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Abstract: Urban communities have long been pivotal in wealth creation and technological innovation.
In the contemporary context, their modus operandi is intricately tied to a diverse array of critical
infrastructure systems (CISs). These systems—encompassing utilities, transportation, communication,
and more—are indispensable for daily life; however, historical lessons underscore that the ever-
growing interdependence among modern CISs has sapped their robustness. Furthermore, this
vulnerability is compounded by the intensifying natural hazards catalysed by climate change, leaving
urban communities with eroded resilience. Against this backdrop, pilot studies have harnessed
breakthroughs in artificial intelligence (AI) to chart a new course toward resilient urban communities.
This paper illuminates AI-driven resilience by reviewing the latest research in key aspects including
(1) the limitation of state-of-the-art resilience assessment frameworks; (2) emergency response as a
novel blueprint featuring swift response following catastrophes; (3) efficient loss assessment of CISs
using AI algorithms; and (4) machine-learning-enabled autonomous emergency response planning.
The remaining challenges and hardships faced on the journey toward resilient urban communities are
also discussed. The findings could contribute to the ongoing discourse on enhancing urban resilience
in the face of increasingly frequent and destructive climate hazards.

Keywords: urban community; critical infrastructure system; natural hazard; resilience; emergency
response; artificial intelligence; deep reinforcement learning

1. Introduction

The ongoing global urbanization has led to a majority of the world’s population
residing in urban communities [1,2]. Modern urban communities serve as engines driving
economic growth and technological advancement for each nation [3]; furthermore, the
urban sprawl is perpetuated by socio-economic developments, creating a cycle of growth
and expansion [4].

Modern urban communities function as intricately woven systems comprising people,
organizations, and patterned relationships [5]. Their operational dynamics hinge upon the
inflow and outflow of goods and services facilitated by a network of Critical Infrastructure
Systems (CISs). These cybernetically engineered and interdependent CISs maintain the
socio-economic fabric of urban life [6]; however, amidst the boom of urbanization, recurring
challenges persist. Pollution, violence, and pandemics cast shadows on the edges of thriving
urban communities [7]; in particular, the global impact of the COVID-19 pandemic that
has caused unprecedented human and economic losses [8] underscores the vulnerability of
modern urban systems.

A series of studies have highlighted the intricate interplay within networked CISs.
As their complexity increases, the controllability of cascading effects and repercussions
diminishes [9]. Those intra and interdependencies (the concept of interdependence denotes
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a bidirectional relationship between two CISs, wherein the state of each system signifi-
cantly influences or correlates with that of the other) amplify the potential consequences
of localized damage to individual CIS components, potentially triggering full-blown
failures [10–12].

Comprehensive studies have explored effective approaches to bolster urban commu-
nities against a spectrum of catastrophes [13–15]; however, stakeholders and engineers
increasingly recognize that expecting future urban areas to remain immune to hazard-
induced disruptions is generally unfeasible, even when mitigation methods are imple-
mented [16,17]. The inherent vulnerability of these communities arises from the intricate
interplay among diverse CISs, compounded by the escalating risks posed by climate-related
hazards [18,19]. Research endeavours have consequently converged on the resilience of
CISs and urban communities. It is self-evident that robust and swift recovery following
hazard events plays a role as pivotal as disaster preparedness in ensuring the survival and
sustainability of impacted communities [20–22]; besides, over the past decade, attention
has shifted from isolated CIS components (such as bridges within transportation systems)
to examining how interdependencies—particularly looped ones [23]—reshape the multi-
dimensional resilience of modern, interconnected communities [24–26]. Justifiably, the
new insights generated from those research endeavours have laid a solid foundation for
resilience amelioration and risk governance for stakeholders and decision-makers [27].

While existing resilience assessment frameworks emphasize essential aspects, they
often fall short of providing a comprehensive view of community resilience, as recent
real-world lessons underscore the necessity for a more nuanced approach [28]. Overall,
most of these frameworks primarily quantify the gross functionality losses sustained by
networked CIS–communities throughout hazard events. These losses are assessed using
physical, economic, or societal indicators [29,30]; however, the criticality across different
temporal windows during these events has been indiscriminately characterized. This
contrasts with the reality of real-world hazards, where initial localized damage can rapidly
propagate, sometimes uncontrollably [9].

In response to this deficiency, post-hazard emergency response has emerged as a
promising pathway toward resilient urban communities; however, devising optimal plans
for these emergency responses immediately after real-world hazards presents significant
challenges. The available information at this stage is often incomplete and inaccurate;
furthermore, emergency response activities can be hindered by widespread damage and
potentially inhabitable environments following such hazards [31]. Against this backdrop,
very recently, researchers have harnessed advances in artificial intelligence (AI) to en-
hance emergency responses [32–34]. These efforts focus on rapid damage classification
using deep learning and autonomous decision-making driven by (deep) reinforcement
learning. Inspired by the prospect of AI-driven, resilience-oriented emergency response
of future urban communities, this paper aims to shed light on the progress achieved by
reviewing recent developments in this field while also emphasizing the ongoing challenges.
To maintain generality, this paper primarily delves into research related to community
resilience in the context of earthquake hazards. Accordingly, the subsequent sections are
organized as follows: Section 2 traces the historical development of hazard resilience and
examines the approaches devised thus far for engineering resilient communities; Section 3
elaborates on the newly established concept of post-shock emergency responses following
seismic hazards; Section 4 delves into the latest studies concerning the rapid assessment
of earthquake-induced damage and losses. In parallel, it also explores learning-based
planning of post-shock emergency responses; Section 5 discusses the pathway forward for
enhancing community resilience while addressing the challenges that need to be overcome;
Finally, Section 6 summarizes the main findings and draws conclusions.
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2. Development of Seismic Resilience of Modern Urban Communities
2.1. Establishment of a Resilience Assessment Framework for Integrated CISs–Communities

