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ABSTRACT: When Olga Kennard founded the Cambridge Crystallographic Data Centre in 1965, the Cambridge Structural
Database was a pioneering attempt to collect scientific data in a standard format. Since then, it has evolved into an indispensable
resource in contemporary molecular materials science, with over 1.25 million structures and comprehensive software tools for
searching, visualizing and analyzing the data. In this perspective, we discuss the use of the CSD and CCDC tools to address the
multiscale challenge of predictive materials design. We provide an overview of the core capabilities of the CSD and CCDC software
and demonstrate their application to a range of materials design problems with recent case studies drawn from topical research areas,
focusing in particular on the use of data mining and machine learning techniques. We also identify several challenges that can be
addressed with existing capabilities or through new capabilities with varying levels of development effort.

1. INTRODUCTION
In the age of “big data”, one can only marvel at the foresight Dr
Olga Kennard had when she established the Cambridge
Crystallographic Data Centre (CCDC) in 1965.1 The Cam-
bridge Structural Database (CSD) marks one of the pioneering
attempts to capture scientific data in a standard format, with the
vision of leveraging vast quantities of data to learn new things.
More than half a century later, with over 1.25 million structures,
the CSD has not only stood the test of time but remains at the
forefront of contemporary data-driven materials science.
Depositing small-molecule crystal structures with the CSD is

standard practice and a requirement for most academic journals,
ensuring that the database is continually updated both with new
structures and more accurate determinations of known
structures. The CCDC also develops and maintains a collection
of software tools to enable the community to leverage the CSD
for their research. Such tools include the graphical interface
(GUI) for searching and retrieval, ConQuest,2 the visualization
and analysis program, Mercury,3 and a Python application
programming interface (API). In 2009, a consortium of
industries, the Crystal Form Consortium, was founded to

drive forward solid-form analysis and development, which led to
the creation of the CSD-Materials software suite of tools for
solid form analysis.2−4 The CSD-Discovery suite was similarly
developed to include tools for computer-aided drug discovery.5,6

1.1. Molecular Materials Design Approaches. The
foundational data and software tools provided by the CSD
provides a powerful platform for the design of crystalline
molecular materials, a multiscale problem covering length scales
from angstroms (Å) to millimeters (mm).
Atmolecular scale, researchers can exploit synthetic chemistry

to target molecular properties such as color, magnetism and
biological activity. At this stage, the consideration is primarily
the functionalization of the molecule itself, rather than the form

Received: May 22, 2024
Revised: July 26, 2024
Accepted: July 30, 2024
Published: August 19, 2024

Perspectivepubs.acs.org/crystal

© 2024 The Authors. Published by
American Chemical Society

6911
https://doi.org/10.1021/acs.cgd.4c00694
Cryst. Growth Des. 2024, 24, 6911−6930

This article is licensed under CC-BY 4.0

https://pubs.acs.org/curated-content?journal=cgdefu&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ioanna+Pallikara"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jonathan+M.+Skelton"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lauren+E.+Hatcher"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anuradha+R.+Pallipurath"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.cgd.4c00694&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.4c00694?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.4c00694?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.4c00694?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.4c00694?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.4c00694?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.4c00694?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.4c00694?fig=abs1&ref=pdf
https://pubs.acs.org/toc/cgdefu/24/17?ref=pdf
https://pubs.acs.org/toc/cgdefu/24/17?ref=pdf
https://pubs.acs.org/toc/cgdefu/24/17?ref=pdf
https://pubs.acs.org/toc/cgdefu/24/17?ref=pdf
pubs.acs.org/crystal?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.cgd.4c00694?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/crystal?ref=pdf
https://pubs.acs.org/crystal?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


it is used in for its intended application. However, most materials
are ultimately stabilized as a solid, and often in a thermodynami-
cally stable, ordered crystalline state (e.g., for maximizing shelf
life), which we refer to henceforth as the “solid-state”.7

At the level of the solid-state, controlling the 3D packing of
molecules to form a crystal structure determines a number of
physical properties, for example mechanical behavior and
solubility.7 At this stage the issue of polymorphism arises,
whereby the same molecule can formmultiple crystal structures.
The outcome of a crystallization can be controlled by varying
environmental conditions such as the temperature, pressure, and
polarity or pH of the medium. These can, for example, favor
molecules adopting a particular conformation or charge state
(e.g., the zwitterion forms of amino acids), leading to
polymorphs with very different properties. A well-known
example of polymorphism is 5-methyl-2-((2-nitrophenyl)-
amino)thiophene-3-carbonitrile, also known as “ROY” for its
vivid red, orange and yellow polymorphs, which has 12
confirmed polymorphs and an additional one proposed but
yet to be confirmed.8,9 Polymorphism in drugs and agro-
chemicals has important biological and economic consequences
and is thus heavily researched. Another familiar example of solid-
state design is the optimization of pore size and accommodation
of guest molecules in metal−organic frameworks (MOFs),
which have applications ranging from hydrogen storage10 to
catalysis.11

Structure−function relationships can be exploited during
solid-state design to create “functional” crystalline materials.
Bringing two molecules together to form a cocrystal can
dramatically change the physical properties, for example
cocrystallizing two colorless molecules to produce a thermo-
chromic cocrystal that changes color in response to temperature
changes through charge transfer between the components.12

More challenging, but no less important, is control over the
surfaces and interfaces during crystal growth. In the
pharmaceutical industry, crystallization remains the technique
of choice for separation and purification. The morphology of the
crystalline particles is an important process engineering
parameter, and the functional groups exposed at the surfaces
determine how the particles interact with the environment. The
industry is moving toward new modalities of therapeutics based
onmolecules with increasing size and flexibility, which inevitably
results in more complex surface chemistry. Formulations based
on nanoparticles are also an emergent interest, and the high
surface to bulk ratios of these materials makes understanding the
surface chemistry crucial to bringing them to market. Surface
and interface engineering is also key to producing complex
architectures, such as flexible electronics, where organic
materials must interface to metals and semiconductors and
need to be processed using methods compatible with existing
semiconductor manufacturing processes.
Finally, materials design can also consider scale up and

manufacturing. While these are often regarded as engineering
problems and considered out of scope during the initial
materials design phases, where obtaining the required
functionality may take precedence, targeting certain physical
properties early (e.g., solubility in a particular solvent, or a
desirable particle morphology) can make subsequent scale up
easier. Tools such as the COnductor like Screening MOdel for
Real Solvents (COSMO-RS)13 can be used to probe the
thermodynamics of chemical processes, with one example being
the use of COSMO with the CCDC Molecular Complemen-
tarity tool14 to screen for potential cocrystals of the agro-

chemical pymetrozine to obtain solid forms with improved
solubility and stability.15

1.2. Challenges to Molecular Materials Design. The
design of molecular materials presents some unique challenges.
Firstly, molecules can present multiple isomers, with functional
groups in different relative positions, leading to different
molecular properties. Secondly, isomerism, together with the
inherent conformational freedom of organic molecules, can have
a significant influence on crystal packing. These influences can
occur both through the intermolecular interactions in the
crystal, but also through the interactions with solvent molecules
during crystallization from solution. Finally, the interaction of
the molecules and crystal particles with the environment can
result in different functional groups being exposed at the surface,
which adds a further layer of complexity to designing surfaces
and interfaces.
This inherent complexity has catalyzed the development of

innovative, data-driven approaches, using data mining and
machine learning (ML) techniques to relate chemical and
structural descriptors to properties of interest. These methods
depend critically on the availability of high-quality data sets and
on tools to efficiently search the data and extract descriptors,
which makes the CSD and the CCDC tools an incredibly
valuable resource.
In this perspective, we explore the ways in which the CCDC

has driven materials design forward, highlighting important
contemporary challenges that can be addressed using the CSD
and the CCDC software stack and identifying some oppor-
tunities for the future and potential approaches for exploiting
them. The material is organized as follows. In Section 2, we
briefly outline the two main approaches to data-driven materials
design. In Sections 3−8, we then outline how the CSD and
CCDC software suite can be used for each part of the materials
design process outlined above, providing examples of recent case
studies and highlighting areas for future development. Each of
these topics are large fields in their own right, and we therefore
necessarily prioritize breadth over depth and direct interested
readers to other, more detailed reviews where appropriate.
Finally, we finish with some concluding remarks in Section 8.

