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ABSTRACT 

Background : Wheezing in childhood is prevalent, with over half of all children experiencing 

at least one episode by age six. The pathophysiology of wheeze, especially why some children 

develop asthma while others do not, remains unclear. 

Objective : This study addresses the knowledge gap by investigating the transition from 

preschool wheeze to asthma using multi-omic profiling. 

Methods : Unsupervised, group-agnostic integrative multi-omic factor analysis was 

performed using host/bacterial (meta-)transcriptomic and bacterial shotgun metagenomic 

datasets from bronchial brush samples paired with metabolomic/lipidomic data from 

bronchoalveolar lavage samples acquired from children 1-17 years old. 

Results : Two multi-omic factors were identified: one characterising preschool-aged recurrent 

wheeze and another capturing an inferred trajectory from health to wheeze and school-aged 

asthma. Recurrent wheeze was driven by Type 1-immune signatures, coupled with 

upregulation of immune-related and neutrophil-associated lipids and metabolites. 

Comparatively, progression towards asthma from ages 1-18 was dominated by changes 

related to airway epithelial cell gene expression, Type 2-immune responses, and constituents 

of the airway microbiome, such as increased Haemophilus influenzae. 

Conclusion : These factors highlighted distinctions between an inflammation-related 

phenotype in preschool wheeze, and the predominance of airway epithelial-related changes 

linked with the inferred trajectory toward asthma. These findings provide insights into the 

differential mechanisms driving the progression from wheeze to asthma and may inform 

targeted therapeutic strategies.  
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Clinical implications :  

Multi-omic profiling identifies molecular signatures aiding early prediction and differentiation 

of preschool wheeze from progression to asthma. 

Capsule summary :   

This study identifies distinct multi-omic factors from lower airway samples, revealing Type 1-

immune signatures for preschool wheeze and epithelial signatures with microbiome changes 

for asthma progression, offering insights into disease trajectories. 

Key words : wheeze, asthma, multi-omics, gene expression, metagenomics, metabolomics, 

lipidomics, disease trajectory 

Abbreviations : ALI (Acute Lung Injury), BAL (Bronchoalveolar Lavage), BH (Benjamini-

Hochberg), CLR (centred log-ratio), COPD (Chronic Obstructive Pulmonary Disease), DCs 

(Dendritic Cells), DE / DA (Differential Expression / Differential Abundance), HLCA (Human 

Lung Cell Atlas), HMDB (Human Metabolome Database), KO (KEGG ortholog), LCMS (Liquid 

Chromatography-Mass Spectrometry), LF (Latent Factor), NA (Not Applicable), PCA (Principal 

Component Analysis), QC (Quality Control), ROS (Reactive Oxygen Species), scRNAseq (Single-

cell RNA sequencing)  
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INTRODUCTION 

Wheezing in childhood is remarkably prevalent, with over half of all children having at least 

one episode by 6 years of age (1). Due to disease heterogeneity and challenges associated 

with obtaining meaningful physiological parameters, such as lung function, in preschool-aged 

children, there exists a knowledge gap in the pathophysiology of wheeze. The reason some 

children with preschool wheeze continue to wheeze and develop asthma while others do not, 

even with comparable initial clinical presentation, remains an unanswered question. Indeed, 

more than 50% of children with recurrent preschool wheeze will have complete symptom 

resolution by school age and not develop asthma (2,3). 

Multiple epidemiological studies have shown that atopy (high total IgE levels with the 

presence of elevated aero-allergen-specific IgE) in recurrent preschool wheezers is linked with 

asthma (3–5). In line with this, it is clear that Type 2 immune responses and airway 

remodelling are present in school-aged asthma (6). However, this is less clear in those with 

recurrent wheeze, and while some preschool children exhibit evidence of airway eosinophilia, 

a subgroup have a predominance of lower airway neutrophilia (7). In addition, it is unclear 

whether these children exhibit variations in their baseline immunological tone under steady-

state conditions when acute symptoms are absent. Persistent underlying differences in 

cellular and molecular factors could represent important early therapeutic intervention 

targets and point to potential mechanisms driving disease. 

There is evidence of lower airway microbial dysbiosis in both preschool children with 

recurrent wheeze and older children with asthma, and that dysbiosis may precede disease 

symptoms, sometimes by many years (8–10). Advances in multi-omics technologies have 

revolutionised respiratory research (11). In particular, the utilisation of shotgun 

metagenomics and metatranscriptomics facilitate precise characterisation of microbes, and 

allow interrogation of whether certain species are simply bystanders or whether they are 

transcriptionally active. 

While some studies have performed multi-omic integration in the context of asthma (12), to 

our knowledge and as highlighted in a recent review (13), no study has simultaneously 

investigated the paired lower airway transcriptome, metabolome/lipidome, and microbiome 
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in the lower airways. Parallel investigation of the respiratory microbiome and circulating 

metabolome as performed in previous studies provides valuable insights, however it may 

overlook significant changes linked with disease. Exploration into the interplay between host 

and microbes in the lower airways has the potential to significantly advance our 

understanding of early-life asthma progression and pathophysiology. 

To address these gaps in the field, we investigated the transition from preschool wheeze to 

asthma by using deep multi-omic profiling of lower airway samples from preschool wheezers, 

school-aged asthmatics, and preschool controls in the absence of acute symptoms. Data 

integration was conducted unsupervised, enabling impartial post-hoc correlation with clinical 

groups. Despite the inability to track individual patients over time due to the cross-sectional 

nature of our samples, we were able to investigate an inferred trajectory through a multi-

omic bioinformatic approach. We define disease progression and trajectory throughout this 

manuscript as having a higher score for the multi-omic signature that captured the dynamic 

continuum from healthy preschool children, through to recurrent preschool wheeze and 

school-aged asthma. We identified two signatures: one related to an inferred trajectory 

toward childhood asthma characterised by Type 2 immune-related changes in the airway 

epithelium and presence of transcriptionally-active pathogens, and one specific to preschool 

wheeze distinguished by neutrophilic, Type 1 immune-associated signals and changes in local 

metabolite and lipid abundance. The modalities within each signature warrant further 

consideration as targets for future disease prevention and management strategies.  Jo
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METHODS 