Earthquakes have long posed a grave threat to modern communities situated in
earthquake-prone regions worldwide [35–37]. Statistical studies consistently reveal the
devastating impact of earthquakes on urban communities, resulting in significant loss
of life and socio-economic damage [38–42]; additionally, recovery from such events is
often challenging [43,44]. In response, the concept of earthquake-resilient communities
has assumed greater importance. These communities are expected to remain robust even
during seismic hazards and have the capacity to restore functionality afterwards; therefore,
they have been widely recognized as the cornerstone for the sustainable development of
their respective regions [45].

The concept of resilience, initially rooted in the study of ecosystems, has gained
prominence since the early 1970s [46]. In recent years, community resilience has emerged
as a critical focal point, particularly within the context of disaster risk mitigation. This
shift was underscored during the 2005 World Conference on Disaster Reduction (WCDR),
where community resilience was positioned as a pivotal element in shaping the future
sustainability of communities [47]. In continuation, Cutter [48] underscored that achieving
the goal of resilience and sustainability for urban communities necessitates concerted efforts
across diverse societal sectors from a political perspective.

Bruneau et al. [20] significantly advanced the pursuit of resilient communities by
proposing a comprehensive definition of hazard resilience in urban areas. Their framework
involves diverse strategies aimed at minimizing losses from hazard events, including
mitigation and recovery efforts; additionally, the concept of resilience can be delineated
across four key dimensions: technical, organizational, societal, and economic. Notably,
the technical and economic dimensions directly impact the resilience of CISs, whereas the
remaining two dimensions provide valuable insights into the overall community resilience.

Building upon the foundation laid by Bruneau et al. [20], Ouyang et al. [21] established
a general assessment framework for hazard resilience of CISs. Within this framework,
the gross functionality losses throughout the entire event serve as a direct measure of the
resilience of CISs of interest. To that end, hazard events are temporally divided into three
distinct phases: hazard prevention, damage absorption, and post-hazard recovery. Addi-
tionally, Sun et al. [22] extended this research by proposing a supply–demand resilience
assessment framework. This framework tracks both the functionality supply from CISs
and the corresponding demand from the community in which these CISs are embedded.
Throughout the three aforementioned phases, the deliverable functionality of CISs (abbre-
viated as “DF,” essentially the supply) and the community demand (abbreviated as “D”)
evolve. After a shocking event like an earthquake, both the supply and demand take time
to reach their minimum levels, signifying the end of the absorption phases, as shown in
Figure 1.
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Subsequently, they begin to recover until they reach a new post-shock equilibrium at
time points tfs and tfd, respectively. Notably, in urban communities affected by calamitous
earthquakes, post-shock recovery can span years [49], significantly surpassing the duration
of their absorption phases. Meanwhile, as depicted in Figure 1, the recovery trajectory of
the CIS–community need not follow a monotonic pattern; instead, it may exhibit volatility
due to various additional disruptions (such as aftershock sequences related to earthquake
hazards). Notably, the recovery rate of both supply and demand may vary radically based
on case-specific political and economic governance structures and the coordination among
different sectors following hazard events; therefore, following such a framework, the
system-level functionality deficit (abbreviated as “FD”) of the CIS–community is quantified
by aggregating the corresponding deficits at each individual node k (k = 1: N, where N
denotes the number of nodes in a particular CIS), denoted as FDk(t). Mathematically,
FDk(t) is obtained by comparing the deliverable functionality (DFk(t)) with the community
demand (Dk(t)) during both the absorption and recovery phases, as shown in Equation (1):

FDk (T) = ∑m
l=1

∫ tl, f

tl,0

(D k(t)− DFk(t))dt (1)

In this context, the variable m stands for the cumulative count of intervals during
which Dk(t) exceeds DFk(t). These intervals span from the initial occurrence of the shock to
a designated “milestone” time point T—for example, when both supply and demand have
fully recovered to their pre-shock levels; additionally, tl,0 and tl,f correspond, respectively,
to the start and end points of each individual interval among the m ones. For every node
k, the value of Dk(t) is derived from the aggregated functionality demand across all users
served by that node [50].

Importantly, this supply–demand assessment framework not only gauges the physical
resilience of the networked CIS–community, but also provides insights into its socio-
economic resilience. By doing so, it has laid a foundation for resilience-oriented risk
governance policies, which are especially pertinent for CIS–communities subjected to
various hazards.

2.2. Research on Seismic Resilience of Modern CISs
2.2.1. Seismic Resilience of Individual CISs

Extensive research has investigated the seismic behaviour of various modern CISs.
These systems span diverse domains, including healthcare, gas, and water infrastructure
systems [51–53]. Notably, considerable attention has been paid to two pivotal systems:
Electric Power Supply Systems (EPSSs) and transportation systems (TSs). These two CISs
play a strategically crucial role in ensuring the continuity of functionality and the robust
recovery of all the other interconnected systems.

