
Asthma and lower airway disease
Deep multiomic profiling reveals molecular
signatures that underpin preschool wheeze and
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Background: Wheezing in childhood is prevalent, with over one-
half of all children experiencing at least 1 episode by age 6. The
pathophysiology of wheeze, especially why some children
develop asthma while others do not, remains unclear.
Objectives: This study addresses the knowledge gap by
investigating the transition from preschool wheeze to asthma
using multiomic profiling.
Methods: Unsupervised, group-agnostic integrative multiomic
factor analysis was performed using host/bacterial (meta)
transcriptomic and bacterial shotgun metagenomic datasets
from bronchial brush samples paired with metabolomic/
lipidomic data from bronchoalveolar lavage samples acquired
from children 1-17 years old.
Results: Two multiomic factors were identified: one
characterizing preschool-aged recurrent wheeze and another
capturing an inferred trajectory from health to wheeze and
school-aged asthma. Recurrent wheeze was driven by type
1-immune signatures, coupled with upregulation of immune-
related and neutrophil-associated lipids and metabolites.
Comparatively, progression toward asthma from ages 1 to 18
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was dominated by changes related to airway epithelial cell gene
expression, type 2-immune responses, and constituents of the
airway microbiome, such as increased Haemophilus influenzae.
Conclusions: These factors highlighted distinctions between an
inflammation-related phenotype in preschool wheeze, and the
predominance of airway epithelial-related changes linked with
the inferred trajectory toward asthma. These findings provide
insights into the differential mechanisms driving the progression
from wheeze to asthma and may inform targeted therapeutic
strategies. (J Allergy Clin Immunol 2025;155:94-106.)

Key words: Wheeze, asthma, multiomics, gene expression, metage-
nomics, metabolomics, lipidomics, disease trajectory

Wheezing in childhood is remarkably prevalent, with over one-
half of all children having >_1 episode by 6 years of age.1 Due to
disease heterogeneity and challenges associated with obtaining
meaningful physiological parameters, such as lung function, in
preschool-aged children, there exists a knowledge gap in the path-
ophysiology of wheeze. The reason some children with preschool
wheeze continue to wheeze and develop asthma while others do
not, even with comparable initial clinical presentation, remains
an unanswered question. Indeed, >50% of children with recurrent
preschool wheeze will have complete symptom resolution by
school age and not develop asthma.2,3

Multiple epidemiological studies have shown that atopy (high total
IgE levelswith the presenceof elevated aero-allergen–specific IgE) in
recurrent preschool patients whowheeze is linked with asthma.3-5 In
line with this, it is clear that type 2 immune responses and airway
remodeling are present in school-aged asthma.6 However, this is
less clear in those with recurrent wheeze, and while some preschool
children exhibit evidence of airway eosinophilia, a subgroup have a
predominance of lower airway neutrophilia.7 In addition, it is unclear
whether these children exhibit variations in their baseline immuno-
logical tone under steady-state conditions when acute symptoms
are absent. Persistent underlying differences in cellular andmolecular
factors could represent important early therapeutic intervention
targets and point to potential mechanisms driving disease.

There is evidence of lower airway microbial dysbiosis in both
preschool children with recurrent wheeze and older children with
asthma, and that dysbiosis may precede disease symptoms,
sometimes bymany years.8-10 Advances inmultiomics technologies
have revolutionized respiratory research.11 In particular, the
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utilization of shotgun metagenomics and metatranscriptomics
facilitate precise characterization of microbes and allow interro-
gation of whether certain species are simply bystanders or
whether they are transcriptionally active.

While some studies have performed multiomic integration in
the context of asthma,12 to our knowledge and as highlighted in a
recent review,13 no study has simultaneously investigated the
paired lower airway transcriptome, metabolome/lipidome, and
microbiome in the lower airways. Parallel investigation of the res-
piratory microbiome and circulating metabolome as performed in
previous studies provides valuable insights; however, it may over-
look significant changes linked with disease. Exploration into the
interplay between host and microbes in the lower airways has the
potential to significantly advance our understanding of early-life
asthma progression and pathophysiology.

To address these gaps in the field, we investigated the transition
from preschool wheeze to asthma by using deep multiomic
profiling of lower airway samples from preschool patients who
wheeze, school-aged patients who are asthmatic, and preschool
controls in the absence of acute symptoms. Data integration was
conducted unsupervised, enabling impartial post hoc correlation
with clinical groups. Despite the inability to track individual
patients over time due to the cross-sectional nature of our sam-
ples, we were able to investigate an inferred trajectory through
a multiomic bioinformatic approach. We define disease progres-
sion and trajectory throughout this article as having a higher score
for the multiomic signature that captured the dynamic continuum
from healthy preschool children, through to recurrent preschool
wheeze and school-aged asthma. We identified 2 signatures:
one related to an inferred trajectory toward childhood asthma
characterized by type 2 immune–related changes in the airway
epithelium and presence of transcriptionally active pathogens,
and one specific to preschool wheeze distinguished by neutro-
philic, type 1 immune–associated signals and changes in local
metabolite and lipid abundance. The modalities within each
signature warrant further consideration as targets for future
disease prevention and management strategies.
METHODS

Participants and sample collection
To investigate the progression from recurrent wheeze to

asthma, 3 groups from the Breathing Together cohort were
investigated.14 Our study examined male and female participants,
and similar findings are reported for both sexes. Informed parental
consent was obtained prior to inclusion in the study, and ethical
approval was obtained from the Regional Ethics Committee
(REC reference: 16/LO/1518).
Preschool controls. The first group consisted of preschool
controls, aged 12 months to 5 years, with no history of wheezing,
or other significant respiratory illness. Because lower airway
sampling is not ethically justifiable in childrenwithout respiratory
symptoms, lower airway research samples were obtained
following informed parental consent, from children undergoing
elective surgery that required clinically indicated intubation
under general anesthesia. Exclusion criteria for this group
included recent respiratory tract illness (symptoms resolved for
<2 weeks), other chronic respiratory diseases (eg, cystic fibrosis),
and a history of previous pituitary or ethmoid surgery. Four
control patients were prescribed inhaled corticosteroids and 6
were prescribed bronchodilators in response to a prior isolated
wheeze event, and all 10 were considered preschool controls for
this study because thewheezewas not recurrent. A cytology brush
was passed through the endotracheal tube and used to obtain
lower airway epithelial cells as previously described.15

Recurrent severe preschool wheeze. The second group
consisted of severe preschool patients who wheeze, aged 12
months to 5 years, with a history of recurrent, severe wheezing
and difficulty breathing, who were scheduled for clinically
indicated bronchoscopy.

