than are recycled 
(TRAID 2018; Barnardos 2021). The affordability of these 
garments comes at an environmental cost (Niinimäki et al. 
2020). Non-degradable polymers commonly used in these 
garments constantly release fibres, which end up in water 
bodies through run-off, wastewater and airborne pathways 
(Liu et al. 2021). Regular household fibre waste generation 
alone can reach worrying scales, with fibre effluent counts 
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reaching in the millions per wash, not accounting for indus-
trial scale generators (Xu et al. 2018), such as netting from 
fishing equipment and masks from medical waste (Sillan-
pää and Sainio 2017; De Falco et al. 2019). One mitigation 
strategy to reduce this waste and its harmful effects is the 
drive toward more plant-derived (i.e. nature-based) prod-
ucts, which in theory are degraded in-natura by microbes 
compared to petroleum-based fibres which resist breakdown 
(Pekhtasheva et al. 2011; Arshad et al. 2014; Resnick 2019). 
It is essential, however, to ensure that products marketed as 
‘ecologically friendly’ are less damaging to the environment 
by empirical testing under controlled conditions. Indeed, the 
EU Directive 2019/904 highlighted the potential problem 
of transitioning to non-plastic polymers, such as bamboo or 
hemp, without sufficient knowledge of their environmental 
and biological impact (Hann et al. 2020).

The negative impacts of granular microplastics on organ-
isms are increasingly well documented (Wright et al. 2013a, 
2013b; de Sá et al. 2018; Ockenden et al. 2021), but data on 
fibre exposure is limited. Granular petroleum-based micro-
plastic consumption in fish not only increased their parasite 
burden but also increased host mortality (Masud and Cable 
2023), and similar effects were seen following exposure 
to petroleum-based microplastic polyester fibres (concen-
tration ~ 700 fibres/L) (MacAulay et al. 2023). In contrast, 
exposure to bamboo fibres (for 52 days) from a commer-
cially available t-shirt, interestingly, significantly reduced 
parasite burdens in adult fish compared with fish not exposed 
to any fibres (MacAulay et al. 2023). Such work supports 
the drive to utilise plastic alternatives, with bamboo being 
a prime contender as a biobased polymer, leaving a lower 
carbon footprint and requiring less water during culturing 
than other biofibres such as cotton (Afrin et al. 2009; Waite 
2010; Ogunwusi 2013). A further consideration regarding 
transitioning to alternative fibres is that fibres shed from 
commercial textiles (no matter the origin) are very differ-
ent to raw non-processed fibres (Yaseen and Scholz 2019). 
Although bamboo is entirely cellulose-based, the rigidity of 
the plant means it requires considerable processing before 
it is suitable for textile use; hence, bamboo cellulose is 
chemically regenerated to increase malleability (Kauffman 
1993). The resulting bamboo-viscose is then combined with 
a petroleum-based polymer, such as elastane, to increase 
flexibility and allow it to function as a comfortable textile 
garment.

The assumption that biobased fibres (derived directly 
from a biological source) are inherently ‘better’ might 
be an example of ‘Greenwashing’ (conveying false or 
misleading information regarding a product’s potential 
environmental impact; see de Freitas Netto et al. (2020)). 
Natural fibres, for instance, share sorbing capabilities 
with petroleum-based fibres (Ladewig et al. 2015; Stanton 
et al. 2019), and all finished products contain additives. 

Fibres, particularly those from textiles, have been altered 
and treated to meet functional requirements of the end 
product, which involve chemical alteration such as bleach-
ing or dying (Holkar et  al. 2016; Yaseen and Scholz 
2019). Reactive dyes, frequently used in textiles, easily 
(and strongly) bind to common fibre types, such as cot-
ton and wool (Chavan 2011; Shang 2013). These reac-
tive dyes hydrolyse with water even without an auxiliary 
compound, such as salt, to produce dyed fabrics, whereas 
other dyes may require additional compounds to ensure 
fastness (Gopalakrishnan et al. 2019). When fabrics enter 
the aquatic environment, these additives have a greater 
likelihood of leaching from fibres into the water column. 
This suggests that dyes may interact with aquatic organ-
isms in two ways: through direct consumption of the dyed 
fibre or passive consumption of the dye-tainted water. 
Dyes, including reactive dyes such as the widely used 
Reactive Black-5, have known negative impacts on aquatic 
organisms including developmental defects and cell death 
observed in zebrafish embryos (Manimaran et al. 2018; 
Joshi and Pancharatna 2019). This highlights how each 
aspect of textile pollution, from whole fibres to additives, 
must be considered in any ecological assessment.