2. DATA-DRIVEN APPROACHES TO MATERIALS
DESIGN

Data-driven approaches to materials design offer several potential
advantages over more established experimental and computational
techniques. Data mining or ML techniques can be used to efficiently
analyze vast chemical spaces, identify relevant structure−property
relationships, and potentially even generate predictive models that
generalize to predicting the properties of unseen materials.16−18

Applications of these techniques range from prioritizing candidate
materials and reducing expensive or time-consuming experimental
trials, to finding strategies to optimize known material for specific
applications and identifying new materials with novel properties or
functionality.18−21

The CCDC software suite contains a collection of innovative tools
that utilizes the data in the CSD to support these data-driven
approaches. In addition to the ConQuest2 and Mercury3 software
introduced above, the suite includes Mogul4 for accurately assessing
molecular conformations, IsoStar22 for understanding crystal packing
and intermolecular interactions, CSD-CrossMiner5 for pharmaco-
phore-oriented queries of the CSD, and GOLD6 for predicting the
binding of small molecules to targets from the Protein Data Bank
(PDB). Finally, and again as introduced above, the CSD-Python API
allows programmatic access to the CSD and many of these functions,
enabling data searching, retrieval and analysis to be scripted and
interfaced to other Python libraries for e.g. ML. Together, these tools
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allow the collection of experimental data in the CSD to be combined
with state-of-the-art data science techniques to enable new approaches
to materials design (Figure 1).
2.1. Data Mining. The general aim of data mining is to use

statistical analysis and pattern recognition, such as classification and
clustering algorithms,17 to identify relationships between the properties
of known materials and chemical or structural descriptors (e.g.,
functional groups and crystal packing), potentially uncovering hidden
correlations and yielding novel insights that can be used to target
properties of interest.18 The extensive set of high-quality data in the
CSD, and the comprehensive capability of the CCDC software suite,
provides an ideal platform for this type of study.18,23,24

To better facilitate data mining, the CSD also includes specialized
subsets of materials.25,26 The CSD-MOF subset is a collection of all the
published MOF structures,25 and, paired with methods such as bond-
type or cluster-type searches, facilitates efficient analysis of a wide range
of MOF structures. A notable study utilizing the CSD-MOF subset is
the data-mining approach by Moghadam et al., which developed a
classification system for MOFs based on structural features such as
secondary building units, surface chemistry, chirality and geometrical
properties.20 This classification algorithm enables the rapid identi-
fication of structural features necessary for applications such as gas
capture and storage.

The CSD-Drug subset is a collection of structures of approved drug
molecules, allowing for data-mining studies to target structure−
property relationships for active pharmaceutical ingredient (API, not
to be confused with “application programming interface”) design.26 For
example, Ma et al. mined selected structures from the CCDC-Drug
subset and analyzed their lattice energies and intermolecular
interactions to obtain an insight into packing arrangements and
stability. The analysis revealed that phenyl groups contribute
significantly to enhancing the lattice stability, and hence that optimizing
aromatic interactions is crucial to designing stable drug forms. It also
showed that dispersive interactions account for about 85% of the lattice
energy, suggesting that optimizing van der Waals forces could be a
useful design criterion for enhancing drug efficacy and stability.27

2.2. Artificial Intelligence and Machine Learning. Artificial
intelligence (AI) andML techniques aim to autonomously learn from a
set of training data to develop predictivemodels that map features in the
input data onto target output properties.17,28 As with data mining, ML
models can identify new structure−property relationships, particularly
when used with “explainable” AI methods to interpret model
predictions.29,30 Another common use of ML is to “learn” the
relationship between atomic or molecular descriptors and a property
of interest in order to bypass expensive computational calculations.

ML algorithms are typically classified as “supervised” or
“unsupervised” depending on the required input data. Supervised
learning uses “labelled” data for model training. These methods tend to
be more accurate, but require the data to be labeled (e.g., labeling
molecules as drugs). Examples of supervised learning techniques
include random forests (RFs), support vector machines (SVMs) and
artificial neural networks (ANNs). Unsupervised learning techniques

work on unlabeled data sets and tend to be less accurate, but may
require less effort to prepare input data. Unsupervised methods include
clustering algorithms and dimensionality-reduction techniques such as
principal-component analysis (PCA), and can be used to identify
previously hidden patterns in data without human intervention.17

Numerous studies demonstrate the potential of data-driven
methodologies using the CSD for materials design. For example, a
recent study by Nguyen et al.31 used CSD data and ML techniques to
predict crystalline density and identify structure−property relationships
relevant to energetic materials (high explosives). The authors employed
a variety of molecular representations and input features (so-called
“feature engineering”) and evaluatedmultipleML algorithms.Message-
passing NNs (MPNNs) were found to perform best for generalizing to
chemically diverse and previously unseen materials, whereas RF and
partial least-squares regression (PLSR) algorithms provided better
insight into the importance of molecular features and identified a strong
relationship between electronic and topological descriptors and
density.31

3. MOLECULAR DESIGN
By drawing on the information on molecular conformations and
intermolecular interactions in known crystal structures, the CSD
and CCDC software enable the study of individual molecules
and the design of new materials. In this section, we highlight
some examples of where molecular design has been facilitated
using these tools.
3.1. Drug Design. The pharmaceutical industry continues

to be one of the most important industry sectors, with a > £40bn
turnover and £5bn research and development (R&D) invest-
ment in the UK alone. Methods to assist with the rational design
of APIs and solid form engineering, at all stages of the
pharmaceutical pipeline from the design of new APIs for specific
druggable targets,32,33 to understanding the solid-state chem-
istry that determines the processing steps required to produce a
final drug formulation, are thus hugely impactful.
The ability to predict how a drug molecule will interact with a

target protein, and subsequently its biological function, lies at
the heart of drug discovery and development. In this context, the
relevant parts of the CCDC software suite, such as CSD-
CrossMiner5 and Genetic Optimisation for Ligand Docking
(GOLD),6 play a crucial role. Both software packages provide
data-driven insight into the drug−protein interactions that
underpin pharmacological activity. With CSD-CrossMiner,5

pharmacophore-based queries are defined based on an abstract
“model molecule” with the steric and electronic features
required for interaction with a protein binding site. These are
then used to search the CSD for matching small-molecule
structures. GOLD6 provides a complementary approach of

Figure 1. Summary of the use of the CSD and CCDC tools with data mining and machine learning (ML) techniques for identifying new structure−
property relationships and enabling predictive materials design.
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employing a genetic algorithm to predict how a molecule will
bind to the target, taking into account conformational flexibility
and possibly also user-specified constraints such as ensuring
specific donor or acceptor group interactions are satisfied.
GOLD can also provide some understanding of the impact that
structural water molecules may have on the ligand binding site
and docking. A number of recent studies have made use of both
of these tools and interested readers are directed to the
comprehensive review in ref.32

When considering binding, it is important to account for the
statistical relevance of interactions to determine the probability
of a binding event. This can be done using tools that extract and
identify intermolecular interactions between a molecule or
moiety of interest and another molecule or moiety, and
evaluating the occurrence of these interactions in CSD
structures.
While tools like CSD-CrossMiner5 and GOLD6 focus on

predicting binding affinity and optimizing drug−protein
interactions, Full Interaction Maps (FIMs)34 and IsoStar22

delve deeper into the molecular-level interactions that dictate
the overall stability and efficacy of drug formulations. We briefly
introduced IsoStar22 above as a tool for understanding crystal
packing and intermolecular interactions, and FIMs34 provide
comprehensive visual representations of the intermolecular
interactions within a crystal structure. Understanding these
interactions is pivotal for designing molecules that both bind
effectively to their targets and exhibit desirable pharmacological
properties.
Figure 2 shows an example of this type of analysis for the small

molecule imidazole. IsoStar22 analysis shows a stark difference
between imidazole in an environment with other small
molecules, and in a protein environment. The aromatic
interactions in the small-molecule environment are truly
random, with all possible orientations, whereas in the protein
environment the π−π interaction mode dominates. The

interaction with N−H groups is predominantly through H-
bonding with the acceptor N, and again the positions of the N−
H surrounding an imidazole are random in the small-molecule
environment but very directional in the protein environment.
The interactions with water molecules are more interesting. In

the small-molecule environment, water forms a rim around the
plane of the molecule, whereas in the protein environment they
are predominantly found above the plane of the aromatic ring.
This type of insight into interactions in different environments is
an important source of information for designing molecular
structures that take the directionality of interactions into
account, and may also help to understand solution and
crystallization behavior. This analysis potentially also highlights
the need for careful selection of data for data mining and ML
studies to minimize the “background noise” from configurations
that are not relevant to the environment being studied (c.f.
Figure 2 (e) and (h)).
3.2. Catalysts. The CSD also serves as a foundational

resource for AI-driven advances in catalyst development, mainly
by providing comprehensive structural insight into both metal−
ligand coordination and ligand geometries.33,35−37 This is
exemplified by a recent investigation leveraging the CSD and
associated tools for ligand and catalyst discovery.38 Initially, a
high-throughput workflow and the CSD-CrossMiner5 tool were
employed to mine the CSD and identify ∼32,000 potential
ligands for the Cu(I)-catalyzed Ullmann−Goldberg reaction.
ML models based on RF and SVM algorithms were then
constructed to estimate the activation energy barriers for
catalysts using these ligands, circumventing expensive computa-
tional modeling. These models were found to perform very well,
with most of the predicted activation energies being within ±4
kcal mol−1, often taken as a threshold for “chemical accuracy”, of
those obtained using “gold-standard” coupled-cluster methods.
This study also uncovered important electronic ligand
descriptors for catalyst design. Overall, this approach expedited

Figure 2. (a) Full interaction map34 of imidazole in small molecule structures (orange are interactions with aromatics, blue are interactions with N−H
groups, and pink are interactions withO−Hgroups including in water and alcohols). (b)/(c) IsoStar22 analysis of the H-bonding of imidazole with (b)
imidazole and (c) water. (d−i) Interactions observed in small molecules (CSD) (d−f) and in proteins (PDB) (g−i) with aromatics (d and g), N−H
groups (e and h) and water molecules (f and i).
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screening and property prediction, with the promise of broad
applicability across various chemical sectors including pharma-
ceutical process development. However, the reliance on
semiautomated processes in this case highlights scope for
further development toward full automation.38