Severe school-age asthma. The third group included
school-aged patients who are asthmatic, aged 6 to 18 years, with
a confirmed diagnosis of severe asthma defined as evidence of
airway hyper-responsiveness, bronchodilator reversibility (>_12%),
or peak expiratory flow variability (>_10%). Both the preschool
patients with severe wheeze and school-age children with severe
asthma were undergoing a clinically indicated bronchoscopy, and
additional lower airway samples were collected for research
following informedparental consent and child assent, as previously
described.9,16 For shotgun metagenomics, bronchial brushes were
obtained using Copan eSwabs (Copan Diagnostics, Murrieta,
Calif), rotated 5 times, and subsequently stored at 2808C. Bron-
chial brushes, used for host transcriptomics and metatranscriptom-
ics, were rotated 3 times to collect endobronchial cells, then
immediately placed into an Eppendorf with 700 mL of RLT lysis
buffer (Qiagen, Venlo, The Netherlands) and 2-Mercaptoethanol
(Sigma-Aldrich, StLouis,Mo), followedby snap-freezing and stor-
age at2808C. Bronchoalveolar lavage (BAL) was performed from
the right middle lobe with 3 aliquots of 1 mL/kg of 0.9% sodium
chloride and BAL supernatants collected for metabolomics/
lipidomics were stored at 2808C. Differential cell counts were
performed on BAL for red blood cells and immune cell subsets.
Atopic status
All children had assessments of total IgE and specific IgE to

common aero-allergens. A total serum IgE level threshold of 30
IU/mL was used as previously described for associations with
atopy in line with prescribing information for omalizumab, an
anti-IgE mAb indicated for asthma treatment.17 Atopy was there-
fore defined as a total serum IgE level >30 IU/mL, combined with
the presence of at least 1 positive aero-allergen–specific IgE
above the detection limit.
Host/bacterial RNA extraction, library preparation,

and sequencing
RNAwas extracted using the Quick-RNAMicroprep kit (Zymo

Research, Irvine, Calif) according to the manufacturer’s protocol
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and eluted in 40 mL of RNAse-free water. Following extraction,
libraries were prepared using the NEBNext Ultra Directional RNA
Library Prep Kit (New England Biolabs, Ipswich, Mass) for
Illumina (San Diego, Calif) following ribosomal RNA removal
using the Ribo-Zero Magnetic Kit (Illumina, San Diego, Calif).
Resulting libraries were sequenced on an Illumina NovaSeq 6000
platform using a S4 2375 kit.
Host RNA-sequencing data processing
Raw RNA-sequencing FASTQ files were processed using the

NF-CORE rnaseq pipeline (version 3.10.1).18 Briefly, reads
underwent initial quality control with FastQC, were extracted
with UMI-tools, adapters removed, and quality trimming per-
formed with Trim Galore. Genomic contaminants and ribosomal
components were removedwith BBSplit and SortMeRNA respec-
tively. Reads were aligned and quantified via a combination of
STAR and Salmon tools, sorted and indexed using SAMtools,
and dereplicated with UMI-tools. An abundance matrix was
produced, representing scaled and normalized transcripts per
million reads, from which a re-estimated counts table was gener-
ated for downstream analysis. Gene data were filtered for a min-
imum of 100 reads per sampling group using the edgeR package
(version 3.42.0)19 filterByExpr function, followed by voom
normalization with limma (version 3.56.0),20 and removal of
non-protein-coding genes. Voom-normalized data matrix was
saved for multiomic integration.
Bacterial DNA extraction, library preparation, and

sequencing
Bronchial brush swabs were added to 1 mL microbial-free

DNA-free water (Qiagen) and centrifuged at 14,000g for
10 minutes at 48C. The pellet was resuspended and incubated
with 300 U of Lyticase (Sigma) for 30minutes at 378Cwith gentle
shaking (500 rev/min) to enhance DNA recovery, as previously
described.21 DNAwas extracted from the resulting lysates using
the DNeasy UltraClean Microbial Kit (Qiagen) according to the
manufacturer’s protocol and eluted in 40 mL of microbial-free
DNA-freewater. All extraction steps were performed inmicrobial
DNA-free conditions in a laminar flow hood, decontaminated,
and UV-treated prior to processing. Negative controls (ESwabs
opened and closed at sampling site, extraction-negative controls,
and PCR-negative controls) were processed along samples. DNA
was prepared for shotgun sequencing using the Nextera XT DNA
Library Preparation Kit (Illumina) according to the manufac-
turer’s protocol, with multiplexing via the IDT for Illumina
Nextera DNA Unique Dual Indexes Set C (Illumina). Library
pools were sequenced with paired-ends on a NovaSeq 6000
platform using a SP 23250 kit.
Bacterial shotgun metagenomic sequencing data