Traditional ecotoxicological assessments typically over-
look host-parasite interactions focussing on either cellular 
toxicity or whole organism level effects, without consid-
ering parasitism as the norm within ecosystems (Poulin 
1999; Marcogliese and Giamberini 2013). Host-parasite 
interactions can be severely impacted via pollutants, many 
of which are immunosuppressant, and this includes par-
ticulate pollution such as microfibres (Sures 2006, 2008; 
Buss et al. 2022). Given that parasites are the dominant 
biomass within all ecosystems, this has consequences for 
host life history traits, including increased stress biomark-
ers, inhibited feeding, reduced predator evasion and sur-
vival (Kuris et al. 2008; Lefèvre et al. 2009). With the 
plethora of pollutants in wastewater, freshwater fish are 
often some of the first organisms exposed to contaminants 
which can be detrimental to their welfare. The effects of 
microplastics, fibres and their additives on fish include 
transcriptional changes, inhibited feeding and growth, 
reduced disease resistance and reduced survival (Limonta 
et al. 2019; Pannetier et al. 2020; Masud and Cable 2023; 
MacAulay et al. 2023). Adult male guppies (Poecilia retic-
ulata) exposed to fibres released directly from a commer-
cial bamboo-viscose (with elastane) garment experienced 
reduced parasite burdens whilst the leachate from these 
fibres had no impact on the parasite itself (Gyrodactylus 
turnbulli; see MacAulay et al. (2023)). Building on this, 
here we assess the impacts of both the whole and individ-
ual components of bamboo textile fibres. We tested recon-
stituted bamboo-viscose fibres, and processed bamboo-vis-
cose with elastane fibres (from a commercially available 
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black t-shirt) alongside a reactive black dye (commercially 
used in the textile industry) on juvenile fish metabolism, 
disease resistance and mortality.

Methods

Host‑parasite system

We utilised the established guppy-Gyrodactylus turnbulli 
model for this study, which allows us to non-destructively 
monitor parasite burdens over time for individual hosts using 
a parasite with rapid (24–48 h) reproduction (Bakke et al. 
2007). Size-matched mixed ornamental juvenile guppies 
(n = 240 laboratory strain, established in November 1997) 
were maintained within 70-L aquaria at 24 ± 0.5 °C on a 
12-h:12-h light/dark photoperiod (lights on 7 am and off at 
7 pm) prior to the investigation. For experimental infection, 
we utilised the Gt3 strain of G. turnbulli, isolated from a 
Nottingham aquarium pet store and cultured under labora-
tory conditions since establishment in November 1997 (King 
and Cable 2007). All fish prior to experimental infections 
were measured (mean standard length = 13.2 mm, SE = 0.15, 
SD = 1.16) and weighed on an electronic scale by mildly 
anesthetising individuals with 0.02% MS-222.

Fibre and dye preparation

The black bamboo fabric (from BAM Bamboo) was of the 
same origin as used in MacAulay et al. (2023) and con-
sisted of 95% bamboo-viscose and 5% elastane. Bamboo 
fabric was cut into 7.5  cm2 squares, then shred into 0.5–1.5 
 cm2 pieces using sterile scissors and immersed in 1 L of 
dechlorinated water and agitated to promote fibre shedding 
to simulate a washing cycle. The same volume of raw recon-
stituted bamboo-viscose fibres (regenerated cellulose from 
bamboo plants) was agitated in 1 L dechlorinated water. A 
drop of each fibre water was then viewed under a compound 
microscope at 40 × magnification, and the number of fibres 
counted on days 1, 3, 5 and 7 of soaking. This was repeated 
10 times per fibre treatment to calculate the average num-
ber per 1 mL, which were then all diluted to 700 fibres/L, 
equivalent to levels found in some natural systems (Carr 
2017; Velasco et al. 2022). The reactive black dye, obtained 
from Sigma-Aldrich (Merck product code 306452), is analo-
gous to the setazol black SDN dye previously confirmed by 
BAM Bamboo to be used during manufacture of bamboo 
clothing products. Wastewater has been found to contain 
concentration of dye upwards of 10 mg/L (Munagapati et al. 
2018; Jalali Sarvestani and Doroudi 2020); due to ethical 
considerations, a concentration of 1 mg/L was utilised here.

