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Abstract

Modelling street network connectivity is a fundamental research problem in
transportation science. Here, we argue that the connectivity of a street net-
work cannot be defined independently from the users of that street network.
That is, different users will experience different levels of connectivity depend-
ing on their corresponding travel behaviour. In this work, we propose a model
of connectivity that is defined with respect to a user’s travel behaviour within
a given street network. We demonstrate that many real-world problems can
be posed as instances of an optimisation problem defined with respect to
this model. This includes optimising a user’s home location with respect to
their connectivity and optimising the location of a facility with respect to
the connectivity of its users. We prove the above optimisation problem is
NP-hard and present an integer programming solution that scales to large
problem instances.

Keywords: street network, connectivity, optimisation

1. Introduction

The purpose of a street network is to facilitate the transportation of peo-
ple and goods between spatial locations. Consequently, the quality of a given
street network can be defined as its usefulness with respect to performing this
activity. Given the potential time and monetary savings, planning practition-
ers commonly attempt to model and optimise the quality of street networks
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[1, 2]. Formally defining a measure of street network quality is challenging;
however, most agree that an important feature of a high-quality street net-
work is good connectivity [3]. Street network connectivity is a concept that
is difficult to define formally. Koohsari [4] defines street connectivity as the
directness and availability of alternative routes between home and local des-
tinations. Tal et al. [5] state that street network connectivity is a function of
proximity to destinations and the directness of routes to those destinations.

Many models of street network connectivity have previously been pro-
posed [6, 7]. Usually, these models are based on computing summary statis-
tics relating to geometrical and/or topological features. For example, a fre-
quently used model is the average number of street intersections per unit of
area, where this statistic is considered to be positively correlated with con-
nectivity [8]. However, the connectivity of a street network cannot be defined
independently from the users of that street network and their corresponding
travel behaviour. That is, the connectivity experienced by a user is a function
of many parameters specific to that user such as where they live, where they
travel, what times of the day they travel and what modes of transportation
they use. For example, two users living at the same address may experience
contrasting levels of connectivity if their travel behaviour is different (in that
they frequently visit different destinations). This insight suggests that exist-
ing models of street network connectivity, which are defined independently of
users’ travel behaviour, fail to capture an important aspect of connectivity.

To overcome this limitation, we propose a model of street network con-
nectivity that is defined with respect to a user’s travel behaviour within a
given street network. Specifically, the travel behaviour of a user is modelled
as a set of trips between origin-destination pairs, plus the relative frequencies
of these trips. This model of travel behaviour is, in turn, used to model the
street network connectivity with respect to the user in question. For exam-
ple, consider the case where a given user’s travel behaviour contains a single
trip between their home and place of work. In this case, the connectivity in
question could be improved by selecting a home location better connected to
the place of work. In this work, the connectivity of a given user travel be-
haviour is modelled as the mean street network distance of the corresponding
trips. This approach makes the simplifying assumption that connectivity is
solely measured in terms of street network distance. However, the model can
be generalised to consider other dimensions of connectivity such as access to
public transportation.

In this work, we will demonstrate that many real-world problems can be
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posed as instances of an optimisation problem defined with respect to the
proposed model. Such problems include optimising a user’s home location
with respect to their connectivity and optimising the location of a facil-
ity with respect to the connectivity of its users. We subsequently prove the
above optimisation problem to be NP-hard and present an integer program-
ming approach for solving it. We also demonstrate that existing models of
street network connectivity based on the concept of route directness can be
interpreted in terms of our proposed model.

The structure of this paper is as follows. In Section 2 we review related
works on modelling street network connectivity and optimising a model of
travel behaviour. In Section 3 we then present the proposed model of street
network connectivity. In Section 4 we describe how this model can be used
to optimise a user’s travel behaviour with respect to connectivity. In doing
so we prove this problem to be NP-hard and suggest an appropriate integer
programming solution method. In Section 5 we present an evaluation of this
method on a large set of problem instances. In Section 6 we then describe
several applications of the proposed model to real-world problems. Finally,
Section 7 concludes the paper and describes directions for future research.

2. Related Works

As described in the introduction, existing models of street network con-
nectivity are defined with respect to a given street. This contrasts with our
proposed model, which is defined with respect to both a given street network
plus a given user. This section presents a review of related works on modelling
street network connectivity and optimising a model of travel behaviour.