It is also of note that CSD-CrossMiner5 has been extended to
enable the study of other functional materials, including catalysts
through the creation of “catalophore” queries analogous to the
pharmacophore formalism,38 and host−guest chemistries by
predicting the docking of guest molecules into metal−organic
frameworks (MOFs).39 This showcases the flexibility and
predictive power of these tools, but also the broad overlap
between the materials design challenges in traditionally separate
fields.
3.3. Perovskites.The structural information in the CSD has

also been used to support the design of perovskites, a
technologically important class of materials with potential uses
as photovoltaics and solid-state lighting.40 For example, an ML
study performed by Laref et al.21 sought to advance the design of
the archetypal hybrid lead halide perovskites by elucidating the
role of organic molecules in shaping the structure of the
inorganic network. The authors used more than 600 structures
from the CSD and >2,700 descriptors to develop an ML model
capable of predicting whether a given organic amine would yield
a perovskite-type structure with up to 88.65% accuracy. As part
of this, they performed feature importance analysis to identify
the 10 descriptors most relevant to hydrogen bonding, and they
also established the number of ammonium cations as a critical
criterion for determining whether a hybrid metal halide would
adopt the target perovskite structure. This led to a design
principle that the presence of a primary ammonium cation is
crucial for synthesizing hybrid lead halide perovskites,
irrespective of the dimensionality.21

3.4. Ferroelectrics. Another area where the CSD data and
the CCDC suite of analytical tools have made significant
contributions is in the design and discovery of molecular
ferroelectrics. The quasi-spherical theory establishes that
homochirality in molecular design can lead to molecules
crystallizing in the five polar groups that enable ferroelectric
properties.41 Attempts at using data-driven approaches to
discover candidate ferroelectric materials have been somewhat
limited by the scarcity and inconsistent quality of available data,
as well as the difficulty in identifying appropriate descriptors.
The comprehensive data available in the CSD, along with its
suite of analytical tools, provides a means to address some of
these issues.
An example that demonstrates this is the recent ML study by

Ghosh et al.42 aiming to screen for potential ferroelectric
materials using advanced ML techniques in conjunction with
rigorously vetted data. Data on known molecular ferroelectrics
was assembled and verified using the CSD. For small organic
molecules, the selection process was further refined by excluding
structures with an R-value value above 0.05 in order to ensure
high data quality. Extensive feature engineering was performed,
where molecular-level features were represented by 2D
descriptors from the Molecular Operating Environment
(MOE), while crystal-level features, such as atomic orbital
energies, were implemented using the Matminer Python
library.43 Several ML algorithms were assessed for their ability
to accurately predict ferroelectric properties, in particular the
magnitude of the spontaneous polarization. Among these, RF
was selected for its performance with small data sets and its
ability to effectively rank feature importance.44,45 Iterative

refinement of both the data set and descriptors was performed to
enhance the predictive accuracy, ultimately yielding a model
based on ten critical descriptors and a revised data set that better
balanced the representation of compounds with large polar-
ization, achieving relatively accurate predictions with an RMSE
of 1.84 μC cm−2. In addition to the high degree of predictive
accuracy, this analysis also provided insight into the underlying
structure−property relationships essential for the design of new
ferroelectric materials.42

4. SOLID-STATE DESIGN
Crystal packing arrangements can change the physical properties
in the solid state and have a large impact on processability,
making strategies for solid form control extremely valuable. The
pharmaceutical and agrochemical industries in particular,
expend a great deal of effort and resources on solid form design
and control. In this section, we explore the role of the CSD and
CCDC tools in solid state design for three key classes of
material, and highlight some challenges and opportunities for
future development.
4.1. Polymorphism in Pharmaceuticals and Agro-

chemicals. Polymorphism is a hugely important consideration
when developing a drug formulation, as evidenced by high-
profile examples such as ritonavir (Norvir) and ranitidine
hydrochloride (Zantac).46 Methods to investigate the likelihood
of polymorphism for a new drug, as early as possible in the
pharmaceutical pipeline, thus warrant significant R&D invest-
ment.
The CCDC Mercury software3 includes a number of tools

that can be combined to provide a thorough assessment of the
risk that an API may form other, previously undiscovered
polymorphs. Hydrogen bond networks are often a key driver of
polymorph stability. The Hydrogen Bond Propensity (HBP)
tool47 aids in identifying and analyzing potential H-bond
networks. The tool produces anH-bond chart showing themean
H-bond propensity against the mean H-bond coordination,
providing a visual representation that effectively highlights
structures with more probable hydrogen bonding networks.
This tool also generates an H-bond propensity score table,
which ranks networks based on their likelihood of occurring,
with higher scores indicating greater probability. Finally, the
HBP tool produces an H-bond coordination table that can
provide further insight into the structural stability of different
polymorphs by highlighting configurations where groups are
optimally coordinated.
The Full Interaction Maps tool,34 introduced in Section 3.1

and Figure 2, extends the analysis beyond hydrogen bonds to
encompass a wide range of possible intermolecular interactions
that may influence the structures adopted by a target molecule
and their relative stability. This tool creates a 3D visual
representation of the probability of different types of
intermolecular interactions using statistical data drawn from
the extensive set of structures in the CSD, and can predict where
functional groups from interacting molecules are most likely to
be located relative to a target group. This information, when
combined with 3D packing diagrams, allows the evaluation of
whether a crystal structure satisfies the interactions expected for
a particular molecule and/or conformation.
Finally, the Aromatics Analyzer is the first example of a tool

based on a trained NN, and provides a visual and quantitative
assessment of the strength of aromatic ring interactions that may
contribute to polymorph stability. This tool uses geometric
descriptors such as atom−atom distances and plane−plane
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angles to represent the interactions between some types of
aromatic ring pairs. It estimates the interaction energy through a
network of hidden layers, which is then presented as a score from
0 to 10 allowing the interactions to be classified as “weak” (0−3),
“moderate” (3−7), or “strong” (7−10) (Figure 3). The model is
trained on data derived from density-functional theory (DFT)
calculations and achieves an accuracy of 97% against structures
containing aromatic functional groups from the CSD.

To illustrate the practical application of these tools, we take
the example of para-aminobenzoic acid (PABA), a model drug
known to crystallize in four forms, viz. α-PABA (CSD refcode:
AMBNAC07), β-PABA (AMBNAC08), γ-PABA (AMB-
NAC09) and δ-PABA (AMBNAC14). The α and γ forms are
structurally similar and both feature cyclic acid dimer motifs
packed along the [101] or [001] directions, and with the α form
being slightly more stable. The β polymorph is centric and is
stable at low temperature, transitioning to the α form above 14

Figure 3. Schematic representation of the neural network-based Aromatics Analyzer tool in the CCDC Mercury software.3 Molecular descriptors
representing the geometry of the aromatic interactions are fed into the input layer and are processed through hidden layers with rectified linear unit
activation to yield an interaction strength score in the output layer, which then allows the interactions to be classified as strong, moderate, or weak.

Figure 4.Hydrogen bond propensity (HBP)47 analysis of the four polymorphs of PABA: (a) Insights obtained from the H-bond propensity tables. (b)
H-bond charts.
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°C.48 The δ form is a high-pressure form and features a similar
head-to-tail motif as the β polymorph but in a noncentric
structure.49,50

The HBP calculations in Figure 4 show that, while all four
forms exhibit a strong propensity for carboxylic acid-amino
group head-to-tail interactions (Figure 4 (a)(i)), there are
notable variations across the four polymorphs that would
influence their stability. The R2

2(8) cyclic acid dimer interactions
in the α and γ forms, albeit with lower propensity scores, indicate
a secondary stabilizing mechanism that is absent in the β and δ
forms (Figure 4 (a)(ii)). The position of the of the α and γ forms
in the lower-right corner of the H-bond charts suggests they
possess the most probable H-bonding network, whereas the
location of the β and δ polymorphs near the middle of the charts
points to less optimal hydrogen bonding (Figure 4 (b)).
The next step is to investigate the aromatic interactions in the

polymorphs. Table 1 suggests mechanisms underlying the

strongest interactions that are consistent with literature
findings.50 For α-PABA, the stacking occurs through translation,
resulting in two strong and three moderate interactions together
with a large number of weaker interactions. These can be seen in
the full interaction map (FIM) in Figure 5 (i), which shows
hydrophobic regions (brown contours) over the carboxylic acid
dimer. This distribution supports a robust network of aromatic
interactions, likely contributing to the stability of the α form
above the enantiotropic transition temperature of 14 °C.48 This
is consistent with literature findings that α-PABA can be easily
crystallized from various solvents above this transition point,51,52

suggesting a stable and strongly interacting molecular arrange-
ment. The crystal structure of β-PABA is governed by the
inversion symmetry in the stacking and displays a singular strong
and several moderate aromatic interactions. The inversion
symmetry may therefore lead to less effective packing,
potentially explaining the documented difficulty of crystallizing
β-PABA from nonaqueous solvents.51,52 Despite being the stable
form below 14 °C, the aromatic stacking is not as favorable as in

