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Abstract 
An omnipresent feature of the multi-phase “cosmic web” — the large-
scale filamentary backbone of the Universe — is that warm/hot (≳ 105 
K) ionized gas pervades it. This gas constitutes a relevant contribution 
to the overall universal matter budget across multiple scales, from the 
several tens of Mpc-scale intergalactic filaments, to the Mpc 
intracluster medium (ICM), all the way down to the circumgalactic 
medium (CGM) surrounding individual galaxies, on scales from � 1 kpc 
up to their respective virial radii (� 100 kpc). The study of the hot 
baryonic component of cosmic matter density represents a powerful 
means for constraining the intertwined evolution of galactic 
populations and large-scale cosmological structures, for tracing the 
matter assembly in the Universe and its thermal history. To this end, 
the Sunyaev-Zeldovich (SZ) effect provides the ideal observational tool 
for measurements out to the beginnings of structure formation. The 
SZ effect is caused by the scattering of the photons from the cosmic 
microwave background off the hot electrons embedded within cosmic 
structures, and provides a redshift-independent perspective on the 
thermal and kinematic properties of the warm/hot gas. Still, current 
and next-generation (sub)millimeter facilities have been providing 
only a partial view of the SZ Universe due to any combination of: 
limited angular resolution, spectral coverage, field of view, spatial 
dynamic range, sensitivity, or all of the above. In this paper, we 
motivate the development of a wide-field, broad-band, multi-chroic 
continuum instrument for the Atacama Large Aperture Submillimeter 
Telescope (AtLAST) by identifying the scientific drivers that will deepen 
our understanding of the complex thermal evolution of cosmic 
structures. On a technical side, this will necessarily require efficient 
multi-wavelength mapping of the SZ signal with an unprecedented 
spatial dynamic range (from arcsecond to degree scales) and we 
employ detailed theoretical forecasts to determine the key 
instrumental constraints for achieving our goals.

Plain language summary  
The matter content of the Universe is organized along a large-scale 
filamentary “cosmic web” of galaxies, gas, and an unseen “dark 
matter” component. Most of the ordinary matter exists as a diffuse 
plasma, with temperatures of 10−100 million degrees. The largest 
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concentrations of such gas are found within gigantic galaxy clusters at 
the intersections of the cosmic web, weighing as much as 100 trillion 
Suns. As such, their masses, number and distribution across cosmic 
time probe the evolution and composition of the Universe itself. Also, 
the thermodynamics of the warm/hot gas provides an archeological 
record of those mechanisms that, over time, influence the large-scale 
structures — from the energy deposition by super-massive black holes 
to the collisions of massive clusters.  
 
The best option for studying the cosmic warm/hot gas, especially at 
the beginnings of their formation, is provided by the so-called 
Sunyaev-Zeldovich (SZ) effect — a faint distortion of the Cosmic 
Microwave Background (CMB) observable at (sub)millimeter 
wavelengths. Using the SZ effect to study cosmic thermal history 
however requires technical advances not met by state-of-the-art 
(sub)millimeter telescopes. In fact, many key questions on the co-
evolution of the warm/hot gas, the embedded galaxies, and the 
cosmic web remain unanswered.  
 
With these motivations in mind, we discuss the development of the 
Atacama Large Aperture Submillimeter Telescope (AtLAST). Thanks to 
its unprecedented combination of a 50-meter aperture and wide 2° 
field of view (4× wider than the full Moon), AtLAST will map vast sky 
areas and detect extremely faint signals across multiple wavelengths. 
Overall, AtLAST will push these studies beyond the legacy of the many 
(sub)millimeter facilities that, during the 50 years since the theoretical 
foundations of the SZ effect, have pioneered the exploration of the 
warm/hot Universe through the SZ effect.

Keywords 
galaxy clusters, intracluster medium, intergalactic medium, galaxy 
halos, cosmic background radiation, submillimeter facility
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1 Introduction: clusters and the evolution of large 
scale structure
Clusters of galaxies, groups, and massive galaxies trace the 
large scale structure of the Universe, and have therefore, since 
their discovery, served as probes of cosmology (Kravtsov &  
Borgani, 2012). For example, clusters provided the first tentative 
hints of dark matter (Zwicky, 1933) as well as early evi-
dence that we live in a universe with a low matter density  
Ω

M
 ∼ 0.2−0.3 (Bahcall & Cen, 1992; White et al., 1993). While 

the large catalogs compiled by cluster and large scale struc-
ture surveys have offered the testbeds of, for example, the 
growth of structure and cosmic shear, these tests are limited by  
systematics originating primarily from astrophysical effects—
shocks, feedback, non-thermal pressure, and the objects’ 
dynamical and virialization states, to name a few — as well 
as from contamination due to interlopers and sources within 
the systems that can bias our measurements and any resulting  
cosmologically relevant observable (e.g., the cluster mass, a  
key proxy of structure evolution).

The same sources that can contaminate measurements, prima-
rily radio-loud active galactic nuclei (AGN) and star forming 
galaxies, or cause departures from thermal equilibrium, 
such as shocks, are also the main drivers of the physical and  
thermodynamic evolution of the intracluster medium (ICM). The 
ICM, in turn, is the large scale environment within which a large  
fraction of galaxies reside, so the feedback and interactions 
between the two are important to both cosmology as well as 
cluster and galaxy evolution. The study of galaxy clusters is 
thus complex and multifaceted, but the reward to understand-
ing the nature of clusters and large scale structure is that it  
allows us to test the properties of the ubiquitous dark matter,  
and to peer into the dark universe itself.

Some of the dominant astrophysical processes occurring in clus-
ters are shown in the cartoon depiction in Figure 1. Studying in 
greater detail the multi-scale physical processes taking place 
within the most massive structures in the Universe will ulti-
mately allow us to build a more complete understanding of  
the thermal history of our universe, how structure grew and  
evolved, or fundamentally how the Universe came to be the  
way it is.

Here we seek to motivate deep, multi-band or multichroic high 
resolution and wide field observations with the Atacama Large 
Aperture Submillimeter Telescope (AtLAST; Klaassen et al., 
2020; Mroczkowski et al., 2023; Mroczkowski et al., 2024; 
Ramasawmy et al., 2022) that will address questions of cluster 
astrophysics as well as the contamination that could potentially  
plague cluster cosmology done at arcminute resolutions. 
At the same time, the observations discussed here are not  
simply to aid cosmological studies, but can probe interesting  
astrophysics and solve important questions about astrophysics 
in their own right — with the unique potential of providing 
a link between galaxy evolution, large-scale structure, and  
cosmological studies. Our primary tool here is the Sunyaev- 
Zeldovich effect, described below.

2 The multi-faceted Sunyaev-Zeldovich effect
The thermal Sunyaev-Zeldovich (SZ) effect (Sunyaev &  
Zeldovich, 1970; Sunyaev & Zeldovich, 1972) — an up- 
scattering to higher energies of photons from the cosmic 
microwave background (CMB) by hot electrons — was pro-
posed theoretically as an alternative way to probe the pressure 
along the line of sight (l.o.s.) of the hot gas in galaxy clusters.  
A schematic picture for the scattering due to the thermal SZ 
effect, which scales as the Compton y parameter (y ∝ P

e
dl for 

electron pressure P
e
 and l.o.s. l), is shown in Figure 1. Shortly 

after the theoretical foundations of the thermal SZ effect, 
the kinetic SZ effect (∝ n

e
v

z
dl for electron density n

e
 l.o.s.  

peculiar velocity v
z
; see Sunyaev & Zeldovich, 1980) was  

proposed as a way to measure gas momentum with respect to 
the CMB, our ultimate and most universal reference frame. 
The following decade saw developments in the theory regarding 
relativistic corrections to the thermal SZ and kinetic SZ  
effects as well as anticipating more exotic SZ effects from non-
thermal and ultrarelativistic electron populations (e.g., Enßlin 
& Kaiser, 2000; Itoh et al., 1998; Nozawa et al., 1998). Obser-
vations of the SZ effects, however, took longer to come to 
the fore, beginning with pioneering measurements such as  
Birkinshaw et al. (1984) and culminating more recently  
in several thousand measurements or detections from both 
low-resolution (1-10′) SZ surveys (e.g., Carlstrom et al., 2011; 
Swetz et al., 2011) and dedicated observations, often at higher  
(subarcminute) resolution (e.g., Adam et al., 2014; Kitayama  
et al., 2016; Mason et al., 2010; Plagge et al., 2013). For 
more comprehensive reviews of the various aspects of the SZ  
effect, see, e.g., Birkinshaw (1999); Carlstrom et al. (2002); 
Kitayama (2014), and Mroczkowski et al. (2019).

The proposed millimeter/submillimeter facility, AtLAST, 
presents novel, unique capabilities that will revolutionize both 
deep targeted observations aiming for detailed astrophysical 
studies, as well as wide-field surveys aiming to push SZ obser-
vations to much lower mass limits and higher redshifts. Since 
the epoch of reionization, the majority of baryons have been 
making their way up to high enough temperatures (> 105 K)  
that their emission is nearly completely undetectable at  
optical wavelengths (visible and near-IR band), where the  
majority of telescopes operate. Such a hot phase is an omni-
present feature of the multi-phase cosmic web, representing 
a relevant contribution to the volume-filling matter budget on 
multiple scales — from Mpc-scale filaments of intergalactic 
medium, to the intracluster medium (ICM), and down to the  
circumgalactic medium (CGM) surrounding individual galax-
ies up to their virial radius (up to few 100s of kpc). Through 
the SZ effect, the millimeter/submillimeter wavelength regime 
offers a view of this important component of galaxies and their 
surrounding environments (clusters, groups, filaments) —  
components that are largely invisible to all but X-ray and SZ  
instruments.

3 Proposed science goals
Here we provide a summary of the main applications in the 
context of SZ studies enabled by AtLAST that will allow us  
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to develop a more profound and complete understanding of  
the thermal history of the Universe, ultimately transform-
ing our understanding of the numerous processes involved 
in structure formation, evolution, feedback, and the quench-
ing of star formation in overdense environments. We refer to 
Lee et al. (2024) and van Kampen et al. (2024) for companion 
AtLAST case studies focused on emission line probes of the cold  
circumgalactic medium (CGM) of galaxies and on providing 
a comprehensive survey of high-z galaxies and protoclusters, 
respectively. Common to all the specific science cases discussed 
below is the need for a wide field, high angular resolu-
tion facility able to optimally probe the full SZ spectrum  
(Figure 2). We refer to Section 4 for a more extended discussion  
of the technical requirements for the proposed science goals.

3.1 Thermodynamic properties of the ICM: radial 
profiles and small-scale perturbations
The morphological and thermodynamic properties of the 
ICM represent key records of the many physical processes 
shaping the evolution of galaxy clusters and groups. Non- 
gravitational processes — e.g., cooling, AGN feedback, differ-
ent dynamical states and accretion modes (Battaglia et al., 2012; 
Ghirardini et al., 2019) — are expected to leave their imprint on 
the pressure distribution of the ICM in the form of deviations 

from the radial models derived under universal and self-similar 
assumptions for structure formation (see, e.g., Arnaud  
et al., 2010; Nagai et al., 2007; Sayers et al., 2023). On cluster 
scales, shock fronts induced by cluster mergers as well as  
cosmological accretion deposit their kinetic energy into the 
ICM, contributing to its overall thermalization (Ha et al., 
2018; Markevitch & Vikhlinin, 2007). On smaller scales,  
turbulent motion (Khatri & Gaspari, 2016; Romero et al., 2023; 
Schuecker et al., 2004) can induce significant non-thermal 
contributions to the ICM pressure support, in turn hampering  
the validity of the hydrostatic equilibrium assumption. We 
thus need robust constraints on the level of turbulence affect-
ing the energy budget of the ICM along with an independent 
census of the “hydrostatic mass bias” (e.g., Biffi et al., 2016) 
via a combination of fluctuations and resolved hydrostatic 
mass information. This will be crucial for inferring corrections 
to the hydrostatic mass due to the non-thermalized gas (see,  
e.g., Angelinelli et al., 2020; Ettori & Eckert, 2022) and there-
fore strengthening the role of thermodynamic quantities  
for cosmological purposes (Pratt et al., 2019).

The thermal SZ effect provides a direct proxy for the (ther-
mal) pressure due to the free electrons in the ICM and, as 
such, the optimal tool for gaining a direct calorimetric view 

Figure 1. Expanded diagram highlighting some of the aspects of galaxy clusters and large-scale structures that will be studied 
through the Sunyaev-Zeldovich (SZ) effect using AtLAST. The SZ effect is caused by the interaction of photons from the cosmic 
microwave background (CMB) with reservoirs of energetic electrons within cosmic large-scale structures. Thanks to AtLAST’s unparalleled 
capabilities, it will be possible to fully exploit multiple aspects of the SZ effect to characterize the impact of active galactic nuclei (AGN) on the 
circumgalactic medium (CGM), and the multi-scale properties of the intracluster medium (ICM) of the large-scale filaments of intergalactic 
medium (IGM). The figure is an adaptation of the SZ schematic in Mroczkowski et al. (2019), which was based on that from L. van Speybroeck 
as adapted by J. E. Carlstrom.
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of the gas thermal properties. In fact, observational models 
for a statistically relevant sample of clusters are currently  
limited to the indirect determination of resolved pressure  
models for clusters up to z ≲ 1 (Arnaud et al., 2010; McDonald  
et al., 2014; Sayers et al., 2023). Direct constraints of the 
properties of the ICM within protoclusters and clusters early  

in their formation have been obtained for only a handful of 
extreme systems (z > 1; Andreon et al., 2021; Andreon et al.,  
2023; Brodwin et al., 2016; Di Mascolo et al., 2023; Gobat  
et al., 2019; Tozzi et al., 2015; van Marrewijk et al., 2023) or  
limited samples (e.g., Ghirardini et al., 2021b). Despite 
the significant time investment with the Atacama Large  

Figure 2. Various SZ spectra versus transmission in the top quartile (lighter gray) and median (darker gray) atmospheric 
transmission conditions available at the Chajnantor Plateau (≈ 5000 meters above sea level). The left y-axis corresponds to 
transmission, and the right y-axis is appropriate for the SZ intensity for a cluster with y = 10−4. The kinetic SZ values assume a line of sight 
velocity component vz = −1000 km/s (i.e. toward the observer, implying a net blueshift in the CMB toward the cluster) and an electron opacity 
τ = 0.01. Here we used SZpack to solve for the SZ spectral distortions (Chluba et al., 2012), and the am code for atmospheric transmission 
(Paine, 2019). The optimal continuum bands of the proposed AtLAST SZ observations, reported in Table 1, are shown as background shaded 
regions.