Participants and sample collection 

In order to investigate the progression from recurrent wheeze to asthma, three groups from 

the Breathing Together cohort were investigated (14). Our study examined male and female 

participants, and similar findings are reported for both sexes. Informed parental consent was 

obtained prior to inclusion in the study and ethical approval was obtained from the Regional 

Ethics Committee (REC reference: 16/LO/1518). Preschool controls. The first group consisted 

of preschool controls, aged 12 months to five years, with no history of wheezing, or other 

significant respiratory illness. Since lower airway sampling is not ethically justifiable in 

children without respiratory symptoms, lower airway research samples were obtained 

following informed parental consent, from children undergoing elective surgery that required 

clinically indicated intubation under general anaesthesia. Exclusion criteria for this group 

included recent respiratory tract illness (symptoms resolved for less than two weeks), other 

chronic respiratory diseases (e.g. cystic fibrosis), and a history of previous pituitary or ethmoid 

surgery. Four control patients were prescribed inhaled corticosteroids and six were 

prescribed bronchodilators in response to a prior isolated wheeze event, and were considered 

preschool controls for this study given the wheeze was not recurrent. A cytology brush was 

passed through the endotracheal tube and used to obtain lower airway epithelial cells as 

previously described (15). Recurrent severe preschool wheeze. The second group consisted 

of severe preschool wheezers, aged 12 months to five years, with a history of recurrent, 

severe wheezing and difficulty breathing, and scheduled for clinically indicated bronchoscopy. 

Severe school-age asthma. The third group included school-aged asthmatics, aged six to 18 

years, with a confirmed diagnosis of severe asthma defined as evidence of airway hyper-

responsiveness, bronchodilator reversibility (≥12%), or peak expiratory flow variability 

(≥10%). Both the preschool severe wheezers and school-age children with severe asthma 

were undergoing a clinically indicated bronchoscopy and additional lower airway samples 

were collected for research following informed parental consent and child assent, as 

previously described (9,16). For shotgun metagenomics, bronchial brushes were obtained 

using Copan eSwabs (COPAN Diagnostics), rotated five times, and subsequently stored at -

80°C. Bronchial brushes, used for host transcriptomics and metatranscriptomics, were 

rotated three times to collect endobronchial cells, then immediately placed into an Eppendorf 
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with 700 μl of RLT lysis buffer (Qiagen) and 2-Mercaptoethanol (Sigma), followed by snap-

freezing and storage at -80°C. Bronchoalveolar lavage (BAL) was performed from the right 

middle lobe with three aliquots of 1 mL/kg of 0.9% sodium chloride and BAL supernatants 

collected for metabolomics/lipidomics were stored at -80°C. Differential cell counts were 

performed on BAL for red blood cells and immune cell subsets. Atopic status. All children had 

assessments of total IgE and specific IgE to common aero-allergens. A total serum IgE level 

threshold of 30 IU/mL was used as previously described for associations with atopy in line 

with prescribing information for omalizumab, an anti-IgE monoclonal antibody indicated for 

asthma treatment (17). Atopy was therefore defined as a total serum IgE level >30 IU/mL, 

combined with the presence of at least 1 positive aero-allergen-specific IgE above the 

detection limit. 

Host/bacterial RNA extraction, library preparation and sequencing 

RNA was extracted using the Quick-RNA Microprep kit (Zymo Research) according to the 

manufacturer’s protocol and eluted in 40μl of RNAse-free water. Following extraction, 

libraries were prepared using the NEBNext Ultra Directional RNA Library Prep Kit (New 

England Biolabs) for Illumina following ribosomal RNA removal using the Ribo-Zero Magnetic 

Kit (Epicentre). Resulting libraries were sequenced on an Illumina NovaSeq 6000 platform 

using a S4 2x75 kit. 

Host RNA sequencing data processing Raw RNA sequencing FASTQ files were processed using 

the NF-CORE rnaseq pipeline (version 3.10.1) (18). Briefly, reads underwent initial quality 

control (QC) with FastQC, were extracted with UMI-tools, adapters removed, and quality 

trimming performed with Trim Galore. Genomic contaminants and ribosomal components 

were removed with BBSplit and SortMeRNA respectively. Reads were aligned and quantified 

via a combination of STAR and Salmon tools, and sorted and indexed using SAMtools, and 

dereplicated with UMI-tools. An abundance matrix was produced, representing scaled and 

normalised transcripts per million reads, from which a re-estimated counts table was 

generated for downstream analysis. Gene data was filtered for a minimum of 100 reads per 

sampling group using the edgeR package (version 3.42.0) (19) filterByExpr function, followed 

by voom normalisation with limma (version 3.56.0) (20), and removal of non-protein-coding 

genes. Voom-normalised data matrix was saved for multi-omic integration. 

Jo
urn

al 
Pre-

pro
of

https://www.zotero.org/google-docs/?WAi48G
https://www.zotero.org/google-docs/?7AeoV7
https://www.zotero.org/google-docs/?UEB7hO
https://www.zotero.org/google-docs/?24wwnx


Macowan & Pattaroni et al. 9 

Bacterial DNA extraction, library preparation and sequencing 

Bronchial brush swabs were added to 1mL microbial-free DNA-free water (Qiagen) and 

centrifuged at 14,000xg for 10 min at 4°C. The pellet was resuspended and incubated with 

300U of Lyticase (Sigma) for 30 min at 37°C with gentle shaking (500rpm) to enhance DNA 

recovery, as previously described (21). DNA was extracted from the resulting lysates using the 

DNeasy UltraClean Microbial Kit (Qiagen) according to the manufacturer’s protocol and 

eluted in 40µL of microbial-free DNA-free water. All extraction steps were performed in 

microbial DNA-free conditions in a laminar flow hood, decontaminated and UV-treated prior 

to processing. Negative controls (ESwabs opened and closed at sampling site, extraction 

negative controls and PCR negative controls) were processed along samples. DNA was 

prepared for shotgun sequencing using the Nextera XT DNA Library Preparation Kit (Illumina) 

according to the manufacturer’s protocol, with multiplexing via the IDT for Illumina Nextera 

DNA Unique Dual Indexes Set C (Illumina). Library pools were sequenced with paired-ends on 

a NovaSeq 6000 platform using a SP 2x250 kit. 