Street networks are commonly modelled as graphs. Therefore models of
graph connectivity can be directly applied [9]. For example, vertex- and edge-
connectivity are models of graph connectivity defined as the number of ver-
tices and edges (respectively) that must be removed to disconnect the graph.
However, these models do not consider the effects of spatial properties. As
a result, other models have been proposed. Dill [3], for example, suggests
several models of connectivity including:

• Maximum city block length, where a city block is a group of buildings
surrounded by streets;

• Maximum city block area;
• City block density, defined as the number of city blocks per unit of area;
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• Intersection density, defined as the number of intersections per unit of
area;

• Connected node ratio, defined as the ratio of the number of intersections
to the number of intersections plus cul-de-sacs;

• Link node ratio, defined as the ratio of the number of street segments
to the number of intersections plus cul-de-sacs;

• Grid pattern, which tells us whether or not the street network has a
grid pattern;

• Route directness, defined as the average network distance between lo-
cations divided by the corresponding straight-line distance; and

• Effective walking area, defined as the average number of parcels within
a given distance.

In other work, Stangl [10] proposed a model of connectivity based on
street intersection density. This model is similar to the aforementioned in-
tersection density but also uses additional heuristics to count intersections
(specifically, intersections that connect or are within isolated areas are ig-
nored). In a later work, Stangl [6] identified some drawbacks to this model
and proposed a new model similar to the route directness measure. Stangl [11]
then further developed this model by combining several additional heuristics
to improve robustness.

Tal et al. [5] proposed a model of connectivity based on the concept
of a “pedshed”, which is defined as the area within a given distance of a
given point. Peponis et al. [12], meanwhile, proposed the “metric reach”
and “directional distance” models of connectivity. Metric reach is defined
as the length of the network within a specified network distance of a given
point. Directional distance is defined as the average number of directional
changes made when navigating between locations. In other work, Ellis et al.
[13] presents an evaluation of several connectivity models. This includes a
model called “directional reach”, which is similar to the metric reach measure
proposed by Peponis et al. [12], albeit with an additional constraint relating
to the number of possible changes in direction.

In more recent work, Knight et al. [7] have considered three models of
connectivity, called “connectivity index”, “intersection density” and “street
density”. The connectivity index is defined as the ratio of the number of
streets to the number of intersections. Intersection density and street density
are equivalent to the models proposed by Dill [3]. It is determined that all
three models are strongly correlated with many features unrelated to con-
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nectivity. They therefore conclude that these models are not robust. Stangl
[14] has also considered several connectivity models related to the city block
models of Dill [3], highlighting some drawbacks of these models and, in turn,
proposing a new “block” model. This is defined as the average maximum Eu-
clidean distance between locations on the boundary of an area surrounded
by streets.

Several authors have also proposed models of connectivity based on the
concept of “directness”, which is defined as the ratio of the straight-line
distance to the street network distance between pairs of locations [15, 1]. A
limitation of these approaches is that the pairs of locations in question are
usually defined in an ad hoc manner and do not accurately reflect the travel
behaviour of users [3]. For example, Hess [15] has modelled the connectivity
of a given region as the mean directness between random points outside
the region and the centre of the region. Similarly, Randall et al. [1] has
modelled the connectivity of a given region as the mean directness between
each residential building in the region and a specific location, such as a school.

Other works have also defined models of connectivity with respect to
specific services such as schools [16] and fire stations [17]. A closely related
concept to this is “centrality”, where the centrality of a vertex measures
its importance with respect to other vertices in the graph. Some standard
measures of centrality include degree centrality, betweenness centrality, and
closeness centrality. Curado et al. presented an analysis of different centrality
measures applied to street networks [18].

There exist several works that have considered the problem of optimising
a model of travel behaviour. The shortest path problem is an optimisation
problem where the objective is to minimise the distance travelled by an agent
subject to the travel behaviour constraint that the agent begins and ends their
journey at specified locations. The Travelling Salesman Problem (TSP) is a
classic optimisation problem where the objective is to minimise the distance
travelled by an agent subject to the travel behaviour constraint that the agent
visits a set of locations in any order before returning to the first location [19].
The Vehicle Routing Problem (VRP) is a generalisation of the TSP [20].
The VRP is an optimisation problem where the objective is to minimise the
distance travelled by a set of agents subject to the travel behaviour constraint
that the agents visit a set of locations in any order. There exist several
variants of the VRP. The VRP with Time Windows adds that additional
travel behaviour constraint that some locations can only be visited within
corresponding time windows. The VRP is commonly used to model the travel
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behaviour of delivery vehicles. One instance of this is the Capacitated VRP
which adds that additional travel behaviour constraint that each agent has
a maximum carrying capacity. A related optimisation is the Pick-up and
Delivery Problem (PDP) where the objective is to minimise the distance
travelled by an agent subject to the travel behaviour constraint that the
agent visits a given pickup location before visiting a corresponding delivery
location [21]. A problem related to both the TSP and VRP is the Orienteering
Problem [22]. In this optimisation problem, the objective is to maximise the
number of locations visited subject to the travel behaviour constraint that the
agent can travel at most a specified distance. The facility location problem
is an optimisation problem where the objective is to decide the location of a
given facility to minimise the distance travelled by agents that have a travel
behaviour that involves visiting the facility [23].