α-PABA, which may lead to a lower relative stability when not
supported by specific solvent interactions. The FIM for β-PABA
(Figure 5 (ii)) predicts a higher probability of aromatic
interactions over the strong H-bonded acid-amine interaction
than above the plane of the benzene ring. The γ-form also
exhibits stacking through translation but, unlike α-PABA,
presents an aromatic interaction profile with two strong, fewer
moderate, and numerous weak interactions. This may indicate
differences in how these interactions contribute to the relative
stability. The literature suggests that the packing along the [001]
direction in γ-PABA structure involves a unique arrangement of
layers50 that may not optimize these aromatic interactions as
effectively as in α-PABA, as predicted by the FIM in Figure 5
(iii).
The δ-form, which has similar stacking to γ-PABA, shows a

balance skewed toward moderate interactions. This might be
due to its noncentric crystal structure resulting in less robust
aromatic interactions than in the centric forms, explaining its
appearance under pressure rather than ambient conditions. The
model the Aromatics Analyzer NN is trained on is based on gas-
phase DFT calculations on benzene dimers, at centroid
distances of 3.5−7 Å and a range of interaction angles between
0 and 90°, in a 15-molecule cluster.19 While the interactions in a
high-pressure structure should fall within that remit, Wilson et
al. identified that interaction energies increase with pressure to
compensate for the loss of void space.53 This highlights a
potential need tomore carefully validate the NNmodel for high-
pressure structures, as the training set used to construct the
current model might not be representative of the interactions
inthese structures.
The first application of combinatorial studies using the solid

form informatics tools to assess the risk of polymorphism was
reported in 2012, providing an initial exploration of this
approach.54 Amore comprehensive application to three example
drug candiates was subsequently reported in 2015.55 The results
of this study are highly significant as they show how statistical
tools can be applied to harness the extensive molecular and
structural information in the CSD to solve a fundamental, and

Table 1. Comparative Analysis of the Aromatic Interactions
in the Four Polymorphs of PABA Predicted Using the
Aromatics Analyser Toola

aThe table categorizes interactions based on the mechanisms detailed
in literature (translation and inversion symmetry),50 and lists their
relative strengths (strong, moderate, weak) as determined by the tool.
Visual representations of the strongest interactions in each form, again
generated by the tool, are also shown.

Figure 5. Full interaction maps34 for the four polymorphs of PABA.
The map regions are colored based on the most probable interactions,
viz. as a hydrogen bond acceptor (red) or donor (blue), or hydrophobic
(brown). Dashed lines indicate H-bond contacts. The four polymorphs
exhibit both different interactions and noticeably different interaction
geometries.
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potentially costly, challenge for the global pharmaceutical
industry.
Expanding on these foundations, ML methodologies are

emerging as powerful tools in the pharmaceutical sector, for
initial screening processes to make an assessment of whether
additional solid forms are likely to exist, perhaps revealing
overlooked polymorphs, and to narrow down the chemical space
to be investigated.27,56 One such example is the application of
ML classificationmethods including RF and SVMbyHosni et al.
to develop a “metaclassifier” approach to estimate the
probability of polymorphism in organic molecules.57 Models
trained using both the CSD26 and Drugbank58 data sets
demonstrated impressive accuracy, particularly with a “pre-
diction fusion” technique that achieved a remarkable accuracy of
91%. Moreover, validation of the model against 100 molecules
excluded from the training data set revealed robust predictive
capability.
4.2. Crystalline Porous Materials. Porous crystalline

solids are a versatile class of materials for applications such as
adsorption-based separations. The performance of such
materials largely depends on their porosity, which makes the
ability to predict and design solid forms with specific porosity
highly desirable.28

Design of these materials has traditionally been approached
through crystal structure prediction (CSP) followed by
characterization of the porosity, which is computationally
intensive and not well suited to high-throughput screening. As
in earlier examples, ML techniques offer a route to overcoming
this limitation by predicting key properties of interest without
recourse to expensive modeling.28

Garciá et al.28 used CSD data withML techniques to establish
correlations between the molecular structures of the building
blocks of porous materials and their resulting porosity. Using RF
ML models in conjunction with a comprehensive feature
engineering process, including the development of porosity
descriptors such as molecular pore exposure ratio (mPER) and
molecular largest cavity diameter (mLCD), led to a novel
approach to porous material design. The main finding was that
porosity could be predicted to a significant degree of accuracy
from the characteristics of the molecular building blocks, and
this was confirmed quantitatively through a number of
performance metrics. Important descriptors and structure−
property relationships were also identified, such as a correlation
between the mPER and material porosity descriptors such as
gravimetric surface area, providing valuable general insights for

the predictive design of porous materials and highlighting how
understanding the intrinsic porosity of the molecular
components can significantly accelerate the design and
discovery of new porous materials.28

The new porosity calculation tool in the Mercury software, an
extension of the earlier void analysis tool, provides information
about solvent accessible spaces and allows the use of helium and
nitrogen probes to characterize pores identified using void
analysis. This information can be used to compare a theoretical
porosity value to trends in particle density measurements based
on different methods and probe molecules. A nice illustration of
this is the example porous organic cages designed by Tozawa et
al.59 The three cages (Cage 1−3) have triangular pores by
design, but the pore analyzer (Figure 6) predicts that Cage1 has
no networked pores and hence would be unable to take up He,
while Cages 2 and 3 do have networked pores. Cage 1 has a
system volume of 2917 Å3, but only 3.65 Å3 is predicted to be
accessible to a helium probe, whereas Cages 2 and 3 have
system/accessible volumes of 1452/1271 Å3 and 6585/3414 Å3,
respectively, explaining the finding from the gas adsorption
studies by the authors that Cage 1 shows “porosity without
pores”.
4.3. Metal−Organic Frameworks. Following on from

porous crystalline materials, metal−organic frameworks
(MOFs) are robust crystalline architectures that are almost
infinitely tunable to produce different porosities and active sites
for molecular adsorption, making them highly versatile
candidates for applications from gas storage60 and separation61

to catalysis.11 The CSD hosts a large collection of MOF
structures and provides a valuable data source for ML studies, in
the context of both initial exploration and validation, facilitating
the use of these techniques for the design and discovery of novel
MOF materials.10,16,18,20,36,62,63 The notable work by Tang et
al.64 focused on the rapidly screening MOFs for propane/
propylene separation, which is a critical process in the
petrochemical industry. This study used a combination of
molecular simulations and RFML algorithms trained using data
from the “Computation-Ready, Experimental” (CoRE) MOF
database.65 Through extensive feature engineering, a set of 254
descriptors capturing pore size, geometry and framework
chemistry were extracted and used to train a model capable of
accurately predicting adsorption capacities and selectivity for
propane/propylene separation. To evaluate the transferability of
the ML models, they were employed to screen MOFs from the
CSD for C3H8/C3H6 separation. The predictions for the CSD

Figure 6. Analysis of three porous molecular organic structures using the void analyzer tool in the CCDC Mercury software.3 The analysis
demonstrates that the pores in Cage 1 are not connected (a), whereas those in Cages 2 and 3 are (b)/(c).
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MOFs showed good agreement with simulation results,
suggesting that the ML models effectively transfer from the
CoRE MOFs to CSD MOFs. Moreover, nine CSD MOFs were
identified as having superior separation performance compared
to the top-performing CoRE MOFs. This approach led to
significant advances in the field of designing MOFs for gas
separation by identifying key structural features such as pore size
and geometry that are important for optimizing performance.64

5. STRUCTURE−FUNCTION DESIGN
Building on the previous section, solid state design can be
extended to create “functional” crystalline materials that, for
example, respond to environmental stimuli with structural
changes or changes in properties such as color. In this section,
we discuss examples drawn from two families of materials, viz.
multicomponent crystals and molecular switches, and highlight
cases where the CSD and CCDC tools have been, or could be,
used to provide insight into the underlying structure−function
relationships.
5.1.Multicomponent Crystals.Multicomponentmaterials

are crystalline compounds composed of two or more
components in a specific stoichiometry, typically featuring
directional interactions between molecules, and including salts
and cocrystals.66−68 Multicomponent crystals provide a simple
and often effective way to manipulate solid-state properties.
They have applications to numerous fields including in the
pharmaceutical industry, where they provide a means to
optimize important physical properties such as dissolution rate
and stability. This can have a range of benefits including
increasing the solubility,69,70 and, by extension, bioavailability of
drug molecules, improving chemical and physical stability,71 and
optimizing bulk properties including crystal size and habit72,73

for processing steps such as particle filtering, flow, dispersion
(for oral dosage forms) and compressibility (for tablet
formation).74,75

The CCDC suite includes several tools dedicated to the
rational design of multicomponent materials, which can be
accessed through Mercury3 or the CSD-Python API. The
Molecular Complementarity tool, developed with Fab́iań in
2009,14 provides a means to identify coformers likely to form a
multicomponent crystal with a target molecule. The tool defines
a selection of molecular descriptors that reflect the size, shape
and polarity of the molecule, which are then used to assess the
likelihood of complementary interactions with library of
common coformers. Where complementarity is indicated, this
suggests the potential to form a multicomponent material. As
well as the coformer libraries available within Mercury, it is also
possible for users to generate a bespoke library of coformer
candidates for a more targeted study.76

There are numerous recent examples in the literature where
the Molecular Complementarity tool has been used to guide
experimental crystal engineering approaches to cocrystal
formation,76−79 and the tool is frequently combined with
other theoretical approaches. One recent study byMakadia et al.
explored cocrystal design for the natural flavonoid apigenin and
discovered six new cocrystal structures by combining the
Molecular Complementarity tool with the H-Bond Propensity
and H-bond energy analysis tools introduced in Section 4.1.77 In
all cases, the newmulticomponent solid forms showed enhanced
dissolution compared to pure apigenin crystals, highlighting the
utility of cocrystallization for tuning the physical properties of a
target molecule. A validation test run by the CCDC highlights
the need for further improvements to the tool, as it currently

achieves an accuracy of up to 64%, but only when used for
neutral molecules with molecular weights between 60−245 g/
mol, and similar to which it was trained against. The accuracy
further decreased with increasing drug molecular weights,80

highlighting an area for improvement in the future. A similar
study using electrostatic potential surfaces as an alternative to
the Molecular Complementarity tool for a large database of
crystal coformers gave better results, and identified that phenolic
groups generally act as better coformers than carboxylic acids,
which tend to result in physical mixtures.81