Table 1. Frequencies, sensitivities and beam sizes for an AtLAST type of SZ experiment. The 
sensitivity levels are computed assuming the standard values for weather condition (2nd octile) and 
elevation (α = 45 deg), but consider the broad-band re-implementation of the AtLAST sensitivity calculator. 
The specific frequencies of the band edges correspond to the ones that minimizes the output noise RMS 
level in the corresponding band per given integration time.

band 
—

ref. frequency 
[GHz]

bandwidth 
[GHz]

band edges 
[GHz]

beam 
[arcsec]

sensitivity 
[µJy beam−1 h1/2]

survey noise 
[µKcmb − arcmin h1/2]

2 42.0 24 30–54 35.34 6.60 2.40

3 91.5 51 66–117 16.22 6.46 1.27

4 151.0 62 120–182 9.83 7.14 1.21

5 217.5 69 183–252 6.82 9.22 1.86

6 288.5 73 252–325 5.14 11.91 3.71

7 350.0 50 325–375 4.24 23.59 12.26

8 403.0 38 384–422 3.68 39.98 34.70

9 654.0 118 595–713 2.27 98.86 1.67 × 103

10 845.5 119 786–905 1.76 162.51 3.70 × 104
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Figure 3. Observed Compton y profiles when considering different fiducial models for the ICM pressure distribution (top 
panels; Arnaud et al., 2010; Gupta et al., 2017; Le Brun et al., 2015; McDonald et al., 2014; Melin & Pratt, 2023; Sayers et al., 2023) 
and respective variations (bottom panels) with respect to the universal pressure profile from Arnaud et al. (2010), commonly 
adopted as reference model for the inference of cluster masses. In this plot, we consider a cluster with fixed mass (M500 = 1014 M⊙) 
for an arbitrary set of redshifts (z = {0.05, 1.50, 3.00}). The different profiles are computed on heterogeneous samples in terms of mass 
and redshift ranges, and thus encode different biases associated to the intrinsic scatter of pressure profiles, deviations from self-similar 
evolution and hydrostatic equilibrium. Thanks to AtLAST’s sensitivity to Compton y levels ≲ 10−7, it will be possible to characterize such 
effects, while providing a model for the evolution of ICM pressure across cosmic history. As reference, we report as dashed vertical lines 
the virial radius of the model clusters and the instantaneous field of view expected for AtLAST (see Section 4). We further denote as dotted 
vertical lines the largest and smallest angular resolution θi achievable with AtLAST, respectively obtained in the proposed Band 2 and Band 
10 (see Section 4.1 and Table 1 below).

Figure 4. Thermal (left) and kinetic (center) SZ effects, and X-ray luminosity (right) from a simulated massive cluster undergoing 
a major merger (M200 ≃ 1.5 × 1015 M⊙, z = 0) extracted from the TNG-Cluster simulation (Nelson et al., 2023). The contours in both 
panels trace a Compton y level of 2 × 10−7, roughly corresponding to the reference SZ depth for a deep AtLAST survey (Section 4.2). As a 
reference, we mark with a circle the virial radius of the galaxy cluster. This implies that AtLAST will be able to efficiently trace the SZ signal 
out to the low-density outskirts of clusters.

Millimeter/Submillimeter Array (ALMA; Wootten & Thompson, 
2009) or the 100-meter Green Bank Telescope (GBT; White  
et al., 2022), these observations only allow one to perform a 
characterization of the physical and thermodynamic state of  
these early systems for a few select systems. Still, these have 
generally required the combination with ancillary X-ray  
observations, due to observational limitations including poor  

signal to noise or the data being limited to fewer than 5  
bands.

In order to gain a radially resolved view of pressure profiles 
and of their small-scale perturbations for a large variety 
of clusters (in terms of dynamical state, mass, and redshift; 
see Figure 3), it is key to have simultaneous access to 
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enhanced sensitivity, high angular resolution, and wide spec-
tral coverage across the millimeter/submillimeter spectrum.  
These observations are important, as from hydrodynamical 
simulations the pressure distribution of high-z galaxy clus-
ters are predicted to diverge from the universal pressure 
models (Battaglia et al., 2012; Gupta et al., 2017), leading 
to a systematic offset between the mass-to-SZ observable  
scaling relation for high-z haloes with respect to local ones 
(Yu et al., 2015). Constraining such deviations is crucial as 
they carry fundamental information on the complex inter-
play between all those multi-scale processes — e.g., merger 
and accretion events, AGN and stellar feedback, turbulent  
motion — at epochs (z > 1) when their impact from galac-
tic to cluster scales are expected to be the strongest. At the 
same time, tracing the pressure profiles out to the cluster  
outskirts will be key to pinpoint and characterize virial and  
accretion shocks (Anbajagane et al., 2022; Anbajagane et al.,  
2024; Hurier et al., 2019), whose existence is a fundamental 
prediction of the current paradigm of large-scale structure  
formation (e.g., Ryu et al., 2003; Zhang et al., 2021). In par-
ticular, the location and properties of their SZ features can 
be exploited to study the mass assembly of galaxy clusters 
and to place direct constraints on their mass accretion rate  
(a quantity otherwise difficult to infer observationally; see, 
e.g., Baxter et al., 2021; Baxter et al., 2024; Molnar et al., 
2009; Lau et al., 2015; Towler et al., 2024). And finally,  
pressure perturbations due to the turbulent motion within the  
ICM have been measured to result in fluctuations of the Comp-
ton y signal with fractional amplitude ≲ 10−1 compared to the 
underlying bulk SZ signal (Khatri & Gaspari, 2016; Romero  
et al., 2023). The enhanced sensitivity and calibration sta-
bility that will be achieved by AtLAST will allow it to eas-
ily probe this level of fluctuations, providing important albeit 
indirect information on the level of non-thermal pressure  
support in the ICM. More in general, it is only with the unique 
technical prospects offered by AtLAST that we will be able 
to probe to thermal SZ signal down to the levels Compton  
y ≈ 10−7 (Section 4.2) required to probe the full extent of the  
ICM pressure distribution (Figure 3), unparalleled by any of  
the current or forthcoming submillimeter facilities.

3.2 Measuring the ICM temperature via relativistic SZ 
effect
The classical formulation of the thermal SZ effect relies on a  
non-relativistic assumption for the velocity distribution of 
the electron populations responsible for the SZ signal. These 
can however manifest velocities of the order of a few tens  
percent of the speed of light. Accounting for any associated  
special-relativistic effects introduce a temperature-dependent  
distortion of the SZ spectral model (Figure 2). The resulting 
relativistic SZ effect thus offers a valuable (yet largely unex-
plored) opportunity to directly measure the temperature of ICM 
electrons. This represents a key ingredient for enhancing our 
physical models of galaxy clusters and improving their utility as 
cosmological probes via more accurate tuning of mass calibra-
tions and scaling relations (e.g., Lee et al., 2020; Remazeilles 
& Chluba, 2020). At the same time, having simultaneous access  
to the full ICM thermodynamics (via temperature T

e
, as well 

as pressure P
e
 and density n

e
 measurements via the com-

bination of the relativistic and purely thermal SZ effects) 
offers the key chance of building a temporal census of the 

ICM entropy distribution (
2/3 5/3 2/3

e e e e, orT n T P− −∝ ∝  when  

considering thermodynamic quantities directly probed by the  
SZ effect; Voit, 2005). The many processes affecting cluster  
evolution — e.g., AGN and stellar feedback, injection of  
kinetic energy due to merger activity — are observed to mod-
ify the entropy profiles throughout the cluster volumes (e.g.,  
Ghirardini et al., 2017; Pratt et al., 2010; Walker et al., 2012), 
compared to a baseline model that includes only the non-radiative 
sedimentation of low-entropy gas driven by gravity (Tozzi 
& Norman, 2001; Voit et al., 2005). As such, the spatially  
resolved study of the ICM entropy distribution provides a  
fundamental proxy of the thermal evolution of cosmic struc-
tures as well as the specific dynamical state of galaxy  
clusters.

Currently, estimates of the relativistic corrections to the thermal 
SZ effect are limited to a few pioneering studies targeting 
individual systems (Hansen et al., 2002; Prokhorov &  
Colafrancesco, 2012) or focusing on stacking analyses (Erler 
et al., 2018; Hurier, 2016). Still, even in the case of individual 
clusters with extremely rich observational spectral coverage  
(see, e.g., Butler et al., 2022 and Zemcov et al., 2012, focus-
ing on the well-known cluster RX J1347.5-1154), SZ-based 
inferences of the ICM temperature have commonly resulted 
in constraints with limited significance. Higher angular  
resolutions, such as those offered by AtLAST, will be an asset 
for constraining SZ temperatures. First, the higher angular  
resolution allows spatially-distinct foregrounds such as radio 
sources, dusty galaxies and the Galactic dust foreground to 
be accurately modelled and removed. Second, the extraction 
of resolved pressure and temperature profiles provides the 
unique opportunity of performing the physical modeling of 
the ICM relying solely on the SZ effect. This represents a key 
advantage. Although electron temperatures can be measured  
using X-ray data, these are roughly density-square-weighted 
estimates (e.g., Mazzotta et al., 2004) and therefore subject to 
biases due to clumping (e.g., Simionescu et al., 2011). Fur-
ther, observations can become prohibitive at large cluster radii, 
due to the low X-ray emissivity, and at high redshift, due to  
cosmological dimming. Churazov et al. (2015) showed that the  
self-similar evolution of galaxy clusters would introduce a near 
independence of redshift of the X-ray luminosity at fixed clus-
ter mass — when this is defined as the mass enclosed in the 
radius within which the average matter density equals some 
fiducial cosmic overdensity value (e.g. 500 × ρ

crit
). Neverthe-

less, we note that these considerations are valid only under 
the assumption that the local mass-observable scaling rela-
tions are applicable at high redshift. At the same time, both the  
resolved SZ signal and the respective cluster-integrated flux 
would still be (1 + z)3/2 larger than the X-ray emission from the  
same system at a given redshift z.

On the other hand, since the SZ effect is characterized by a 
surface brightness that is inherently independent of redshift, 
ICM temperature constraints can in principle be derived  
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without specific limits on the distance of the target systems. 
And lastly, the temperatures inferred using data on the same  
clusters but taken using different X-ray observatories may suf-
fer large systematic variations due to inherent calibration dif-
ferences (Migkas et al., 2024; Schellenberger et al., 2015). 
In contrast, the SZ temperature estimate is pressure-weighted 
and is therefore predicted to be less biased by emission while 
being easier to constrain at large cluster radius due to the linear 
(instead of squared) dependence on density. And even in the case 
of low-mass (i.e., low-SZ surface brightness; see also Section 
3.4) clusters for which it will not be possible to extract resolved  
SZ-based temperature information, the availability of deep, high 
angular resolution SZ observations for a large sample of sys-
tems will still allow for matching resolution with X-ray obser-
vations and to extract resolved full thermodynamic properties 
of the ICM (see Section 3.1 and Section 5.2.4). An exploratory 
study of AtLAST’s expected capabilities to measure temperature 
via the relativistic SZ effect is presented in Section 4.3.  
We refer to this for more details on the impact of the specific  
spectral setup on the reconstruction of the relativistic SZ 
effect and on the technical requirements for extending such  
measurements over broad ranges of cluster masses and  
redshifts.

3.3 Kinematic perspective on large scale structures
The kinetic component of the SZ effect represents a valuable 
tool for revealing the peculiar motion of cosmic structures. 
Nevertheless, its properties – namely its shape, the fact that 
the kinetic SZ signal is generally weaker than the thermal SZ 
effect (Figure 2), and that it traces the integrated line of sight  
momentum – make the kinetic SZ effect somewhat elu-
sive to measure and interpret. Further, the kinetic SZ spectral  
distortion is consistent with a Doppler shift of the CMB  
photons, making it spectrally indistinguishable from small-scale  
primordial CMB anisotropies.