Experimental design

The experiment was conducted in two batches and batch 
effect was accounted for during statistical analysis. Fish were 
separated into four treatment groups: (1) control (n = 60), (2) 
processed bamboo-viscose t-shirt with 5% elastane (n = 60), 
(3) raw reconstituted bamboo-viscose fibres (n = 60) and (4) 
reactive black dye (n = 60).

A preliminary trial was conducted on n = 5 fish per fibre 
treatment where individual fish were isolated and main-
tained in 500-mL containers. Fish were exposed for 7 days 
to ~ 700 fibres/L for either reconstituted bamboo-viscose or 
processed bamboo-elastane fibres, equivalent to fibre loads 
found in some natural environments (Carr 2017). This 
involved adding 1 mL of the fibre mixture at the same time 
as adding ground-powdered food (Aquarian®) to each 500-
mL container, both of which initially float but slowly sink 
as they absorb water. Control fish (n = 5) were maintained 
under the same conditions but without fibre exposure. Each 
day, faecal matter from the water was transferred using a 
glass pipette onto a pre-cleaned glass slide, crushed under 
a cover slip and observed under a dissecting microscope 
to confirm the presence of fibres encapsulated within the 
faeces (Fig. 1).

For the main experiment, all fish were isolated into 500-
mL containers (i.e. 1 fish per 500-mL container) and exposed 
to fibres (i.e. ~ 700 fibres/L) or dye (concentration 1 mg/L) 
for 21 days (Fig. 2). Both fibre mixtures were agitated prior 
to exposure to ensure thorough mixing of the fibres within 
the water column for equal dispersion when introduced into 
the containers. Control fish were fed the same quantity of 
flake food (10% of body weight; Frederickson et al. 2021) 
without fibre or dye addition, to ensure that nutrition was 
not a confounding variable. Due to the exposure method 

a) b) 

Fig. 1  Faecal casings from fish (Poecilia reticulata) exposed to: a) 
raw bamboo-viscose fibres, where fibres are contained within and 
without the casing, and b) processed bamboo-elastane, with arrow 
indicating presence of individual fibres expulsed from the faecal cas-
ing after being compressed under a cover slip
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(immersion), it is likely that consumption of fibres and dye 
occurred primarily passively, with active consumption prob-
able but not verifiable (see Fig. 1). A full water change (for 
both the preliminary trial and main experiment) occurred 
every alternate day prior to feeding but after respirometry, 
which involved removing all water from the 500-mL con-
tainers in which fish were housed and replacing with fresh 
temperature controlled dechlorinated water. Upon refilling, 
the fish were then exposed to their respective treatment and 
fed the flake food (Aquarian®). During feeding, precaution 
was taken to ensure that the experimenters clothing did not 
contribute to fibre contamination by always wearing cotton 
short-sleeved clothing, but total elimination was not guar-
anteed (Gwinnett and Miller 2021).

Experimental infection

After 21 days of fibre exposure, half of the fish in each treat-
ment group were infected (n = 30 total) and half remained 
uninfected (n = 30 total). Fish to be infected with G. turn-
bulli were lightly anaesthetised with 0.02% MS-222 and 
then held in water alongside a donor fish. Using a dissect-
ing microscope, with fibre optic lighting, two gyrodactylid 
worms were transposed to the caudal fin of the recipient fish 
following the standard methods of King and Cable (2007). 
Uninfected fish were anaesthetised and handled in the same 
manner without the introduction of parasites to control for 
any handling stress (sham infections). All infected and sham-
infected fish were maintained within 500-mL containers 
throughout the experiment to ensure transmission was not 
a confounding variable for this experiment. Parasite num-
bers were assessed every 48 h for 17 days and this involved 

mildly anesthetising infected fish (using 0.02% MS-222) 
and counting the number of worms present under a dissect-
ing microscope with fibre optic illumination (see King and 
Cable (2007) for detailed description). Fish were catego-
rised as either Resistant (parasite numbers on a host fail to 
increase above 8 worms and most individual hosts cleared 
their infections), Responder (parasite numbers increased 
but then plateaued or decreased) or Susceptible (parasite 
numbers consistently increased) (see Bakke et al. (2002) for 
more in-depth explanation of these categories). The same 
feeding regimes continued during the infection phase of the 
experiment, i.e. both exposure treatments and foods. Any 
host mortalities were recorded throughout the study.