processing
Raw shotgun sequencing reads were processed as previously

described using the Sunbeam pipeline for adaptor trimming,
quality control, host genome decontamination, assembly of
contiguous sequences, and coassembly.22,23 The coassembly
was reformatted and filtered for sequences >500 bp using Anvi’o
(version 7.1).24 Contig taxonomy was estimated using Kraken
2.25 Individual FASTQ files were aligned and mapped to the
coassembly using bowtie2,26 per-sample contig counts generated
using a custom bash script, then combined into a counts matrix in
R. To decontaminate the contigs, any sequence found in the
extraction negative controls was removed (see Fig E1 in this
article’s Online Repository at www.jacionline.org). Using the
ratio of reads before and after decontamination, samples with
>90% noncontaminant reads were retained. A decontaminated
coassembly FASTQ file was generated from the remaining con-
tigs. Functional Kyoto Encyclopedia of Genes and Genomes
(KEGG) orthology was assigned using the GhostKOALA tool
provided by KEGG,27 then agglomerated using taxonomy to pro-
duce taxa-gene pairs with their associated counts. Using the R
microbiome package (version 1.22.0),28 the dataset was filtered
using a detection threshold of 1 in at least 10% of samples via
the core function and centered log ratio–normalized via the
transform function. The final dataset was saved as a matrix for
multiomic data integration.
Bacterial metatranscriptomic sequencing data

processing
Raw RNA-sequencing reads were processed using the Sunbeam

pipeline as above, which removed host reads from the dataset. The
resulting FASTQ files were mapped to the decontaminated
metagenomic coassembly using bowtie2, and a corresponding
counts matrix was generated for multiomics integration.
Metabolomic and lipidomic sample processing
We used 100 mL of BAL supernatant for concurrent

metabolomics and lipidomics extraction. Then 400 mL of
extraction solvent (3:1 mixture of methanol and chloroform),
supplemented with 0.5 mmol/L of generic internal standards
(3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate
(CHAPS), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS),
Piperazine-N,N9-bis(2-ethanesulfonic acid) (PIPES)) and 5
mmol/L 2,6-di-tert-butyl-4-methylphenol, was added to the
supernatant. Samples were shaken at 1,000 rev/min for one hour
at 48C, followed by centrifugation at 14,000g for 10 minutes.
Supernatants were evaporated using a SpeedVac (Thermo
Fisher Scientific, Waltham, Mass) and resolubilized in 100 mL of
a 3:1:1 solution of methanol, chloroform, and water for
metabolomics or a 4.5:4.5:1 solution of butanol, methanol, and
water for lipidomics. Samples were sonicated for 15 minutes on
ice, centrifuged at 14,000g for 10 minutes, and then supernatant
was collected. Then 10 mL of each supernatant was mixed for
quality control testing, and blanks were prepared as the solvent
solutions alone.
LCMS data acquisition
Liquid chromatography–mass spectrometry (LCMS) was ac-

quired on a Q-Exactive Orbitrap mass spectrometer (Thermo
Fisher Scientific) coupled with the Dionex Ultimate 3000 RS
(Thermo Fisher Scientific) high-performance liquid chromatog-
raphy system. Chromatographic separation was performed on a
ZIC-pHILIC column (5mm, polymeric, 1503 4.6 mm; SeQuant,
Merck, Rahway, NJ). The mobile phase was 20 mmol/L
ammonium carbonate and acetonitrile. The gradient program
started at 80% and was reduced to 50% over 15 minutes, then
reduced further to 5% over 3 minutes, followed by an 8-minute

http://www.jacionline.org


TABLE I. Demographic information for patients included in multiomic analysis

Preschool

controls

Preschool patients

with recurrent

wheeze

School-aged

patients who are

asthmatic

Chi-squared test

Preschool controls vs

preschool patients

with recurrent wheeze

Preschool recurrent

patients with

wheeze vs school-aged

patients who are asthmatic

No. of patients 29 22 22

Age at sampling (y) 4 (1.5-5.6) 3.6 (2-5.8) 12.5 (6.7-17.1)

Sex (male) 58.6 (17/29) 63.6 (14/22) 36.4 (8/22) NS (P 5 1.00) NS (P 5 .171)

Preterm delivery (<37 wk) 0 (0/29) 0 (0/22) 13.6 (3/22) NS (P 5 1.00) NS (P 5 .209)

Daycare� 93.1 (27/29) 50 (8/16, 6 NA) NA ** (P 5 3.13E203) NA

Inhaled corticosteroid usage� 13.8 (4/29) 86.4 (19/22) 90.1 (20/22) *** (P 5 3.73E207) NS (P 5 1.00)

Bronchodilators� 20.7 (6/29) 100 (22/22) 100 (22/22) *** (P 5 1.39E207) NS (P 5 1.00)

Normal vaginal delivery 62 (18/29) 72.7 (16/22) 54.5 (12/22) NS (P 5 .699) NS (P 5 .407)

Ethnicity (White) 65.5 (19/29) 59.1 (13/22) 59.1 (13/22) NS (P 5 1.00) NS (P 5 1.00)

Atopy (serum total IgE >30 IU/mL)� 58.3 (7/12, 17 NA) 54.5 (12/22) 81.8 (18/22) NS (P 5 1.00) NS (P 5 .083)

Family history of asthma 37.9 (11/29) 77.3 (17/22) 81.8 (18/22) * (P 5 1.68E202) NS (P 5 .937)

Family history of eczema 34.5 (10/29) 31.8 (7/22) 50 (11/22) NS (P 5 .893) NS (P 5 .209)

Family history of allergic rhinitis 48.3 (14/29) 54.5 (12/22) 68.2 (15/22) NS (P 5 .739) NS (P 5 .665)

Data are provided as either median (range) or percentage (n/n). *,**,***Significance values represent results of chi-squared tests for comparisons between 2 categorical variables.

NA, Not applicable; NS, nonsignificant.

�Certain clinical variables are missing for some patients. �Inhaled corticosteroids or bronchodilators were prescribed to a small number of preschool controls for a single, isolated

wheeze event. These children were considered controls for the purpose of clinical grouping as the wheeze was not recurrent.

FIG 1. MOFA1 multiomic integration reveals wheeze-associated and disease-associated LFs. (A) Stacked

bar plot showing the contribution of each omic modality to the total variance explained by each factor.