Past targetted kinetic SZ studies (e.g., Adam et al., 2017;  
Mroczkowski et al., 2012; Sayers et al., 2013; Sayers  
et al., 2019; Silich et al., 2023) have already reported direct  
measurements of the kinetic SZ signal due to the large-scale 
gas flows associated with merger events. All of these works 
focused on individual, relatively extreme clusters (either in terms 
of overall mass, dynamical state, or orientation of the merger  
direction with respect to the line-of-sight). The broad spectral  
coverage and the expected sensitivity of AtLAST, in combi-
nation with its capability of probing a high dynamic range of 
angular scales, will instead allow for systematically including 
the kinetic SZ information in the reconstruction of the thermo-
dynamic characterization of large statistical samples of galaxy  
clusters and groups.

Statistical measurements of the kinetic SZ effect in disturbed 
and merging systems represent a crucial ingredient for cos-
mological studies via direct measurements of the amplitude 
and the growth rate of cosmological density perturbations 
(e.g., Bhattacharya & Kosowsky, 2007; Soergel et al., 2018). 
They can also be used to distinguish ΛCDM from alternative  
cosmologies with modified gravitational forces (Bianchini 
& Silvestri, 2016; Kosowsky & Bhattacharya, 2009; Mueller 
et al., 2015). Further, correlating the velocity structure with 

information from facilities at other wavelengths on the bary-
onic and dark matter content of merging systems will represent 
a preferential probe of the collisional nature of dark matter 
(Silich et al., 2023). In the case of relatively relaxed systems  
(i.e., with velocity fields not manifesting complex morpholo-
gies), the joint analysis of the thermal and kinematic SZ 
effects would naturally complement the inference of the ICM  
pressure and temperature distributions with information on  
the bulk peculiar velocity of galaxy clusters and tighter  
constraints on the ICM density (Mroczkowski et al., 2019).

The detailed spatial mapping of the kinetic SZ effect could also 
be used to characterize turbulent motions and to identify their 
driving dissipation scales which are relevant for feedback mech-
anisms. This can be done, in particular, by computing the veloc-
ity structure function (VSF), defined as the average absolute 
value of the line of sight velocity differences as a function of  
projected scale separation. The VSF is an effective way of 
characterizing turbulent motions and identifying their driv-
ing and dissipation scales (see, e.g., Ayromlou et al., 2023;  
Ganguly et al., 2023; Gatuzz et al., 2023; Li et al., 2020).  
Determining the driving scale of turbulence would constrain  
the relative importance of gas motions driven by AGN feed-
back on small scales and mergers on large scales, while the dis-
sipation scale is sensitive to the microphysics of the ICM, such 
as its effective viscosity (Zhuravleva et al., 2019). In general, 
constraints on the small-scale properties of the velocity field  
associated with turbulent motion (Nagai et al., 2003; Sunyaev  
et al., 2003), coherent rotation of gas within their host dark  
matter haloes (Altamura et al., 2023; Baldi et al., 2018;  
Bartalesi et al., 2024; Baxter et al., 2019; Cooray & Chen, 2002), or 
merger-induced perturbations (Biffi et al., 2022) can complement 
the reconstruction of ICM thermodynamic fluctuations (Khatri & 
Gaspari, 2016; Romero et al., 2023) and the potential mitigation  
of biases due to non-thermal pressure support (e.g., Angelinelli 
et al., 2020; Ansarifard et al., 2020; Ettori & Eckert, 2022; 
Shi et al., 2016) discussed in Section 3.1. Perturbations in the  
kinetic SZ distribution will result in smallscale kinetic SZ  
fluctuations more than an order of magnitude smaller than the  
corresponding thermal SZ component (Biffi et al., 2022;  
Mroczkowski et al., 2019; Sunyaev et al., 2003) even for  
massive systems. The clear requirement of extremely demand-
ing observations (along with the difficulty in spectrally dis-
entangling the kinetic SZ effect from the underlying CMB 
signal; Mroczkowski et al., 2019) have so far limited the pos-
sibility of directly measuring any small-scale kinetic SZ fea-
ture. However, AtLAST will be able to efficiently measure  
percent-level deviations from the dominant thermal SZ effect 
(see, e.g., Section 4.3 below for a discussion in the context of  
relativistic SZ corrections) and to swiftly survey wide sky 
areas at ∼ 1.5 − 35 arcsec resolution, thus opening a novel  
observational window on ICM velocity substructures.

Finally, AtLAST’s simultaneous sensitivity to both small and 
large spatial scales facilitates studies of the distortions in the 
CMB across a broad range of spatial scales (300 ≲ ℓ ≲ 20000). 
Existing and forthcoming CMB experiments cannot probe 
beyond ℓ ∼ 4000, whose power spectrum is dominated by both 
regular CMB anisotropies and CMB lensing effects. However, 
at 220 GHz around ℓ ≈ 7000, the kinetic SZ effect becomes  
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the dominant contributor to the angular power spectra (Smith & 
Ferraro, 2017), thus enabling studies on the kinetic SZ imprint 
from the epoch of reionization, originating from relativistic  
electrons within expanding ionizing bubbles (Ferraro & Smith, 
2018) – the so-called “patchy kinetic SZ” signal.

3.4 Overcoming cluster selection biases
It is becoming generally appreciated that X-ray selected clus-
ters offer a biased view of the cluster population (Andreon et al., 
2017; Andreon et al., 2019; Eckert et al., 2011; Maughan et al., 
2012; Pacaud et al., 2007; Planck Collaboration, 2011; Planck  
Collaboration 2012; Stanek et al., 2006). This is because, in 
a given sample, bright clusters are over-represented (see, e.g., 
Mantz et al., 2010 for discussion of Malmquist and Edding-
ton biases), whereas those systems fainter-than-average for 
their mass are underrepresented, if not missing altogether. 
This bias is difficult to correct because the correction depends 
on assumptions about the unseen population (Andreon et al.,  
2017; Vikhlinin et al., 2009). On the other hand, SZ-selected 
cluster samples are generally thought to offer a less biased view 
and indeed show a larger variety (e.g., in gas content) than X-ray 
selected samples (e.g., Planck Collaboration, 2011; Planck  
Collaboration, 2012). Comparisons of the X-ray properties of  
SZ-selected systems (see, e.g., CHEX-MATE Collaboration, 
2021) have highlighted the fact that ICM-based selection  
biases can depend on the specific morphology (Campitiello 
et al., 2022) or the presence of a dynamically relaxed cool core  
(the so-called “cool-core bias”; Rossetti et al., 2017).

However, the selection of clusters via their galaxies (i.e., 
based on the identification of cluster members) or via gravita-
tional lensing (i.e., based on the effect of the cluster potential 
on the images of background sources) can provide an observa-
tional perspective that is potentially unbiased with respect to  
the thermodynamic state of the ICM. Although methods based 
on galaxies can still suffer from significant biases due to con-
tamination and projection effects (e.g., Donahue et al., 2002; 
Willis et al., 2021), the fact that they are not dependent on the 
ICM-specific biases have granted the possibility of unveiling 
the existence of a variety of clusters at a given mass larger than  
X-ray or current SZ-based approaches. In particular, the low-
surface brightness end of the unveiled new population of 
clusters is changing our view of galaxy clusters. These are 
found to introduce significant scatter in many ICM-based 
mass-observable scaling relations (Andreon et al., 2022), at  
very the heart of our understanding of cluster physics and 
broadly used in the context of cluster cosmology. Character-
izing such a population of low surface brightness clusters will 
necessarily require a major leap in the SZ sensitivity with  
respect to state-of-the-art facilities.

The possibility of performing deep, high angular resolution 
mapping over wide sky areas offered by AtLAST will allow 
observers to efficiently detect those clusters that are presently 
underrepresented in, or entirely missing from, catalogs due to 
an SZ or X-ray signal inherently fainter than expected from 
their mass. Indeed, clusters with low X-ray surface brightness  
tend to have low central values of Compton y, of the order of 

few 10−6 (based on Andreon et al., 2022), at the very limit of 
long pointed observations with current single-dish telescopes,  
when not beyond their effective detection capabilities. In  
combination with X-ray, strong and weak-lensing data, this 
will allow for a thorough characterization of their physical and  
thermodynamic state, and for discriminating between any 
variation in the inherent properties of the intracluster gas and  
observational biases induced by any astrophysical processes 
more or less associated with the specific evolution and physics of  
the target clusters — e.g., energetic AGN feedback, recent  
merger events, low gas fraction, enhanced clustering of  
millimeter-bright galaxies.

3.5 Identification and thermodynamic characterization 
of high-z clusters and protocluster
Next generation SZ facilities like Simons Observatory (SO; 
Simons Observatory Collaboration, 2019) and CMB-S4  
(Abazajian et al., 2016) will extend our observational window 
into the high-z and low-mass realm (see, e.g., Raghunathan et al., 
2022 and Figure 5) of galaxy clusters and protoclusters.  
Tracing the earliest phases of their evolution will be crucial for  
constraining the physical origin of the thermal properties of the  
large-scale structures observed in the nearby Universe.

Nevertheless, current forecasts estimate that next-generation 
wide-field surveys (Gardner et al., 2024) will detect less than 
20% of the most massive (proto)clusters (M

200
 ≲ 1014 M⊙, z > 2). 

This is mostly a consequence of the competing impact of inher-
ently low SZ amplitudes (due to low mass, disturbed state, and  
severe deviations from full gas thermalization and virializa-
tion; Bennett & Sijacki, 2022; Li et al., 2023; Sereno et al., 
2021), the low angular resolution of the facilities, and of the 
increasing contamination level due to, e.g., enhanced star  
formation and AGN activity, or possibly due to massive CGM 
gas and dust reservoirs at high redshift (Lee et al., 2024).  
And as already broadly discussed in Section 3.1, extreme limi-
tations are also faced in the case of high angular resolution  
measurements. Clearly, having access to deep, high angular  
resolution and multi-band SZ observations will allow observers  
to simultaneously tackle all such issues, making AtLAST the  
optimal telescope that will definitively shape our perspective  
on high-z (proto)clusters.

The correlation of such constraints with the properties of 
the galactic populations observed within the (proto)cluster  
complexes will further allow for directly linking the evolution 
of the forming intracluster gas to the multi-phase protocluster  
environment and its only partially understood impact on galaxy 
formation and evolution (Figure 6). Current multi-wavelength  
observations have highlighted that the environmental 
effects might act on Mpc scales and well beyond the more 
or less virialized regions within these protocluster galaxy  
overdensities (Alberts & Noble, 2022). These studies however 
rely on the characterization of environmental processing 
solely from the perspective of protocluster galaxies (Overzier, 
2016). On the other hand, the wide field, the extreme  
sensitivity and the capability of AtLAST to trace low density 
regions thanks to the SZ effect will allow for an efficient 
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Figure 5. Mass vs. redshift detection forecast for AtLAST assuming different survey strategies (covering 1000 deg2, 4000 deg2, and 
20000 deg2, respectively, for a fixed survey time of 5 years) in comparison with next-generation wide-field millimeter surveys 
(Abazajian et al., 2016; Sehgal et al., 2019) and the eROSITA all-sky (X-ray) survey (Bulbul et al., 2024). Poisson realizations of the 
thermal SZ confusion were simulated in the AtLAST survey case, while the other resolution surveys used Gaussian realizations appropriate 
in the case where the lower resolution and sensitivity limit the ability to surpass the thermal SZ confusion limit. We refer to Raghunathan 
(2022) for a more general discussion of the different treatments of the SZ confusion noise. For comparison, we report as green points 
the clusters from the available SZ survey samples (Bleem et al., 2020; Bleem et al., 2024; Hilton et al., 2021; Planck Collaboration, 2016), 
as well as relevant high-z clusters from the literature: XDCP J0044-2033 (Tozzi et al., 2015), IDCS J1426.5+3508 (Brodwin et al., 2016), JKCS 
041 (Andreon et al., 2023), XLSSC 122 (Mantz et al., 2020; van Marrewijk et al., 2023), CL J1449+0856 (Gobat et al., 2019), and the Spiderweb 
protocluster (Di Mascolo et al., 2023). This figure is adapted from Raghunathan et al. (2022).

Figure 6. Composite Hubble Space Telescope (HST) image based on ACS/WFC F475W and F814W data of the Spiderweb protocluster 
field. Overlaid (orange) is the thermal SZ signal from the ICM assembling within the protocluster complex as observed by ALMA over a 
total of more than 12 h of on-source integration time. In a similar amount of time and with the same spectral tuning, AtLAST will achieve a 
depth comparable to ALMA, however providing a dramatic improvement of ∼ 103 in field of view and, thus, in overall mapping speed. At the 
same time, AtLAST will provide a novel perspective on the reservoirs of cold gas (light blue overlay; Emonts et al., 2016) coexisting with the 
warm/hot phase within protocluster cores (see the CGM science case study by Lee et al. (2024) for a discussion). For comparison, we also 
include the bright jet of radio emission output from the central galaxy as observed by VLA (the linear east-west feature, shown in red; Carilli 
et al., 2022). The present figure is adapted from Di Mascolo et al. (2023) and the corresponding ESO Press Release eso2304.
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imaging of the complex galaxy-environment puzzle with a  
comprehensive glance of the multi-scale and multi-phase nature  
of high-z (proto)cluster systems.