Specifically, regarding EPSSs, Shinozuka et al. [54] established a link between the seis-
mic robustness of EPSSs and the fragility behaviour of their most critical components under
damaging earthquakes. Their proposed modelling framework allows the quantification of
the system-level cost of seismic damage, along with corresponding socio-economic losses.

Dueñas-Osorio and Vemuru [55] proposed a framework for modelling the impact
of cascading failures across EPSSs. Within this framework, the overload resulting from
cascades is characterized by a tolerance parameter, which assesses the element flow capacity
relative to flow demands in real-world EPSSs. The study indicates that enhancing compo-
nent tolerance alone does not guarantee EPSS robustness in the face of disproportionate
cascading failures. Simultaneously, topological upgrades play a crucial role in enhancing
the cascade robustness of the system, particularly when operating at viable tolerance levels.

Within the framework of game theory, Casari and Wilkie [56] employed mechanism
design to introduce an economic model specifically targeting the post-shock recovery of
EPSSs. Their research underscores that the prolonged restoration time of EPSSs, as well as
other CISs, may stem from insufficient coordination among system operators. As a result,
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the adoption of incentive-compatible contracts emerges as a strategic approach for shaping
effective emergency restoration plans, thereby significantly enhancing social welfare.

Sun et al. [57] established an agent-based model (ABM), a bottom-up and adaptive
computational approach to large-scale socio-economic systems [58], to address the post-
shock recovery of earthquake-damaged EPSSs. This study highlights the emergence of
potentially conflicting interests between the community and the EPSS operator. Resolving
such conflicts would reshape the recovery dynamics of the integrated EPSS–community.
Additionally, this study demonstrates the importance of the development of seismic contin-
gency dispatch strategies and contingency demand regulation measures to enhance the
societal resilience of EPSS–communities.

Vis-à-vis TSs, Mackie et al. [59] introduced a comprehensive framework aimed at
quantifying both the repair cost and repair time of bridge structures. These structures
play a pivotal role in modern TSs, particularly highway networks. In such a framework,
these two measures are obtained by linking the amounts of repair materials, to damage
states requiring the repair, to structural response causing the damage, and eventually
to the intensity measure of seismic hazards. By disaggregating these components, the
framework provides detailed insights into the damage and failure of individual bridge
members. Consequently, it facilitates informed decision-making regarding both structural
design and retrofit strategies.

Decò et al. [60] proposed a probabilistic model to evaluate the seismic resilience of
bridges. This model utilizes fragility functions to assess the earthquake-induced physical
damage of a specific bridge. Subsequently, considering varying levels of initial damage
and different rates of rehabilitation, a probabilistic six-parameter sinusoidal-based function
is established. This function shapes the recovery trajectory of bridge structures, enabling
risk-informed decision-makings.

Regarding the post-shock recovery of TSs, Hu et al. [61] investigated the impact of
various recovery strategies on the seismic resilience of those systems following catastrophic
earthquakes. Three distinct strategies were considered: the greedy recovery (GR), the
preferential recovery based on nodal weight (PRNW), and the periphery recovery (PR).
Specifically, GR prioritizes the sequential restoration of damaged links, aiming to maximize
network functionality recovery at each time step; on the contrary, PRNW focuses on
restoring edges that connect isolated nodes with the largest population to the functional
components within the TS; finally, PR prioritizes the restoration of isolated nodes related
to the largest population. The case study revealed that both PRNW and PR effectively
contribute to TS recovery after damaging earthquakes; notably, PRNW emerged as a
recommended strategy for resource allocation, significantly reducing the time needed to
restore TS functionalities.

Most recently, Wu et al. [62] introduced a comprehensive modelling framework for the
long-term recovery of TSs following earthquake hazards. In such a framework, both travel
time and safety have been included to track and measure the time-varying functionality
of TSs during the course of recovery; in particular, the framework generates a restoration
criticality index for each bridge. This index informs the formulation of effective long-term
recovery strategies for TSs in the aftermath of seismic events.

2.2.2. Seismic Resilience of Interdependent CISs

In the early 2000s, a series of unprecedented cascading failures of CISs on a global scale
prompted renewed research into their hidden vulnerabilities [63–66]. These systems, which
play critical roles in various domains, exhibited a significant lack of resilience even when
faced with seemingly minor initial disruptions. Researchers turned to complexity theory to
revisit the behaviour of these CISs. The findings consistently pointed to the inherent vulner-
ability of modern CISs, stemming from their intricate intra and interdependencies. These
dependencies create a delicate balance, making the systems susceptible to failures [10–12].
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The CIS vulnerability induced by interdependencies also extends into real-world
hazard events, such as destructive earthquakes. To safeguard the resilience of modern
urban communities, it is imperative to deepen understanding of these vulnerabilities and
actively work toward effective mitigation strategies.

Krishnamurthy et al. [67] conducted a comprehensive study on EPSS resilience under
two significant real-world earthquake events: the 2011 MW 9.0 Tohoku earthquake in
Japan and the 2010 MW 8.8 Maule offshore earthquake in Chile. Their research specifically
investigated the interdependencies between EPSSs and telecommunication systems. To that
end, this study analysed time series data related to damage, outages, and service restoration
of both the two CISs throughout the respective earthquakes. The findings revealed a strong
coupling between the restoration of the EPSS and telecommunication systems in both Japan
and Chile. In particular, the restoration of mobile communication networks was more
closely tied to EPSS restoration than that of landline telephony systems. This consistent
pattern underscores the significant and asymmetric dependence of telecommunication
systems on EPSSs. Consequently, the study highlights the urgent need for innovative
technological solutions, such as microgrids, to enhance the resilience of telecommunication
systems and safeguard the entire community under catastrophic earthquakes.