Due to the complexity of the design space, ML techniques are
increasingly being used to expedite and streamline the design
and discovery of cocrystals.23,82,83 An innovative approach
toward this goal is the one-class classification ML algorithm
developed by Vriza et al.84 The ML model was trained on 1,722
molecular combinations extracted from the CSD, specifically
focusing on cocrystals with π−π interactions. A key challenge
was the inherent, and unavoidable, bias in the data set toward
successful cocrystallizations, which was addressed through a
comprehensive feature engineering process and carefully
curated training data set. Dimensionality reduction was
employed to streamline the data set, utilizing bidirectional
concatenation to accurately represent molecular pairs. Molec-
ular descriptors critical for understanding π−π interactions were
identified and integrated into this process. The efficacy of the
model was confirmed using 5-fold cross-validation, and
demonstrated high accuracy in predicting potential π−π
cocrystal formation. This study led to the discovery of two
novel cocrystals, suggesting the approach holds promise for
designing new multicomponent materials.
Expanding on this, more recent work constructed an

attention-based NN screening tool, the Molecular Set Trans-
former, to prioritize molecular pairs that form stable
cocrystals.85 Data was curated from all the available cocrystal
data in the CSD and represented using fixed and learned
representations. The issue of bias in the training set toward
positive examples of cocrystal formation was addressed by
employing an unsupervised, order-invariant approach to
efficiently reconstruct input molecular pairs. A meticulously
curated benchmarking data set from experimental reports was
then used to evaluate the model, which outperformed or
matched other ML and physical modeling methods. Overall,
tools such as this further demonstrate the considerable potential
of ML techniques to guide cocrystal design efforts, despite
technical challenges such as the absence of negative data and the
difficulty of constructing appropriate molecular representa-
tions.85

It is also important to recognize that materials sometimes
crystallize as solvates, which are generally undesirable multi-
component systems. Several methodologies are being explored
to overcome this challenge. For instance, Xin et al.86 employed
RF and SVMML algorithms trained on data extracted from the
CSD to predict the solvate formation propensity of
pharmaceutical molecules with a success rate of up to 86%.
This type of predictive model is highly valuable for solid form
optimization, as solvate formation can affect solubility, stability,
and efficacy.
5.2. Molecular Switches. Switchable crystals, containing

molecules that can be reversibly interconverted between two or
more structurally distinct (meta)stable states on exposure to an
external stimulus, require a carefully designed crystalline
environment. For switching to proceed in a single-crystal-to-
single-crystal manner, the host crystal matrix surrounding the
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responsive fragment must be able to accommodate an often
significant amount of atomic or even molecular movement. For
some processes, e.g. some photoswitching phenomena, each
molecular rearrangement may proceed independently of other
switching events, and in these cases the necessary atomic or
molecular motions need only be accommodated on a local scale
across the (usually very short) time scale of the photoexcitation
process. In other cases, the switching may be cooperative and
longer-range intermolecular interactions across larger regions of
the structure must be considered. In all cases, the ability to make
fast and visual comparisons between the starting (“ground
state”) arrangement and the excited state structure can be highly
informative, and considering that this is readily achieved using
the tools in the CCDC software suite it is surprising that only a
handful of studies have made full use of these tools to date.
For example, in pressure-responsive systems, where a

structural change can be induced by the application of high
(usually hydrostatic) pressure to the bulk crystal, volume
minimization is the most important driving force for any
pressure-induced transitions. As such, an understanding of the
void space in the structure, and how this space evolves under
applied pressure, can be hugely informative. As mentioned
previously,Wilson et al. explored the importance of void space in
pressure-responsive molecular crystals by analyzing a subset of
129 high-pressure structures extracted from the CSD.87 Using
the CSD-Python API, the authors created a program to partition
the volume changes under pressure into contributions from
interstitial void space and changes to the bonding network. They
then used this knowledge to understand which features are more
easily compressible, allowing them to identify and explain the
conditions under which a pressure-induced phase transition
and/or crystal collapse would occur in a series of high-pressure
studies.
For photoswitchable crystals, the “reaction cavity” concept,

made popular by Ohashi et al.,88,89 can be thought of
conceptually as the volume encapsulating the photoactive
fragment in the crystal structure, and can be defined by
determining the contact surface of the photoactive molecules
(or atoms) within the cavity with the surrounding molecules in
the crystal lattice. Using this definition, the reaction cavity can be
visualized using the CCDC void space tools by simply deleting
the molecules, or atoms, of the photoactive fragment (i.e., those
that would be contained within the reaction cavity) then
performing a void space calculation. This approach has been
used in several studies of solid-state photoreactions, for example
in linkage isomer crystals,90−93 to explain trends in photo-
reactivity including the maximum achievable excited state
population fraction that can be accommodated in a particular
structure.
The idea of removing key atoms or molecules of the active

switching fragment and using void space analysis to obtain
insight into material properties can be extended to the study of
vapochromic switches. Work by Bryant et al. in 2017 explored
the unusually fast vapochromic switching in a Pt(II)-pincer
molecular crystal, which could be switched between red (water),
yellow (dry) and blue (methanol) crystal forms on subsecond
time scales.94 This fast switching behavior was explained using
the void space tools in Mercury to visualize the space occupied
by the small volatile organic compounds (VOCs) in the crystal,
which clearly identified the pathways taken by the solvent
molecules to enter or leave the structure.
Intermolecular interactions also play an important role in

facilitating solid-state reactions. An easily understood example is

the presence of hydrogen bonds to the switchable functional
groups or fragments, as these relatively strong interactions must
be broken, and often subsequently reformed, during conversion
between the ground and excited state structures. Intermolecular
interactions have been known to influence whether a photo-
reaction in a crystal can proceed to completeness, or even
proceed at all, and the extent to which a given interaction can
influence a reaction is often heavily dependent on the
measurement temperature.95,96 CCDC tools such as full
interaction maps, hydrogen bond statistics and hydrogen bond
propensities all have the potential to be hugely informative in
explaining how and why solid-state switching phenomena occur,
and this is an area that we believe should receive more attention
in future.
Finally, molecular materials are also being explored for

neuromorphic computing applications to address some of the
limitations of inorganic materials.97 Much like a biological
neuron, molecular films made up of organometallic complexes
can respond to different stimuli, through redox changes in the
central metal ion, complex redox-induced electron transfer,
isomerization and symmetry-breaking in the crystal packing. In
light of the growing number of successful studies using the CSD
and CCDC tools to identify key structure−property relation-
ships, and to support the design of functional materials, we
believe a similar approach could be used to accelerate the design
of neuromorphic materials and/or to identify known complexes
suitable for this application.

6. SURFACE, INTERFACE AND PARTICLE DESIGN
As established in the preceding sections, fundamental under-
standing of the structure−function relationships in crystalline
molecular materials is key to successful translation from the lab
scale to products. Among these, the surfaces and morphology of
the particles formed during crystal growth, and the interfaces to
other components in e.g. a formulation or device, are critical to
process engineering and scale up but are often poorly
understood.
The particle morphology is determined by the relative

energies of the different crystal surfaces during crystal growth,
and depends on the chemical functionality of the molecule, the
crystal packing, and also potentially on environmental
conditions such as the growth solvent in solution crystallizations.
Once formed, the stability of a given particle shape depends on
how the major surfaces, and the functionality exposed at these
surfaces, interact with the environment under the storage
conditions. The surface chemistry and particle morphology thus
play a key role in determining a number of physical properties,
including those that govern downstream processing during
manufacturing.
Despite their importance, surfaces in general, and surfaces of

crystalline organic materials in particular, are relatively poorly
understood, and research in this direction can be regarded as a
frontier in the materials design process. In this section we briefly
describe the links between the bulk crystal structure, surface
stability and particle morphology, and highlight some of the
tools available in the CCDC software suite for studying surfaces
and particle shapes.
6.1. Surface Energies and the Wulff Construction. The

thermodynamically most stable particle shapes are those that
predominantly expose surfaces with the lowest surface energy γ.
Wulff stated, originally without proof, that the “height” of a
surface extending outward from the center of a particle is
proportional to the γ:
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where the constant of proportionality λ depends on the number
of molecules n. This so-called Gibbs-Wulff theorem is the basis
for the widely used Wulff construction,98 which allows the
equilibrium particle shape to be predicted from a knowledge of
the surface energies. A Wulff construction requires a metric for
the “morphological importance” (MI) of the crystal faces with
Miller indices (hkl), which may be the surface energies γhkl, or,
more typically, the growth velocities vhkl, which in principle also
account for the kinetics during the crystal growth.
Experimentally, the exposed surfaces of a crystal can

sometimes be determined from X-ray crystallography, for
example by face-indexing a single crystal on the goniometer or
from the preferred orientation in a “powder” measurement
collected without grinding.99 Surface energies can be measured
using a variety of techniques,100 with more common ones being
contact-angle101 and inverse gas chromatography (IGC)
experiments.102 However, measurements can be challenging
and may depend on the accurate determination of multiple
parameters and the choice of model for interpreting the data.103