3.6 Impact of AGN feedback and halo heating
Acting in practice as a calorimeter of astrophysical elec-
tron populations, the thermal SZ effect can shed light on the 
interplay of feedback processes and heating of large-scale 
halos from galactic to cluster scales. This is particularly  
relevant in the context of AGN studies, in relation to the spe-
cific impact of feedback and AGN-driven outflows in contrib-
uting to the heating of cosmic haloes (Fabian, 2012). In fact, 
despite the importance of supermassive black holes (SMBH) 
in driving the evolution of cosmic structures, we still have a 
limited understanding of the complex connection between  
multi-scale physical properties of SMBH and their host  
galaxies (Gaspari et al., 2020). Current multi-wavelength  
observations support a rough duality in the feedback frame-
work (Padovani et al., 2017), with the level of radiative  
efficiency depending on the specific scenario regulating SMBH 
accretion (Hlavacek-Larrondo et al., 2022; Husemann &  
Harrison, 2018). From the perspective of the observational prop-
erties of the hot ICM/CGM phase, different feedback models 
would naturally result in different levels of energy injection 
and, thus, in deviations from the halo thermal budget expected 
from virial considerations. At the same time, the strong interac-
tion of winds and jets with the surrounding medium introduces a  
significant amount of non-thermal support to the overall pressure 
content — in the form, e.g., of turbulent motion, buoyantly 
rising bubbles of extremely hot plasma (≳ 100 keV)  
and associated shock-heated gas cocoons (Abdulla et al., 
2019; Ehlert et al., 2019; Marchegiani, 2022; Orlowski-
Scherer et al., 2022; Pfrommer et al., 2005). All this implies, 
however, that gaining a detailed view of the thermodynamic  
properties of the circumgalactic haloes would allow us to 
obtain better insights into the AGN energetics and improve  
our feedback models.

Measurements of the integrated thermal SZ signal have already 
been broadly demonstrated to provide an efficient means for 
probing the evolution of the imprint of feedback on the thermal 
energy of cosmic structures (Crichton et al., 2016; Hall et al., 
2019; Yang et al., 2022). These are however limited mostly to 
stacking measurements of arcminute-resolution SZ data, and are 
thus hampered by the low angular resolution of the wide-field  
survey data employed. On the other hand, targeted observations 
at higher angular resolution currently comprise an extremely 
small set of high-z quasars (Brownson et al., 2019; Jones et al., 
2023; Lacy et al., 2019). The overall limited sensitivity 
as well as interferometric effects such as poor uv-coverage  
and the filtering of large scales, however, resulted only in 
what appear to be low significance detections of the SZ  
signal in the direction of these systems. While these works  
have been pioneering for high resolution studies, they so far  
provide little constraining power on the AGN energetics and  
feedback scenarios.

On the other hand, the SZ signal from AGN-inflated bubbles 
has been robustly detected in one, extreme case (MS 

0735.6+7421; Abdulla et al., 2019; Orlowski-Scherer et al., 
2022). Still, the observations required 10s hours with the  
current-generation MUSTANG-2 instrument (Dicker et al., 
2014), and 100s of hours with the previous-generation CARMA  
interferometer (Woody et al., 2004), and were limited to sin-
gle frequency observations. Since the SZ signal scales as the 
amount of energy displaced, future observations with current 
instruments to observe additional, less energetic AGN out-
bursts could require much more time on the source. As such, 
this singular example serves largely as a proof-of-principle for 
further, future resolved studies. We note that some progress 
will be made in this decade with, e.g., TolTEC (Bryan et al.,  
2018), though the Large Millimeter Telescope Alfonso Serran 
(LMT; Hughes et al., 2010) was designed to achieve a  
surface accuracy of ∼ 50 µm (2.5× worse than AtLAST), and 
regardless will be limited by the atmospheric transmission 
to ν ≲ 350 GHz in all but the most exceptional weather  
(see, e.g., the site comparison in Klaassen et al., 2020). Other 
single dish facilities delivering similarly high resolution will 
be limited to even lower frequencies (e.g. Nobeyama, Green  
Bank Telescope, Sardinia Radio Telescope), while ALMA has  
difficulty recovering scales larger than 1′ in all but its lowest  
bands (see Section 4).

Recently, multiple studies (e.g., Chakraborty et al., 2023;  
Grayson et al., 2023; Moser et al., 2022) showed that  
obtaining high angular resolution observations of the ther-
mal SZ effect (in combination with X-ray observations) would 
allow for constraining the distinct contribution from different  
feedback models. First observational studies based on the 
cross-correlation of the thermal and kinetic SZ signals (e.g., 
Amodeo et al., 2021; Das et al., 2023; Schaan et al., 2021;  
Vavagiakis et al., 2021) already showed independent and com-
petitive constraints. Recently, Coulton et al. (2024) demon-
strated that the socalled “patchy screening” can provide an 
alternative and highly complementary perspective on feedback  
mechanisms. Still, the low angular resolution of such  
measurements is not sufficient to spatially separate first and  
higher-order halo terms, and are thus hampered by respec-
tive systematics. On the other hand, based on numerical pre-
dictions for different feedback models (Yang et al., 2022), 
extending our observational constraints to include a broad 
range of masses and redshift and distinguishing between  
different feedback models will be highly impractical with  
current high angular resolution facilities. Further, it is worth 
noting that strongly asymmetric outflows from quasars, as 
well as gas inflows, would result in small-scale distortions 
of the overall SZ signal due to the localized thermal, kinetic  
and relativistic SZ contributions (see, e.g., Bennett et al., 
2024). Similarly, the inflation of cavities by large-scale jets 
and the consequent generation of shock fronts and turbulent 
motion would imprint observable deviations in the global 
SZ signal in the direction of AGN hosts (Ehlert et al., 2019).  
Having access to sensitive, multi-frequency observations as 
provided by AtLAST would thus be crucial, on the one hand, 
for reducing any biases associated with the missing decom-
position of the different SZ components to the measured  
signal as well as any contamination (due to, e.g.,  
millimeter/submillimeter bright emission from the AGN within 
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the studied haloes). On the other hand, it will allow for cleanly 
dissecting the spectral and morphological features charac-
teristic of the different feedback scenarios. Concerning the 
reconstruction of the thermal properties of the CGM, this will 
have an impact even beyond the context of the evolution of 
the physical processes driving the heating of cosmic haloes.  
In fact, it will be possible to swiftly build a multi-phase pic-
ture of the CGM by concurrently tracing its cold phase along 
with direct constraints on the otherwise elusive warm/hot 
constituent — comprising ≈ 80% of the total baryonic mate-
rial in the CGM overall (e.g., Schimek et al., 2024). This is 
an unparalleled feature of (sub)millimeter measurements,  
that necessarily require a combination of high spectral and angu-
lar resolution, along with the capability of mapping large-scale 
diffuse signals. Clearly, AtLAST will be the optimal facility 
for such a task. For a broader discussion of the importance of  
multi-phase CGM studies in the context of galaxy formation 
and evolution, we refer to the companion AtLAST CGM  
science case study by Lee et al. (2024).

3.7 Galaxy cluster outskirts and intercluster structures
A significant portion of the baryonic content of the Universe 
at z ≲ 3 is expected to lie well beyond the virial boundaries 
of cosmic structures (Cen & Ostriker, 1999). This diffuse 
“warm-hot intergalactic medium” (WHIM) is expected to 
have temperatures T

e
 ≈ 105 − 107 K, largely invisible at opti-

cal wavelengths and generally too low in temperature for all but  
the deepest X-ray observations, often being limited to line of 
sight absorption studies (Nicastro et al., 2018). Obtaining a 
detailed view of the large-scale WHIM is however crucial. Accu-
rately constraining the actual amount of matter constituting the 
WHIM will provide fundamental information on the “missing 
baryons” budget associated to this specific phase of the  
filamentary intergalactic medium (e.g., Shull et al., 2012). 
This will be connected to the specific mechanisms driving the 
heating of large-scale structure on cosmological scales: on  
the one hand, matter inflows and mergers along large-scale  
filaments driving strong accretion and virialization shocks  
(Anbajagane et al., 2022; Anbajagane et al., 2024; Baxter  
et al., 2021 see also Section 3.1); on the other hand, the impact 
of feedback processes and of the environmental preprocessing  
of galaxies (e.g., Alberts & Noble, 2022; Fujita, 2004).

To date, the identification and characterization of the physi-
cal properties of the filamentary WHIM has been performed 
mostly through stacked SZ and/or X-ray measurements (e.g., 
de Graaff et al., 2019; Singari et al., 2020; Tanimura et al., 
2019; Tanimura et al., 2020; Tanimura et al., 2022), and 
is often dominated by the hottest extremes of the range of  
temperatures expected for the WHIM (see Lokken et al., 2023  
for discussion). Recently, direct SZ imaging of a nearby inter-
cluster bridge was presented in Hincks et al. (2022), which 
used the combination of ACT+Planck data to reveal details 
at a much higher spatial dynamic range than the previous 
results using Planck alone. The results are shown in Figure 7.  
This work, while serving as a valuable pathfinder,  
highlighting the SZ substructures possible to image at even 
modestly higher (∼ 6×) resolution, was still limited to nearby 
(z ≈ 0.05) massive clusters. Deep maps with AtLAST will allow  

improved spatial dynamic range and higher fidelity, enabling 
such studies for many more clusters going to both higher  
redshifts and lower mass regimes.

Thanks to its sensitivity and to the possibility of recovering 
large scales over extremely wide fields, AtLAST will provide 
the ideal tool for searching for the presence of the SZ effect 
in accreting and unbound intergalactic gas surrounding the  
virialized volume of clusters and groups. In particular, this will 
make it possible to routinely explore intercluster structures 
in a large number of cluster pairs without the need for time  
demanding observations. For instance, it will be possible to 
achieve the same Compton y (or surface brightness) sensitiv-
ity as in the observation of the A399-A401 observations by 
Hincks et al. (2022, see also Figure 7) in less than ∼ 10 h of 
integration, but with better spectral coverage and an order of  
magnitude improvement in the angular resolution. On the  
other hand, we can consider as a rough lower limit of the  
expected amplitude for large-scale filaments the results from pre-
vious stacking experiments on intergalactic gas. For instance, 
de Graaff et al. (2019) provide estimates of the average  
SZ signal to have amplitudes in Compton y unit of ≲ 10−8,  
corresponding to a maximum amplitude of the thermal  
SZ signal of ≳ −64 nJy beam−1 for the decrement, and  
≲ 9.5 nJy beam−1 for the increment. Although impractical for 
performing any direct imaging of WHIM between and around 
individual galaxies, the extreme observing speed of AtLAST 
will allow for extending the stacking constraints to higher 
redshift and resolutions, providing a resolved evolutionary 
perspective on the hot phase of the cosmic web and the  
processes driving their thermal properties. Similarly, the broad 
spectral coverage will allow for reducing contamination from  
inter-filamentary structures, while providing the means for 
directly inferring robust temperature constraints (currently  
representing the main limitation for using the SZ effect for 
determining the overall contribution of WHIM to the missing  
baryon budget).

4 Technical justification
The field of view of a (sub)millimeter telescope represents a 
key parameter in the context of SZ science. Current high reso-
lution instruments on large single dish telescopes — e.g., 
MUSTANG-2 (Dicker et al., 2014), NIKA2 (Adam et al., 
2018), TolTEC (Bryan et al., 2018) — lose signals on scales 
larger than their instantaneous fields of view (≈ 4 − 6′; Romero  
et al., 2020), where much of the most interesting, faint tar-
get SZ signals exist. We note that continuum observa-
tions using the 12-meter antennas in the ALMA Total 
Power Array (TPA; Iguchi et al., 2009) suffer even more  
egregiously from being unable to remove atmospheric con-
tamination due to their limited fields of view. They also suf-
fer from the poor mapping speeds associated with single beam 
observations, and from relatively small collecting areas. The 
issue associated with large-scale filtering is arguably more  
restrictive in the case of interferometric observations, which 
generally feature maximum recoverable scales that fall within 
the sub-arcminute regime (e.g., ALMA Bands 4–10; we refer 
to the ALMA Technical Handbook for further details). So far, 
instruments with much larger instantaneous fields of view, 
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which are therefore better able to recover larger scales, have  
been employed in the context of CMB/SZ survey experiments 
like ACT (Swetz et al., 2011), SPT (Carlstrom et al., 2011), SO 
(Simons Observatory Collaboration, 2019), CMB-S4 (Abazajian 
et al., 2016), CCAT-prime (Fred Young submillimeter Tel-
escope or FYST; CCAT-Prime Collaboration, 2023). Still, 
these feature small apertures (≤ 15-m). This results in poor 
source sensitivity due to their limited collecting areas and in  
arcminute-level angular resolution, making these telescopes not 
suitable for imaging the small-scale morphologies of galaxy  
clusters and protoclusters (except for a few systems in the 
nearby Universe). In general, larger scales are difficult to 
recover due to the large, and largely common mode, atmos-
pheric signal which dominates. A field of view of reduced 
size requires a tailored observational strategy and data  
reduction pipeline to mitigate signal loss at large scales.  
Nevertheless, even in such a case, the recovery of astrophysi-
cal information beyond the maximum recoverable scales 
of such facilities would still be severely hampered. This 
would critically affect many of the proposed science goals,  
particularly those requiring both wide field of views and 
extended recoverable scales. Intergalactic filaments are in fact 
expected to extend over tens of Mpc (e.g., Galárraga-Espinosa 
et al., 2020) and, thus, extending over degree scales in the 
case of nearby superclusters (Ghirardini et al., 2021a).  
Similar physical extents are observed also in the case of high-z  
protocluster complexes (≲ 20 arcmin; see, e.g., Cantalupo et al., 
2019; Hill et al., 2020; Jin et al., 2021; Matsuda et al., 2005). 
And as shown in Figure 3 and Figure 4, effectively probing the  
distribution of the ICM thermodynamic properties out 
to the cluster outskirts requires mapping the SZ signal  
beyond ∼ 1 deg in clustercentric distance. Therefore, the  
capability of gaining instantaneous observations of structures  

extending from few arcminutes up to degree scales will  
represent a crucial benefit of AtLAST compared to state-of-
the-art and future telescopes covering the same observational  
windows.