Bacterial shotgun metagenomic sequencing data processing 

Raw shotgun sequencing reads were processed as previously described using the Sunbeam 

pipeline for adaptor trimming, quality control, host genome decontamination, assembly of 

contiguous sequences, and co-assembly (22,23). The co-assembly was reformatted and 

filtered for sequences >500 base pairs using Anvi’o (version 7.1) (24). Contig taxonomy was 

estimated using Kraken 2 (25). Individual FASTQ files were aligned and mapped to the co-

assembly using bowtie2 (26), per-sample contig counts generated using a custom bash script, 

then combined into a counts matrix in R. To decontaminate the contigs, any sequence found 

in the extraction negative controls was removed (Figure S1). Using the ratio of reads before 

and after decontamination, samples with >90% non-contaminant reads were retained. A 

decontaminated co-assembly FASTQ file was generated from the remaining contigs. 

Functional KEGG orthology (KO) was assigned using the GhostKOALA tool provided by the 

Kyoto Encyclopedia of Genes and Genomes (27), then agglomerated using taxonomy to 

produce taxa-gene pairs with their associated counts. Using the R microbiome package 

(version 1.22.0) (28), the dataset was filtered using a detection threshold of 1 in at least 10% 

of samples via the core function, and centred log-ratio (CLR)-normalised via the transform 

function. The final dataset was saved as a matrix for multi-omic data integration. 
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Bacterial metatranscriptomic sequencing data processing 

Raw RNA sequencing reads were processed using the Sunbeam pipeline as above, which 

removed host reads from the dataset. The resulting FASTQ files were mapped to the 

decontaminated metagenomic co-assembly using bowtie2, and a corresponding counts 

matrix generated for multi-omics integration. 

Metabolomic and lipidomic sample processing 

100µL of BAL supernatant was used for concurrent metabolomics and lipidomics extraction. 

400µL of extraction solvent (3:1 mixture of methanol and chloroform), supplemented with 

0.5µM of generic internal standards (CHAPS, CAPS, and PIPES) and 5µM 2,6-di-tert-butyl-4-

methylphenol (BHT), was added to the supernatant. Samples were shaken at 1,000rpm for 

one hour at 4°C, followed by centrifugation at 14,000xg for 10 min. Supernatants were 

evaporated using a Speedvac (Thermo Scientific) and re-solubilised in 100µL of a 3:1:1 

solution of methanol, chloroform, and water for metabolomics or a 4.5:4.5:1 solution of 

butanol, methanol, and water for lipidomics. Samples were sonicated for 15 min on ice, 

centrifuged at 14,000xg for 10 min, and the supernatant collected. 10µL of each supernatant 

was mixed for quality control testing, and blanks were prepared as the solvent solutions 

alone. 

Liquid chromatography-mass spectrometry (LCMS) data acquisition 

LCMS were acquired on a Q-Exactive Orbitrap mass spectrometer (Thermo Fisher) coupled 

with the Dionex Ultimate® 3000 RS (Thermo Fisher) high-performance liquid chromatography 

(HPLC) system. Chromatographic separation was performed on a ZIC-pHILIC column (5µm, 

polymeric, 150 x 4.6mm, SeQuant®, Merck). The mobile phase was 20mM ammonium 

carbonate and acetonitrile. The gradient program started at 80% and was reduced to 50% 

over 15min, then reduced further to 5% over 3min, followed by an 8min re-equilibration to 

80%. Flow rate was 0.3mL/min and column compartment temperature was 40°C. Total run 

time was 32min with an injection sample volume of 10µL. The mass spectrometer operated 

with positive and negative polarity switching at 35,000 resolution at 200m/z, with a detection 

range of 85 – 1,275m/z in full scan mode. Electro-spray ionisation source (ESI) was set to 3.5kV 

for positive and 4.0kV for negative modes, sheath gas and auxiliary gas set to 50 and 20 

arbitrary units respectively, capillary temperature set to 300°C, and probe heater 
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temperature set to 120°C. Samples were analysed in a single batch and randomised to 

account for LCMS system drift over time. 

Metabolomics and Lipidomics LCMS data processing 

Raw LCMS data were processed using the metabolome-lipidome-MSDIAL pipeline (see code 

and data availability section), incorporating MS-DIAL (version 5.1) (29), the human 

metabolome database (HMDB, version 4 - July 2021) (30), and the pmp (version 1.4.0) R 

package (31).  MS-DIAL was used for deconvolution and peak detection with a minimum peak 

amplitude of 100,000. Peaks were identified using the MassBank database (version 2021.08) 

(32) with a retention time tolerance of 2min and accurate mass tolerance (AMT) of 0.002Da. 

Peaks were aligned using a retention time tolerance of 2min and AMT of 0.002Da, with gap-

filling by compulsion. Peak intensity tables from MS-DIAL were imported into R, peaks filtered 

for intensities >5-fold higher than LCMS blanks, samples with >80% missing values and 

features with >20% missing values removed, and peaks filtered based on the percentage of 

variation in the QC samples with a maximum relative standard deviation of 25%. Data was 

normalised using probabilistic quotient normalisation (PQN), followed by random forest 

missing data imputation (using the pmp wrapper function of the missForest (version 1.4) (33) 

function), and subsequent generalised logarithmic (glog) transformation to stabilise variance 

across low and high intensity mass spectral features. MS1 data was further mapped to HMDB, 

with an AMT of 0.002Da, to increase the number of annotated features. Any unannotated 

features were filtered out, and the remaining dataset was subjected to two rounds of manual 

feature curation in MS-DIAL: firstly to identify and remove any poor-quality spectral features 

not filtered out during pre-processing with pmp, and secondly to select the best-quality 

spectrum-metabolite pairs using a combination of the MS-DIAL fill percentage and signal-to-

noise ratio values, along with visual confirmation. The final dataset was saved in matrix format 

for multi-omic integration. 