(B) Density plot of the wheeze-associated LF (LF2) colored by group, with corresponding box plot showing

significant differences between preschool patients who wheeze and school-aged patients who are asth-

matic. (C) Density plot of the disease-associated LF (LF4) colored by group, with corresponding box plot

showing significant differences between all groups. Sample sizes are n 5 29 for preschool controls, n 5
22 for preschool patients who wheeze, and n5 22 for school-aged patients who are asthmatic. Significance

levels are indicated as *P < .05; **P < .01; ***P < .001; ****P < .0001.
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re-equilibration to 80%. Flow rate was 0.3 mL/min, and column
compartment temperature was 408C. Total run time was 32
minutes with an injection sample volume of 10 mL. The mass
spectrometer operated with positive and negative polarity switch-
ing at 35,000 resolution at 200m/z, with a detection range of 85 to
1,275 m/z in full scan mode. Electrospray ionization source was
set to 3.5 kV for positive and 4.0 kV for negative modes; sheath
gas and auxiliary gas were set to 50 and 20 arbitrary units,
respectively; capillary temperature was set to 3008C; and probe
heater temperature was set to 1208C. Samples were analyzed in a
single batch and randomized to account for LCMS system drift
over time.



FIG 2. Multiomic-derived Wheeze Score (LF2) is characterized by changes in host gene expression and

small molecules. (A) Bar plot representing the top limma differentially expressed (DE) genes along the

Wheeze Score, with Benjamini-Hochberg (BH) multiple testing correction. (B) Principal component analysis

(PCA) biplot of PC1 and PC2 of differential genes (with logFC > 1) in panel A (subset of batch-corrected in-

tegrated HLCA single-cell RNA-sequencing pseudo-bulk data; n 5 766 profiles of 50 pseudo-bulk cell types

from 28 studies). PCA eigenvectors with eigenvalues >0.5 are shown, and colored according to the Wheeze

Score direction with higher expression. Eigenvectors touching the outer ring with open triangles extend

beyond the plot bounds. Cell types occupying different sectors of the plot are indicated by lines at the
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Metabolomics and lipidomics LCMS data

processing
Raw LCMS data were processed using the metabolome-

lipidome-MSDIAL pipeline (see Code and data availability
section), incorporatingMS-DIAL (version 5.1),29 the HumanMe-
tabolome Database (HMDB; version 4),30 and the pmp (version
1.4.0) R package.31 MS-DIAL was used for deconvolution and
peak detection with aminimum peak amplitude of 100,000. Peaks
were identified using the MassBank database (version 2021.08)32

with a retention time tolerance of 2 minutes and accurate mass
tolerance of 0.002 Da. Peaks were aligned using a retention
time tolerance of 2 minutes and accurate mass tolerance of
0.002 Da, with gap-filling by compulsion. Peak intensity tables
from MS-DIAL were imported into R; peaks were filtered for in-
tensities >5-fold higher than LCMS blanks; samples with >80%
missing values and features with >20% missing values were
removed; and peaks were filtered based on the percentage of vari-
ation in the quality control samples with a maximum relative SD
of 25%. Data were normalized using probabilistic quotient
normalization, followed by random forest missing data imputa-
tion (using the pmp wrapper function of the missForest [version
1.4]33 function), and subsequent generalized logarithmic (glog)
transformation to stabilize variance across low and high intensity
mass spectral features. MS/MS data were further mapped to
HMDB, with an accurate mass tolerance of 0.002 Da, to increase
the number of annotated features. Any unannotated features were
filtered out, and the remaining dataset was subjected to 2 rounds
of manual feature curation in MS-DIAL: first to identify and
remove any poor-quality spectral features not filtered out during
preprocessing with pmp, and second to select the best-quality
spectrum-metabolite pairs using a combination of the MS-
DIAL fill percentage and signal-to-noise ratio values, along
with visual confirmation. The final dataset was saved in matrix
format for multiomic integration.
Statistical analysis and multiomic data integration
Statistical analyses were performed in R (version 4.3.0),34

and plots were generated using ggplot2 (version 3.4.2).35

A summary schematic for the multiomic integration strategy
is provided in Fig E2, A (available in this article’s Online Re-
pository at www.jacionline.org). The 3 input matrices were
assembled into a MultiAssayExperiment object.36 Data were
integrated in an unsupervised, group-agnostic manner using
Multi-Omics Factor Analysis v2 (MOFA1).37 with slow
convergence, a seed value of 2 for generation of pseudo-
random numbers, 5% minimum explained variance threshold
for factor retention, and sampling age used as a covariate. An
overview of the unsupervised multimodal data integration is
shown in Fig E2, B, and we refer the reader to the original
article37 for technical details and mathematical derivations.
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As model inputs, we supplied voom-normalized host transcrip-
tomics data with a read count threshold of 100, centered log
ratio–normalized metagenomic KEGG ortholog count data
with a detection threshold of 1 in >10% of samples, and a com-
bined small molecules dataset. Wilcoxon rank sum tests were
used to assess categorical differences in the resulting latent fac-
tors, and Spearman correlation analyses were used to assess
continuous variables. Statistical significance of clinical group
Wheeze versus Disease Score clustering was assessed by
permutational multivariate ANOVA using the adonis2 function
from the vegan R package (version 2.6-4).38 Factors that
showed significant differences between patient groups were
used as predictors for age-corrected linear modeling on the in-
dividual MOFA-imputed datasets using a custom script built
around limma (see code and data availability section).
Benjamini-Hochberg multiple testing correction was used
with a significance threshold of 0.05. Log fold change (logFC)
thresholds were 0.5 for host RNA and small molecules and 0.25
for bacterial metagenomics. To summarize bacterial metage-
nomic changes following linear modeling, KEGG orthology
functional gene counts were stratified by taxa, filtered for a
minimum count of 10, and the log-transformed value of the
sum of increased (positive) and decreased (negative) gene
counts calculated to determine the net change in gene count
abundance per taxa along the MOFA factor. Spearman correla-
tion analyses were performed on metagenomic and metatran-
scriptomic read counts as a proxy for inferring bacterial
transcriptional activity.
Pseudo-bulk analysis
The full integrated Human Lung Cell Atlas (HLCA)39