Respirometry

To investigate whether exposure to either the fibres, dye or 
both impacted the routine metabolic rate (RMR) (Chabot 
et al. 2016), infected guppies (prior and during infection with 
G. turnbulli) (n = 24) were transferred to respirometer cham-
bers on days 0, 7, 14, 21, 28 and 35 of exposure, with each 
treatment tested on the same exposure days but in batches of 
4 fish. For day 21, when infections occur, respirometry was 
measured prior to infection. All measurements were con-
ducted in a respirometry set-up that permitted monitoring 
of fish alongside a control simultaneously and temperature 
for the duration of measurements was maintained at 24 ± 0.5 
°C. All water used for experimental purposes was autoclaved 
prior to use and then brought to the desired temperature. 
The static respirometry set-up consisted of individual glass 
chambers (130 mL, sealed DuranTM square glass bottles 
with polypropylene screw caps, Fisher), which were briefly 

Fig. 2  Schematic representation of experimental design. Four treat-
ments: controls (exposed to only dechlorinated water), reconstituted 
bamboo-viscose (exposed to 700 fibres/L of reconstituted bamboo-
viscose fibres), processed bamboo-elastane fibres (exposed to 700 
fibres/L of bamboo-elastane fibres) and dye (reactive black 5 dye at 

1 mg/L), where exposure was conducted for 21 days. On day 21, half 
the fish from each treatment were infected with two Gyrodactylus 
turnbulli and the infection trajectory monitored for a further 17 days 
whilst continuing previous treatment exposure
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washed with ethanol (Sigma-Aldrich) prior to commencing 
measurements to minimise background noise before the start 
of each respirometry trial. Chambers were fitted with indi-
vidual contactless oxygen sensor spots attached to probes 
that were connected to a FireSting  O2 meter (PyroScience, 
Aachen, Germany). The  O2 concentration within respirom-
etry chambers was measured every 1 s for 30 min total (10-
min acclimation time and 20 min for recordings) using the 
following equation: RMR =

ΔO2

M
× Vc , where M is fish mass 

in grams, Vc is the volume of the respirometer chamber in 
mL and ΔO2 is the rate of oxygen decline (Bonneaud et al. 
2016) calculated as the slope of a linear regression. During 
respirometry, the  O2 levels never dropped below 7 mg  L−1 
and were maintained within the recommended levels for 
freshwater tropical fish (OATA 2008). Each individual 
fish was weighed immediately following respirometry, but 
only prior to infection as weighing hosts with ectoparasites 
could influence parasite burdens. Following infections, the 
average weight increase (0.03 g for all treatments) was cal-
culated and added onto the weights for measurements. All 
respirometry measurements were taken prior to any handling 
or water-changing stress.

Ethics

All animal work was approved by the Cardiff University 
Animal Ethics Committee and conducted under UK Home 
Office licence PP8167141. All care was taken to minimise 
fish stress by implementing practices such as no netting, 
limiting noise, consistent light regime (i.e. 12-h:12-h light-
darkness cycles) and water temperature (i.e. 24 °C) within 
temperature controlled, Home Office approved aquatic 
laboratories.

Statistical analyses

All statistical analyses were carried out under RStudio ver-
sion 4.2.3 (http:// www.R- proje ct. org/). For all statistical 
models described below, model assumptions were tested, 
specifically normality of standardised residuals and homo-
geneity of variance and all final models were chosen based 
on the lowest Akaike Information Criterion (http:// CRAN.R- 
proje ct. org/ packa ge= lme4).