Statistical analysis and multi-omic data integration 

Statistical analyses were performed in R (version 4.3.0) (34) and plots generated using ggplot2 

(version 3.4.2) (35). A summary schematic for the multi-omic integration strategy is provided 

in Figure S2A. The three input matrices were assembled into a MultiAssayExperiment object 

(36). Data was integrated in an unsupervised, group-agnostic manner using Multi-Omics 

Factor Analysis v2 (MOFA+) (37), with slow convergence, a seed value of 2 for generation of 
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pseudo-random numbers, 5% minimum explained variance threshold for factor retention, 

and sampling age used as a covariate. An overview of the unsupervised multi-modal data 

integration is shown in Figure S2B, and we refer the reader to the original manuscript for 

technical details and mathematical derivations. As model inputs, we supplied voom-

normalised host transcriptomics data with a read count threshold of 100, centred log-ratio-

normalised metagenomic KEGG ortholog count data with a detection threshold of 1 in >10% 

of samples, and a combined small molecules dataset. Wilcoxon rank sum tests were used to 

assess categorical differences in the resulting latent factors, and Spearman correlation 

analyses were used to assess continuous variables. Statistical significance of clinical group 

Wheeze vs. Disease Score clustering was assessed by permutational multivariate analysis of 

variance (PERMANOVA) using the adonis2 function from the vegan R package (version 2.6–4) 

(38). Factors that showed significant differences between patient groups were used as 

predictors for age-corrected linear modelling on the individual MOFA-imputed datasets using 

a custom script built around limma (see code and data availability section). Benjamini-

Hochberg multiple testing correction was used with a significance threshold of 0.05. Log fold-

change threshold was 0.5 for host RNA and small molecules, and 0.25 for bacterial 

metagenomics.  To summarise bacterial metagenomic changes following linear modelling, KO 

functional gene counts were stratified by taxa, filtered for a minimum count of 10, and the 

log-transformed value of the sum of increased (positive) and decreased (negative) gene 

counts calculated to determine the net change in gene count abundance per taxa along the 

MOFA factor. Spearman correlation analyses were performed on metagenomic and 

metatranscriptomic read counts as a proxy for inferring bacterial transcriptional activity. 

Pseudo-bulk analysis 

The full integrated human lung cell atlas (39) single-cell RNA sequencing dataset was 

subsetted to omit cells from individuals with cancer or any smoking history, nasal samples, 

and cells annotated as ‘native cell’. Gene expression data underwent pseudo-bulk processing 

by cell type for each study using decoupleR (40). Mode was set to ‘mean’, with a gene read 

count threshold of 100 and expression in at least 10 cells. The final dataset was batch-

corrected with ComBat_seq (41), and contained 766 profiles, covering 50 cell types from 28 

studies. For analysis, data was subsetted to include only multi-omic factor differential genes 

and used for principal component analysis and biplot generation. Labels around the periphery 
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were added to represent the biplot segment covered by a given cell type from the centre to 

the extents of 95% confidence ellipses.  
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Code and data availability 

All microbiota and gene expression data have been deposited at the National Centre for 

Biotechnology Information database under the BioProject accession number PRJNA1080233 

with minimal metadata. Comprehensive clinical metadata can be provided upon reasonable 

request. The data analysis pipeline for this study is described at https://github.com/mucosal-

immunology-lab/BT_groups2-4_analysis. The shotgun sequencing pipeline and custom linear 

modelling script is described at https://github.com/mucosal-immunology-lab/microbiome-

analysis/wiki.  
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RESULTS 

Participants and samples 

To investigate molecular signatures of wheeze and asthma, bronchial brushes were collected 

from preschool children with and without recurrent wheeze, and school-aged asthmatics 

during clinically stable disease; the present cohort did not extend to healthy school-aged 

children. Bronchoalveolar lavage (BAL) fluid was simultaneously collected from preschool 

wheezers and school-aged asthmatics. Demographic information for patients with samples 

that passed quality control criteria is provided in Table 1. Bronchial brush samples were 

processed for host and microbial transcriptomic sequencing and bacterial metagenomic 

characterisation. BAL samples were utilised for metabolomic and lipidomic profiling.  

Multi-omics factor analysis reveals two sets of cohort-associated covariation patterns 

Following quality control, the available datasets were used to build an integrative multi-omic 

model using multi-omics factor analysis (MOFA+), a statistical framework for integration of 

multi-omics data. This unsupervised approach integrates different types of biological data, 

identifies the main sources of variation, and generates a small set of key components, called 

latent factors. Through this process, each sample is assigned a single numeric score that 

indicates its position along each of the latent factors. MOFA+ identified four latent factors 

with a minimum explained variance of 5% (Figure 1A). Latent factor 2 (LF2) and latent factor 

4 (LF4) showed significant differences between sample cohorts (Figures 1B-C) and were 

therefore the focus of further investigation. Although latent factors 1 and 3 contained unique 

covariation patterns, they were not explained by any available clinical metadata, and as such 

were not pursued further. LF2 explained 27.1% of overall sample variance, with significant 

differences between preschool wheezers and school-aged asthmatics (p = 0.039) but no 

difference between preschool controls and school age asthmatics. Importantly, LF2 was not 

associated with age differences (Spearman rho: -0.16; p = 0.17). As LF2 distinguished 

preschool wheezers from the other groups, it will be referred to as the “Wheeze Score”. Small 

molecules accounted for 70.4% of factor variation, followed by host transcriptomics (19.5%) 

and metagenomics (10.1%). LF4 explained 9.4% of sample variance, and was significantly 

different between all three groups (preschool controls vs. preschool wheezers: p = 2.3e-04; 

preschool wheezers vs. school-aged asthmatics: p = 0.011). As school-aged asthmatic samples 
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were simultaneously the oldest and had the highest LF4 scores, age was positively correlated 

with LF4 (Spearman rho: 0.46; p = 4.3e-05). However, variance explained by LF4 was also 

associated with inferred disease progression and will be referred to as the “Disease Score”. 

Of note, some of the preschool controls were prescribed either inhaled corticosteroids (4/29) 

or bronchodilators (6/29) for a prior isolated wheezing episode (Figure S3A). In-depth 

characterisation of these samples revealed no significant impact of treatment on either the 

Wheeze or Disease Scores (Figure S3B-C). We define disease progression and trajectory here, 

by multi-omic inference, as an increased Disease Score: a scale representing a continuum 

from healthy preschool children, through to recurrent preschool wheeze and school-aged 

asthma. Host transcriptomics and metagenomics accounted for 68.1% and 31.9% of factor 

variation respectively.  