Multi-band observations are also critical to suppress/mitigate 
non-SZ signals below the detection threshold, making wide 
spectral coverage essential for many of the science goals 
detailed above. Current high resolution facilities on large tel-
escopes have at most three bands, and are limited to relatively 
low-frequency observations — e.g. ≤ 350 GHz for the  
LMT (Hughes et al., 2010), ≤ 270 GHz for the 30-meter 
Institute for Millimetric Radio Astronomy (IRAM), and  
≤ 115 GHz for the 100-meter GBT (White et al., 2022), the 
64-meter Sardinia Radio Telescope (SRT; Prandoni et al., 
2017), or any potential single dish component of the ngVLA  
(Selina et al., 2018). This implies that any current or  
next-generation facilities will provide limited constraining  
power for the relativistic and kinetic SZ, as well as contami-
nation from the cosmic infrared background or diffuse dust  
contamination.

Most foregrounds should be spatially distinguishable from 
the SZ signal. However there may be a spatially coincident 
large-scale dust component originating from within clusters 
themselves (e.g., Erler et al., 2018) which makes at least two 
bands in the range 400−900 GHz indispensable to trace the 
Rayleigh-Jeans tail of the dust spectral energy distribution  
and to mitigate biases in the SZ spectral modeling. An  
additional band at ≈ 1200 GHz would be even more help-
ful to resolve degeneracies between dust and SZ signals, 
but this is precluded by the severe reduction in atmospheric  
transmission.

Figure 7. Comparison of the Compton-y maps produced with Planck alone (left, 10′ resolution) and ACT (right, 1.7′ resolution). 
AtLAST will deliver an 8.3× improvement in resolution, and 69.4× the instantaneous sensitivity per beam, with respect to that of ACT (and 
other 6-m CMB experiments) for the same observing frequencies, allowing one to image substructures in intercluster bridges and directly 
identify and remove source contamination. The figure has been reproduced and adapted with permission from Hincks et al. (2022).
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To meet the observational requirements for pursuing the pro-
posed scientific goals (Section 2), we perceive the most salient 
instrumentation requirements to be the ability to achieve 
high continuum mapping speeds over large areas and in  
multiple bands. This would convert into the key demand of 
densely filling the telescope focal plane with a large count of  
multi-frequency detectors. In this regard, current state-
of-the-art continuum cameras (e.g., transition edge sen-
sor bolometers or kinetic inductance detectors) have already 
demonstrated a high technical readiness level, providing  
background-limited performance in the (sub)submillimeter 
the possibility of being read out in large numbers (tens-to- 
hundreds of thousands, as noted in Klaassen et al., 2020)  
through frequency multiplexing, allowing the construction of  
large imaging arrays. We further refer to the AtLAST Memo 
4 for details on the expected instrumental specifications for  
AtLAST.

To illustrate the observational capabilities of the proposed 
AtLAST continuum setup, we generate mock observations 
using the maria simulation library (van Marrewijk et al., 2024) 
and consider a simulated galaxy cluster extracted from the  
Dianoga hydrodynamical cosmological simulations (Bassini  
et al., 2020; Rasia et al., 2015) as input. The results are 
shown in Figure 8. For comparison, we include simulated  
observations performed with MUSTANG-2 and jointly with 
ALMA and the 7-m Atacama Compact Array (ACA; Iguchi  
et al., 2009). The clear result is the superior capability of  
AtLAST in recovering spatial features over a broad range of 
scales at high significance, while MUSTANG-2 and ACA+ALMA 
suffer from limited sensitivity and significant large-scale  

filtering, respectively. We note that, in this test, we are  
considering only single-band observations at the same fre-
quency to facilitate the comparison. Although ALMA Band 1  
offers an improved sensitivity, spatial dynamic range, and field 
of view compared to Band 3, it still provides a limited sam-
pling of largescale SZ structures (with a maximum recoverable 
scale MRS ≲ 1.20′ when ALMA is in its most compact  
configuration).

4.1 Optimizing the spectral setup
As mentioned broadly in Section 2 and discussed in the intro-
duction to this section, among the critical aspects for performing 
a robust reconstruction of the SZ effect is the requirement of 
cleanly separating the multiple spectral components of the SZ 
signal from contaminating sources. From a technical point 
of view, this converts to maximizing the spectral coverage  
while requesting maximum sensitivity (i.e., lowest noise root-
mean-square) for each of the bands. Given the deteriorating 
atmospheric transmission when moving to higher frequen-
cies, this is not obtained by trivially expanding the effec-
tive bandwidth arbitrarily. At the same time, we would like to  
consider a minimum setup in order not to result in an over- 
sampling of the target spectral range.

A summary of the selected bands, specifically optimized to 
minimize the output noise root-mean-square level per given 
integration time, is provided in Table 1. Our low-frequency 
set (≲ 300GHz) extend upon the multi-band set-up proposed 
for CMB-S4 (Abazajian et al., 2016), shown in forecasts 
to provide an optimal suppression of the contribution from  
astrophysical foregrounds and backgrounds (Abazajian et al., 

Figure 8. A simulated nearby galaxy clusters (M500 = 1.28 × 1015 M⊙, z = 0.0688; left) as observed by ALMA+ACA in Band 3 (top 
center), MUSTANG-2 (bottom center), and by AtLAST in Band 3 (right). The respective beams are shown in the bottom right corner 
of each panel. The input simulation is extracted from the Dianoga cosmological simulation suite (Bassini et al., 2020; Rasia et al., 2015).  
Overlaid as dashed white circles are the ACA+ALMA and MUSTANG-2 footprints. We note that the respective panels on the central column 
are scaled up arbitrarily with the goal of highlight any observed features, and do not reflect the relative angular sizes of the fields. For 
all cases, we consider an on-source time of 8 hours. The mock AtLAST and MUSTANG-2 observations are generated using the maria 
simulation tool (see van Marrewijk et al., 2024 for details), assuming an AtLAST setup with the minimal detector counts of 50,000 (Section 
4.2). For ACA+ALMA, we employ the simobserve task part of the Common Astronomy Software Applications (CASA; CASA Team, 2022).
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2019). Nevertheless, motivated by the expected coverage of the 
≲ 30 GHz range by future radio facilities (e.g. SKA, ngVLA), 
we decide do not include the synchrotron-specific 20 GHz 
band. On the other hand, given the centrality of the high- 
frequency (≳ 500 GHz) for maximizing AtLAST’s capability 
of separating different SZ components and the signal from  
contaminating sources (see Section 4.3), we extend the overall  
spectral coverage beyond 300 GHz to include four additional 
bands up to 900 GHz. Compared to FYST’s choice of sur-
vey bands (CCAT-Prime Collaboration, 2023), our choice 
will allow one to better sample the high-frequency end of 
AtLAST’s spectral range and, in turn, to gain a better handle 
on the relativistic SZ effect and on the dust contamination  
(Figure 9; we further refer to van Kampen et al., 2024 for a 
direct comparison of the large-scale distribution of submil-
limeter bright sources observed by the arcminute-resolution 
ACT and AtLAST). Currently, we are investigating the possi-
bility of integrating an additional band covering the ∼ 500 GHz 
atmospheric window, but the low transmission and limited frac-
tional bandwidth are expected to limit the effectiveness of such 
an addition in terms of an increase of the overall SZ sensitivity.  
However, we emphasize that AtLAST coverage of the 
ALMA Band 8 frequencies up to ν = 492 GHz would be  
fundamental for other application in the context of AtLAST  
science. We refer the interested readers to the companion  
AtLAST case studies by Lee et al. (2024) and Liu et al. (2024).

4.2 Survey strategy and detector requirements
To obtain a straightforward estimate of the instrumental per-
formance expected when adopting the proposed spectral setup, 

we extend the analysis performed by Raghunathan (2022) to 
simulate an AtLAST-like facility (we refer to the aforemen-
tioned paper for technical details). As broadly discussed in 
the previous sections, performing a clean and robust sepa-
ration of the multiple spectral components determining the  
millimeter/submillimeter sky will represent the major obser-
vational challenge to the achievement of the proposed SZ  
science goals. This will inherently result in more or less severe 
residual noise, as a combination of any contributions from 
instrumental noise, galactic foregrounds and extragalactic  
backgrounds are not properly accounted for the separation. As  
such, it represents a limiting factor in the detectability of any 
SZ signal and could be interpreted as the final SZ depth of the  
proposed observations.

In Figure 10 we present the result of an optimal internal lin-
ear combination of simulated multi-frequency AtLAST maps 
when adopting a wide-field survey strategy over a period of 
5 years. The proposed spectral configuration will in particu-
lar allow for reaching a lower mass limit almost a factor of  
2× lower than achievable with CMB-HD (Sehgal et al., 2019),  
a reference next-generation CMB facility in terms of pro-
posed survey depth, and with better angular resolution. This 
implies that AtLAST will be able to probe the SZ signal to 
Compton y levels ≲ 5×10−7 over an extreme dynamic range 
of spatial scales when considering a deep survey approach  
(< 4000 deg2). Targeted observations will allow us to reach a 
beam-level Compton y depth of ∼ 2×10−6 per hour of integration 
time. Previous studies (e.g., Dolag et al., 2016; Raghunathan, 
2022) have predicted a Compton y confusion floor of 

Figure 9. The high-frequency bands (Band 8–10) will be crucial for optimally sampling the peak of the dust continuum emission 
from individual high-z background galaxies. Along with inferring the physical properties of their dust content, this will be crucial for 
minimizing the contamination of the SZ signal due to cospatial dusty components (see also Section 4.3). As a reference, we show here 
model emission for star-forming galaxies at varying redshift. Here, the dust contribution is based on the z-dependent dust temperature 
model from Sommovigo et al. (2022) for a dust mass Md = 108 M⊙ (consistent with the galaxy REBELS sample; Bouwens et al., 2022). The low-
frequency radio component reproduces the radio model from Delvecchio et al. (2021), assuming an infrared-to-radio luminosity ratio of qIR 
= 2.646. The dashed line denotes the lowest redshift at which the dust emission peak falls within the AtLAST spectral range (z ≃ 3.60).
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2−5×10−7 from < 1013 M⊙ haloes (corresponding to predicted 
detection threshold for AtLAST). As such, the estimated  
sensitivity imply that AtLAST will obtain SZ confusion limited  
observations in ∼ 100 h with single-pointing strategy. Never-
theless, we note that this sensitivity estimate corresponds to 
the residual Compton y root-mean-square noise obtained when 
applying a constrained internal linear combination procedure 
to a simple set of mock AtLAST observations. In particular, we 
generate flat-sky sky realizations at the AtLAST bands includ-
ing Galactic foregrounds and extragalactic background. The 
foreground model is based on the pysm3 models (Thorne et al., 
2017), but the code was ported and adapted to extend the  
stochastic components down to arcsecond scales. The output  
mock realization comprises the dust (d11 model), AME 
(default), free-free (default) and synchrotron (s6) 
from the Milky Way. The background signal is composed 
by a random CMB realization, as well as infrared and radio  
background from unresolved sources as extracted from the 
SIDES (Béthermin et al., 2017) and RadioWeb-Sky simulations  
(Li et al., 2022), respectively. To reproduce a clean subtrac-
tion of any dominant contaminating compact sources, we 
excluded all the radio and infrared components with fluxes in at  
least two bands larger than 3× the corresponding noise  
root-mean-square. As such, it should be considered as a rough 
ground reference for the actual depth achievable with future 
AtLAST measurements. Future forecasting studies will par-
ticularly investigate how different observation strategies, 
source subtraction, and modeling techniques will affect the  
contamination mitigation and the effective SZ sensitivity.

Still, achieving such frontier capabilities will necessarily 
demand a considerable mapping speed and, thus, a crucial 
effort in the optimization of the detector array. To estimate 
a minimal detector count for filling the focal plane, we  

consider the sensitivity estimates reported in Table 1 as target 
depths for surveys with varying observing period and sky  
coverage (see Figure 5). The results are reported in Figure 11. 
A detector count n

det
 ≃ 5 × 104 is sufficient for achieving 

the sensitivity goal in the case of a narrow survey configura-
tion (1000 deg2) both in Band 2 and Band 3, key for tracing 
the decrement regime of the thermal SZ signal. For the same 
bands, the same n

det
 constraints would allow to achieve a simi-

lar survey sensitivity also in the intermediate 4000 deg2 case  
over ∼ 4 − 5 years. Nevertheless, extending these considera-
tions to other bands or a wide-field scenario would require a 
significant increase in n

det
. For instance, in the case of Band 

5—crucial for constraining the departures from the thermal 
SZ effect due to kinetic and relativistic contributions — such a  
boost would range over almost an order of magnitude.