Parasite metrics

For this study, the following response variables were 
measured in relation to parasite metrics: parasite count 
over time, maximum parasite burden, peak infection day, 
Area Under Curve (AUC), duration of infection and rate 
of parasite increase. Here, maximum parasite burden is 
defined as the maximum number of G. turnbulli worms 

at a particular time point, defined as peak infection day. 
To calculate AUC, a common pathogen metric utilised to 
quantify total pathogen burdens over the course of an entire 
infection trajectory, we utilised the trapezoid rule (White 
2011). Rates of parasite increase, indicative of parasite 
reproduction, were calculated as the slope of the curve of 
individual infection trajectories. To analyse mean parasite 
intensity, maximum parasite burden, peak parasite day, 
AUC, average RMR and duration of infection, we utilised 
generalised linear models (GLMs). Standard length was 
initially included in the models, but as it did not explain 
significant variation it was removed from subsequent 
models, as part of model refinement (Thomas et al. 2013). 
For both mean parasite intensity and maximum parasite 
count, we used a GLM with a negative binomial error 
family and the log link function, within the MASS package 
(Venables and Ripley 2002) in R Studio. For analysing 
AUC sum, we had to transform the data using the Box-Cox 
transformation method also within the MASS package in 
R, as no family structure and link function could satisfy 
the assumptions of GLMs with the raw data, i.e. normality 
of standardised residuals and heterogeneity of variance. 
Subsequently, a GLM with a Gaussian error family and 
the identity link function was used, which did satisfy all 
model assumptions. A GLM with a Gaussian error family 
and the inverse root link function was used for analysing 
peak infection day. For the analysis of parasite count over 
time, where we needed to account for pseudo replication 
as the same fish was observed for parasite numbers over 
multiple time points, we utilised a generalised linear mixed 
model (GLMM) from the ‘lme4’ package (Bates et al. 2015). 
This was carried out as a negative binomial GLMM where 
treatment, day and the interaction day and treatment were 
our fixed factors and fish ID was included as the random 
factor.

Host metabolism

For analysing host metabolism, we assessed how mean 
routine metabolic rate (RMR) of fish varied between 
experimental treatments using a GLM with an inverse 
Gaussian family and the identity root link function. We 
analysed individual RMR trends using a GLMM with 
Gaussian family and identity link functions, where the 
treatment, day and the interaction between treatment and 
day were fixed factors and fish ID was included as a random 
factor. This GLMM was used to create a prediction plot 
using the ggpredict function within the ‘ggeffects’ package 
in R (Johnson and O’Hara 2014). In addition, emmeans post 
hoc analysis was applied to assess significance of day and 
treatment using the ‘emmeans’ package (Lenth and Lenth 
2018).

http://www.R-project.org/
http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=lme4
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Results

Host survival and disease burdens

Neither reconstituted bamboo-viscose fibres, processed 
bamboo-elastane fibres nor RB5 dye had any significant 
impact on juvenile fish mortality, infected nor uninfected 
(GLM: p > 0.05), as number of deaths across treatments 
did not vary significantly. After 17  days of infection, 
there was no significant difference between the AUC 
sum, maximum parasite burden nor peak day between 
any of the treatments (p > 0.05) (Fig. 3). Treatment had 
no impact on the day in which the parasites reached 
their peak; however, Batch 2 reached peak day signifi-
cantly earlier (approximately 3 days) than Batch 1 (GLM: 
Batch2, Est =  − 0.017, SE = 0.049, p = 0.0007). Parasite 
count over time was not significant between treatments 
(GLMM: reconstituted bamboo-viscose; SE = 10.858885, 
t = 0.2703594, p = 0.786883, dye; SE = 10.836791, 
t =  − 0.8526725, p = 0.3938409, processed bamboo-elas-
tane; SE = 10.869252, t =  − 0.5640176, p = 0.5727422) 
nor was the interaction between day and treatment 
(GLMM: p > 0.05) whilst day was significant (GLMM: 
 F9, 240 = 1573.9, p < 0.001). Infection status (Resistant, 
Responder or Susceptible) did not vary significantly 
between treatments (Χ2 = 7.1238, df = 6, p = 0.3095). In 
all treatments, the dominant status was that of Susceptible 
(control n = 17, raw bamboo-viscose n = 20, dye n = 19 and 
processed bamboo-elastane n = 22), followed by Respond-
ers (control n = 11, raw bamboo-viscose n = 10, dye n = 7 
and processed bamboo-elastane n = 7), with the fewest (or 
none) being Resistant (control n = 2, raw bamboo-viscose 
n = 0, dye n = 4 and processed bamboo-elastane n = 1).

