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Abstract. The skeletonisation methods of 3D object models gained
noteworthy attention in recent years and have been extensively inves-
tigated, inspired by their wide-range applications, including computer
graphics and robotics. However, there remains a gap that the quantita-
tive reference of high-quality skeletonisation results is hardly given by the
previous studies. Building upon previous research on point cloud skele-
tonisation, this paper explores the inherent characteristics of the skele-
tonisation process across objects of varying shapes. This analysis aims to
provide intuitive insights into the quality of the resulting desirable skele-
tons. Additionally, we introduce a new concept of stable convergence of
contraction based on distributions of geometric curvature and vectorial
normal changes.

Keywords: Reference skeleton · Point cloud · Computer vision · Geo-
metric methods

1 Introduction

The skeleton of a shape is a contracted and medial structure that intuitively
represents the shape both topologically and geometrically [23]. For 3D shapes
captured from point clouds, there are two known shape skeletons, the medial
surface and curve skeletons. Accordingly, skeletonisation is the process that gen-
erates the desirable skeletal descriptors of the object model by a set of compu-
tations [8]. This skeletonisation technique is highly valuable for robotics appli-
cations, ranging from object reconstruction and manipulation [25, 27] to local-
ization and navigation [8,19]. Although the algorithms for skeletonisation from
point clouds have been extensively researched by previous studies, quantitative
analysis of desirable skeleton is rarely found [23], and there has been no approach
to understanding the contraction convergence state from a control theory point
of view.

As for the medial surface, either by simplifying Delaunay triangulation or
computing a number of balls, the medial axis transform (MAT) can be estimated
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with the information of Voronoi diagram [1,2]. Chazal et al. [6] proposed λ axis
transform that is calculated by estimating the center point sets of the maximal
inscribed sphere. Extended by Giesen et al. [10], a scale factor is used to generate
MAT with fewer irrelevant spikes. In addition, the surface skeleton, obtained
through Laplacian-based contraction (LBC) applied to either a point cloud or a
mesh model, serves as an alternative approximation of the medial surface [4,5]. In
recent years, the learning-based method has been applied to predict the “skeletal
mesh” of the shapes [12]. While the medial surface faithfully corresponds to the
original shape with intricate structure, the curve skeleton offers a more simplified
representation that facilitates modeling and manipulation [5, 9, 23].

Due to its simplicity and versatile applications, curve skeletons have attracted
significant interest from researchers. The rotational symmetry axis (ROSA) is
defined by a set of geometric centers of cross-section points, achieved through the
design of an optimal“cutting plane”. [24]. Huang et al. [11] considered the L1-
medians as the pivotal points of the skeletons, resulting in accurate 1D curves.
Derived from the idea of curve skeletonisation from meshes [4], Cao et al. [5]
abstract the curve skeleton from contracted point clouds with a Laplacian-based
contraction (LBC) method. Based on this, our previous work reduces the com-
putation cost of LBC by an in-loop local point cloud reduction strategy [26].
Besides, Wu et al. [28] adopted the resampling strategy to calibrate the resul-
tant skeleton from LBC to refine the skeletons of maize plants. In a recent study
by Meyer et al. [13], the quality of Laplacian-based contraction (LBC) applied to
cherry tree point clouds is enhanced by discriminatively weighting the Laplacian
matrix, taking into account the semantic segmentation of the points.

The application of curve skeletons might cover many areas, including virtual
navigation, computer graphics, medical imaging, and more [7, 20, 23]. Recent
studies suggest that curve skeletons hold promise for advancements in robotic re-
search. Given that topological connections often encapsulate the essential struc-
ture of objects with hole-like features, researchers have begun applying topo-
logical curves in the planning of grasps for such objects [14, 22]. As argued by
Przybylski et al. [15–17], the excellent geometrical representations of shapes may
contribute to aiding robots in planning stable grasps. Besides, through the design
of a tailored grasping strategy, it has been demonstrated that curve skeletons
can be effectively utilized for efficient and high-quality grasping planning [25].

The evaluation of skeletonisation methods is of significant importance to
the validation of applicability. However, evaluating and validating the shape
skeletonisation results remains a challenging task. Most works on skeletonisa-
tion simply discussed their experimental results by visually comparing resultant
skeletons [4, 11, 18]. As for the remaining quantitative analysis, Arcelli et al. [3]
compared the results with recoverabilities. Sobiecki et al. [21] gave the definition
of “centeredness” of various types of skeletons to evaluate skeletonisation perfor-
mance. Comparing resultant skeletons with ground truth is one approach, but
establishing a universally accepted definition of the ground truth presents an-
other challenging issue [13]. Currently, defining what constitutes a high-quality
skeleton remains a significant challenge [20,23]. However, the evaluation of skele-
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Fig. 1: General structure of Laplacian-based contraction of point clouds

tonisation results is indeed crucial for advancing the field, particularly in terms
of its practical applications.