single-cell RNA-sequencing dataset was subsetted to omit cells
from individuals with cancer or any smoking history, nasal
samples, and cells annotated as ‘‘native cell.’’ Gene expression
data underwent pseudo-bulk processing by cell type for each
study using decoupleR.40 Mode was set to ‘‘mean,’’ with a
gene read count threshold of 100 and expression in at least
10 cells. The final dataset was batch-corrected with ComBat_-
seq41 and contained 766 profiles, covering 50 cell types from 28
studies. For analysis, data were subsetted to include only mul-
tiomic factor differential genes and used for principal compo-
nent analysis and biplot generation. Labels around the
periphery were added to represent the biplot segment covered
by a given cell type from the center to the extents of 95% con-
fidence ellipses.
Code and data availability
All microbiota and gene expression data have been deposited at

the National Center for Biotechnology Information database under
the BioProject accession number PRJNA1080233 with minimal
entially abundant (DA) small molecules along the

id classes are indicated by colored dots. (D) Excerpt

enes and small molecules upregulated along the

an correlation analysis of log-transformed BAL im-
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FIG 3. Multi-omic-derived Disease Score (LF4) is characterized by changes in host gene expression and

bacterial gene counts. (A) Bar plot representing the top limma DE genes along the Disease Score, with BH

multiple testing correction. (B) PCA biplot of PC1 and PC2 of differential genes (with logFC > 0.5) in panel A

(subset of batch-corrected integrated HLCA single-cell RNA-sequencing pseudo-bulk data; n 5 766 profiles

of 50 pseudo-bulk cell types from 28 studies). PCA eigenvectors with eigenvalues > 0.5 are shown and

colored according to the Disease Score direction with higher expression. Eigenvectors touching the outer

ring with open triangles extend beyond the plot bounds. Cell types occupying different sectors of the

plot are indicated by lines at the plot edges. (C) Bar plots representing the number of DA bacterial taxa-

aggregated KEGG orthologs (KOs), that is, functional gene counts, along the Disease Score, determined

by limma with BH multiple-testing correction. Bars are colored according to whether there are more DA

gene counts in health or disease (left panel). Bar plot representing Spearman correlation coefficients be-

tween taxa-aggregated metagenomic and metatranscriptomic sequencing reads as a measure of
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metadata. Comprehensive clinical metadata can be provided on
reasonable request. The data analysis pipeline for this study is
described at https://github.com/mucosal-immunology-lab/BT_g
roups2-4_analysis. The shotgun sequencing pipeline and custom
linear modelling script is described at https://github.com/
mucosal-immunology-lab/microbiome-analysis/wiki.
RESULTS

Participants and samples
To investigate molecular signatures of wheeze and asthma,

bronchial brushes were collected from preschool children with
and without recurrent wheeze, and school-aged patients who are
asthmatic during clinically stable disease; the present cohort did
not extend to healthy school-aged children. BAL fluid was
simultaneously collected from preschool patients who wheeze
and school-aged patients who are asthmatic. Demographic infor-
mation for patients with samples that passed quality control
criteria is provided in Table I. Bronchial brush samples were
processed for host and microbial transcriptomic sequencing and
bacterial metagenomic characterization. BAL samples were
used for metabolomic and lipidomic profiling.
Multiomics factor analysis reveals 2 sets of cohort-

associated covariation patterns
Following quality control, the available datasets were used to

build an integrative multiomic model using MOFA1, a statistical
framework for integration of multiomics data. This unsupervised
approach integrates different types of biological data, identifies
themain sources of variation, and generates a small set of key com-
ponents, called latent factors (LFs). Throughout this process, each
sample is assigned a single numeric score that indicates its position
along each of the LFs. MOFA1 identified 4 LFs (LF1-LF4) with a
minimum explained variance of 5% (Fig 1, A). LF2 and LF4
showed significant differences between sample cohorts (Fig 1, B
and C) and were therefore the focus of further investigation.
Although LF1 and LF3 contained unique covariation patterns,
they were not explained by any available clinical metadata, and
as such were not pursued further. LF2 explained 27.1% of overall
sample variance, with significant differences between preschool
patients who wheeze and school-aged patients who are asthmatic
(P 5 .039) but no difference between preschool controls and
school-aged patients who are asthmatic. Importantly, LF2 was
not associated with age differences (Spearman r 5 20.16;
P 5 .17). As LF2 distinguished preschool patients who wheeze
from the other groups, it will be referred to as the ‘‘Wheeze Score.’’
Small molecules accounted for 70.4% of factor variation, followed
by host transcriptomics (19.5%) and metagenomics (10.1%). LF4
explained 9.4% of sample variance and was significantly different
among all 3 groups (preschool controls vs preschool patients who
wheeze: P 5 2.3E204; preschool patients who wheeze vs
school-aged patients who are asthmatic: P 5 .011). As school-
aged asthmatic samples were simultaneously the oldest and had
transcriptional activity. Black bars indicate significant co

(D) Box plot comparing Disease Score values between p

with dots colored according to sample cohort. Sample

preschool patients who wheeze, and n5 22 for school-a

are indicated as �P < .1; *P < .05; **P < .01; ****P < .00
the highest LF4 scores, age was positively correlated with LF4
(Spearman r5 0.46; P5 4.3E205). However, variance explained
by LF4 was also associated with inferred disease progression and
will be referred to as the ‘‘Disease Score.’’ Of note, some of the pre-
school controls were prescribed either inhaled corticosteroids (4 of
29) or bronchodilators (6 of 29) for a prior isolated wheezing
episode (see Fig E3, A in this article’s Online Repository at www.
jacionline.org). In-depth characterization of these samples revealed
no significant impact of treatment on either theWheeze or Disease
Scores (Fig E3,B andC).We define disease progression and trajec-
tory here, bymultiomic inference, as an increased Disease Score: a
scale representing a continuum from healthy preschool children,
through to recurrent preschool wheeze and school-aged asthma.
Host transcriptomics and metagenomics accounted for 68.1% and
31.9% of factor variation, respectively.
Multiomic Wheeze Score is characterized by an

inflammatory signature
We next aimed to characterize changes explaining an increased