Growth velocities can be measured using optical techniques,
such as observing crystal growth with purpose-built microscope
setups or interferometry.104,105

6.2. The Bravais−Friedel−Donnay−Harker Model.
Early work by Bravais attempted to relate the MI of different
surfaces to the bulk crystal structure106 under the assumption
that a higher density of material in a crystallographic lattice plane
i indicative of stronger interatomic/intermolecular forces. This
provided the basis for Bravais−Friedel−Donnay−Harker
(BDFH) model for crystal morphology,106 where the MI of a
surface is given by

=
A

d(MI)
1

hkl
hkl

hkl

where Ahkl is the “reticular area”�the area of a crystallographic
plane per node it intersects�and dhkl is the spacing between
lattice planes. A key feature of the BDFH model is that, since
small {hkl} indicate large dhkl, low-index surfaces are more
prominent. The BDFH model has the advantage of simplicity
and of requiring only the crystal lattice parameters to predict
particle morphology, but does not generally provide adequate
predictions.
6.3. Surface Energies from Slab Models. In view of the

complexities inherent to measuring surface energies, an

alternative and widely adopted approach is to calculate the γhkl
using atomistic modeling. The standard approach to calculate
the γhkl for a surface with a given {hkl} is as follows. First, the bulk
crystal is reoriented so the surface normal n̂ lies along one of the
Cartesian directions. Next, a vacuum gap is inserted along this
direction to produce a 2D “slab” with two (typically identical)
surfaces. Finally, the atomic positions are then relaxed, and the
surface energy is calculated from

=
E nE

A2hkl
hkl
slab bulk

where Ehkl
slab is the total energy of the optimized slab model with n

molecules, Ebulk is energy per molecule of the bulk crystal and A
is the area of each of the two surfaces.
This approach is most commonly used with quantum-

chemical modeling techniques such as density-functional theory
(DFT), although this need not be the case. The methodology is
well developed, to the point where high-throughput approaches
to determining γhkl have been developed and applied to
elemental solids.107 However, a realistic slab model should
generally be of sufficient thickness that the interior molecules are
in a bulk-like environment, and the inherently larger unit cells of
molecular crystals often require large models to achieve this,
which can be problematic for DFT calculations.
6.4. Attachment Energies. A widely used alternative to the

γhkl from slab models is to compute attachment energies Ehkl
att

(AEs) for adding a complete layer of molecules to a surface. The
Ehkl
att are defined as

=E E Ehkl hkl
att sl bulk

where Ehkl
sl is the “slice energy” of a complete layer ofmolecules at

the surface. The Ehkl
sl can be obtained from energy calculations on

slab models similar to those used to calculate the γhkl, but with
single layers of molecules and without relaxation. These two
simplifications make computing the Ehkl

att somewhat cheaper than
the γhkl.
The Ehkl

att are a good approximation to the vhkl and are inversely
proportional to the MI.108 In contrast to the slab approach,
attachment energy calculations are often performed using force
fields, rather than DFT, with parametrized equations used to
approximate the chemical interactions, although again this need
not be the case.109 The attachment-energy approach with force
fields is implemented in the popular HABIT codes108 and is
widely used for predicting crystal morphologies.

Figure 7. Crystal morphology prediction using the CCDC Mercury software.3 (a) Unit cell of aspirin Form I (CSD refcode: ACSALA01). (b)
Morphology predicted using the BFDH method. (c) Morphology predicted using the Visual Habit software and attachment energy calculations with
the Drieding force field.110
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6.5.Morphology PredictionUsing CCDC Software.The
CCDC Mercury software3 includes tools for predicting crystal
morphology using both the BDFH and AE approaches. The AE
tool currently uses one of three force fields, viz. the Dreiding II,
Momany and Gavazotti models.110−112 Figure 7 illustrates an
example prediction of the morphology of aspirin Form I (CSD
refcode: ACSALA01), and of the difference in morphology
predicted by the BFDH and AE methods, which themselves
differ significantly from the morphologies we observed in
previous experiments.113

A new protocol by Spakman et al.,114 packaged into the
CrystalGrower software,115 uses individual molecules as growth
units and partitions the free energies of crystal growth, evaluated
in a continuum solvation model. These energies are then
coupled with Monte Carlo simulations to predict the growth of
facets. This method allows the users to apply a bias to weight
certain interactions more than others in order to replicate the
experimental morphology. The existing morphology predictions
available in Mercury could perhaps be improved with a similar
approach, by enabling users to provide a bias to replicate a target
morphology, which could then be interpreted using, for
example, some of the tools for probing intermolecular
interactions.
6.6. Challenges and Opportunities for the CSD and

CCDC Software. Given the importance of improving our
understanding of particle morphology, it is useful to consider
how the CSD and CCDC software could contribute to and
expedite current efforts. A study byWilkinson et al.116 combined
data from the CSD and in-house experimental data to construct
ML models to predict the morphology of pharmaceutical
crystals, which is crucial to solid form design, manufacturing, and
to the pharmacological efficacy. The models were based on RF
and NN algorithms and utilized a comprehensive molecular
feature representation, encompassing both chemical descriptors
and structural data, to correlate these features to particle
morphology with a predictive accuracy of up to 87.9%. This
study also identified some issues with the CSD data that are
likely to pose challenges to this type of study, in particular
limited access to the experimental details associated with CSD
structures.116

In our view, the latter point highlights an important
opportunity for the CCDC. Many of the crystal structures
deposited with the CCDC include metadata on the sample
morphology. By using natural-language processing to extract this
information and compare it to morphology predictions using
existing tools, it should be possible to better assess the accuracy
of these techniques, and to highlight failures where further
investigation could reveal new insight into the underlying
mechanisms that determine the crystal morphology and/or
identify improvements to the theoretical models. Face-indexing
single crystals during data collection/solution is routine for
accurately modeling absorption corrections, and this data could
fairly easily be included in the CIF file (e.g., encoded as a set of
relative surface areas to serve as MI descriptors for a Wulff
construction). Doing so would, over time, provide a rich data set
for studying particle morphology. However, the distinction
between the mathematically predicted morphology and the
crystal habit adopted experimentally in a given chemical
environment should be considered to make this data set more
applicable. Another possibility would be to also store low-
resolution images of the crystals on the diffractometer, which
could be used as input to ML models.

There are also challenges related to surface modeling and
calculating the γhkl and Ehkl

att . For both types of calculation the
accuracy with which different techniques can capture the inter-
and intramolecular interaction energies is crucial. While a
number of well-tested force fields are available for molecular
solids (e.g., Drieding110), the simplified form of the potential-
energy functions invariably means there will be some systems for
which the interactions are not well described. On the other hand,
the generalized-gradient approximation (GGA) functionals
suitable for routine DFT calculations on molecular solids, and
even more expensive hybrid functionals, tend to poorly capture
intramolecular dispersion forces, leading to unrealistic lattice
parameters,117 and it is easy to see how this might lead to errors
in calculated γhkl/Ehkl

att . The typical solution to this is to apply an
additive dispersion correction, and these are a highly active
development area.118,119 Low-level DFT functionals can also
produce other issues, such as the “over-delocalization” of
electron density leading to erroneous predictions of the relative
energies of different conformations of the ROY molecule.120

Drawing a parallel with the many successful studies usingML for
predictive design, an exciting recent development in this area has
been exploiting ML to generate force fields from quantum-
mechanical calculations,121,122 and such machine-learned force
fields have the potential to strike the required balance between
cost and accuracy for more ambitious modeling studies on
molecular solids.122 For many of these techniques, an accurate
sampling of the molecular conformational space is essential.
This is typically generated through molecular dynamics or
metadynamics simulations, but one has to be careful that the
simulations adequately cover the full conformational space. The
CSD could serve as a high-quality reference for this, either by
identifying known conformations or for validating the “cover-
age” of a sampling process.
A second challenge lies in the construction of surface models,

in particular for determining γhkl. Tools for preparing surface
models that were designed around simple inorganic solids may
not be programmed to ensure molecules remain intact when
inserting the vacuum gap. Furthermore, for a given surface,
multiple terminations, with different exposed functional groups
may be possible, particularly for crystals of large, flexible
molecules with multiple functional groups. From the perspective
of particle properties, the latter is important, since the type of
functional groups exposed at the surface (e.g., polar/nonpolar)
will determine how the particles interact with their environment.
We illustrate the second issue with the surface visualization tool
in Mercury.3 Figure 8 (a) and (b) show two cuts of the (100)
surface of aspirin Form I.113 The carboxylic acid termination is
calculated to have the lowest attachment energy among the
various surface possibilities and is therefore always selected for
the top surface.
The bottom surface of the slabs however can have both

carboxylic acid (CO2H) and acetyl (Ac) terminations by
changing the thickness parameter in the tool. Polarized Raman
spectroscopy measurements found that both terminations of
aspirin (100) could be obtained depending on the method of
crystallization, with polar and apolar solvents favoring the
hydrophilic CO2H and hydrophobic Ac terminations, respec-
tively.113

Visualization of the (110) face also illustrates the complex
topographies that can arise from the requirement to keep
molecules intact (Figure 8 (d)), which would strongly affect the
rugosity of the surface slice.
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A third challenge, related to both of the first two, is how best to
account for the influence of solvent on the surface energies.
Molecular crystals are rarely produced by sublimation in vacuum
and are more likely to be crystallized from solution. It is well-
known that the growth solvent can influence the particle
morphology,123−125 indicating that the interactions in solution
can significantly impact the surface energies.
Methods for taking into account solvent interactions can

broadly be divided into “implicit” and “explicit”. Implicit
methods mimic the dielectric environment of the solvent. One
example of this is the COSMO-RS approach13 for calculations
on molecules, and a variation of this has been implemented for
solids.126 COSMO is parametrized by a dielectric constant
which accounts for the polarity of the solvent. By substituting the
vacuum region in a slab model with a dielectric environment,
implicit models can capture some solvent effects, but lack
explicit interactions such as H-bonding that could, for example,
preferentially stabilize polar surfaces. Explicit solvent models, as
the name suggests, include explicit solvent molecules that can
interact with the surfaces, and are more accurate but more
expensive, particularly with methods such as DFT. A typical
“middle ground” between these extremes is to include a layer of
explicit molecules on the surface and treat the remainder of the
vacuum gap with an implicit solvent model. As noted above,
CCDC tools such as the interaction maps could be used to
identify potential interactions and place solvent molecules,
similar to the grid-based search for explicit solvent interactions
built into the HABIT 98 tool.127 We suggest that the existing
CCDC tools could be adapted into a robust workflow for
generating and modeling surfaces with relatively little develop-
ment effort.