Based on the previous work, this paper investigates the geometrical properties
of Laplacian-based contraction and the quality of the resultant skeleton. Firstly,
the methodology of evaluation metrics and the definition of the high-quality
skeleton is discussed in Section 2. In Section 3, we demonstrate our experimental
results and observations. Lastly, we conclude our work in Section 4.

2 Methodology

In this section, we will looking into the meaningful geometrical properties of sta-
ble contraction and skeletonisation, addressing the challenge of evaluating the
skeletonisation results, after the brief introduction of Laplacian-based skeleton-
isation (LBC).

2.1 Overview of Laplacian-based skeletonisation

The Laplacian-based skeletonisation is a pipeline that abstracts the skeleton
vertices and connections from the points contracted by Laplacian weights. The
Laplacian-based skeletonisation pipeline generally consists of 4 processes as il-
lustrated in Fig. 1.

Given an input point cloud P ∈ Rn×3, the pipeline starts with computing
the point-wise neighbour-rings of the point cloud. For each point, its neighbour
points can be queried by the k-nearest neighbours (KNN) algorithm. After ob-
taining the Delaunay triangulation of the neighbor points, the dimensions of the
neighbor point coordinates data are reduced to 2D using Principal Component
Analysis (PCA), and the ring points of the anchor point are derived from the
triangulation results.

With the information of neighbour ring points, the Laplacian matrix L ∈
Rn×n is defined as

Lij =


ωij = cotαij + cotβij , if pj ∈ µi;∑k

k∈µi
−ωik, if i = j;

0, Otherwise; ,

(1)
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where µi ring point set of set of point pi, and αij and βij are two opposite angles
of edge (i, j) in triangles of the point ring. Following that, the contracted cloud
points in iteration k + 1 can be obtained by solving the system below[

WLL
WH

]
Pk+1 =

[
0

WHPk

]
, (2)

where WL,WH ∈ Rn×n are contraction and attraction weights respectively.
The contraction weights and the attraction weights work jointly to balance the
process of pushing the points toward the medial axis. Please note,WL,WH must
be updated after each iteration to make sure the contraction process continues
[5]. The contraction process in the pipeline runs iteratively until the resultant
point clouds meet the terminating condition. The terminating condition can be
defined either based on global feature or the local feature of the cloud points
[5, 26].

After the contraction process, the approximation of the medial surface, com-
prised of the contracted point set known as the surface skeleton, is obtained. This
surface skeleton can be abstracted to skeleton vertices using farthest point sam-
pling. The connections among different vertices are derived from the point-wise
neighbor ring information. Lastly, the final skeleton is acquired after necessary
refinement.

2.2 Characteristics of the stable contraction & skeletonisation

Although Laplacian-based contraction can generate both the surface skeleton
and the final curve skeleton, evaluating the quality of the resultant skeleton
remains a considerable challenge. To investigate the characteristics of stable
contraction, we examine deformation and distortion induced by the Laplacian
contraction process by analysing the changes in surface normal vectors and cur-
vatures.

To calculating distances among the surface normal vectors, the cosine sim-
ilarity is chosen for measuring the similarity. Compared to other metrics, the
cosine similarity is more indicative of the directions [30]. The general definition
for m-dimensional vectors nx and ny is given by

SC(nx,ny) = cos(θ) =
nx · ny

∥nx∥∥ny∥
=

∑m
i=1 nx,iny,i√∑m

i=1 n
2
x,i

√∑m
i=1 n

2
y,i

, (3)

where θ is the included angle between nx and ny. Since the range of the cosine
function is nonlinear to the angle, the cosine distance is normalised by

Dθ =
arccos(SC)

π
, (4)

where Dθ is the normalised angular distance, and 0 < Dθ < 1. For each point
pi, we compute the distance of the normal vectors between the original and the
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contracted point cloud using

Dθ,k,i =
arccos(SC(nk,i, n0,i))

π
, (5)

where ni(k), ni(0) are normal vectors of the point of the original positions and
the new positions after k-th contraction iteration, respectively. As illustrated
in Eq. (5), the normal vectors are required before computing their distance.
Similar to computing local neighbor rings, a number of nearest neighbor points
around each cloud point are used for normal vector estimation. This is achieved
by calculating the covariance matrix C of the neighbor points, defined by

C =
1

n

n∑
i=1

(pi − c)(pi − c)T, (6)

where n is the number of the neighbours used for estimation, c,pi are the coor-
dinates of the anchor point and its corresponding i-th closest neighbour point,
respectively. After calculating the eigenvectors v1, v2, v3 and the corresponding
eigenvalues λ1, λ2, λ3 satisfying λ1 < λ2 < λ3 of that covariance matrix, the
normal vector of the point is obtained as v1.