Wheeze Score. Using the LF score as a continuous predictor for
linear modeling of the individual datasets, corrected for age at
sampling, significant changes were observed for host transcriptom-
ics and small molecule composition, but not for metagenomic
functional gene abundance. The top genes driving an increased
Wheeze Score included both S100A8 and S100A9 (logFC5 1.983,
P 5 1.45E203), one of the most abundant cytosolic protein com-
plexes found in neutrophils,42 chemotactic factors for neutrophils
and other leukocytes (CXCL8, CXCL2, CCL20, CSF3), as well as
others affecting neutrophil adhesion and motility (SELL, PLAUR,
AQP9) (Fig 2, A). Genes induced by pattern- and damage-
associated molecular patterns were also among the top upregulated
(IDO1, IL1B, CCL4, FPR1-3, SOCS3) in addition to genes induced
by type 1 inflammatory cytokines (DUOX2, DUOXA2, BCL2A1,
PLEK). To gain a broader view of which cell types may be most
affected by an increased Wheeze Score, we performed a pseudo-
bulk analysis on a subset of the integrated HLCA, the most compre-
hensive single-cell database currently available, capturing the
majority of cell types in the airways with the exception of granulo-
cytes. The full HLCA pseudo-bulk dataset was filtered for the 2134
differentially expressed genes along the Wheeze Score and then
used for principal component analysis (Fig 2, B and see Fig E5, A
in this article’s Online Repository at www.jacionline.org). Using
the location of each cell type cluster from the center of the principal
component analysis biplot and the direction of key genes driving
variation, it was evident that the majority of upregulated differen-
tially expressed genes were more highly expressed in immune cells
than the structural cell compartment, suggesting an immune-driven
signature in recurrent preschool wheeze. The Wheeze Score was
associated with increased abundance of a large number of metabo-
lites and lipids, except for decreased adenosine and monoethylgly-
cinexylidide levels (Fig 2, C). Among the top increased small
molecules were gram-negative bacterial-derived sulfonolipids,43

anti-inflammatory N-acylethanolamines,44 and triglycerides.
rrelation; gray bars are nonsignificant (right panel).
atients who are nonatopic and those who are atopic,

sizes are n 5 29 for preschool controls, n 5 22 for

ged patients who are asthmatic. Significance levels

1.

https://github.com/mucosal-immunology-lab/BT_groups2-4_analysis
https://github.com/mucosal-immunology-lab/BT_groups2-4_analysis
https://github.com/mucosal-immunology-lab/microbiome-analysis/wiki
https://github.com/mucosal-immunology-lab/microbiome-analysis/wiki
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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Dihexosylceramides and ceramides were increased, as were ether-
linked phospholipids, arachidonic acid, and docosahexaenoic
acid. Increased abundance was further observed for adenosine
breakdownproduct hypoxanthine and kynureninemetabolite quino-
linate. Kynurenine pathway genes facilitating quinolinate produc-
tion in addition to IDO1 were also increased, including KMO
(logFC 5 1.435, P 5 3.71E203) and KYNU (logFC 5 1.698,
P5 8.93E204) (Fig 2,D). Using differential cell counts performed
on fresh BAL samples, the Wheeze Score showed strong positive
correlationwith both neutrophils and leukocytes and negative corre-
lation with macrophages (Fig 2, E and see Fig E4 in this article’s
Online Repository at www.jacionline.org). Conversely, the Disease
Scorewas not associated with changes in BAL immune cell compo-
sition. In summary, we identified a multiomic factor specific to
children with recurrent preschool wheeze at steady state character-
ized by enhanced neutrophilic and type-1 high inflammation and
increased abundance of both proinflammatory and immunomodula-
tory small molecules.
Multiomic Disease Score is characterized by altered

epithelium and bacterial gene counts
Given that the Wheeze Score distinguished preschool patients

who wheeze, but was similar between preschool controls and
school-aged patients who are asthmatic following correction for
patient age, we aimed to characterize the trajectory from health to
asthma captured by the Disease Score. Linear modeling
confirmed that Disease Score variation was explained by host
gene expression and differentially abundant bacterial functional
gene counts. A notable type 2 inflammatory signature was
observed among the top genes driving an increased Disease
Score (Fig 3, A). Clade B serine protease inhibitors (SERPINB2,
SERPINB10, SERPINB11, SERPINB3), tetraspanins (TM4SF1,
UPK1B), and type 2 inflammation–linked genes (POSTN,
LRRC31) were all increased. Mucin gene expression patterns
were also altered, with increased MUC2 and MUC5AC paired
with decreased MUC5B (logFC 5 21.15, P 5 8E203). This
was associated with increases in mucociliary differentiation-
and glycosaminoglycan-related genes (B3GNT6, HS6ST2,
KRT4), and those relating to modulation of angiogenesis and
smooth muscle function (SEMA3B, GSN, TMEM184A,
EGFL6). LTF was negatively associated with Disease Score, as
were types I, III, and VI collagens. Pseudo-bulk analysis of the
357 Disease Score differentially expressed genes highlighted
that the majority of genes upregulated in disease were associated
with airway epithelial and secretory cell populations (Figs 3, B
and E5, B), suggesting that TH2 cell–associated changes to the
structural compartment were linked with disease trajectory. To
assess microbial associations, differentially abundant bacterial
gene counts were stratified by species and the overall genetic shift
determined by averaging gene counts increased and decreased
with Disease Score (Fig 3, C). Given the low microbial biomass
and resulting functional gene sparsity, this method focused on
broader metagenomic content rather than individual bacterial
gene associations. Positive shifts in Haemophilus and Neisseria
gene count averages were associated with disease progression,
while Streptococcus, Prevotella, and Veillonella were negatively
associated. To evaluate microbial transcriptional activity,
Spearman correlations were performed between metagenomic
and metatranscriptomic read counts. Haemophilus influenzae
was the top Disease Score–associated species and showed the
highest correlation (r 5 0.91, P < .0001). Atopic individuals,
identified as those with total systemic IgE levels over 30 IU/mL
with >_1 aero-allergen–specific IgE, had higher Disease Score
values compared to nonatopic counterparts (Fig 3, D). In sum-
mary, we identified a multiomic signature of progression to
asthma associated with type 2 inflammatory–driven changes to
the airway epithelium and the presence of transcriptionally active
pathogens, such as H influenzae.
DISCUSSION
To address the existing gaps in knowledge surrounding the