Respirometry

The average RMR for control fish (across the duration of 
the experiment; Fig. 4) was 1.136 mg  O2  g−1  h−1  fish−1, 
whilst fish exposed to reconstituted bamboo-viscose fibres 
had an average RMR of 1.052 mg  O2  g−1  h−1  fish−1, pro-
cessed bamboo-elastane fibres of 1.350 mg  O2  g−1  h−1  fish−1 
and dye of 1.182 mg  O2  g−1  h−1  fish−1. This translated to no 
significant difference in the average RMR between control 
and dye exposed fish (GLM: Est = 0.025263, SE = 0.054156, 
p = 0.64617); however, the average RMR of processed 
bamboo-elastane exposed fish was significantly higher 
than control fish (GLM: Est = 0.207028, SE = 0.061548, 
p = 0.00326) whilst reconstituted bamboo-viscose exposed 
fish had significantly lower average RMR than control fish 
(GLM: Est =  − 0.111341, SE = 0.049450, p = 0.03638) 
(Fig. 4). For RMR, day 21 represents the final day of expo-
sure without infection, and measurements for days 28 and 
35 represent RMR during infection with G. turnbulli. The 
interaction between treatment and day was significant for 
RMR for all fish (GLMM; p < 0.05). Looking at within treat-
ment differences when fish had been infected after 21 days 
of bamboo and dye exposure, there was no significant differ-
ence between control and processed bamboo-elastane RMRs 
across the experiment. However, for reconstituted bamboo-
viscose, there were significant differences in their RMR 
between days 7 and 28 (emmeans: Est = 0.2943, SE = 0.106, 
p = 0.0443), and days 7 and 35 (emmeans: Est = 0.4040, 
SE = 0.111, p = 0.0030), and for the dye between days 7 and 
14 (emmeans: Est = 0.3771, SE = 0.107, p = 0.0043), days 
7 and 28 (emmeans: Est = 0.5471, SE = 0.107, p < 0.0001) 
and days 7 and 35 (emmeans: Est = 0.4577, SE = 0.120, 
p = 0.0015). These results indicate a treatment spe-
cific influence of infection on RMR for the reconstituted 

Fig. 3  Mean parasite intensi-
ties of Gyrodactylus turnbulli 
per treatment (distinguished by 
colour and line type) per day 
(including standard error) on 
their host Poecilia reticulata 
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bamboo-viscose and dye treatments, but not for controls or 
processed bamboo-elastane (Fig. 5).

Discussion

Textile pollutants, which include microfibres and their asso-
ciated dyes, are pervasive within freshwaters, and under-
standing their biological impacts on freshwater organisms 
is important for any welfare assessment. Despite the prev-
alence of studies on non-degradable fibres, the dominant 
proportion of aquatic microfibres are cellulose-based and 
likely of anthropogenic origin, where it has been suggested 
that coloured cellulose-based textile fibres have been misi-
dentified as microplastics for many years (Wesch et al. 2016; 

Cesa et al. 2017; Stanton et al. 2019; Suaria et al. 2020). 
This highlights the need to understand the potential impacts 
of cellulose-based textile fibres on aquatic environments. 
The current study suggests that reconstituted bamboo fibres, 
processed bamboo fibres and the raw dye associated with 
these fibres do not negatively impact disease susceptibil-
ity or host survival, at least following 38 days exposure. 
However, physiological impacts of fibre and dye exposure 
revealed that processed bamboo-elastane did impact metab-
olism by significantly increasing routine metabolic rate 
(RMR) compared to baseline control fish. Conversely, fish 
exposed to reconstituted bamboo-viscose showed a signifi-
cantly lowered RMR, indicating that fibres and their associ-
ated dyes can impose metabolic stress on fish (e.g. Parker 
et al. 2021; Parker et al. 2023. We also reveal that infections 

Fig. 4  The average routine 
metabolic rate (RMR) of fish 
per treatment, accounting for all 
measurements taken for each 
treatment across the duration of 
the experiment. Box plot shows 
the median (line), mean (cross) 
interquartile range (box) and the 
1.5 × interquartile range (whisk-
ers). The filled circles represent 
values out with the 1.5 × inter-
quartile range. Each box is out-
lined with different line types to 
represent each treatment

Fig. 5  Predicted range of 
routine metabolic rates (RMRs) 
(mg  O2/g−1/h−1) for fish, per 
treatment per day, across 
38 days. Fish were exposed 
to their respective treatments 
across the entire experiment, but 
days 28 and 35 represent RMRs 
where some fish were actively 
infected (post day 21) with 
Gyrodactylus turnbulli (dashed 
error bars) and some remained 
uninfected (solid error bars)
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had treatment-specific impacts on RMR, specifically for fish 
exposed to reconstituted bamboo-viscose and the Reactive 
Black-5 dye.