It is noteworthy that modern CISs exhibit interdependencies that extend beyond the
conventional, “unidirectional” relationships. Both the operation and post-shock recovery
of CISs are often mutually reliant, as observed under real-world scenarios [6]. Researchers
have begun investigating the impact of this looped interdependence on CIS resilience.
In a recent study, Zhao and Sun [26] explored the resilience behaviour of an interwoven
system comprising an EPSS and a TS, as well as the urban community that they serve,
under seismic hazards. Following damaging earthquakes, the restoration of EPSSs becomes
contingent upon the functionality of TSs. Specifically, EPSS components can only be
repairable if accessible via the TS; conversely, the restoration of TSs is also reshaped by
the time-varying functionality of EPSSs, as many TS repair equipment rely on the energy
supply. To model these complex and dynamic interactions between the two CISs, an agent-
based model (ABM) was developed. This ABM incorporates two key agents: the operators
responsible for the recovery campaigns of the TS and the EPSS. Sensitivity analysis was run
to explore how post-shock recovery is influenced by the looped interdependence between
these two systems, considering various earthquake scenarios. The simulation outcome
reveals a nonlinear relationship between the degree of interdependence and system-level
resilience, particularly under strong shocks. When the interdependence degree surpasses
a critical threshold, the resilience of the EPSS–TS–community system undergoes a sharp
deterioration, especially when viewed from a societal perspective.

3. Emergence of Resilience-Oriented Post-Shock Emergency Responses
3.1. The Concept of Post-Shock Emergency Responses

Despite considerable advancements in resilience assessment research, it is increasingly
acknowledged that state-of-the-art frameworks fall short of capturing the dynamics of
contemporary urban communities, as highlighted by recent real-world hazard events [28].
In particular, existing frameworks exhibit a critical limitation: they fail to adequately char-
acterize the criticality of different time windows during post-shock recovery [68]. In the
context of real-world catastrophes such as damaging earthquakes, the immediate physical,
economic, and societal losses resulting from the mainshock can be substantially exacerbated
in the subsequent short time frame. These cascading effects have far-reaching implica-
tions for the society as a whole. For instance, the functionality losses or deterioration
of local hospital and road networks significantly impact earthquake-injured inhabitants.
Those who cannot be promptly evacuated face a heightened risk of mortality within
days or even hours after the seismic event due to the limited access to life-saving treat-
ments [69,70]. Meanwhile, in the absence of well-planned disaster management, the societal
consequence of earthquake-initiated releases of radioactive contamination or other toxic
chemicals become both financially burdensome and irreparable over the subsequent years



Appl. Sci. 2024, 14, 7949 7 of 20

and decades [71–73]. Additionally, the potential aftershock sequences following the main-
shock could even further amplify these consequences [74,75]. Moreover, the ever-growing
interdependencies among CISs would accelerate the propagation of earthquake-initiated
disruptions. Consequently, planning and executing effective post-shock restorations face
increasingly complex challenges.

Against this backdrop, emergency response—incorporating an array of actions that
the operators and stakeholders responsible for post-earthquake restorations can take imme-
diately after the shock—has emerged as a new pathway toward future earthquake-resilient
urban communities [76]. Conceptually, the emergency response (ER) empowers each oper-
ator of a single CIS or networked CISs to mitigate the functionality deficit in the immediate
aftermath of earthquakes (IAoEs), as mathematized in Equation (2):

ER = arg min
a

(
∫ ter

t0

(D(t)− DF(t, a))dt) (2)

In this context, DF(t, a) stands for the deliverable functionality of those CISs, condi-
tioned on the action a taken by their operators; additionally, ter denotes the time point
when the deliverable functionality has been restored to an acceptable level, ensuring that
the emergency functionality demand from the community can be met (which essentially
signifies the end of IAoEs), as illustrated in Figure 2.
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3.2. Challenges Faced by Post-Shock Emergency Responses

Despite the potential advantages highlighted above, planning, optimizing, and exe-
cuting emergency responses during real-world catastrophes remain challenging. Specifi-
cally, when dealing with seismic events, it is crucial to assess the severity and geographic
distribution of earthquake-initiated losses and disruptions across the whole community
immediately after the shock. This assessment should consider the knowledge of exposed
assets and their seismic vulnerabilities [77]. As illustrated in Figure 2, a comprehensive
set of emergency response actions must be planned and executed in the IAoEs. Given
the severity of losses sustained by earthquake-disrupted CISs, the emergency response
may encompass a wide range of viable actions, spanning physical, economic, and societal
restoration efforts. Practically, local Civil Protection Agencies and CIS operators should
incorporate the following elements into their emergency toolkit: emergency shelters, emer-
gency food and medical assistance, emergency repair of CISs, and emergency functionality
dispatch [50,76,78–80]; however, the complexity of each enumerated action, especially
the coordination among them, poses significant challenges. Even when the severity and
geographic distribution of the initial damage have been precisely assessed (which is rarely
the case in real-world earthquake events), strategic planning on the emergency response
campaign remains extremely demanding. In principle, there are, at least, three challenges
to be addressed by the decision-makers, as outlined below:
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1. Challenges from a computational perspective: In the case of widespread earthquake-
initiated damages, potential permutations for restoring a single CIS alone can be
massive due to the scale and heterogeneity of modern CISs [81]. Brute-force search al-
gorithms are thus computationally unaffordable for discovering the optimal sequence
of restoration actions [81,82];