3. Model of Connectivity

In this section, we describe our proposed model of street network connec-
tivity. This model is defined with respect to a model of user travel behaviour.
In Section 3.1 we describe this model of user travel behaviour and in Section
3.2 we define an equivalence relation for travel behaviours. In this equivalence
relation, two travel behaviours are considered equivalent if they provide the
same utility to the user in question. Finally, in Section 3.3 we describe the
proposed model of connectivity. Several transportation-related problems can
be reduced to optimising instances of this model. This optimisation assumes
that the street network is fixed but that the user in question can optimise
their travel behaviour with respect to this street network to improve their
connectivity while maintaining the same utility.

3.1. Travel Behaviour Model

The proposed model of travel behaviour is defined with respect to a street
network, modelled as an arc-weighted directed multi-graph Gs. We define a
given street network Gs = (V s, As), where the set of vertices V s model street
intersections and dead ends, and the set of arcs As model individual street
segments. The weight assigned to each arc is the length of the corresponding
road segment [24]. Path lengths between origin and destination vertices are
defined with respect to these weights. For this work we assume that there
exists a path between all pairs of vertices in Gs; that is, the graph is strongly
connected. For v, v′ ∈ V s, we denote the length of the shortest path in Gs
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Figure 1: The street network of central Cardiff, Wales. Vertices and arcs are represented
by black dots and grey lines respectively.

from v to v′ as wv,v′ . For example, Figure 1 displays the Cardiff city street
network modelled as a graph Gs.

Here, we model the relative frequency of trips made by a user between
two vertices as an element of the set:

T = {(p, v, v′) : p ∈ [0, 1], v ∈ V s, v′ ∈ V s} (1)

Specifically, (p, v, v′) ∈ T models the fact that the relative frequency of trips
made by the user in question from origin vertex v to destination vertex v′ is
p. For example, (0.5, v, v′) ∈ T models the fact that half of the trips made
by the user in question are from vertex v to vertex v′.

Let 2T denote the power set of T (the set of all subsets of T ). The travel

behaviour of an individual user is modelled as an element of the set:

B = {b : b ∈ 2T ,
∑

(p,v,v′)∈b

p = 1.0} (2)

Specifically, {(p1, v1, v
′
1), . . . , (pn, vn, v

′
n)} ∈ B models the fact that the travel

behaviour of the user in question is modelled by n distinct trips in which the
sum of the relative frequencies is 1.

To illustrate this model of travel behaviour, consider the street network
displayed in Figure 2(a) and a user who travels between their home, place
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(a) (b)

Figure 2: In (a), a user travels between their home, their place of work, and a supermarket.
These are shown by the red vertices v1, v2 and v3 respectively. The blue lines in (b) show
the shortest paths between the vertex pairs (v1, v2), (v2, v1), (v2, v3) and (v3, v1).

of work and a supermarket. These three locations are represented by the red
vertices v1, v2 and v3 respectively in Figure 2(a). Now let the travel behaviour
of this user be modelled by {(0.4, v1, v2), (0.2, v2, v1), (0.2, v2, v3), (0.2, v3, v1)}.
This models the fact that the user makes many of their trips from their home
to their place of work and back while also making some trips from their place
of work to the supermarket and from the supermarket to their home.

3.2. Equivalence Classes of Travel Behaviour

In this section, we define a set of equivalence classes on the set of travel
behaviours B whereby travel behaviours having equal utility belong to the
same equivalence class. Two travel behaviours have equal utility if and only
if they contain corresponding trips between locations of equal type. In this
context, the set of different location types will be defined by the user in
question. For example, a user may define a given type to equal supermar-
kets that satisfy their grocery shopping requirements. Toward this goal of
defining equivalence classes on the set of travel behaviours, we first define an
equivalence relation on the set of vertices V s and an equivalence relation on
the set of trips T .