transition from recurrent wheeze to asthma in childhood, we
collected bronchial brushes and BAL fluid for interrogation of
host-microbe transcriptomics, microbiome, and small molecules.
Challenges surrounding the invasive nature of this type of
sampling have led to a predominance of upper respiratory (nasal
and oropharyngeal) sample analysis, particularly in prior early
life and childhood studies.45,46 Through deep multiomic profiling
of lower airway samples acquired in the absence of acute symp-
toms, we identified 2 multiomic factors derived from host gene
expression and bacterial metagenomics in the bronchi paired
with small molecules from BAL fluid; one capturing a signature
of preschool wheeze, and the other characterizing a trajectory
of disease states from healthy preschool children through to
wheeze and type 2 high asthma.

The identified Wheeze Score exhibited a signature character-
istic of neutrophilic and type 1–driven immune responses. This
was supported by the positive correlation between the Wheeze
Score and proportions of neutrophils and leukocytes in BAL
samples. Pseudo-bulk analysis revealed considerable transcrip-
tional changes in immune cells, particularly among monocytes,
macrophages, and dendritic cells; the absence of granulocytes in
the HLCA database is a limitation to this approach. CXCL8,
CXCL2, and CSF3 are all potent chemokines driving neutrophil
recruitment,47-51 while CCL20 stimulates rapid recruitment of
dendritic cells.52 The associated increase in ether-linked phos-
pholipids supports elevated neutrophil infiltration, because
ether-linked phosphatidylcholines constitute nearly one-half of
neutrophil phosphatidylcholines, but are scarce in most tissues.53

Reportedly, the urokinase receptor (PLAUR) also plays a role in
neutrophil chemotaxis unrelated to its protease activity.54 SELL
is expressed constitutively on most leukocytes and participates
in the ‘‘rolling stage’’ motility and adhesion of neutrophils and
monocytes, allowing extravasation into inflamed tissue.55,56

AQP9meanwhile contributes to regulation of lamellipodium for-
mation and neutrophil motility by modulating cellular water
flux.57 The upregulation of pattern-associated molecular pattern–
and damage-associated molecular pattern–induced genes can
further contribute to cellular infiltration on activation. FPR1 to
FPR13 recognize formylated peptides from bacteria and mito-
chondria, may have roles in viral defense, and have been shown
to induce neutrophil and monocyte chemotaxis.58-60

In addition to genes linked with enhancement of cell motility
and recruitment, proinflammatory genes and small molecules
were associated with an increased Wheeze Score. S100A8/
S100A9 heterodimers, secreted primarily by neutrophils and
macrophages, have critical roles in modulating leukocyte recruit-
ment and stimulating phagocyte secretion of IL1B, TNFA, and
NFKB target genes.61 The S100A8/S100A9 complex comprises
;45% of neutrophil cytosolic proteins in neutrophils, and ;1%

http://www.jacionline.org
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to 5% in monocytes/macrophages.42,62 Sulfonolipids are pro-
duced by gram-negative bacteria and elicit IL1A/B, IL6, and
TNFA in macrophages.43,63 Increased ceramide production is
associated with cellular stress,64 and a recent murine model
demonstrated their contribution to neutrophil infiltration and
reactive oxygen species production.65 In relation to reactive oxy-
gen species production, DUOX2 and its maturation factor DU-
OXA2 were increased. DUOX2 is induced by TH1 cell cytokine
IFN-g and viral infection, unlike TH2 cell–induced DUOX1,
and produces hydrogen peroxide.66

Conversely, immunomodulatory signatures were also evident,
likely to restrict excessive inflammation and tissue damage.
SOCS3 negatively regulates JAK/STAT3 signaling and limits
severity of murine acute lung injury.67,68 IDO1 is induced in
antigen-presenting cells and epithelial cells by type 1 cytokines69

and converts tryptophan to downstream kynurenine metabolites.
Monocytes and macrophages have the highest activities of
KMO and KYNU, which drive conversion from kynurenine to
quinolinate.70 The end product quinolinate can then be secreted
to induce T-cell apoptosis and suppress immune responses71

and has an important role in replenishing cellular NAD1 levels
to meet host energy demands in response to increased cellular
stress.72 Overall, these data suggest that the lower airways in
recurrent pediatric wheeze at baseline are characterized by
increased immune cells (neutrophils, monocytes, and dendritic
cells), proinflammatory mediators, and pathways that limit exces-
sive inflammatory damage. Importantly, respiratory viruses are
the primary trigger of wheezing exacerbations in preschool chil-
dren.73 As such, this multiomic, immune-driven recurrent wheeze
signature may reflect remnants of recurring infections, distin-
guishing it from the signature for progression to asthma.