2. Challenges from a technical perspective: In light of the potentially pervasive damage
in the wake of damaging earthquakes, the emergency response associated with any
single CIS could be hindered not only by the damage to the other CISs, but also
by self-inflicted ones [76]; furthermore, damage to a set of different CISs providing
critical services can render an affected area uninhabitable or inaccessible to human
beings [83], significantly affecting community restoration efforts;

3. Challenges from a socio-economic perspective: In the context of hazard-impacted
communities, top-down planning is commonly favoured. These planning approaches
emphasize centralized decision-making and coordination, which are crucial for ef-
ficient resource allocation, streamlined communication, and rapid deployment of
emergency measures; however, top-down planning can also lead to a lack of trans-
parency and accountability. Consequently, emergency response campaigns may be
influenced by biases and misconceptions, inadvertently exacerbating environmental
and societal disruptions [78].

4. Resilience-Oriented Emergency Responses Driven by Machine Learning

Section 3 delves into the strategic criticality of post-shock emergency responses con-
cerning the resilience of urban communities under seismic hazards. More importantly, it
highlights the comprehensive challenges that hinder the practical implementation of the
responses of real-world CISs. In parallel, thanks to the significant advances in the domain
of machine learning throughout the past decade [84,85], it has been demonstrated that
AI-capable machines can surpass human experience-based decision-making, even without
prior human knowledge [86–91]. Justifiably, their integration into modern societies holds
the potential to revolutionize post-hazard emergency responses. Overall, the machine-
learning-driven approach to post-shock emergency responses offers distinct advantages.
Its generalization capability enables adaptive decision-making in an expeditious manner.
Furthermore, these AI-capable machines promise to mitigate the impact of the emotional
and irrational behaviour exhibited by humans during emergencies.

Pilot research in this area has primarily focused on rapid damage assessment and
learning-based decision-making on post-shock restorations. The remainder of this section
will review and provide insights from these research endeavours.

4.1. Rapid Damage Assessment

The effectiveness and timeliness of emergency responses following damaging earth-
quakes critically depend on an accurate assessment of earthquake-induced damages. Tra-
ditionally, post-shock damage assessments rely on manual inspections, which are often
time-consuming and struggle to inform agile decision-making; moreover, these manual in-
spections yield inherently subjective outcomes, potentially misleading decision-makers [92].
To address these challenges, recent research efforts have capitalized on the latest advance-
ments in deep learning (DL) techniques to rapidly identify earthquake-induced damages.
DL leverages computational models, i.e., artificial neural networks with multiple layers
capable of handling complex learning tasks by processing large datasets. These models
employ hierarchical representations with multiple levels of abstraction and are trained
using gradient-driven optimizers in conjunction with the backpropagation algorithm [84].
A pivotal moment in DL for computer vision was the development of convolutional neural
networks (CNNs), exemplified by the influential AlexNet. AlexNet’s victory in the 2012
ImageNet Large Scale Visual Recognition Challenge convincingly surpassed classical ap-
proaches [93]. Subsequent advancements in hardware, software, and algorithms (such
as GPUs and DL frameworks like TensorFlow 2.17.0 and PyTorch 2.4.0) have solidified
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CNNs as powerful tools for image classification [94], object detection [95,96], and semantic
segmentation [97–99].

The architecture of CNNs encodes certain prior assumptions that are usually met in
many computer vision problems. Because of such inductive biases, CNNs are especially
suitable for problems from this domain. Beyond the deep model’s hierarchical representa-
tion, which includes both low-level and high-level features, CNNs also exhibit a certain
translational invariance in the learned features. A simple CNN architecture for binary
damage classification is depicted in Figure 3. It illustrates a model that classifies input
images based on whether they include damaged or undamaged objects. Denoted as NNθ(x),
this model has some trainable weights θ and yields the probability pθ(damage|x) that a
given input image x contains a damaged object. The complementary probability, pθ(no
damage|x), is straightforwardly calculated as 1 − pθ(damage|x). The map from the input
image to the probabilistic output usually consists of a convolutional feature extractor and a
fully connected classifier. The feature extractor contains convolutional and downsampling
layers, typically several. Moreover, nonlinear activation functions such as the rectified
linear unit (ReLU) are applied to the feature maps, usually directly after the convolution.
The flattened features are then further processed in the final classifier. It contains dense
linear layers, each followed by an activation function. A sigmoid function is applied to
the single output of the last layer so as to ensure that the predicted damage probability is
properly normalized.
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In the context of emergency responses, researchers have already started to leverage the
advances in CNNs to develop adaptive models for identifying damage in structures and
CISs following destructive earthquakes. Specifically, the CNN-based image classification,
object detection, and semantic segmentation for damage identification and localization have
undergone comprehensive scrutiny by Sony et al. [100] and Zhang et al. [92], respectively.

Notably, Mondal et al. [101] employed region-based object detection methods to local-
ize earthquake-induced damage in building structures and distinguish between various
damage types. To facilitate autonomous, robot-led damage inspections, pretrained models
were fine-tuned using manually annotated data collected through in situ observations
of earthquakes over the past two decades. Similar detection approaches have also been
proposed by Pan and Yang [102], as well as Liang [103], who utilized image segmentation
(pixel-wise classification) for post-disaster damage assessment.