7. FUTURE OPPORTUNITIES
Following the discussion in the previous sections, we identify
some additional areas where we believe the scope of the existing
CCDC tools could be extended to other materials design
applications.
7.1. Predicting Mechanical Properties. Another key

aspect of solid form design is the mechanical properties, which
determine both potential applications and are important
processing parameters. In general, materials must have suitable

mechanical properties to withstand preparation, storage and
application conditions. Small-molecule organics have histor-
ically not been considered for some applications due to their
presumed plasticity, softness, and brittleness, but despite this
their mechanical properties have proven useful in applications
ranging from artificial muscles to flexible electronics.97 The
excellent recent review by Awad et al.128 showcases the plethora
of research underway on the mechanical properties of molecular
crystals.
In this section, we present a forward look at possibilities for

utilizing the CSD and CCDC software to incorporate
mechanical properties into materials design. We consider
“mechanical properties” in the loosest sense, and discuss both
bulk and surface-related properties. For pharmaceuticals and
agrochemicals, for example, this would include stability during
downstream processing, such as reduced attrition (particle
breakage) or punch sticking (crystals sticking to processing
machinery). Recent work by the CCDC team explored the use
of a new surface analysis tool129 to investigate the punch sticking
properties of ibuprofen grown from different solvents, and
identified differences in the electrostatic potential of the {110}
faces due to the variable number of carboxylic acid groups
exposed at the surface as the reason for the different punch
sticking properties of different crystal morphologies.
For switchable materials, the ability to switch over a large

number of cycles without e.g. buildup of stress is important - for
example, multicomponent crystals based on diarylethenes can
undergo photomechanical switching over a 1,000 times without
showing signs of degradation, which makes them good
candidates for photoactuators.130 Mechanical properties such
as the bulk, shear and Young’s moduli define relationships
between changes in internal forces (stresses) and deformations
applied to the material (strains) using Hooke’s law. Using Voigt
notation, the Lagrangian strain ϵ and stress σ are related through
the second-order elastic constant matrix C according to131

= Ci
j

ij j

where in this notation the indices i and j each represent one of
the pairs of Cartesian directions xx, yy, zz, xy, xz and yz. The
number of independent Cij depends on the crystal symmetry.
For a stress-free crystal structure at equilibrium the elastic
constants can be calculated from

=
=

C
V

E1
ij

i j

2

0

where V is the volume of the unit cell and E is the total energy.
The Cij can be calculated using finite differences, by applying
small strains and calculating the changes in energy using force
field models or quantum-mechanical methods such as density-
functional theory.131 The CSD-Particle software suite included
with Mercury3 already implements several force field models,
which are used for the calculation of attachment energies as
outlined in the previous section, which should make it relatively
straightforward to calculate second-order elastic constants.
However, as for surface energies these should be treated with
caution until their accuracy has been carefully validated.
In most molecular materials, and in contrast to their inorganic

counterparts, the elastic properties will be anisotropic due to low
crystal symmetry and anisotropy in the intermolecular
interactions. Lubomirsky et al. computed face-specific Young’s

Figure 8. Modeling of the (100) surface of aspirin Form I (CSD
refccode: ACSALA01). (a)/(b) Surface cuts of the (100) surface
generated with the CCDC Mercury software3 showing two possible
terminations exposing carboxylic acid (CO2H) and acetyl (Ac)
functinality.113 (c) Full interaction maps generated for the (100)
surface showing the likely interaction sites for water molecules. (d)
Topography of the (110) surface.
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moduli for crystalline amino acids using dispersion-corrected
DFT and obtained results in good agreement with experimental
measurements.132 They were able to attribute the large moduli
of some of these crystals to underlying charge-assisted
intermolecular interactions, and, while many molecular
materials would be mechanically “softer” than amino acids,
this suggests designing molecules or multicomponent crystals
that would show similar interactions could provide mechanical
hardness and, for example, optimize resistance to cracking
during property cycling. This example hints at how, as in
previous sections, the CSD and CCDC software could be used
to establish the structure−function relationships relevant to
mechanical properties.
So-called “highly tough” materials with an extended plastic

zone, where the structure is capable of absorbing large amounts
of energy per unit volume and is thus resistant to cracking, are
one potential target, addressing a common assumed problem
with molecular solids. Tools to identify tough materials, and to
identify new structure−function relationships to design new
molecules and supramolecular architectures, in our view
represents a logical first step. Existing CCDC tools, such as
the tool inMercury3 for identifying “slip planes” and the H-bond
analysis tools, could be used to identify structural features that
correlate to brittleness or plasticity.
While toughness is a bulk property, hardness is considered a

surface property.128 For some applications, solid forms of a
material must be interfaced to other materials, for example
metals or semiconductors in optoelectronic devices, or organic
or bioorganic materials in pharmaceutical formulations. As
discussed in the previous section, establishing and controlling
the nature of the surfaces and interfaces is an important
challenge, and understanding their impact on mechanical
properties is a key part of this.
Recently, defects induced by mechanical stress or the removal

of water from dihydrates of the drug molecule carbamazepine,
leading to stacking faults in one direction and twinned domains
and grain boundaries in the others, have been identified using
transmission electron microscopy and linked to strongly
anisotropic mechanical properties.133

This behavior is also seen in ferroelastic materials, the
mechanical equivalent of ferroelectricity and ferromagnetism
whereby a material exhibits a spontaneous strain that can be
switched between two or more stable orientations. Switching
occurs through the formation of twin domains, but, uniquely, the
associated grain boundaries can spontaneously heal following
the switching rather than propagating through the material as
cracks. Twinning is a complex phenomenon, and we leave a
detailed description to other literature.134 However, structural
features that indicate a propensity for twinning have been
identified. First, it tends to be more prevalent in crystals in low-
symmetry and/or polar spacegroups. The generally lower
symmetry of molecular crystals compared to inorganic materials
results in a generally higher tendency to twin and to exhibit more
complex twinning behavior. Klassen-Neklyudova further estab-
lishes some “rules of thumb” for mechanical twinning,135 for
example that an undeformed plane cannot be normal to a 4-fold
axis in a mirror twin and cannot coincide with a 2-fold axis in an
axial twin. This suggests it may be possible to identify features in
bulk structures that predicate potential twinning mechanisms
and that can be used to infer the associated transformations
(twin laws). The structure−function relationships may be
complex, and we therefore suggest this as a candidate for an ML
study.

In addition to ferroelasticity, some crystals exhibit bending
and twisting in response to environmental stimuli such as
external stress, impurities, or to accommodate internal geo-
metric frustrations during crystallization. Twisting occurs
through loss of translational symmetry and is characterized by
a pitch length P, associated with a 180° rotation of the crystal,
given by

=P

where φ is the twist per unit length. In a similar manner to the
slip plane tool, which considers only translational symmetry, a
“twisting propensity” tool that assesses H-bonding and
aromaticity around a screw axis could provide a means to
identify spiral growth and potential mechanical twisting. The
ability to grow slab/slice models including these features would
also enable the impact of e.g. surface reconstructions in
nanosized particles on this behavior to be assessed, and for the
impact of the behavior on particle properties to be analyzed.
7.2. Exploiting Advances in Crystallographic Data

Collection for Future Predictive Capability. In the previous
section, we touched upon the possibility of improvements to
crystallographic data collection to support future predictive
capability. To keep Olga Kennard’s pioneering vision alive, data
collection and curation must keep up with technological
advances in the field. These include, but are by no means
limited to, improvements in spatial and temporal resolution, and
in the resolution of the momentum transfer of diffracted
photons.
More widespread access to high-resolution data collection

means that charge density analysis for molecular materials136,137

might be considered more routinely. Achieving good data
statistics to 0.8 Å d-spacing is “good” when using the
independent atom model (spherical atomic form factors),
while for nonspherical atom refinements a d-spacing of 0.8−0.7
Å should be a bare minimum to resolve features such as lone-
pairs around the atoms. Experimental charge density analysis, to
model the electron density as multipoles in the form of s, p, d
orbital constructs, requires good data statistics to a d-spacing of
0.4 Å - 0.5 Å as a minimum.
Among other things, charge density analysis could allow for

interesting comparison with DFT and other quantum-
mechanical calculations, from which electron densities are
readily available, and, when paired with topological analysis
methods138−141 could provide a rich data set for characterizing
interatomic and intermolecular interactions. This type of insight
has, for example, been used in conjunction with ML to develop
highly accurate and transferrable force fields including
geometry-responsive multipolar electrostatics,142 which can be
applied to calculations on molecular solids.143