Let S be a set of vertex types. The elements in this set will be specific
to the user in question. For example, an element in this set may correspond
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to a residential property that meets the user’s accommodation needs or a
supermarket that meets the user’s shopping needs. Let type : V s → S be a
mapping from vertices to their corresponding type and let ∼V be an equiv-
alence relation on the set of vertices V s whereby v ∼V v′ if and only if
type(v) = type(v′). That is, two vertices are equivalent if and only if they
have equal types. Given a vertex v ∈ V s, the corresponding equivalence class
[v]V is the set containing all vertices equivalent to v defined as:

[v]V = {v′ ∈ V s : v ∼V v′}. (3)

Now let ∼T be an equivalence relation on the set of trips T , whereby
(p1, v1, v

′
1) ∼T (p2, v2, v

′
2) if and only if p1 = p2, type(v1) = type(v2) and

type(v′1) = type(v′2). That is, two trips are equivalent if and only if they have
equal relative frequencies, origin vertices with equal types and destination
vertices with equal types. Given a trip t ∈ T , the corresponding equivalence
class [t]T is now the set containing all trips equivalent to t defined as:

[t]T = {t′ ∈ T : t ∼T t′}. (4)

Given ∼V and ∼T we can now define a set of equivalence classes on the set
of travel behaviours as follows. Let ∼B be an equivalence relation on the set
of travel behaviours B whereby b ∼B b′ if and only if there exists a bijection τ
from the set b to the set b′ such that, for all t ∈ b, it holds that t ∼T τ(t). That
is, two travel behaviours are equivalent if and only if they contain equivalent
sets of trips. Given a travel behaviour b ∈ B, the corresponding equivalence
class [b]B is the set containing all travel behaviours equivalent to b defined
as:

[b]B = {b′ ∈ B : b ∼B b′}. (5)

To illustrate travel behaviour equivalence classes, consider again
the travel behaviour {(0.4, v1, v2), (0.2, v2, v1), (0.2, v2, v3), (0.2, v3, v1)}
from Figure 2. Now consider the travel behaviour
{(0.4, v4, v2), (0.2, v2, v4), (0.2, v2, v3), (0.2, v3, v4)} where the vertex v1
has been replaced by the vertex v4, which is of the same type. In this
context, v1 and v4 have the same type if they both are residential prop-
erties that meet the user’s accommodation needs. Given this, both travel
behaviours belong to the same equivalence class.

Given a travel behaviour b ∈ B, the number of elements in the corre-
sponding equivalence class [b]B is defined as:

∏

v∈{v:(p,v,v′)∈b}∪{v′:(p,v,v′)∈b}

|[v]V | (6)
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Informally, the number of elements in an equivalence class [b]B equals
the product of the number of vertices with type equal to type(v)
for each vertex v in b. To illustrate this computation consider again
the travel behaviour b = {(0.4, v1, v2), (0.2, v2, v1), (0.2, v2, v3), (0.2, v3, v1)}
where [v1]V = {v1, v4}, [v2]V = {v2} and [v3]V = {v3}. In this case
{v : (p, v, v′) ∈ b} ∪ {v′ : (p, v, v′) ∈ b} = {v1, v2, v3} and the size of the equiv-
alence class is 2× 1× 1 = 2.

In the related works section, we reviewed previous works on optimising
a model of travel behaviour. The model of travel behaviour proposed in this
work is distinct from these previous models in the following two ways. Firstly,
the proposed model represents the relative frequency of different trips. On
the other hand, previous models generally assume that all trips have the same
relative frequency. For example, the model of travel behaviour in the Travel-
ling Salesman Problem (TSP) assumes that the agent in question travels to
each location exactly once. Secondly, the proposed model of travel behaviour
allows for a variable number of different location types to be defined. On the
other hand, previous models generally assume a fixed number of different
location types are defined. For example, the model of travel behaviour in the
facility location problem assumes that a single location type of suitable fa-
cility locations is defined. The above two distinctive features of the proposed
model mean that it can be used to represent more complex travel behaviours.