As bamboo is entirely comprised of cellulose, it is bio-
degradable, but it is extremely rigid in its base structure. As 
such, for textile usage, the base structure of bamboo has to 
be chemically regenerated, and this reconstituted bamboo-
viscose is considered semi-natural or semi-synthetic (Bien 
2021). Elastane is then added to provide flexibility to the 
fabric (Kauffman 1993). Previously, we demonstrated that 
exposure of adult male guppies for 52 days (21 days prior 
to infection plus 31 days exposure during infection) to pro-
cessed bamboo-elastane fibres resulted in lower G. turn-
bulli burdens, along with no adverse impact on mortality of 
the guppy host nor the parasite (MacAulay et al., in press). 
The current study time focussed on juvenile fish exposed 
for a shorter (38 days) period (21 days prior to infection 
plus 17 days during infection). From our current results, we 
reveal no impact of either reconstituted bamboo-viscose nor 
the processed bamboo fibres on disease dynamics using the 
same host-parasite system; however, we add to this knowl-
edge by revealing that changes in metabolism are detectable 
when fish are exposed to processed bamboo-elastane and 
reconstituted bamboo-viscose in the same host-parasite sys-
tem. Juvenile guppies exposed to microplastics for 28 days 
retain particles within the gut (Huang et al. 2020), which 
likely also occurs for fibres (in future, this could be con-
firmed through microscopy of the intestine), indicating the 
importance of assessing long-term impacts. Exposure to 
microplastics can stimulate juvenile fish immunity, poten-
tially priming their immune system for infection (Huang 
et al. 2020). If this was the case in the current study, this 
might explain why these juveniles tolerated G. turnbulli 
infection more effectively than adult fish. The key differ-
ence between this and the previous study (MacAulay et al. 
2023) is the life stage of the fish, which we know can influ-
ence immune response, where juvenile fish have a gener-
ally underdeveloped immune system versus the established 
immune system of mature fish (Zapata et al. 2006; Uribe 
et al. 2011). Despite no observable impacts being found in 
the current study, micro- and nano-level effects were not 
directly assessed: techniques such as histopathology, ELISA 
and transcriptomics may reveal impacts at the organ, cellular 
and DNA level (Petitjean et al. 2019; Huang et al. 2020).

The dye utilised here was Reactive Black-5 (RB5; also 
known as Remazol Black B), a readily available black dye 
commonly used in textile colouring. The wet fastness of 
reactive dyes is touted as a benefit, but when fibres dyed 
with these reactive dyes enter the water column (be that dur-
ing washing or as waste products), it is possible to visually 
observe dye leaching out of the fibres and into the water 
(MacAulay et al. 2023). The dyes, and any other associated 
chemicals contained within the textile, will leach out of the 

fibres and enter the water column as leachate. In zebrafish, 
textile leachate and RB5 specifically can induce cytotox-
icity within cell lines, cause malformations during larval 
development and increase mortality of embryonic fish (de 
Oliveira et al. 2016; Manimaran et al. 2018). These dyes can 
also impact behaviour, reducing activity in rainbow trout 
and competitive behaviours in fathead minnows following 
exposure to wastewater effluent in-natura (Garcia-Reyero 
et al. 2011; Almroth et al. 2021). Dye concentrations have 
been found to cause observable effects, under laboratory 
conditions, at concentrations greater than 1 mg/L, although 
1 mg/L did increase mortality of zebrafish embryos (Mani-
maran et al. 2018). Within our study, fish parasite burdens 
were not impacted following exposure to 1 mg/L dye and no 
other observable detrimental effects were observed; how-
ever, this may be limited by the experimental duration and 
further investigations over a longer exposure period may 
be necessary. Malformations observed in previous studies 
focussed on larval zebrafish arguably at greater risk of devel-
opmental difficulties (Kato et al. 2004; Rojo-Cebreros et al. 
2018) than the juvenile fish used within our study. RB5 is 
degradable by bacteria, which break down and decolour the 
dye within water (El Bouraie and Din 2016). The aquarium 
water used for the current study was not sterile but as it 
was completely changed and re-dosed every 2 days so it is 
unlikely that bacterial breakdown would have deactivated 
the dye during our experiment, but we acknowledge some 
breakdown products may have been generated.