Multi-omic Wheeze Score is characterised by an inflammatory signature 

We next aimed to characterise changes explaining an increased Wheeze Score. Using the 

latent factor score as a continuous predictor for linear modelling of the individual datasets, 

corrected for age at sampling, significant changes were observed for host transcriptomics and 

small molecule composition, but not for metagenomic functional gene abundance. The top 

genes driving an increased Wheeze Score included both S100A8 and S100A9 (logFC: 1.983, 

p=1.45e-03), one of the most abundant cytosolic protein complexes found in neutrophils (42), 

chemotactic factors for neutrophils and other leukocytes (CXCL8, CXCL2, CCL20, CSF3), as well 

as others affecting neutrophil adhesion and motility (SELL, PLAUR, AQP9) (Figure 2A). Genes 

induced by pattern- and damage-associated molecular patterns (PAMPs and DAMPs) were 

also among the top upregulated (IDO1, IL1B, CCL4, FPR1-3, SOCS3) in addition to genes 

induced by type 1 inflammatory cytokines (DUOX2, DUOXA2, BCL2A1, PLEK). To gain a 

broader view of which cell types may be most affected by an increased Wheeze Score, we 

performed a pseudo-bulk analysis on a subset of the integrated human lung cell atlas (HLCA), 

the most comprehensive single-cell database currently available, capturing the majority of 

cell types in the airways with the exception of granulocytes. The full HLCA pseudo-bulk 

dataset was filtered for the 2,134 differentially expressed (DE) genes along the Wheeze Score 

and then used for principal component analysis (PCA) (Figures 2B and S5A). Using the location 

of each cell type cluster from the centre of the PCA biplot and the direction of key genes 

driving variation, it was evident that the majority of upregulated DE genes were more highly 
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expressed in immune cells than the structural cell compartment, suggesting an immune-

driven signature in recurrent preschool wheeze. The Wheeze Score was associated with 

increased abundance of a large number of metabolites and lipids, except for decreased 

adenosine and monoethylglycinexylidide levels (Figure 2C). Among the top increased small 

molecules were Gram-negative bacterial-derived sulfonolipids (43), anti-inflammatory N-

acylethanolamines (44), and triglycerides. Dihexosylceramides (Hex2Cer) and ceramides were 

increased, as were ether-linked phospholipids, arachidonic acid, and docosahexaenoic acid. 

Increased abundance was further observed for adenosine breakdown product hypoxanthine, 

and kynurenine metabolite quinolinate. Kynurenine pathway genes facilitating quinolinate 

production in addition to IDO1 were also increased, including KMO (logFC: 1.435, p=3.71e-03) 

and KYNU (logFC: 1.698, p=8.93e-04) (Figure 2D). Using differential cell counts performed on 

fresh BAL samples, the Wheeze Score showed strong positive correlation with both 

neutrophils and leukocytes, and negative correlation with macrophages (Figures 2E and S4). 

Conversely, the Disease Score was not associated with changes in BAL immune cell 

composition. In summary, we identified a multi-omic factor specific to children with recurrent 

preschool wheeze at steady state characterised by enhanced neutrophilic and Type-1 high 

inflammation and increased abundance of both proinflammatory and immunomodulatory 

small molecules. 

Multi-omic Disease Score is characterised by altered epithelium and bacterial gene counts 

Given that the Wheeze Score distinguished preschool wheezers, but was similar between 

preschool controls and school-aged asthmatics following correction for patient age, we aimed 

to characterise the trajectory from health to asthma captured by the Disease Score. Linear 

modelling confirmed that Disease Score variation was explained by host gene expression and 

differentially-abundant (DA) bacterial functional gene counts. A notable type 2 inflammatory 

signature was observed among the top genes driving an increased Disease Score (Figure 3A). 

Clade B serine protease inhibitors (SERPINB2, SERPINB10, SERPINB11, SERPINB3), 

tetraspanins (TM4SF1, UPK1B), and type 2 inflammation-linked genes (POSTN, LRRC31) were 

all increased. Mucin gene expression patterns were also altered, with increased MUC2 and 

MUC5AC paired with decreased MUC5B (logFC: -1.15, p=8e-03). This was associated with 

increases in mucociliary differentiation- and glycosaminoglycan-related genes (B3GNT6, 

HS6ST2, KRT4), and those relating to modulation of angiogenesis and smooth muscle function 

Jo
urn

al 
Pre-

pro
of

https://www.zotero.org/google-docs/?iOPNnr
https://www.zotero.org/google-docs/?YX7Z38


Macowan & Pattaroni et al. 18 

(SEMA3B, GSN, TMEM184A, EGFL6). Lactotransferrin (LTF) was negatively associated with 

Disease Score, as were Type I, III, and VI collagens. Pseudo-bulk analysis of the 357 Disease 

Score DE genes highlighted that the majority of genes upregulated in disease were associated 

with airway epithelial and secretory cell populations (Figures 3B and S5B), suggesting that 

Th2-associated changes to the structural compartment were linked with disease trajectory. 

To assess microbial associations, differentially-abundant bacterial gene counts were stratified 

by species and the overall genetic shift determined by averaging gene counts increased and 

decreased with Disease Score (Figure 3C). Given the low microbial biomass and resulting 

functional gene sparsity, this method focused on broader metagenomic content rather than 

individual bacterial gene associations. Positive shifts in Haemophilus and Neisseria gene count 

averages were associated with disease progression, while Streptococcus, Prevotella, and 

Veillonella were negatively associated. To evaluate microbial transcriptional activity, 

Spearman correlations were performed between metagenomic and metatranscriptomic read 

counts. Haemophilus influenzae was the top Disease Score-associated species and showed 

the highest correlation (rho: 0.91, p<0.0001). Atopic individuals, identified as those with total 

systemic IgE levels over 30 IU/mL with at least one aero-allergen-specific IgE, had higher 

Disease Score values compared to non-atopic counterparts (Figure 3D). In summary, we 

identified a multi-omic signature of progression to asthma associated with type 2 

inflammatory-driven changes to the airway epithelium and the presence of transcriptionally-

active pathogens, such as H. influenzae. 