Meanwhile, Chachra et al. [104] proposed a classification approach for detecting dam-
aged buildings immediately after earthquakes using images from social media platforms.
Their method leverages transfer learning with a pretrained feature extractor and customizes
a classifier using a small manually labelled dataset; additionally, they explored model inter-
pretability techniques to visualize and gain insights into the decision-making process of
the “black-box” model based on specific features.
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Most recently, Braik and Koliou [105] introduced an end-to-end model that estab-
lishes a direct connection between satellite imagery and large-scale damage maps. The
primary objective of this model is to facilitate near-real-time decision-making on post-shock
emergency responses. To achieve this, the model seamlessly integrates satellite imagery, ge-
ographic information systems (GIS), and DL techniques. The case study demonstrated that
leveraging GIS enables the automated extraction of sub-images with remarkable accuracy;
meanwhile, fine-tuning further enhances the robustness of damage classification, resulting
in highly accurate building damage maps at a regional level.

It is worth noting that vision transformers (ViTs) have recently emerged as an al-
ternative to CNNs. They have also been adopted for the automated and rapid damage
assessment of engineering structures and CISs. For instance, Shamsabadi et al. [106]
developed a ViT-based model specifically designed for crack detection in concrete and
asphalt—the two most commonly used materials in structures and roadways. The ViT was
demonstrated to outperform classical CNNs in their study.

4.2. The Reinforcement Learning-Driven Emergency Response and Recovery

Reinforcement learning (RL), a subfield of machine learning, centres around how
independent agents can make decisions in dynamic environments to maximize cumulative
rewards [107]. Unlike other machine learning approaches, RL closely mirrors the learning
behaviour observed in humans and other animals. Many recent RL algorithms draw in-
spiration from biological processes [85]. In RL, an agent interacts with an environment,
typically modelled as a Markov decision process (MDP). To address this interaction, dy-
namic programming techniques are commonly employed [107,108]. Due to its versatility,
RL has found successful applications across various domains, including autonomous vehi-
cles [109] and board games; notably, it played a pivotal role in the development of AlphaGo
and AlphaZero [87,110].

Post-hazard recovery, including emergency responses in urban communities, is an
area where RL can be particularly effective. Its unique ability to balance long-term re-
wards against short-term gains makes it well-suited for such critical tasks [107]. When
real-world hazards strike, the overarching objective becomes minimizing human and socio-
economic losses throughout the entire event. To fulfil that objective, decision-makers must
meticulously weigh the criticality and recoverability of the damaged components within
those hazard-impacted CISs. Factors like accessibility, based on the real-time topology
of the system, and the ease of repair play a pivotal role in their decision-making. This
balancing act persists sequentially and adaptively throughout the whole emergency re-
sponse campaign. RL, in theory, holds the promise of discovering optimal policies for these
campaigns. These policies translate observations on the status of CIS components into
specific recovery actions—such as determining which damaged components should be
prioritized for restoration. However, practical implementation faces challenges. The MDPs
governing post-shock emergency responses are inherently high-dimensional, rendering
traditional RL algorithms inadequate for their resolution. In response to this limitation,
a new subfield termed deep reinforcement learning (DRL) has emerged. Inspired by the
increasing generalization capacity of deep neural networks, DRL leverages these networks
as nonlinear function approximators [85] for policies (π (a|s) {\displaystyle \pi (a|s)} or
other learned functions). Despite their successful application in various domains, limited
research has been conducted to date on harnessing advancements in RL (including DRL)
for post-hazard emergency response and urban community recovery.

Nozhati et al. [111] introduced a discrete optimization approach to the sequential
decision-making on the recovery management of urban communities affected by hazards.
This approach integrates approximate dynamic programming with heuristics specifically
tailored for post-shock recovery planning, effectively addressing the challenge posed
by the curse of dimensionality. The approach was applied to inform decision-making
regarding the post-earthquake recovery of the EPSS within a testbed community coarsely
modelled after Gilroy, California, United States. By considering recovery policies from both
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public and private institutions, the simulation demonstrated a significant enhancement
in post-earthquake recovery performance. Most importantly, the approach facilitates the
identification of near-optimal recovery strategies aligned with multiple objectives in an
efficient manner.

Tao and Wang [112] developed a Markovian framework for determining optimum
post-earthquake restoration strategies for highway networks, with a focus on life-cycle
costs (LCCs). Within this framework, seismic hazards are considered over an infinite time
horizon, and the optimal restoration strategy for each individual bridge in the network
is determined using a continuous-time MDP. Additionally, the framework accounts for
indirect economic losses resulting from earthquake-induced traffic congestion. This frame-
work has been applied to guide the post-shock restoration of a virtual highway network
consisting of seven nodes and 12 links. The simulation results demonstrate that an optimal
post-shock restoration policy can be obtained through policy iterations. Importantly, the
optimal restoration of a single bridge depends not only on its own state but also on the
states of other bridges within the whole network.