The combination of high-flux X-ray sources and highly
sensitive photon-counting detectors has enabled time-resolved
diffraction studies, where structural changes in response to
environmental stimuli can be examined with atomic resolution
on subsecond time scales.144,145 Using existing or new tools to
analyze these time-resolved data sets could, for example, reveal
new structure−property relationships to guide the design of
responsive crystalline solids such as those discussed in Section 5.
The latest X-ray detectors can output the time and location of
individual photon measurements as a continuous data stream, as
opposed to the time-binned images from traditional detec-
tors,144,146 which will make this type of study far easier by
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allowing time resolution and data quality to be balanced after
collection.
Finally, exploiting improvements in momentum resolution to

routinely collect total scattering information alongside the Bragg
scattering could provide a means to study disorder and to
explore phenomena such as defects. Diffuse scattering method-
ology for studying inorganic materials is fairly well established,
but developing the technique for molecular materials brings a
number of challenges and is another frontier topic in structural
science. For interested readers, a recent review147 provides a
good introduction to this topic.
We note that in all three cases careful consideration should be

given to ensuring complete metadata is deposited alongside
structures (e.g., the conditions under which measurements were
made in a series of time-resolved structures). Indeed, as
discussed in the previous sections, improving metadata
collection for routine crystal structure determinations, e.g. by
capturing information about the sample preparation and
morphology, would make the CSD data more useful for a
number of current and future applications. Another point for
consideration is whether it is useful, or indeed feasible, to
capture raw data such as diffraction images alongside processed
data and solved structures. This is increasingly seen as good
research practice, and would, for example, allow for reanalysis in
the future if and when improved data treatments become
available, but for some studies will inevitably require
considerably more storage than the processed data.

8. CONCLUSIONS
This perspective has demonstrated how the Cambridge
Structural Database, which began as a pioneering means to
collect and store crystallographic data in a standard format, has
evolved into an indispensable resource for predictive design of a
wide range of molecular materials. The CSD is now firmly
established as the repository of choice for small-molecule crystal
structures, and, with 1.25 million structures and counting, ranks
among the most comprehensive data sets in the materials
sciences. The comprehensive and actively developed CCDC
software stack, which provides search, visualization, advanced
analysis and automation capability to exploit data in the CSD,
makes it possible for academia and industry to address
challenging questions at the forefront of research across a wide
range of fields.
Molecular materials design is a complex multiscale problem,

spanning the design and synthesis of molecules, the design of
solid forms and exploitation of solid-state structure−function
relationships, the control of particle properties and interfaces,
and optimization for downstream processing and scale-up. The
synthetic diversity of molecules and the scope for solid form and
particle engineering together produce an almost unlimited
design space. Molecular materials are thus an inherently
challenging area, but, as the many applications highlighted in
the case studies in this perspective demonstrate, one with
limitless opportunities.
Many of these challenges are well-known to the pharmaceut-

ical and agrochemical industries, and the role of these industries
in shaping the CCDC software, including through the Crystal
Form Consortium, is clearly evident in capabilities such as CSD-
CrossMiner5 and GOLD.6 The opportunities presented by the
strong interest in metal−organic frameworks, and the clear route
to controlling function through the structure of the metal
clusters and ligands and the 3D connectivity in the solid state,
highlights another textbook example of how the data in the CSD

can, with the right tools, be a powerful resource for materials
design. Building on this, the addition of “catalophore” queries to
extend the capabilities of CSD-CrossMiner5 to catalyst design
shows how innovations in one field can also benefit others. In
this vein, we have identified several topical research areas we
believe the CSD and CCDC software are well positioned to
address, including functional materials, surfaces and interfaces,
and mechanical properties. Of these, some will require
straightforward repurposing of existing tools, some will require
implementing new functionality, and others may require more
foundational changes to the way structural data is collected,
processed and archived in the CSD.
In summary, the central role of the CSD and CCDC software

in contemporary molecular materials science demonstrates that
Olga Kennard’s original vision has very much been realized, and
we are confident that her legacy will continue to enable new
science well into the future as the CCDC continues to refine its
data collection and curation strategy and leverage the CSD to
develop new tools for its diverse user community.
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■ GLOSSARY
Term: Definition
Data-Driven: Relying on the collection or analysis of data to
guide decisions and strategies.
Pharmacophore: The essential set of structural features in a
molecule that determines its biological activity and ability to
interact with a specific target.
Data Mining: The process of identifying meaningful
correlations, patterns and trends by analyzing large amounts
of data.
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Artificial Intelligence (AI): The simulation of human
intelligence in machines that are programmed to perform
tasks such as learning and reasoning.
Machine Learning (ML): A subset of AI where algorithms are
used to enable computers to learn from and make predictions
or decisions based on data, without being explicitly
programmed for specific tasks.
Classification Algorithm: An algorithm used to assign labels
or categories to input data based on its features. The
algorithm learns from labeled training data and applies this
knowledge to classify new, unseen data.
Clustering Algorithm: An algorithm used to group similar
data points into clusters based on their features. Unlike
classification algorithms, clustering algorithms do not require
labeled data.
Features/Descriptors: Quantitative or qualitative character-
istics/representations of a molecule or compound used to
describe its properties and behavior.
Feature Engineering: The process of selecting, modifying, and
transforming raw data into features that can be effectively
used by ML models. This involves crafting features that
enhance the ability of the model to learn and make accurate
predictions by providing meaningful and relevant input from
the original data.
Structure−Property Relationships: The links between the
molecular structure and the physical or chemical properties of
a material.
Supervised Learning: ML techniques using labeled data for
training, including algorithms like random forests, support
vector machines, and artificial neural networks
Random Forest (RF): AMLmethod that uses a large number
of small decision trees, called estimators, that each produce
their own predictions. RFs can be used for a variety of tasks
including regression and classification.
Support vector machine (SVM): A supervised ML algorithm
that can classify data by finding the hyperplane that best
separates different classes.
Artificial Neural Network (ANN): A computational model
inspired by the structure and function of the human brain.
ANNs are composed of layers of interconnected nodes, or
“neurons,″ where each node processes and transmits input
data to subsequent layers. The network learns to recognize
patterns, make predictions, and improve its performance by
adjusting the connections (weights) to minimise prediction
errors.
Unsupervised Learning: ML technique that works on
unlabeled data sets, includes clustering algorithms and
dimensionality-reduction techniques like principal compo-
nent analysis
Message-passing NN (MPNN): A subclass of graph neural
networks (GNNs) that integrate multiple GNN types into a
unified framework. MPNNs model complex interactions
between nodes and edges in a graph through iterative
message-passing, where each node exchanges information
with its neighbors. This process aggregates local details and
computes global representations to capture the structure and
relationships within the graph.
Partial least-squares regression (PLSR): A statistical method
used to model the relationship between a set of predictor
variables and a set of response variables by projecting them
into a lower-dimensional space. PSLR is used to identify
important molecular features for describing material proper-
ties.

Principal Component Analysis (PCA): A statistical method
that transforms high-dimensional data into a lower-dimen-
sional form by identifying the directions along which the
variance of the data is maximized.
Dimensionality Reduction: A technique used to reduce the
number of variables under consideration while retaining as
much relevant information as possible. One such method is
PCA.
Genetic Algorithm: A computational method inspired by
natural selection, used to solve optimization problems by
evolving solutions with biomimetic processes over optimisa-
tion iterations.
High-Throughput Workflow: An automated process that
allows for the rapid testing and analysis of a large number of
data points.
Coupled-cluster method: A computational technique used to
calculate molecular electronic structure by introducing
interactions among electrons within a cluster (e.g. electron
pair interactions) and allowing the wave function to include
all possible couplings among these clusters.
Catalophore: The set of structural features in a molecule that
are crucial for its catalytic activity, facilitating the interaction
between the catalyst and its substrate.
Quasi-Particle Theory: A framework that simplifies complex
many-body systems by using effective particles, known as
quasi-particles, to represent collective excitations and
interactions within the system.
Molecular Operating Environment (MOE): A software suite
for molecular modeling, computational chemistry, and drug
design, offering tools for visualization, modeling, and data
analysis.
Metaclassifier Approach: A machine learning technique that
combines the predictions of multiple base classifiers to
improve overall accuracy. Metaclassifiers function by training
a classifier to make final predictions based on the outputs of
several other models, leveraging their collective strengths and
mitigating individual weaknesses.
Crystal Structure Prediction (CSP): The prediction of the
crystal structures of solids using only knowledge of the
constituent atoms or molecules.
Cross-Validation: A statistical technique used to evaluate the
performance and generalizability of a predictive model.
Cross-validation partitions a data set into multiple subsets,
training the model on some while testing it on the others, and
repeating this process multiple times to assess the perform-
ance of the model across different subsets of the data.
Density-functional theory (DFT): A theoretical framework
that provides a quantum mechanical description og s
molecule or solid using the electron density instead of the
many-body electronic wavefunction.
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