As broadly highlighted in Section 2, constraining the small-
scale fluctuations in the thermal and kinetic SZ effects, while 
tracing the temperature-dependent relativistic SZ corrections 
would imply measuring deviations from the global SZ distribu-
tion order of magnitudes smaller than the bulk, non-relativistic  
thermal SZ signal. This would in turn require a significant 
reduction of any systematic effects hampering the overall 
calibration accuracy. In this regard, an interesting technical 
aspect of AtLAST is the plan for closed-loop metrology for 
tracking the alignment of the primary mirror panels (see,  
e.g., Mroczkowski et al., 2024; Reichert et al. in prep.). By 
using active, closedloop metrology such as the laser system 
currently being developed for the Sardinia Radio Telescope 
(Attoli et al., 2023) or the wavefront sensing system being 
developed on the Nobeyama Radio Observatory 45-m (Nakano 
et al., 2022; Tamura et al., 2020) the errors in the beam can be 
kept down to sub-percent levels, meaning the beam will be dif-
fraction limited and stable throughout observations. This in 

Figure 10. Residual Compton-y noise power spectra as a function of the sky coverage (fsky) in the case of a wide-field AtLAST 
survey (adapted from Raghunathan et al., 2022, which we refer to for details). We include as a reference the residual noise curve 
expected in the case of the CMB-HD survey (Sehgal et al., 2019. The shaded band denotes the power spectrum for a fiducial thermal SZ sky 
as extracted from the BAHAMAS simulations (McCarthy et al., 2017), with 1σ and 2σ credible intervals based on George et al. (2015).
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turn will improve the calibration accuracy and reduce system-
atics (see, e.g., Naess et al., 2020 for discussion of the diurnal 
effects on the ACT beams) that have been shown to impact CMB  
and SZ results at the several percent level in the case of passive 
optics (3 − 5%; Hasselfield et al., 2013; Lungu et al., 2022), 
with the result that the daytime data have generally been 
excluded from cosmological analyses. Future dedicated fore-
casts will analyze the benefits of metrology for secondary CMB 
measurements using AtLAST, including improvements to the  
calibration, reduction of systematics, and the ability to recover 
larger angular scales on sky. However, the salient takeaway  
message is that uncertainties in the beam should no longer be  
a leading source of systematic error.

4.3 Mock reconstruction of the relativistic SZ effect
The relative amplitude of the relativistic component com-
pared to the thermal and kinetic SZ effects makes this modeling 
task highly challenging. To test the prospects of using AtLAST 
measurements for performing a spectral separation and analy-
sis of the SZ effect, we thus perform a mock reconstruction  
of the intracluster temperature using the relativistic SZ effect.

4.3.1 SZ-only reconstruction. As a test case, we consider a gal-
axy cluster with temperature T

SZ
 = 10 keV and Compton y = 10−4. 

We note that, despite representing relatively extreme (but realis-
tic) values, the setup (T

SZ
, y) = (10 keV, 10−4) is chosen to facili-

tate this first study of the AtLAST capabilities of providing 
spectral constraints on temperature-dependent distortions  
of the thermal SZ effect. A broader exploration of the parameter 

space will be presented in Section 4.3.3. The amplitude of 
the SZ signal at each of the selected bands in the minimal 
spectral set is obtained by integrating the relativistically- 
corrected thermal SZ (rtSZ) spectrum across each band assum-
ing flat bandpasses. We then obtained estimates for the  
corresponding uncertainties based on the sensitivity estimates 
from the AtLAST sensitivity calculator. First, we compute 
the integration time required to achieve a signal-to-noise 
(SNR) of 50 in Band 8, arbitrarily chosen among the two spec-
tral windows closest to the peak in the rtSZ effect (Figure 2 &  
Figure 12). The resulting noise root-mean-square (RMS) is 
defined as the corresponding uncertainty. The uncertainties 
δI for each of the remaining bands are thus computed assum-
ing the same integration time as for the Band 8 estimation 
above, but taking into account both the differing point-source  
sensitivities and beam sizes across frequency bands,
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Here, n denotes the band index (n = {2, ..., 10}), while σ 
and Ω(ν) are the flux density RMS and the beam size at a 
given frequency ν, respectively. The resulting simulated  
measurements are shown in Figure 12.

The derived SZ measurements can then be used to perform 
a simple joint inference of the Compton y and electron tem-
perature for the target case. If only lower-frequency data 
points (≲ 200 GHz) are measured, then there is a complete 

Figure 11. Required number of detectors to reach the target sensitivity estimates listed in Table 1 for different bands and 
considering different survey strategies. For comparison, the squares on the ordinate marks the detector counts required in each band 
for fully covering a 1 deg2 field of view. The horizontal line traces the minimal number of detectors (50,000) identified for reaching the target 
depth in Band 2 and 3 in the case of 1000 deg2 and 4000 deg2 surveys. We note that this is consistent with the estimated specifications 
reported in the AtLAST Memo 4 for the 1st generation instruments.
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degeneracy between T
e
 and the Compton y parameter. In this  

spectral range, in fact, an increase in the electron tempera-
ture reduces the signal in a similar manner as decreasing the 
overall Compton y amplitude. When higher-frequency points 
are included, the degeneracy can be minimized as shown 
in Figure 13. By dropping one band at a time from the fit,  
we find that Band 6 (≈ 240 GHz) has the greatest influence 
in breaking the degeneracy since the signal-to-noise on the  
difference between nearly-degenerate models is greatest in this 
band.

4.3.2 SZ+dust reconstruction. So far, we have assumed that 
the only signal present is the SZ signal. However, in real-
ity there will of course be other astrophysical foregrounds and  
backgrounds present along the line of sight, resulting in non-
negligible contamination of the overall SZ signal observed in 
the direction of a galaxy cluster. In this test, we however assume 
that signals that are not spatially correlated to the SZ effect 
can be removed by means of component separation methods  
(see Section 4.2) or targeted forward modeling procedures in 
the case of unresolved compact sources (e.g., Andreon et al., 
2021; Di Mascolo et al., 2019a; Kéruzoré et al., 2020; Kitayama 
et al., 2020; Ruppin et al., 2017). However, previous studies 
(e.g. Erler et al., 2018) showed that there is a spatially  
correlated signal within clusters associated with the diffuse 
dust emission. To understand the impact on the capability 
of AtLAST in constraining any rtSZ deviation, we repeat the  

above test by adding an additional dust-like spectral  
component (Figure 14). In particular, we assume a modified  
black body signal given by (Erler et al., 2018)

    ( ) ( )
( )

Dust

0 Dust857

Dust dust

0 Dust

3
exp 1

exp 1

/
,

/
B

B

h k T
I A

h k T

β
νν

ν
ν ν

+
−

−

    =       
   (2)

where ν
0
 = 857 GHz is chosen as the reference frequency,  

and 857

dustA  is the amplitude at this frequency. We use the (Erler  

et al., 2018) parameter fits for 
857

dustA , β
Dust

 and T
Dust

 to gener-

ate a dust signal, and add them as free parameters to our 
fit with uniform priors on all parameters. The uncertainties  
on the measurements in each band are the same as in the  
SZ-only fit (Section 4.3.1)

In this case, more bands become necessary to correctly con-
strain the rtSZ temperature and disentangle the rtSZ and dust 
spectral components. The best minimal combination com-
prises Bands 2, 4, 6, 8 and 10, that provide almost identical 
constraints to the full set of bands on the rtSZ parameters,  
while achieving a lower precision on the dust parameters 
(as shown in Figure 15). Most importantly, it is important to 
note that the broad spectral coverage offered by the proposed 
setup allows a clean separation of the rtSZ and dust signals  
with only a marginal impact on the rtSZ constraints compared  
to the SZ-only case (Section 4.3.1).

Figure 12. Predicted rtSZ measurements for a cluster with a temperature of 10 keV and Compton y of 10−4, assuming flat 
bandpasses in the Bands 2–10 (denoted as gray bands; see also Table 1). We assume the same exposure time in each band and account 
for flux sensitivity and beam size differences, tuned to achieve a SNR = 50 in Band 8. For comparison, the non-relativistic approximation is 
also shown. The bottom axis shows the difference between the relativistic and non-relativistic spectra.
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Figure 13. Fits to the simulated measurements shown in Figure 12, using all bands (grey) and all except Band 6 (red). Excluding 
Band 6 increases the y-Te degeneracy substantially. The black diamond denotes the input parameters.

Figure 14. Same as Figure 12, but with the addition of a modified black body dust component based on the model from Erler  
et al. (2018). The red dotted line shows the dust signal. The red solid and dashed lines show the total signal from the dust and  
non-relativistic and relativistic signals respectively.

4.3.3 Required sensitivity and time forecasts. The reference 
SNR of 50 employed above was mainly intended to achieve 
a general perspective on the spectral constraining power of 
the proposed setup without being limited by the inherent sig-
nificance of the test SZ signal. Thus, we now investigate what 
SNR is required to achieve good temperature constraints 

from rtSZ measurements. In particular, we run similar fits for  
different values of the reference SNR and different  
temperatures.

The impact of the varying SNR on the temperature reconstruc-
tion is summarized in Figure 16. If we require, for example, an 
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accuracy of 1 keV in temperature, a reference SNR of 40 is  
sufficient for all the temperatures tested. A reference SNR of 
30 is instead sufficient for all except the very hottest clusters  
when dust is included.

Although AtLAST will be able to observe clusters spanning 
a broad range in mass and redshift (and, hence, temperature),  
the example analysis presented in the previous section is aimed 
only at forecasting AtLAST capabilities of measuring relativ-
istic deviations from the standard thermal SZ and not at testing 
the expected detection threshold as a function of cluster  
properties. To take into account the evolution of the rtSZ effect  
with the mass and redshift of a galaxy cluster, we aim here 
at estimating the required observing time to reach a target  
SNR in Band 8, our reference spectral window (Section 4.3.1).

To do so, we construct cluster signal maps for a range of masses 
and redshifts, using the physical model given in Olamaie 
et al. (2012) and Javid et al. (2019). Assuming hydrostatic 
equilibrium, this model gives us physically consistent pres-
sure and temperature profiles which we use with the SZPACK  
(Chluba et al., 2012; Chluba et al., 2013) temperature-moment 
method to predict relativistic SZ effect signal maps, taking 
into account the spatial variation of the temperature. The resulting 
observing time predictions for a reference SNR of 30 are 
shown in Figure 17. For reasonable observing times (< 16 
hours) we can get average temperature constraints for most 
clusters at redshifts up to z ≈ 0.1, and high-mass clusters  
(M

200
 ≳ 4 × 1014M⊙) up to arbitrarily high redshift. It is impor-

tant to note that the enhanced angular resolution of AtLAST 
could easily allow one to obtain spatially resolved information 

Figure 15. Fits to the simulated measurements shown in Figure 14, using all bands (grey) and Bands 2, 4, 6, 8 and 10 only (blue). 
With this optimal set of five bands, the constraints on the rtSZ parameters are almost equivalent to the constraints with all bands, but we 
obtain a slightly reduced constraining power on the dust parameters. The dotted diamonds denote the input parameters.
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Figure 16. Precision achieved on the temperature reconstruction as a function of the SNR in the reference band (384–422 GHz; 
Band 8) and for a range of ICM temperatures. The horizontal line denotes the target temperature TSZ = 1 keV discussed in the text.

Figure 17. Beam-level noise root-mean-square and observing times as a function of cluster redshift and mass M200 required 
to reach an SNR of 30 in the reference spectral band (384–422 GHz; Band 8), allowing average SZ temperatures to be well 
constrained.

on the temperature distribution, once the SNR require-
ments are satisfied for each spatial element considered for the  
analysis — e.g., radial bins or spectrally homogeneous regions 
as generally considered in high-resolution X-ray studies  
(e.g., Sanders, 2006).

5 AtLAST SZ studies in a multi-probe context
AtLAST will provide an unprecedented speed and spectral 
grasp across the (sub)millimeter spectrum. This will make 
AtLAST inherently relevant beyond just SZ science, and 
will open up possibilities for fundamental synergies in the a  
multi-wavelength and multi-probe exploration of the Universe.

5.1 AtLAST scientific cross-synergies
Thanks to the novel multi-instrument design (Mroczkowski 
et al., 2024), AtLAST will be aimed at representing a  
high-impact (sub)millimeter facility with a broad and varied 
scientific reach. As such, this will set the ground for a natural 
cross-synergy across the different scientific applications  
identified as part of the AtLAST Science Development  
effort.

In the case of a wide-field continuum survey discussed  
Section 4.2, the multi-band coverage and the extended  
temporal span will make the SZ-driven observations extremely 
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valuable for temporally-dependent studies as for transient sur-
veys (Orlowski-Scherer et al. in prep.). Similarly, the multi-
ple bands and likely polarization sensitivity will be useful in the 
study of Galactic dust and molecular clouds (Klaassen et al.,  
2024), building on the lower resolution results with, for  
example, the Simons Observatory (Hensley et al., 2022).

Related to the science goals proposed in this work, the avail-
ability of a wide-field spectroscopic survey of the distant  
Universe (van Kampen et al., 2024) will immediately enhance  
the validity of the SZ identification and study of high-z  
clusters and protoclusters by providing accurate redshift infor-
mation. The broad spectral coverage achieved thanks to the  
proposed multi-band setup will actually play a crucial role in 
maximizing the redshift domain. At the same time, as already 
mentioned in previous sections, having access simultaneously to  
constraints on the physical properties of large-scale environ-
ments via the SZ effect (Section 3.5) and on the associated 
galaxy populations (via the spectral characterization of their 
cold molecular gas and the inference of their dust content;  
see Figure 9) will represent an unprecedented opportunity in  
the context of galaxy-environment co-evolution studies.