Most recently, Sun et al. [113] established an autonomous planning system specifically
designed to address the post-hazard emergency response of modern road networks (RNs)
by leveraging the latest advancement in DRL, particularly the breakthroughs associated
with AlphaGo [87]. In this research, the partial yet rapid repair of those hazard-decimated
bridges has been adopted as a viable approach to the emergency response of modern RNs
under hazard events. In particular, the system employs a deep neural network trained
on a wealth of hypothetical earthquake and damage scenarios. By learning from these
experiences, the neural network guides the search process within the newly developed
planning system. Notably, the system’s generalization capacity is examined through an
iterative process. Initially, a neural network (i.e., the first generation) is purposefully
trained using experiences associated with a naïve heuristic—without sophisticated domain
knowledge. Subsequent generations build upon this foundation, each expected to yield
an improved training dataset for the next iteration. A case study conducted on a real-
world RN in Luchon, France, demonstrates the system’s applicability. Remarkably, even
without domain-specific knowledge, the post-shock emergency response campaign guided
by this autonomous planning system significantly outperforms strategies informed solely
by engineering heuristics.

Figure 4 presents a comprehensive summary of the latest research, detailing various
approaches employed during decision-making for post-hazard recovery of CISs.
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5. Prospects and Challenges
5.1. Holy Grail—Autonomous, Grouped, and Humanoid Recovery Robots

In recent years, significant scientific advancements, as discussed in Section 4, have
laid a foundation for assessing the damage and informing decision-making for emergency
responses across hazard-affected urban areas. These developments are crucial for safe-
guarding communities subjected to crises. Humanoid robots, driven by breakthroughs in
research, are increasingly poised to play a pivotal role in shaping the modus operandi of
urban communities. Their capabilities extend beyond routine tasks; they are now entrusted
with critical functions such as constructing large-scale engineering structures, managing
complex transportation systems, and even performing surgical procedures [128–132]. In
particular, humanoid robots have already been deployed as sophisticated tools for disaster
management in modern urban settings. Their applications include firefighting, emergency
search and rescue operations, and other critical interventions [133–135].

Justifiably, the convergence of cutting-edge AI techniques and advancements in
robotics engineering heralds a new era of autonomous and adaptable humanoid recovery
robots, which has long been the holy grail of the scientific community [136]. It is particularly
highlighted that the deployment of these recovery robots promises a paradigm shift in
emergency response and resilience of future urban communities in the following sense:

1. Instead of human beings, these autonomous recovery robots will “bear the brunt” in
the wake of catastrophes. Traditionally, human responders have borne the initial risks
during catastrophes; however, the severity of natural or man-made disasters often
renders affected areas uninhabitable and inaccessible to humans. For instance, in
major fire accidents, smoke inhalation and extreme temperatures pose fatal threats to
firefighters themselves [134]. Similarly, the release of radioactive materials triggered
by hazardous events like earthquakes will substantially jeopardize the well-being of
first responders [137]; consequently, not only can post-hazard emergency responses
be significantly delayed and thwarted, but additional human and societal losses
may also occur. To address this challenge, humanoid recovery robots—operating
autonomously and cooperatively—can venture into affected zones, bearing the initial
brunt of danger [136];

2. The adaptivity of decision-making, as well as the agility (and manoeuvrability) of
autonomous recovery robots. In urban communities facing hazardous events, post-
hazard restoration decisions typically adhere to top-down, experience-based protocols;
however, real-world observations reveal that restoration campaigns often suffer from
sluggishness and poor management due to a lack of adaptivity in decision-making
processes (i.e., decision-making lacks the agility needed to respond swiftly to dy-
namic situations; additionally, uncertainties and evolving conditions also challenge
traditional protocols), ambiguity in stakeholder roles (can be both public and private
institutions), as well as coordination gaps between them [73]; on the contrary, as man-
ifested and inspired by a series of substantial successes in the pursuit of AI-capable
agents [86,88,90], grouped and humanoid recovery robots would be able to serve as
full-fledged first responders in future urban communities. Leveraging state-of-the-art
AI algorithms, they can explore vast state-action spaces within hazard-impacted CISs,
allowing them to chart coordinated restoration pathways, even amidst uncertain-
ties and noise. It is therefore expected that these robots could outperform human
responders, even without domain-specific knowledge [88,90]. In parallel, they could
effectively mitigate the negative impact of panic and irrationality inherent in human
responders and decision-makers; additionally, with quality maintenance, the robots
would be readily available on-site, agile, and manoeuvrable across harsh terrains.

5.2. Challenges Ahead

Despite the (potentially) revolutionary impact of autonomous recovery robots on
post-shock emergency responses, it is crucial to acknowledge the significant challenges that
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lie ahead, potentially casting a shadow over their development and deployment. Overall,
these challenges include (but are not limited to) the following:

1. The safety of deployment. Machine learning models, particularly deep neural net-
works, have showcased remarkable performance in controlled benchmarks; however,
their safety and trustworthiness in real-world applications raise valid concerns, es-
pecially in safety-critical scenarios like post-hazard emergency responses [6]. The
crux of the issue lies in the fact that minimizing a statistically motivated loss function
during training does not guarantee optimal real-world performance. When these
models encounter data during in situ deployment—data that significantly diverge
from their training and testing datasets—their robustness against distribution shifts
becomes compromised [138], exacerbated by the scarcity of hazard-related datasets.
Furthermore, uncertainty compounds the challenge of ensuring model safety [139].
Inaccurate or false predictions can have severe unintended consequences during
real-world hazard events. For instance, mischaracterizing the damage status of CISs
using CNN-based image recognition may lead to significant disaster mismanagement;
similarly, the uncertainty and dynamics surrounding the functionality of CISs during
such periods can amplify the impact of unsafe actions of autonomous agents. These
actions may trigger cascading failures whose consequences could, paradoxically,
go substantially beyond the initial hazard [64,65]. Against this backdrop, in-depth
research should be undertaken to institutionalize the certification of autonomous
recovery robots [138]. It is also vital to develop a more interpretable and scalable DRL
framework [140] to enable these robots to shun unsafe actions while still fulfilling the
optimization objectives of post-shock emergency response campaigns [141,142];