To obtain the curvature differences between the results of contraction and the
original point cloud, we define the curvature differences here. With the covariance
matrix C mentioned above, the curvature of the point can be estimated and
normalised by

κn =
λ1∑3
i=1 λi

. (7)

Since the curvatures are obtained as scalars, we can easily obtain the differences
of curvatures between the input point cloud and the contracted one by

∆κn,k = κn,k − κn,0, (8)

where κn(k) and κn(0) represent the curvature at the point position after k-th
contraction iteration and the original point position, respectively.

Here, we propose a hypothesis on the stable convergence of contraction and
outline how it is qualitatively evaluated based on the convergence of the con-
tracted surface. It is important to note that to the best of our knowledge, there
has not been research discussing the desirability or stability of convergence of
contraction. Thus, these propositions are developed and verified based on the
obtained real object results from multiple skeletonisation strategies. Let’s as-
sume, we have the original point set Po = {pi} of the object and the con-
tracted point cloud obtained in k-th contraction iteration Pk = {pk,i}. Here,
we use i and to denote the i-th point in the point set. The surfaces of the point
clouds Po and Pk are denoted as Uo and Uk respectively. The stability of con-
traction is assessed locally with respect to the boundary region of set points
Xo ∈ Po. If the iterative contraction results, denoted as Xk ≪ Pk, satisfy the
condition Xk+1 < Xk ≪ Xo, where the contracted surface is constrained to
Uk+1 < Uk ≪ Uo, we define this condition as boundedness to assess the stability
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Fig. 2: Changes of normal vector and curvature differences within contraction
process.The selected point cloud object is chilli.

of contraction. Besides, the stable contraction convergence is checked through
the difference of the curvature ∆κn,k and the difference of the normal vectors
Dθ,k,i at the local surface areas. For the process of point cloud contraction with
stable convergence, the distribution of Dθ,k,i and ∆κn,k are expected to be sym-
metric and unimodal, resembling “bell shape”. Also, the average of Dθ,k,i and
∆κn,k are expected to converge towards 0.5 and 0 values respectively. Apart
from the shared features, the unique pattern of the distribution might indicate
the special geometrical structures varying in different types of shapes or unex-
pected shape handling. Since the contracted results are the approximation of
the surface skeleton, that pattern is also applicable for evaluation of the quality
of the finalised surface skeleton. Besides, the Laplacian-based curve skeletoni-
sation also relies on stable contraction results. Thus, the stable and converged
contraction pattern also contributes to generating high-quality curve skeletons.

3 Results and Discussion

In this section, we will present the observations of normal vector and curvature
difference patterns, along with the results of various object skeletonisations.
The point cloud models utilized in this section are sourced from the OmniOb-
ject3D dataset [29]. The skeletonisation method employed by default is the base-
line Laplacian-based skeletonisation [5]. Additionally, we applied our findings to
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Fig. 3: Curvature differences between the input and point cloud after final con-
traction. The original point cloud (grey) with the contraction results (red) are
put at the top right corner of each histogram
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Fig. 4: Normal vector differences between the input and point cloud after final
contraction. The original point cloud (grey) with the contraction results (red)
are put at the top right corner of each histogram

GLSkeleton [26], a skeletonisation method proposed in our previous work, to
validate the hypothesis.

To show the geometrical property changes within the contraction iterations,
we generate the histogram of the differences of curvature and the normal vec-
tors between each contraction iteration output and the original point cloud. As
illustrated in Fig. 2, the histogram pattern changes demonstrate that the pat-
tern of the curvature differences and the normal vector differences can indicate
the geometrical convergence in the contraction process. While the shape of the
object is deformed and pushed inward, the pattern of the mentioned geometri-
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Fig. 5: Resultant curve skeletons

cal characteristics are changed correspondingly along the iterations. Overall. the
distribution of differences between the normal vectors and curvatures gradually
becomes symmetric during contraction, suggesting stable convergence. As for
the curvature differences shown in the first row of Fig. 2, the curvature differ-
ences are minimal. Its distribution remains a “bell shape” and the normality of
the distribution keeps increasing. It means that the contraction on the curva-
ture aspect converges stably in the whole process. As shown in the second row
of Fig. 2, the change of the pattern of the normal vector differences are quite
different in comparison with the curvature difference change. The distribution of
surface normal vectors differences are skewed left at the beginning, after which
the normal vector differences gradually increased and the pattern is approaching
a symmetric and unimodal distribution. It means that the contraction process
is unstable at the beginning. But with the control of contraction and attraction
weights (2) updated in iterations, the distribution is pushed to a stable stage.
The changes are also reflected on the shape, which is demonstrated by the third
row of the figure. Start with the contracted surface being non-parallel to the
original surface and out of the boundary, the surface is gradually pushed inward
and forming the surface skeleton at the end.