Similarly, the information on the warm/hot component of  
galactic haloes will be essential for building a comprehensive 
picture of the diffuse and multi-phase CGM (Lee et al., 2024). 
A combination of the novel perspective offered by AtLAST on 
the cold contribution with the tight measurements of the ther-
mal and kinetic properties of such elusive haloes (Section 3.6)  
will represent the only way for shedding light on the many  
potential evolutionary routes of the elusive large-scale CGM.

5.2 Synergies with other state-of-the-art and 
forthcoming facilities
In the context of large scale structures, AtLAST’s constraints 
on the multi-faceted SZ effect will be highly complemen-
tary to multi-wavelength information on the galaxy motions 
and distribution, the gravitational potentials of the systems, 
the X-ray emission, magnetic field structure, and the highly  
non-thermal and relativistic emission traced by radio emission. 
Below, we highlight some of the key facilities and experiments  
that provide the most synergy with AtLAST.

5.2.1 Radio. The radio waveband offers information that can 
complement and enhance many of the science cases outlined 
above, and next-generation instruments such as the Square 
Kilometer Array (SKA; Huynh & Lazio, 2013) and the next-
generation Very Large Array (ngVLA; Selina et al., 2018) 
will have the angular resolution and sensitivity required to  
provide it. On the one hand, getting a clear view of the resolved 
SZ effect and searching for intrinsic scatter and surface bright-
ness fluctuations requires sensitive detection and removal 
of contaminating radio sources (e.g., Dicker et al., 2021). 
While this will already be possible with AtLAST’s data itself 
thanks to its spectral coverage and ≈ 5″λ mm−1 resolution  
(i.e. 10″ at 2 mm), interferometric observations at lower fre-
quency (SKA-MID) will aid in pinpointing the location and  
morphology of the radio sources, while also being more  

sensitive to fainter sources as most will be brighter at lower  
frequency.

On the other hand, radio information provides a powerful com-
plementary probe of the astrophysics in the cluster, being  
sensitive to magnetic fields and populations of non-thermal 
electrons. The reference surveys proposed for the SKA  
(Prandoni & Seymour, 2015) predict the detection of ∼1000s 
of radio halos with SKA1-LOW, out to redshifts of at least 0.6  
and masses M

500
 > 1014 M⊙ (Cassano et al., 2015; Ferrari  

et al., 2015; see also, e.g., Knowles et al., 2021, Knowles  
et al., 2022, Duchesne et al., 2024 for preliminary results from 
SKA precursors), along with potential first detections of the 
polarization of radio halos (Govoni et al., 2015). This offers 
the opportunity not only to compare the detailed astrophysics 
of the thermal and non-thermal components of clusters,  
shedding light on the turbulent properties currently limit-
ing the accuracy of mass estimation (see Section 3.1), but also 
to potentially discover new populations of clusters via their 
radio signals. When also observed by AtLAST, these popula-
tions will offer insight into the variation in cluster properties 
when selecting by different methods (see also Section 3.4).  
Faraday Rotation Measure observations of polarized sources 
behind galaxy clusters as well as studies of tailed radio galaxies 
in clusters will enable the study of cluster magnetic fields  
in unprecedented detail (Bonafede et al., 2015; Johnston- 
Hollitt et al., 2015a; Johnston-Hollitt et al., 2015b), contribut-
ing to our astrophysical understanding and ability to make the  
realistic simulations crucial for interpreting observations.

Ultimately, the direct correlation of the SZ information with 
the spatial, spectral, and polarimetric properties of the mul-
titude of radio structures observed in the direction of galaxy 
clusters will be essential for constraining the detailed mecha-
nisms governing particle (re)acceleration within the ICM  
(van Weeren et al., 2019). Specifically, there is mounting evi-
dence that the non-thermal plasma observed in the form of (multi-
scale) radio halos (e.g., Cuciti et al., 2022; Gitti et al., 2015) as 
well as intercluster bridges (e.g., Bonafede et al., 2022; Botteon 
et al., 2020b; Radiconi et al., 2022) originates due to turbu-
lent (re)acceleration (Brunetti & Lazarian, 2007; Brunetti 
& Jones, 2014; Cassano et al., 2023; Eckert et al., 2017). On 
the other hand, radio relics are connected to (re)acceleration 
at shock fronts (Akamatsu & Kawahara, 2013; Botteon  
et al., 2020a; van Weeren et al., 2017). While it is clear that 
cluster mergers are driving both processes (turbulence and 
shocks), our understanding of the physics of (re)acceleration 
in clusters is limited by two factors: (i) information about 
the distribution of gas motions in the ICM is currently  
sparse and usually inferred via indirect methods (for a review, 
see Simionescu et al., 2019), and (ii) characterizing shocks in 
the low-density cluster outskirts, where radio relics are usually 
found, is very challenging. Detailed mapping of the thermal  
(sensitive to shocks) and kinetic (sensitive to gas motions) SZ  
signals throughout the volume of a large sample of galaxy  
clusters (potentially extending out into the cosmic web), and how  
these signals relate to features observed in the radio band, will 
be invaluable towards painting a clear picture of the connection 

Page 24 of 37

Open Research Europe 2024, 4:113 Last updated: 02 OCT 2024



between large-scale structure assembly, magnetic field  
amplification, and cosmic ray acceleration.

Understanding the impact of AGN feedback, on the other 
hand, (Section 3.6) requires complementary observa-
tions of the AGN themselves. Gitti et al. (2015) finds that 
even with early SKA1 (50% sensitivity), all AGN with  
luminosity > 1023 W Hz−1 can be detected up to z ≤ 1 with 
subarcsecond resolution, and the radio lobes thought to be  
responsible for carving out the X-ray cavities should be  
detectable in any medium – large mass cluster at any redshift in  
the SKA1-MID deep tier surveys. Moreover, SKA1-MID is 
predicted to detect intercluster filaments at around 2.5 – 6σ  
(Giovannini et al., 2015), providing information on their mag-
netic fields as a complement to the SZ information on their  
thermodynamic properties (Section 3.7). 

At the top of the SKA frequency range, it will be possible to 
directly access thermal SZ information. Future extensions to 
the SKA-MID Phase 1 setup (with the integration of the high- 
frequency Band 6; we refer to the SKA Memo 20-01 for details) 
and the ones envisioned for SKA Phase 2 (2030+) will allow 
SKA to probe the low-frequency (≲ 24 GHz) domain of the  
SZ spectrum, less affected by kinetic and relativistic devia-
tions than the range probed by AtLAST. In fact, Grainge  
et al. (2015) find that 1 hour of integration is sufficient 
for obtaining a 14σ detection of the SZ effect from a  
M

200
 = 4 × 1014 M⊙ cluster at z > 1. On the other hand, the 

clean perspective offered by AtLAST on the multiple SZ com-
ponents will provide the means, e.g., for cleanly disentan-
gling the SZ footprint of galaxy clusters from the faint, diffuse  
signal from mini- to cluster-scale radio haloes, large-scale  
relics, and back-/foreground and intracluster radio galaxies,  
enhancing their joint study.

5.2.2 Millimeter/submillimeter. Millimetric/submillimetric sur-
vey experiments like SO (Simons Observatory Collaboration, 
2019) and its upgrades, CCAT-prime/FYST (CCAT-Prime 
Collaboration, 2023), upgrades to the South Pole Telescope 
(Anderson et al., 2022), and ultimately CMB-S4 (Abazajian 
et al., 2016) will cover roughly half the sky over the next few  
years to a decade, predominantly in the Southern sky. Along 
with past and current facilities, these however have ∼ arcmin 
resolution, well-matched to the typical angular size of clusters 
in order to optimize their detection but not optimal for  
peering inside clusters to explore astrophysical effects (aside 
from few nearby exceptional clusters). Nevertheless, while  
limited to resolutions approximately 8.33× lower than 
AtLAST at the same frequencies, their data will provide robust  
constraints at large scales, lending itself naturally to joint  
map-making and data combination, as well as valuable source 
finders for deep AtLAST follow-up. On the other hand, 
AtLAST will be able to resolve any structures probed by these  
wide-field surveys, defining a natural and intrinsic synergy.

At still higher resolutions, ALMA will undergo a number of 
upgrades improving its bandwidth and sensitivity over the next 
decade. These upgrades are called the Wideband Sensitivity 
Upgrade (WSU; Carpenter et al., 2023), which in the con-
text of SZ science could deliver 2 − 4× ALMA’s current 

bandwidth. Wide field mapping capabilities are however not 
part of the key goals for the WSU, and it is unlikely ALMA  
will ever map more than a few tens of square arcminutes. 
Nevertheless, the improved sensitivity and bandwidth 
could allow for exploiting ALMA to complement AtLAST  
observations with a high spatial resolution view of astrophys-
ics through detailed follow-up studies. At the same time, 
such observations will require AtLAST to recover more  
extended scales (see Section 4). The necessity of such a combi-
nation will however allow us to fully leverage the synergistic 
strengths of single-dish and interferometric facilities for  
gaining an unprecedented view of the hot baryonic content of  
the Universe, along with its multi-phase counterparts.

5.2.3 Optical/infrared. The Euclid mission (Euclid Collaboration 
et al., 2022; Laureijs et al., 2011) has recently started sur-
veying the optical/infrared sky, and is expected to result in  
the identification of ≳ 105 galaxy clusters and protoclusters  
across the entire cluster era (0 ≲ z ≲ 2; Euclid Collaboration, 
2019). Complemented with data from the Legacy Survey 
of Space and Time (LSST) survey by the forthcoming Vera  
C. Rubin Observatory (Ivezić et al., 2019), these will  
represent a wealth of complementary constraints on the  
cluster and protocluster populations that will be essential for 
enhancing the scientific throughput of AtLAST in the con-
text of SZ studies. The characterization of the weak lensing 
footprint of galaxy clusters and groups jointly with resolved  
information on the thermodynamics of their ICM will enable a  
thorough exploration of the many processes biasing our  
cluster mass estimates (Section 3.1). At the same time, the 
detailed characterization of the SZ signal from the vast number 
of weak-lensing selected systems (and, thus, with different 
selection effects than surveys relying on ICM properties) will 
allow for studying in detail the origin of the under-luminous 
clusters (Section 3.4). Similarly, AtLAST will provide an 
unprecedented view on the ICM forming within the wealth of 
high-z galaxy overdensities that will be identified by Euclid/
LSST, in turn providing an unbiased means for constraining the 
physical processes driving the thermalization of protoclusters  
complexes into the massive clusters we observe at z ≲ 2.

More in general, the access to a rich set of imaging and spectro-
scopic measurements by wide-field surveys — Euclid, Rubin 
Observatory, and the next generation Nancy Grace Roman 
Space Telescope (Spergel et al., 2015), SPHEREx (Doré 
et al., 2014) — along with deep, targeted observation from  
high-resolution facilities — e.g., JWST (Gardner et al., 2006),  
or the upcoming Extremely Large Telescope — will be greatly 
complemented by the resolved, wide perspective of AtLAST 
on the SZ Universe. Tracing the faint warm/hot backbone 
of large-scale structure (Section 3.7), as well as tightly  
correlating resolved thermodynamic constraints for the large-
scale cluster environment with the physical properties of the 
galaxies embedded within them (Alberts & Noble, 2022;  
Boselli et al., 2022) and the distribution of the more elusive 
intracluster light (Contini et al., 2014), will be essential to  
shed light on their complex and dynamical co-evolution.

In addition, to facilitate precision cosmology studies with 
Euclid/LSST, it is imperative to gain a better understanding 

Page 25 of 37

Open Research Europe 2024, 4:113 Last updated: 02 OCT 2024

https://www.skao.int/sites/default/files/documents/d38-ScienceCase_band6_Feb2020.pdf
https://www.skao.int/en/science-users/118/ska-telescope-specifications
https://roman.gsfc.nasa.gov/
https://roman.gsfc.nasa.gov/
https://cdn.eso.org/


of the impact of galactic processes on the redistribution of 
baryons over large scales. Different prescriptions of feed-
back employed in various cosmological simulations alter the  
predicted amplitude and scale dependence of the matter 
power spectra at separations under 10 Mpc on a level that is  
considerably larger than the statistical uncertainty expected 
from upcoming cosmology experiments (Chisari et al., 2019; 
van Daalen et al., 2020). Mapping the gaseous contents in the 
low-density outskirts of galaxy groups and WHIM filaments 
through sensitive AtLAST measurements will thus provide 
invaluable observational priors necessary to model baryonic  
feedback for survey cosmology.

5.2.4 X-ray. On the X-ray side, Chandra and XMM-Newton, 
launched in 1999 with CCDs capable of 0.5 − 5″ spatial 
resolution, are still providing a reasonable thermodynamic 
mapping of the brightest regions of the collapsed structures up 
to redshift ∼ 1.2. The eROSITA telescope (launched in 2019) 
has recently delivered the first release of its X-ray all-sky  
surveys (Merloni et al., 2024) and new catalogs of clus-
ter candidates up to redshift z ≃ 1.3 (Bulbul et al., 2024).  
Still, the large point spread function (∼ 15″) and the limited  
sensitivity does not allow for resolving the temperature struc-
ture of the ICM and any derived quantities (e.g., pressure,  
entropy, mass) with the exception of nearby and bright galaxy  
clusters (e.g., Iljenkarevic et al., 2022; Liu et al., 2023; Sanders  
et al., 2022; Whelan et al., 2022).