2. Ethical decision-making. As AI penetrates modern societies, ethical questions arise
regarding how AI-capable machines navigate complex decisions; for instance, au-
tonomous vehicles, faced with unavoidable harm during crashes, must grapple with
the difficult choice between running over pedestrians or sacrificing themselves and
their passengers [143–145]. This principle of the “greater good” becomes even more in-
tricate in the context of post-hazard emergency responses, or early warnings [146,147].
Recovery robots, deployed after disasters, face a delicate balancing act. Functionality
gaps between supply and demand in hazard-impacted CISs, coupled with limited
restoration resources, lead to critical decisions. These robots must prioritize certain
neighbourhoods while “sacrificing” others [57]. Although well-intentioned, such
decisions can evoke anxiety and discontent among local inhabitants, exacerbating
societal inequality and sapping the long-term resilience of urban communities affected
by hazards [148–152]. It is thus crucial for private and public sectors to collaborate
to address such a thorny challenge by proposing an inclusive regulatory framework
to guide recovery robots to select a strategy that reconciles widely recognized moral
values with the self-interest of affected neighbourhoods.

6. Conclusions

The modus operandi of modern urban communities has been profoundly and increas-
ingly reliant upon the enduring functionality supply from a diverse array of CISs; however,
real-world hazard events have consistently revealed the vulnerabilities of these CISs in
communities across the spectrum of wealth. Over the past two decades, extensive research
has sought to establish resilient CISs capable of withstanding such events while swiftly
recovering functionality. Notably, this research endeavour provides valuable insights into
the impact of interdependencies among CISs. These intricate connections play a pivotal
role in amplifying initial local damage or dysfunction on a global scale. Additionally, state-
of-the-art assessment frameworks consider not only the physical resilience of networked
CISs but also their multidimensional resilience from a socio-economic perspective. Despite
these significant advances, recent extreme climate events have exposed the limitations of
these frameworks, leading to the following conclusions:
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1. The majority of the state-of-the-art resilience assessment frameworks indiscriminately
characterize the criticality across different temporal windows during hazard events.
Conversely, damage or dysfunction initiated by a hazard in any single CIS tends
to propagate, potentially triggering a full-blown cascading failure in the immediate
aftermath of such events;

2. In this context, post-shock emergency responses emerge as a promising pathway
toward resilient urban communities. These responses aim to swiftly restore the func-
tionality of hazard-impacted CISs to a minimal yet acceptable level immediately after
shocking events. By effectively inhibiting potential cascading failures triggered by the
initial damage, these emergency responses facilitate smoother long-term recovery;

3. Practical implementation of emergency responses faces obstacles from computational,
technical, and socio-economic perspectives;

4. Pilot studies have utilized advanced machine learning techniques to enhance post-
shock emergency responses of Critical Infrastructure Systems (CISs). These efforts
underscore AI-driven strategies that can rapidly restore functionality and bolster
resilience in the aftermath of disasters. Notably, deep learning has proven to be a
powerful tool for swift damage assessment immediately following hazardous events.
Progress in this field has established the groundwork for adaptive post-shock emer-
gency responses, with (deep) reinforcement learning playing a crucial role;

5. By integrating state-of-the-art AI with robotics engineering, autonomous, grouped,
and humanoid recovery robots could potentially revolutionize urban crisis man-
agement. These robots not only shield human responders from hazard-induced
dangers but also devise strategies that may surpass traditional top-down, experience-
based protocols.

Lastly, this paper also serves as a cautionary message to the scientific community
and public regarding the potential risks associated with the convergence of AI and emer-
gency responses. Amidst the intricate and dynamic interactions within urban communities
throughout hazard events, any erroneous prediction or unsafe action by these AI agents
could inadvertently exacerbate the damage sustained by hazard-impacted CISs, poten-
tially exceeding the initial hazards themselves; furthermore, decision-making by these AI
agents during emergency response campaigns may unintentionally perpetuate societal
inequality across hazard-affected communities. Without vigilant oversight, their actions
could unwittingly exacerbate existing disparities; therefore, comprehensive studies are
imperative to regulate the behaviour of AI agents, ensuring alignment with ethical norms
while contributing to the resilience of future urban communities imperilled by various
natural and/or man-made catastrophes.
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25. Blagojević, N.; Kipfer, J.; Didier, M.; Stojadinović, B. Scenario-based resilience assessment of communities with interdependent
civil infrastructure systems. In Proceedings of the 17th World Conference on Earthquake Engineering (17WCEE 2020), Sendai,
Japan, 13–18 September 2020.

26. Zhao, T.; Sun, L. Seismic resilience assessment of critical infrastructure-community systems considering looped interdependences.
Int. J. Disaster Risk Reduct. 2021, 59, 102246. [CrossRef]

27. Linkov, I.; Bridges, T.; Creutzig, F.; Decker, J.; Fox-Lent, C.; Kröger, W.; Lambert, J.H.; Levermann, A.; Montreuil, B.; Nathwani, J.;
et al. Changing the resilience paradigm. Nat. Clim. Change 2014, 4, 407–409. [CrossRef]
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