3.3. Connectivity Model

In this section, we now define our model of street network connectivity.
Specifically, we define the connectivity of a given travel behaviour as the
expected or average trip distance using a real-valued map C defined as follows:

C : B → R

b 7→
∑

(p,v,v′)∈b

p · wv,v′
(7)

Elements of B that are mapped by C to smaller values are considered to have
greater connectivity. That is, users with travel behaviours having smaller
mean or expected travel distance will experience greater connectivity.

To illustrate the model C of connectivity consider again the exam-
ple travel behaviour {(0.4, v1, v2), (0.2, v2, v1), (0.2, v2, v3), (0.2, v3, v1)} rep-
resented in Figure 2(a). The shortest path between each pair of ver-
tices in this example is represented in Figure 2(b) using blue lines. The
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connectivity of this travel behaviour is defined by the model to equal
C({(0.4, v1, v2), (0.2, v2, v1), (0.2, v2, v3), (0.2, v3, v1)}) = 1, 381. That is, the
expected trip distance in question is 1,381 meters. Now consider an alter-
native travel behaviour that is equal to the above travel behaviour except
that the vertex v1 has been replaced by the vertex v4 shown in Figure 3(a).
The shortest path between each pair of vertices in this new travel behaviour
is represented in Figure 3(b) using a blue line. From inspection, it is clear
that some of the shortest paths in this travel behaviour are longer than
those in the previous travel behaviour. This is because the pairs of ver-
tices in question are now further apart, and the paths in question are less
direct. The connectivity of this new travel behaviour is defined to equal
C({(0.4, v4, v2), (0.2, v2, v4), (0.2, v2, v3), (0.2, v3, v4)}) = 2, 267. This value is
greater than the previous travel behaviour and indicates a larger mean travel
distance.

Note that this example of connectivity makes the simplifying assump-
tion that connectivity is solely measured in terms of street network distance.
However, the model can be generalised to consider other dimensions of con-
nectivity such as access to public transportation. For example, consider the
case where we replace shortest path distances with the smallest travel times
in the proposed model of travel behaviour. In this case, the connectivity of a
given travel behaviour would be improved if the trips in question were aligned
with fast public transportation links.

4. Optimisation of Connectivity

In this section, we describe how our proposed model can be used to op-
timise travel behaviour with respect to connectivity. In the next subsection,
we formally define this optimisation problem, which we call CONNECT, and
prove that is, in fact, NP-hard. In Section 4.2 we then propose two integer
programming formulations of the problem.

4.1. Problem Definition and Complexity

A user travel behaviour b ∈ B is optimised with respect to connectivity
by solving the following optimisation problem entitled CONNECT:

argmin
b′∈[b]B

C(b′). (8)

Recall from earlier that Gs = (V s, As) is our street network graph. With-
out loss of generality, also assume that the vertices in b are labelled v1, . . . , vk.

11



(a) (b)

Figure 3: In (a), a user travels between their home, their place of work, and a supermarket,
shown by the red vertices v1, v2 and v3 respectively. The blue lines in (b) show the shortest
paths between the vertex pairs (v4, v2), (v2, v4), (v2, v3) and (v3, v4).

Now define a new arc-weighted directed k-partite graph Gp = (V p, Ap) with
respect to Gs and b. The set of vertices V p in this new graph is partitioned
into k non-empty independent sets V1, . . . , Vk, where the elements of Vi cor-
respond to all vertices in Gs with the same type as vi. The arc set in this
graph is now Ap = {(v, v′) : v, v′ ∈ V p ∧ v ∈ Vi ∧ v′ ∈ Vj ∧ (p, vi, vj) ∈ b}.
Finally, the weights wv,v′ of each arc (v, v′) ∈ Ap are set to the length of the
shortest path from v to v′ in Gs, multiplied by the corresponding probability
in b. An example of this process is shown in Figure 4.

Given this new graph Gp, a feasible candidate solution for CONNECT is
gained by selecting exactly one vertex from each independent set Vi (for i ∈
{1, . . . , k}). Such a solution corresponds to a single member of the equivalence
class [b]B. More formally, a candidate solution is represented as a sequence
of vertices S = (u1, u2, . . . , uk) in which ui ∈ Vi, ∀i ∈ {1, . . . , k}. The aim is
to identify a solution that minimises the objective function

∑

∀(p,vi,vj)∈b

wui,uj
. (9)

Note that the total number of candidate solutions for this problem is
∏k

i=1 |Vi|. This matches the size of the equivalence class [b]B, defined in Equa-
tion (6).
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(a) (b)
0.2 v2

V2

V3

0.3

0.25

0.25

v1

v3

V1

*

*

Type 2 Type 3Type 1

Figure 4: Part (a) shows a travel behaviour b = {(0.2, v1, v2), (0.25, v1, v3), (0.3, v2, v3),
(0.25, v3, v1)}, giving k = 3. Part (b) shows the corresponding k-partite graph Gp. Here,
each independent set Vi comprises all vertices in the street network Gs with the same type
as vi. As an example, the weight of the arc between the two vertices marked by asterisks is
calculated as 0.2 multiplied by the length of the shortest path between the corresponding
vertices in Gs.