For average routine metabolic rate (RMR), we observed 
no significant differences between dye-exposed fish and 
controls, but we did observe differences for reconstituted 
bamboo-viscose and processed bamboo-elastane-exposed 
fish. We recorded a lower average RMR for the reconstituted 
bamboo-viscose-exposed fish and a higher average RMR 
for processed bamboo-elastane exposed fish, compared to 
control fish. This suggests that reconstituted bamboo-viscose 
is associated with metabolic depression, although the rea-
son for this is unclear. We know that freshwater fish often 
have cellulose-based detritus in their diets and that they can 
digest and utilise the nutrients from bamboo (Magurran 
2005; Saha et al. 2006), which may explain why fish exposed 
to processed bamboo-elastane had significantly increased 
metabolism. It is plausible that the processed bamboo-elas-
tane fibres, which are associated with multiple additives, 
including RB5 (which we tested in this study), were causing 
metabolic stress, seen here as a significant increase in RMR. 
Processed fibres, such as our processed bamboo-elastane, 
often contain chemicals such as sodium hydroxide, formal-
dehyde and hydrogen peroxide (Yaseen and Scholz 2019), 
all of which may influence RMR (Tavares-Dias 2021; Wood 
et al. 2021) but we are unable to say for certain. Here, we 
show that parasitic infections have a treatment-specific influ-
ence on RMR, where the RMR is depressed, matching the 
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trend seen for other fish with parasitic infections (Hvas et al. 
2017; Guitard et al. 2022; Schaal et al. 2022). In terms of 
temporal RMR variation across the experiment, we did not 
see a difference in RMR for fish between pre- (days 0–21) 
and post-infection (days 28 and 35) that were not exposed to 
fibres nor dye, whereas previous results indicate an increase 
in RMR with infection of G. turnbulli (see Masud et al. 
(2020); Robison-Smith et al. (2024)). This could be due to 
two factors: fish strain variation and life stage. The RMR 
of wild-origin fish under similar lab conditions was lower 
on average than the ornamental strain used here, and the 
wild-origin fish showed increased oxygen consumption post-
infection (Masud et al. 2022; Robison-Smith et al. 2024). 
We used juvenile fish, which may have been under increased 
energy demands needed for maturation and sexual develop-
ment, and as such infection did not significantly influence 
the RMR (Jobling 1994; Pichavant et al. 2001). Smaller fish 
will display a higher metabolic rate than larger fish, when 
weight is considered (Urbina and Glover 2013; Guitard et al. 
2022). Overall, the decreased trend observed in RMR across 
the experiment (Fig. 5) matches what we would expect and is 
due to a combination of infection and growth, which directly 
correlates to lower RMR, as the fish were growing, gain-
ing ~ 0.003 g per week (Urbina and Glover 2013).

Our current knowledge of fibre pollution is lacking. Most 
studies pertaining to fibre pollution focus on assessing the 
type and scale of fibre pollution, typically within a ‘plas-
tic focus’ framework (e.g. Collard et al. (2017); Halstead 
et al. (2018); Henry et al. (2019); Ross et al. (2021)). This 
work does, however, highlight the sheer pervasiveness of 
fibres (Collard et al. 2017; Pazos et al. 2017; Ragusa et al. 
2021; Ross et al. 2021), supporting the need for continued 
and improved assessment of their functional impact. Whilst 
60% of fibres produced are synthetic (Carr 2017), and as 
such can be classified under the microplastic umbrella, the 
notoriety of microplastics has driven an upsurge in ‘alter-
native’ or biobased fibre types to reduce plastic pollution 
and their negative impacts. This work assesses the potential 
for bamboo fibres as a ‘green alternative’ to plastic fibres, 
by testing their impacts on freshwater fish metabolism and 
disease resistance. The results of this study do not give an 
unadulterated green light for these fibres as they highlight 
that even nature-based fibres may be detrimental for fish 
welfare over extended periods of exposure.
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