The assessment of final contraction outcomes relies on a comparative anal-
ysis of curvature and normal vectors between the contracted and original point
clouds, as illustrated in Figs. 3 - 4. Notably, the contraction outcomes for certain
objects, such as the cabinet, egg tart, and watermelon, deviate from the orig-
inal topology, indicating lower quality. Conversely, other objects exhibit well-
contracted forms with distributions that align more closely with the desired
stability criteria outlined in Section 2.2.
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As for the curvature differences, the distributions for the cabinet, egg tart,
and watermelon display either skewed or spiky distributions, with average cur-
vature differences diverging significantly from the expected value of zero. In con-
trast, the curvature distributions for other objects tend towards a bell-shaped
curve centered around zero, indicating better adherence to the original shape.

For the normal vector differences, distributions of those with worse contrac-
tion also demonstrate less symmetric histogram patterns. Since the contraction
process of the cabinet terminated unexpectedly, the normal vector differences are
skewed left. Similarly, the unexpected peak on the left in the histogram graph
of the dumbbell reflects the incomplete contraction on the left side of the con-
tracted dumbbell point cloud. Here, we assume only the peaks of the frequency
that drop off on both sides by at least 2% of the number of the point samples
are meaningful, as there might be surface normal vector estimation errors and
data noises. Regarding the distribution of the egg tart, the multiple spikes of
the contracted surfaces are also reflected as peaks on the histogram. As for the
skateboard, carrot, and horse, the histograms are closer to 0.5 on average and
more symmetric in comparison to other objects, aligning with their better con-
traction results. It is important to note the presence of normal vector differences
in skeleton surfaces, leading to variations in distributions and resulting in mul-
tiple peaks in histograms. These differences could provide valuable insights into
the topology of the contracting surface, such as the segments that are contracted
improperly.

Since the curve skeletons are derived from the contraction results while using
the Laplacian-based skeletonisation method, the quality of the resultant curve
skeletons is heavily dependent on the outcomes of the contraction. Therefore, the
patterns of geometric changes observed during the contraction process effectively
reflect the performance of the resultant curve skeletons. As illustrated in Fig.
5. The curve skeletons generated for objects such as the hammer, skateboard,
carrot, and horse exhibit the highest quality, consistent with the quality of the
contraction results. In contrast, the curve skeletons generated for the cabinet, egg
tart, and watermelon lack significant topological information about the object
shape, mirroring the deficiencies observed in the contraction process. Besides,
the observed incomplete contraction handling of the dumbbell object is reflected
in the curve skeleton results as well as the bifurcation at the undesirable position.

Additionally, we applied these findings to GLSkeleton approach [26], which
selectively reduces the points while shrinking the point cloud. As points are
removed by the algorithm iteratively, and the mentioned differences are com-
puted point-wise, we decide to use only the points that are consistently retained
throughout the iterations for contraction pattern analysis. As illustrated in Fig.
6, similar patterns are demonstrated by the results of the contraction process of
GLSkeleton. It means that the surface skeletons generated by GLSkeleton hold
similar performance which confirms our propositions.

Overall, the stable convergence of the contraction and the Laplacian-based
curve skeletonisation process are decided by the distributions of the curvature
differences and the surface normal vector differences and their changes within
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Fig. 6: Curvature vector and normal differences between the input and point
cloud after contraction by GLSkeleton method. The original point cloud (grey)
with the contraction results (yellow) are put at the top right corner of each
histogram.

the contraction iteration. Besides, with the control by the contraction and at-
traction weights of Laplacian-based contraction, the distribution patterns can
be corrected within the contraction process.

4 Conclusions

This work presents how we can determine whether skeletonisation by contrac-
tion methods e.g., Laplacian-based contraction can be understood about stable
convergence. To develop our new proposition, we demonstrate the pattern of
characteristics of curvature and normal vector changes during stable contraction
and provide explanations. It is noteworthy that the defined metrics, surface nor-
mal vector and curvature difference changes, illustrate the correction of stability
of contraction. However, the distribution pattern remains hypothetical and re-
quires further quantitative analysis before we can establish a clear definition of
high-quality skeleton.

In the future, we will concentrate on developing a robust framework for quan-
titatively analyzing changes in geometric properties. Our goal is to establish a
comprehensive definition of high-quality skeleton and stable convergence of con-
traction for both surface skeletons and curve skeletons.
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