DISCUSSION 

In order to address the existing gaps in knowledge surrounding the transition from recurrent 

wheeze to asthma in childhood, we collected bronchial brushes and bronchoalveolar lavage 

(BAL) fluid for interrogation of host-microbe transcriptomics, microbiome, and small 

molecules. Challenges surrounding the invasive nature of this type of sampling has led to a 

predominance of upper respiratory (nasal and oropharyngeal) sample analysis, particularly in 

prior early life and childhood studies (45,46). Through deep multi-omic profiling of lower 

airway samples acquired in the absence of acute symptoms, we identified two multi-omic 

factors derived from host gene expression and bacterial metagenomics in the bronchi paired 

with small molecules from BAL fluid; one capturing a signature of preschool wheeze, and the 
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other characterising a trajectory of disease states from healthy preschool children through to 

wheeze and Type-2 high asthma.  

The identified Wheeze Score exhibited a signature characteristic of neutrophilic and Type 1-

driven immune responses. This was supported by the positive correlation between the 

Wheeze Score and proportions of neutrophils and leukocytes in BAL samples. Pseudo-bulk 

analysis revealed considerable transcriptional changes in immune cells, particularly among 

monocytes, macrophages, and dendritic cells (DCs); the absence of granulocytes in the HLCA 

database is a limitation to this approach. IL-8 (CXCL8), MIP-2α (CXCL2), and G-CSF (CSF3) are 

all potent chemokines driving neutrophil recruitment (47–51), while CCL20 stimulates rapid 

recruitment of DCs (52). The associated increase in ether-linked phospholipids supports 

elevated neutrophil infiltration, as ether-linked phosphatidylcholines constitute nearly half of 

neutrophil phosphatidylcholines, but are scarce in most tissues (53). Reportedly, the 

urokinase receptor (PLAUR) also plays a role in neutrophil chemotaxis unrelated to its 

protease activity (54). L-selectin (SELL) is expressed constitutively on most leukocytes, and 

participates in the “rolling stage” motility and adhesion of neutrophils and monocytes, 

allowing extravasation into inflamed tissue (55,56). Aquaporin 9 (AQP9) meanwhile 

contributes to regulation of lamellipodium formation and neutrophil motility by modulating 

cellular water flux (57). The upregulation of PAMP- and DAMP-induced genes can further 

contribute to cellular infiltration upon activation. Formyl peptide receptors (FPR1-3) 

recognise formylated peptides from bacteria and mitochondria, may have roles in viral 

defence, and have been shown to induce neutrophil and monocyte chemotaxis (58–60).  

In addition to genes linked with enhancement of cell motility and recruitment, pro-

inflammatory genes and small molecules were associated with an increased Wheeze Score. 

S100A8/S100A9 heterodimers, secreted primarily by neutrophils and macrophages, have 

critical roles in modulating leukocyte recruitment and stimulating phagocyte secretion of IL-

1β, TNFα, and NF-κB target genes (61). The S100A8/S100A9 complex comprises ~45% of 

neutrophil cytosolic proteins in neutrophils, and ~1-5% in monocytes/macrophages (42,62). 

Sulfonolipids are produced by Gram-negative bacteria and elicit IL-1α/β, IL-6, and TNFα in 

macrophages (43,63). Increased ceramide production is associated with cellular stress (64), 

and a recent murine model demonstrated their contribution to neutrophil infiltration and 

reactive oxygen species (ROS) production (65). In relation to ROS production, dual oxidase 2 
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(DUOX2) and its maturation factor (DUOXA2) were increased. DUOX2 is induced by Th1 

cytokine IFNγ and viral infection, unlike Th2-induced DUOX1, and produces hydrogen 

peroxide (66).  

Conversely, immunomodulatory signatures were also evident, likely to restrict excessive 

inflammation and tissue damage. Suppressor of cytokine signalling 3 (SOCS3) negatively 

regulates JAK/STAT3 signalling and limits severity of murine acute lung injury (ALI) (67,68). 

Indoleamine 2,3-dioxygenase (IDO1) is induced in antigen-presenting cells (APCs) and 

epithelial cells by type 1 cytokines (69), and converts tryptophan to downstream kynurenine 

metabolites. Monocytes and macrophages have the highest activities of kynurenine 3-

monooxygenase (KMO) and kynureninase (KYNU), which drive conversion from kynurenine 

to quinolinate (70). The end product quinolinate can then be secreted to induce T cell 

apoptosis and suppress immune responses (71), and has an important role in replenishing 

cellular NAD+ levels to meet host energy demands in response to increased cellular stress 

(72). Overall, these data suggest that the lower airways in recurrent paediatric wheeze at 

baseline are characterised by increased immune cells (neutrophils, monocytes, and DCs), 

proinflammatory mediators, and pathways that limit excessive inflammatory damage. 

Importantly, respiratory viruses are the primary trigger of wheezing exacerbations in 

preschool children (73). As such, this multi-omic, immune-driven recurrent wheeze signature 

may reflect remnants of recurring infections, distinguishing it from the signature for 

progression to asthma.  

While the Wheeze Score distinguished preschool-aged children with severe wheeze, the 

identified Disease Score captured an inferred trajectory from early childhood health to severe 

school-aged asthma in a stepwise manner, representing a set of potential host gene 

expression and bacterial alterations with utility as targets against disease progression. The 

Disease Score transcriptomic signature was suggestive of advancement toward Th2-high 

asthma, characterised by increased IL-13 and eosinophilia. While a transcriptional profile 

suggestive of eosinophilic recruitment was observed, no changes in BAL eosinophils 

proprtions were found. These changes were primarily associated with altered gene 

expression in epithelial and secretory cells rather than immune cells, highlighting a baseline 

epithelial dysfunction rather than an acute eosinophilic response. The heterogeneity of the 

airway epithelium confers diverse functionality and its contribution to various respiratory 
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diseases, including asthma, has been proposed and reviewed recently (74). Consistent 

biomarkers of Th2-high asthma that were recapitulated included upregulation of periostin 