The 5 eV spectral resolution of the Resolve microcalorimeter 
onboard XRISM, launched in September 2023, will soon  
enable the first systematic investigation of the gas kinematics 
in hot, X-ray bright galaxy clusters. However, these studies 
will be limited by the low (∼ 1.3′) angular resolution, small 
field of view and effective area, especially at soft X-ray  
energies. This particularly hinders the study of less mas-
sive haloes (galaxy groups and CGM) and the mapping of 
extended cluster outskirts and WHIM filaments. Forthcoming 
space missions are expected to improve all these perform-
ances through the development of next-generation instruments 
with higher both spectral and spatial resolutions over a wider  
field of view and with a larger collecting area: Athena (expected 
to be adopted as a L-mission by ESA in 2027 for a launch 
in 2037) will outperform the current satellites thanks to the 
larger effective area by an order of magnitude with a spatial 
resolution better than 10 arcsecs; LEM (a proposed US  
Probe mission; Patnaude et al., 2023) is designed to effectively 
map the thermodynamics and kinematics of the low-density 
CGM and WHIM using spectral imaging of soft X-ray line  
emission; AXIS (another US Probe proposal) will extend 
and enhance the science of sensitive, high angular resolution  
X-ray imaging.

The complementarity of SZ and X-ray measurements of the 
warm/hot content of cosmic large-scale structures has long 
represented a valuable asset for a cross-enhancement of the 
respective astrophysical information. The different depend-
ence of these tracers on the physical properties of the ionized 
gas has been broadly exploited — from, e.g. obtaining tighter  
constraints on the thermodynamics of the hot gas in distant 

clusters and cluster outskirts (e.g., Andreon et al., 2021;  
Castagna & Andreon, 2020; Ghirardini et al., 2019; Ghirardini 
et al., 2021b; Lepore et al., 2024; Ruppin et al., 2021) and  
large-scale filaments (e.g., Akamatsu et al., 2017; Hincks  
et al., 2022; Planck Collaboration, 2013), to studying local  
deviations from particle and thermal equilibrium (e.g., Basu  
et al., 2016; Di Mascolo et al., 2019b; Sayers et al., 2021), deriv-
ing detailed morphological models of the three-dimensional 
distribution of ionized gas (e.g., De Filippis et al., 2005; 
Kim et al., 2023; Limousin et al., 2013; Sereno et al., 2018; 
Umetsu et al., 2015), or obtaining measurements of the  
Hubble–Lemaître parameter independently of more standard  
probes (e.g., Bonamente et al., 2006; Kozmanyan et al., 2019;  
Wan et al., 2021).

The enhanced sensitivity, spatial resolution, and mapping 
speed of AtLAST for various flavors of the SZ effect, com-
bined with the capabilities of next-generation X-ray facilities, 
will undoubtedly take these already existing synergies one 
leap further. On the other hand, the novel high spectral resolu-
tion imaging capabilities in the soft X-ray band (expected to  
become available in the next decade with, e.g., LEM and  
Athena) will give rise to new opportunities for complementary 
measurements with the SZ band. Namely, X-ray observations 
are primarily expected to map the line emission or absorption 
signals from metals in the diffuse, warm-hot gas permeating 
large-scale structure WHIM filaments or the low-mass haloes 
of individual L* galaxies. The X-ray continuum emission 
from these targets will be swamped by the foreground  
continuum from our own Milky Way, and extremely diffi-
cult to probe (see, for instance, Kraft et al., 2022). The ideal 
path to obtaining a full picture of the physical properties of 
this diffuse gas component of the cosmic web, therefore, is 
to combine diagnostics about the metal content (from X-ray  
line intensities), metal dynamics (from X-ray line widths 
and shifts), temperature (from X-ray line ratios and rela-
tivistic SZ terms) with the gas pressure cleanly measured 
through the thermal SZ signal. We can then solve for the gas  
density (knowing the pressure and temperature), and the gas  
metallicity (knowing the metal content and gas density).  
Taking this one step even further, by detecting the kinetic SZ 
signal from the same gas, it will be possible to compare the 
velocities of metal-poor (primordial) gas from the kinetic SZ 
measurements which may be different than the velocities of 
metals probed from the X-ray lines. This will provide truly  
groundbreaking information about the circulation of gas and 
metals in and out of galaxies, by offering the opportunity to  
map, for instance, meta-lrich outflows driven by feedback,  
and metal-poor inflows driven by accretion from the cosmic 
web, leading to a revolution in our understanding of galaxy  
evolution.

6 Summary and conclusions
AtLAST will provide a transformational perspective on the SZ 
effect from the warm/hot gas in the Universe. The high angu-
lar resolution enabled by the 50-meter aperture, the extensive 
spectral coverage, and the extreme sensitivity swiftly achiev-
able over wide areas of the (sub)millimeter sky will provide  
the unprecedented opportunity to measure the SZ signal over 
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an instantaneous high dynamic range of spatial scales (from  
few arcsecond to degree scales) and with an enhanced  
sensitivity (≲ 5 × 10−7 Compton y).

Such a combination of technical advances will allow us to 
constrain simultaneously the thermal, kinematic, and relativ-
istic contribution to the SZ effect for a vast number of indi-
vidual systems, ultimately opening a novel perspective on the 
evolution and thermodynamics of cosmic structures. Such an 
unmatched capability will provide the means for exploring key  
astrophysical issues in the context of cluster and galaxy  
evolution.

•   �By resolving the multi-faceted SZ footprint of galaxy 
clusters, low-mass groups, and protoclusters, it will be 
possible to trace the temporal evolution of their thermo-
dynamic properties across (and beyond) the entire clus-
ter era (z ≲ 2), over an unprecedented range in mass. 
The complementary information on the full spectrum 
of small-scale ICM perturbations that will be accessed  
thanks to AtLAST’s superior resolution and sensitiv-
ity will thus allow us to build a complete picture of 
the many intertwined processes that make galaxy clus-
ters deviate from the otherwise hydrostatic equilibrium 
and self-similar evolution. At the same time, we will be 
able to get a complete census of the cluster population,  
circumventing the inherent biases associated with cur-
rent cluster selection strategies. Overall, such studies 
will allow AtLAST to be pivotal in firming the role of  
galaxy clusters as key cosmological probes.

•   �The possibility offered by AtLAST of accessing the 
low-surface brightness regime will open an SZ win-
dow on the low-density warm/hot gas within the cosmic 
large-scale structure — ranging from the characterization 
of the mostly unexplored properties of the assem-
bling ICM seeds within protocluster overdensities to 
the barely bound outskirts of galaxy clusters. These  
represent the environments where the same process of 
virialization begins. As such, they are ideal for studying 
how deviations from thermalization, gas accretion, and  
strong dynamical processes impact the thermal history  
of galaxy clusters.

•   �By tracing the imprint on the thermodynamics properties 
of circumgalactic medium surrounding galaxies and 
of the cluster cores, AtLAST will allow to constraint 
energetics and physical details of AGN feedback. This 
will provide the means for moving a fundamental  
step forward in our understanding of the crucial impact 
of AGN on the evolution of the warm/hot component  
of cosmic structures over a wide range of spatial scales  
and across cosmic history.

To achieve these ambitious goals, it will be essential to satisfy  
the following technical requirements:

•   �Degree-scale field of view. The superior angular resolu-
tion achievable thanks to the 50-meter aperture planned 
for AtLAST will need to be complemented by the 
capability of effectively recovering degree-level large 

scales. Such a requirement is motivated by the aim of  
mapping the SZ signal from at low or intermediate red-
shift astrophysical sources that are inherently extended on 
large scales (e.g., intercluster filaments) and with diffuse 
signals (e.g., protocluster overdensities). At the same 
time, we aim at performing a deep (∼ 10−7 Compton y) 
and wide-field (> 1000 deg2) SZ survey, key for effec-
tively probing a varied sample of SZ sources. In  
turn, our requirement consists of an instantaneous field 
of view covering > 1 deg2. Clearly, combining wide-
field capabilities with enhanced sensitivity will be 
highly demanding in terms of minimal detector counts. 
To reach the target sensitivities reported in Table 1, we  
forecast that the focal plane array should be filled by  
≳ 50, 000 detectors.

•   �Wide frequency coverage. To perform a spectral infer-
ence of the multiple SZ components, along with their 
clean separation from foreground and background astro-
physical contamination, it will be crucial to probe the 
spectral regime from 30 GHz up to 905 GHz with multi-
band continuum observations. We specifically iden-
tify an overall set of nine spectral bands (centered at  
42.0, 91.5, 151.0, 217.5, 288.5, 350.0, 403.0, 654.0, 
and 845.5 GHz), specifically selected to maximize the 
in-band sensitivity at fixed integration time. By test-
ing this spectral configuration in the context of a mock 
spectral component separation, we demonstrated  
that such a choice allows for achieving a clean separa-
tion of multiple SZ components, as well as of the signal  
from dominant contamination sources.

•   �Sub-percent beam accuracy. An accurate calibration 
will be essential for reducing potential systematics in 
the small-amplitude fluctuations of the SZ signal associ-
ated with local pressure and velocity perturbations, or to 
relativistic distortions. As such, we require a sub-percent  
level control of the beam stability.
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The paper discusses the fantastic scientific capabilities of Atlast (50m, 2deg FOV) with the SZ 
toolbox. It describes in detail all aspects of the physics of clusters, where Atlast would give a huge 
gain. This is not like CMB cosmology, where the gain is measured with a few parameters. Here, the 
vast astrophysics of the large-scale structure of the Universe would see a giant leap in many ways 
thanks to Atlast. 
The paper is well written and detailed enough to give us a good idea of the effort involved. Many 
citations are given in order to grasp all the ideas, which are numerous and very rich. This paper is 
also a step forward in designing the best survey strategy (wide or deep surveys). 
Nevertheless, I think that there are some unsubstantiated claims about this telescope that must at 
least be acknowledged: the ability to recover large scales thanks to the large field of view, and the 
ability to recover very small scales at high frequencies. For large scales, we would need some sky 
noise simulations to show that 1-2 degree scales can be recovered (but I admit this is beyond the 
scope of this paper). For small scales, this is a technical issue: how to build a telescope with 
sufficient surface accuracy on a 50m surface and with sufficient pointing accuracy (also beyond 
this paper). 
The paper can be accepted if the following comments are addressed. 
 
Major comment: Sensitivity problem: For point sources, a 50m telescope is fantastic, as we gain 
something like the square of the diameter. For extended sources, the sensitivity brightness does 
not depend on the size of the telescope, but if we look at a given angular size, the gain is like the 
diameter of the telescope. Atlast can compete with Alma for point sources although it loses by a 
factor of about 3 in collecting area. Atlast can outperform other telescopes because of its superior 
diameter, but the gain in surface brightness sensitivity goes only like the diameter (so not a huge 
factor). I would rather emphasise mapping speed and angular resolution as the definitive winning 
parameters. 
You need a reference for the Atlast sensitivity calculator. Finally, I don't understand the last two 
columns of table 1. It seems that this is a telescope that is 10-100 times better for point sources 
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than existing telescopes. For example, an rms of 0.600 mJy in one second at 1mm is unheard of! 
If I convert page 17, the one hour sensitivity in y per beam of 2E-6, I get less than 1 mJy in one 
second, which is also a very optimistic sensitivity. To get y to 5E-7 you need 16 hours per FOV, so 
64000 hours for 4000 deg^2. At 9000 hours per year that is seven years without any overhead! 
 
Minor comments: Fig. 2 describe ntSZ(p=4) 
Tab. 1 : Can you give the y sensitivity per sqrt(hour), and the mapping speed (I see some 
indications in page 17 only). The caption is cryptic to me “but consider the broad-band re-
implementation of the AtLAST sensitivity calculator. The specific frequencies of the band edges 
correspond to the ones that minimizes the output noise RMS level in the corresponding band per given 
integration time.”? What is survey noise? 
There is a claim that large scales can be recovered, say up to the scales of the field-of-view of 
Atlast. Is that claim based on simulations of the sky noise? Does it depend on the frequencies (I 
would expect higher frequencies are more difficult to deal with)? 
 
Fig. 3 : use of theta B10 and B2 is not the best illustration for SZ effect as the sensitivity will mostly 
be at 2-1mm. Also, for a radius in abscissae, shouldn’t we use theta/2 ? Finally, SZ effect is 
independent of redshift, if the cluster is resolved (which it is with Atlast). There are clearly some 
inconsistencies in that figure. 
 
Fig. 4 : kSZ y parameter is a misnomer. It is not a tSZ distortion. We should rather use something 
like b=beta. tau where b is the adimensional distortion parameter (like DeltaT/T), beta=v/c and tau 
is the cluster line-of-sight opacity. 
 
Fig. 8: what is shown in the left panel? What is the colour scale on the right panel? 
 
Fig 10. What is the kSZ power spectrum? Isn’t that a goal to measure it? To be fair, you address the 
issue qualitatively at the end of 3.3. Can you extend the figure to 20000 in l (claimed on page 10)? 
 
rtSZ, by measuring the cluster temperature (without X-rays) will give a brand-new avenue in 
cluster physics. But it will provide results only for the hottest clusters (how many are there) which 
are the most massive ones.
 
Is the background of the case’s history and progression described in sufficient detail?
Yes

Is the work clearly and accurately presented and does it cite the current literature?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Open Research Europe

 
Page 36 of 37

Open Research Europe 2024, 4:113 Last updated: 02 OCT 2024



Is the case presented with sufficient detail to be useful for teaching or other practitioners?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Clusters of galaxies, CMB, ISM

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Open Research Europe

 
Page 37 of 37

Open Research Europe 2024, 4:113 Last updated: 02 OCT 2024