While the Wheeze Score distinguished preschool-aged
children with severe wheeze, the identified Disease Score
captured an inferred trajectory from early childhood health to
severe school-aged asthma in a stepwise manner, representing a
set of potential host gene expression and bacterial alterations
with utility as targets against disease progression. The Disease
Score transcriptomic signature was suggestive of advancement
toward TH2 cell–high asthma, characterized by increased IL13
and eosinophilia. While a transcriptional profile suggestive of
eosinophilic recruitment was observed, no changes in BAL
eosinophils proportions were found. These changes were
primarily associated with altered gene expression in epithelial
and secretory cells rather than immune cells, highlighting a
baseline epithelial dysfunction rather than an acute eosinophilic
response. The heterogeneity of the airway epithelium confers
diverse functionality, and its contribution to various respiratory
diseases, including asthma, has been proposed and reviewed
recently.74 Consistent biomarkers of TH2 cell–high asthma
that were recapitulated included upregulation of POSTN, SER-
PINB2, SERPINB10, and MUC5AC and downregulation of
LTF and MUC5B.75-78 Airway mucus hypersecretion and secre-
tory cell hyperplasia are features of asthma, alongside an
increased MUC5AC/MUC5B ratio.79,80 MUC2 is not typically
expressed in the airways, but has been observed with airway
irritation in asthma and chronic obstructive pulmonary dis-
ease.80,81 Although collagen increases are associated with
asthma, it has been reported that inhaled corticosteroids
decrease collagen deposition.82 Their near ubiquitous use in
the patients with recurrent wheeze and asthma in this study
likely explains the observed negative association between
Disease Score and collagens I, III, and VI. Upregulation of other
TH2 cell–sensitive genes was also observed. B3GNT6 encodes a
protein with N-acetylglucosaminyltransferase activity that has
an important role in biosynthesis of mucin-type glycoproteins
and showed a trend to increase in IL13-stimulated mucus secre-
tory cells.83 GSN is secreted by human airway epithelial cells in
response to IL484 and has actin depolymerization activity.
Inflammation-related cell death releases large amounts of fila-
mentous actin into the airways, and therefore gelsolin upregula-
tion may play an extracellular actin-scavenging role to prevent
excessive airway surface liquid viscosity.84,85 Indeed, exoge-
nous gelsolin administration has been shown to reduce sputum
viscosity in cystic fibrosis.86 UPK1B is a member of the trans-
membrane 4 superfamily shown to be increased in IL13-treated
primary esophageal epithelial cells and was unresponsive to glu-
cocorticoids in this context.87 Similarly, epithelial cell expres-
sion of LRCC31 has been correlated with both esophageal
eosinophilia and IL13 expression and has a role in increasing
epithelial barrier function.88

In addition to the shift in host gene expression, the Disease
Score also captured changes in bacterial functional gene
abundance of the lower airway microbiome. Due to low
microbial biomass in the airways, use of amplicon sequencing
approaches is far more common, and most existing studies have
focused on the upper airways. In a recent systematic review of
microbiome studies in pediatric asthma,89 only 3 of 13 included
studies investigated the lower airways by means of BAL or
sputum samples, all of which were assessed by 16S amplicon
sequencing. The combination of lower airway bronchial brush
sampling and shotgunmetagenomics used in this study is a novel
resource for interpretation of host-microbe interactions in recur-
rent wheeze and asthma. Colonization with H influenzae and
Neisseria species have been previously linked to airway dysbio-
sis in children and identified as risk factors for progression to
asthma.8 Serological evidence of immune responses to H influ-
enzae, Streptococcus pneumoniae, and Moraxella catarrhalis
have been reported in ;20% of children who are wheezing,90

and these species are the most commonly implicated in asthma
development.91,92 The consistent detection of these bacteria
across studies suggests they could be risk factors and could
influence asthma susceptibility and chronic inflammation in
children with wheeze. While M catarrhalis was detected in
the current study, it was not associated with either the Wheeze
or Disease Scores. Importantly, we demonstrate by metatran-
scriptomics that these taxa are not simply bystanders, but that
they are transcriptionally active in the lower airways. We found
here that metagenomic composition was associated with the in-
ferred disease trajectory but not with the type 1– and neutrophil-
associated Wheeze Score. This suggests that the epithelial
dysfunction creates a dysregulated microenvironment captured
by the Disease Score, potentially shaping the dysbiotic micro-
biome independently of the inflammation seen in patient who
wheeze. Indeed, the signature captured by the Wheeze Score
is probably linked to recent acute viral infections.93 Further,
commensal taxa linked with respiratory homeostasis were tran-
scriptionally active and associated with decreased Disease Score
values, including Prevotella, Streptococcus, and Veillonella spe-
cies.94 This supports previous assertions that disease progres-
sion is linked with a shift from the Bacteroidetes phylum to
Gammaproteobacteria, a phylum with many lung-associated
gram-negative pathogens.
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While the unsupervised data integration approach and subse-
quent linear modeling used in this study accounted for age
differences, the absence of bronchial brush samples from healthy
school-aged children is a limitation. Similarly, the cross-sectional
design of this study, while effective at identifying associations,
precluded characterization of longitudinal effects that should be
considered in future studies. Furthermore, while the use of
untargeted metabolomics and lipidomics broadened the scope
of potential findings, targeted validation would be required for
investigation into potential biomarker utility.

There is certainly existing evidence of the importance of
airway epithelial and smooth muscle changes in the pathogen-
esis of asthma;78,95-97 importantly, we now report key factors
and modalities that distinguish children with recurrent wheeze
from those who ultimately develop asthma. While inflamma-
tory measurements are common in cases of early life wheeze4

and are of use in determining immediate treatment options,98

these are likely not impactful for prediction of future disease
progression.
Conclusion
We report unsupervised, deep multiomic profiling of lower

airway samples in a pediatric cohort. We identified 2 distinct
multiomic signatures characterizing preschool recurrent wheeze
and the progression toward type 2–high asthma, which were
evident at steady-state in the absence of acute symptoms. The
Wheeze Score revealed immune signatures involving neutrophil
and TH1 cell–associated pathways, while the Disease Score
revealed an inferred trajectory toward childhood asthma marked
by type 2 immune-related gene expression changes in epithelial
cells, altered bacterial abundance, and presence of transcriptionally
active pathogens such as H influenzae. Our study emphasizes the
importance of the airway epithelial compartment in identification
of predictive biomarkers that differentiate patients who wheeze
and are at risk of developing persistent asthma, rather than focusing
on the inflammatory response at sampling. In a process made
possible only by an integrated multiomic approach, we were able
to dissect progressive molecular signals driving disease and were
able to distinguish these from preschool wheeze alone.
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