(POSTN), SERPINB2, SERPINB10, and MUC5AC, and downregulation of lactotransferrin (LTF) 

and MUC5B (75–78). Airway mucus hypersecretion and secretory cell hyperplasia are features 

of asthma, alongside an increased MUC5AC/MUC5B ratio (79,80). MUC2 is not typically 

expressed in the airways, but has been observed with airway irritation in asthma and chronic 

obstructive pulmonary disease (COPD) (80,81). Although collagen increases are associated 

with asthma, it has been reported that inhaled corticosteroids decrease collagen deposition 

(82). Their near ubiquitous use in the recurrent wheeze and asthma patients in this study 

likely explains the observed negative association between Disease Score and collagens I, III, 

and VI. Upregulation of other Th2-sensitive genes was also observed. B3GNT6 encodes a 

protein with N-acetylglucosaminyltransferase activity that has an important role in 

biosynthesis of mucin-type glycoproteins and showed a trend to increase in IL-13-stimulated 

mucus secretory cells (83). Gelsolin (GSN) is secreted by human airway epithelial cells in 

response to IL-4 (84), and has actin depolymerisation activity. Inflammation-related cell death 

releases large amounts of filamentous actin into the airways, and therefore gelsolin 

upregulation may play an extracellular actin-scavenging role to prevent excessive airway 

surface liquid viscosity (84,85). Indeed, exogenous gelsolin administration has been shown to 

reduce sputum viscosity in cystic fibrosis (86). Uroplakin-1B (UPK1B) is a member of the 

transmembrane 4 superfamily shown to be increased in IL-13-treated primary esophageal 

epithelial cells, and was unresponsive to glucocorticoids in this context (87). Similarly, 

epithelial cell expression of LRCC31 has been correlated with both esophageal eosinophilia 

and IL-13 expression, and has a role in increasing epithelial barrier function (88).  

In addition to the shift in host gene expression, the Disease Score also captured changes in 

bacterial functional gene abundance of the lower airway microbiome. Due to low microbial 

biomass in the airways, utilisation of amplicon sequencing approaches is far more common, 

and most existing studies have focused on the upper airways. In a recent systematic review 

of microbiome studies in paediatric asthma (89), only 3/13 included studies investigated the 

lower airways by means of BAL or sputum samples, all of which were assessed by 16S 

amplicon sequencing. The combination of lower airway bronchial brush sampling and shotgun 

metagenomics used in this study is a novel resource for interpretation of host-microbe 
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interactions in recurrent wheeze and asthma. Colonisation with Haemophilus influenzae and 

Neisseria species have been previously linked to airway dysbiosis in children, and identified 

as risk factors for progression to asthma (8). Serological evidence of immune responses to H. 

influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis have been reported in 

~20% of wheezing children (90), and these species are the most commonly implicated in 

asthma development (91,92). The consistent detection of these bacteria across studies 

suggests they could be risk factors and influence asthma susceptibility and chronic 

inflammation in children with wheeze. While M. catarrhalis was detected in the current study, 

it was not associated with either the Wheeze or Disease scores. Importantly, we demonstrate 

by metatranscriptomics that these taxa are not simply bystanders, but are transcriptionally 

active in the lower airways. We found here that metagenomic composition was associated 

with the inferred disease trajectory but not with the type 1- and neutrophil-associated 

Wheeze Score. This suggests that the epithelial dysfunction creates a dysregulated 

microenvironment captured by the Disease Score, potentially shaping the dysbiotic 

microbiome independently of the inflammation seen in wheezers. Indeed, the signature 

captured by the Wheeze Score is probably linked to recent acute viral infections (93). Further, 

commensal taxa linked with respiratory homeostasis were transcriptionally-active and 

associated with decreased Disease Score values, including Prevotella, Streptococcus, and 

Veillonella species (94). This supports previous assertions that disease progression is linked 

with a shift from the Bacteroidetes phylum to Gammaproteobacteria, a phylum with many 

lung-associated Gram-negative pathogens.  

While the unsupervised data integration approach and subsequent linear modelling used in 

this study accounted for age differences, the absence of bronchial brush samples from healthy 

school-aged children is a limitation. Similarly, the cross-sectional design of this study, while 

effective at identifying associations, precluded characterisation of longitudinal effects, and 

should be considered in future studies. Furthermore, while the use of untargeted 

metabolomics and lipidomics broadened the scope of potential findings, targeted validation 

would be required for investigation into potential biomarker utility. 

There is certainly existing evidence of the importance of airway epithelial and smooth muscle 

changes in the pathogenesis of asthma (78,95–97); importantly, we now report key factors 

and modalities that distinguish children with recurrent wheeze from those who ultimately 
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develop asthma. While inflammatory measurements are common in cases of early life wheeze 

(4) and are of use in determining immediate treatment options (98), these are likely not 

impactful for prediction of future disease progression. 

CONCLUSION 

We report unsupervised, deep multi-omic profiling of lower airway samples in a paediatric 

cohort. We identified two distinct multi-omic signatures characterising preschool recurrent 

wheeze and the progression towards Type 2-high asthma, which were evident at steady-state 

in the absence of acute symptoms. The Wheeze Score revealed immune signatures involving 

neutrophil and Th1-associated pathways, while the Disease Score revealed an inferred 

trajectory toward childhood asthma marked by Type 2 immune-related gene expression 

changes in epithelial cells, altered bacterial abundance, and presence of transcriptionally-

active pathogens such as Haemophilus influenzae. Our study emphasises the importance of 

the airway epithelial compartment in identification of predictive biomarkers that differentiate 

wheezers at risk of developing persistent asthma, rather than focusing on the inflammatory 

response at sampling. In a process made possible only by an integrated multi-omic approach, 

we were able to dissect progressive molecular signals driving disease and were able to 

distinguish these from preschool wheeze alone. 
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FIGURE LEGENDS 

Figure 1. MOFA+ multi-omic integration reveals wheeze-associated and disease-associated 

latent factors. A. Stacked barplot showing the contribution of each omic modality to the total 

variance explained by each factor. B. Density plot of the wheeze-associated latent factor 

(Latent Factor 2) coloured by group, with corresponding boxplot showing significant 

differences between preschool wheezers and school-aged asthmatics. C. Density plot of the 

disease-associated latent factor (Latent Factor 4) coloured by group, with corresponding 

boxplot showing significant differences between all groups. Sample sizes are n=29 for 

preschool controls, n=22 for preschool wheezers, and n=22 for school-aged asthmatics. 

Significance levels are indicated as p<0.05=*, p<0.01=**, p<0.001=***, p<0.0001=****. 

 

Figure 2. Multi-omic-derived Wheeze Score (LF2) is characterised by changes in host gene 

expression and small molecules. A. Barplot representing the top limma DE genes along the 

Wheeze Score, with Benjamini-Hochberg (BH) multiple testing correction. B. Principal 

component analysis (PCA) biplot of principal components 1 and 2 of differential genes (with 

logFC>1) in panel A (subset of batch-corrected Integrated Human Lung Cell Atlas scRNAseq 

pseudo-bulk data; n=766 profiles of 50 pseudo-bulk cell types from 28 studies). PCA 

eigenvectors with eigenvalues >0.5 are shown, and coloured according to the Wheeze Score 

direction with higher expression. Eigenvectors touching the outer ring with open triangles 

extend beyond the plot bounds. Cell types occupying different sectors of the plot are 

indicated by lines at the plot edges. C. Barplot representing top limma DA small molecules 

along the Wheeze Score, with BH multiple testing correction. Lipid classes are indicated by 

coloured dots. D. Excerpt schematic of the kynurenine pathway, highlighting genes and small 

molecules upregulated along the Wheeze Score in purple. E. Dot plot summary of Spearman 

correlation analysis of log-transformed BAL immune cell and red blood cell percentages 

compared to either the Wheeze or Disease Score values. Dot size is proportional to -log10(p-

value) and colour is scaled by Spearman rho. Significance values are indicated above their 

respective dots. Sample sizes are n=29 for preschool controls, n=22 for preschool wheezers, 

and n=22 for school-aged asthmatics. Significance levels are indicated as p<0.05=*, 

p<0.01=**, p<0.001=***. 
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Figure 3. Multi-omic-derived Disease Score (LF4) is characterised by changes in host gene 

expression and bacterial gene counts. A. Barplot representing the top limma DE genes along 

the Disease Score, with Benjamini-Hochberg (BH) multiple testing correction. B. Principal 

component analysis (PCA) biplot of principal components 1 and 2 of differential genes (with 

logFC>0.5) in panel A (subset of batch-corrected Integrated Human Lung Cell Atlas scRNAseq 

pseudo-bulk data; n=766 profiles of 50 pseudo-bulk cell types from 28 studies). PCA 

eigenvectors with eigenvalues >0.5 are shown, and coloured according to the Disease Score 

direction with higher expression. Eigenvectors touching the outer ring with open triangles 

extend beyond the plot bounds. Cell types occupying different sectors of the plot are 

indicated by lines at the plot edges. C. Barplots representing the number of differentially-

abundant (DA) bacterial taxa-aggregated KEGG orthologs (KOs), i.e. functional gene counts, 

along the Disease Score, determined by limma with BH multiple-testing correction. Bars are 

coloured according to whether there are more DA gene counts in health or disease (left 

panel). Barplot representing Spearman correlation coefficients between taxa-aggregated 

metagenomic and metatranscriptomic sequencing reads as a measure of transcriptional 

activity. Black bars indicate significant correlation; grey bars are non-significant (right panel). 

D. Boxplot comparing Disease Score values between non-atopic and atopic patients, with dots 

coloured according to sample cohort. Sample sizes are n=29 for preschool controls, n=22 for 

preschool wheezers, and n=22 for school-aged asthmatics. Significance levels are indicated as 

p<0.1=., p<0.05=*, p<0.01=**, p<0.001=***.Jo
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TABLES 1 

 Preschool 

controls 

Preschool 

recurrent 

wheezers 

School-aged asthmatics Chi-squared test - Preschool 

controls vs. preschool recurrent 

wheezers 

Chi-squared test - Preschool 

recurrent wheezers vs. school-

aged asthmatics 

Number of patients 29 22 22   

Age at sampling (years 

(range)) 

4 (1.5 - 5.6) 3.6 (2 - 5.8) 12.5 (6.7 - 17.1)   

Sex (Male) 58.6% (17/29) 63.6% (14/22) 36.4% (8/22) ns (p = 1.00) ns (p = 0.171) 

Preterm delivery (<37 

weeks) 

0% (0/29) 0% (0/22) 13.6% (3/22) ns (p = 1.00) ns (p = 0.209) 

Daycare* 93.1% (27/29) 50% (8/16, 6 NA) NA ** (p = 3.13e-03) NA 

Inhaled corticosteroid 

usage# 

13.8% (4/29) 86.4% (19/22) 90.1% (20/22) *** (p = 3.73e-07) ns (p = 1.00) 

Bronchodilators# 20.7% (6/29) 100% (22/22) 100% (22/22) *** (p = 1.39e-07) ns (p = 1.00) 

Normal vaginal delivery 62% (18/29) 72.7% (16/22) 54.5% (12/22) ns (p = 0.699) ns (p = 0.407) 

Ethnicity (White) 65.5% (19/29) 59.1% (13/22) 59.1% (13/22) ns (p = 1.00) ns (p = 1.00) 
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Atopy (serum total IgE >30 

IU/mL)* 

58.3% (7/12, 17 

NA) 

54.5% (12/22) 81.8% (18/22) ns (p = 1.00) ns (p = 0.083) 

Family history of asthma 37.9% (11/29) 77.3% (17/22) 81.8% (18/22) * (p = 1.68e-02) ns (p = 0.937) 

Family history of eczema 34.5% (10/29) 31.8% (7/22) 50% (11/22) ns (p = 0.893) ns (p = 0.209) 

Family history of allergic 

rhinitis 

48.3% (14/29) 54.5% (12/22) 68.2% (15/22) ns (p = 0.739) ns (p = 0.665) 

Table 1. Demographic information for patients included in multi-omic analysis. 2 

Data is provided at either median (range) or percentage (n/n). Significance values represent results of Chi-squared tests for comparisons between 3 

two categorical variables. *Certain clinical variables are missing for some patients. #Inhaled corticosteroids or bronchodilators were prescribed 4 

to a small number of preschool controls for a single, isolated wheeze event. These children were considered controls for the purpose of clinical 5 

grouping as the wheeze was not recurrent. 6 
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