V1(a) (b)

0.2

V2

V3

V4

0.3

0.25

0.25

v1

v2

v3

v4

Type 2 Type 3Type 1

Figure 5: Part (a) shows a travel behaviour b involving k = 4 vertices, where v1 and v4
have the same type. Part (b) shows the resultant graph Gp.
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(a) (b)
0.2 v2

0.3

0.25

0.25

v1

v3

0.1
v2

0.15

0.25

0.25

v1

v3

v4

0.15
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Figure 6: Part (a) shows an example travel behaviour with three vertices. In Part (b), the
additional vertex v4 has been added to allow two occurrences of vertices of type 2 in a
solution. In this case, the original probabilities have been distributed evenly between v2
and v4, though other options are permissible.

In this model, it is permissible for a travel behaviour to involve several
vertices of the same type. In Figure 5, for example, vertices v1 and v4 (and
therefore independent sets V1 and V4) are both of type 1. Given a pair of
independent sets Vi and Vj of the same type, it is possible that an optimal
solution S = (u1, . . . , uk) will feature vertices ui and uj that refer to the same
vertex (location) in the street network Gs. If desired this can be avoided by
adding further arcs to Gp: specifically, an arc (v, v′) of weight wv,v′ = ∞
should be added in all cases where v ∈ Vi, v

′ ∈ Vj, and v and v′ refer to the
same vertex in Gs.

Similarly, it is also possible to stipulate that a solution S should contain
more occurrences of a particular type than are present in the travel behaviour
b. To do this, we can simply make copies of the appropriate vertices in b
and adjust the associated probabilities as desired. An example is shown in
Figure 6.

We now prove that the CONNECT problem is NP-hard. To do this we
consider the problem of identifying a clique of size k in a simple k-partite
graph Gk. We call this latter problem k-CLIQUE-Gk, which is already known
to be NP-hard due to the existence of a polynomial-time reduction method
from 3-CNF-SAT [25]. It is therefore sufficient to give a polynomial-time
reduction from k-CLIQUE-Gk to the CONNECT problem.

Theorem 1. CONNECT is NP-hard.

Proof. To show that k-CLIQUE-Gk ∝ CONNECT, consider an arbitrary
k-partite graph Gk = (Vk, Ek). By definition, the vertices of Gk can be parti-
tioned into k independent sets I1, I2, . . . , Ik; consequently, identifying a clique
of size k in Gk involves selecting exactly one vertex from each independent
set Ii for i ∈ {1, . . . , k}.
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Now create a new edge-weighted graph G. This is a copy of Gk in which
all edges are given a zero weight. Next, convert G into a complete, edge-
weighted k-partite graph by adding edges of weight one between any pair of
vertices {v, v′} that are (a) nonadjacent in Gk and (b) belong to different
independent sets Ii and Ij in Gk.

It is now clear that Gk contains a clique of size k if and only if G fea-
tures a zero-cost solution for the CONNECT problem. This implies that the
task of identifying a k-clique in Gk is a special case of CONNECT. Hence,
CONNECT is also NP-hard.

4.2. An Integer Programming Solution Method

The fact that CONNECT is NP-hard tells us that we cannot hope to find
an exact algorithm for solving it that operates in polynomial time (unless
P = NP). In this section, we propose two integer programming (IP) formu-
lations for the CONNECT problem, which are then tackled using branch-
and-bound. The advantage of using IP is that, during a run, refinements
are made to the upper and lower bounds of the optimal cost value. If these
bounds become equal, branch-and-bound can then halt with a certificate of
optimality. On the other hand, this approach features scaling-up issues, as
we will demonstrate below.

As noted, an instance of CONNECT is defined by the arc-weighted, di-
rected graph Gp = (V p, Ap), where V p is partitioned into independent sets
V1, . . . , Vk. To define the IP, let D|V p|×|V p| be a distance matrix for Gp. That
is,

Duv =

{

wu,v if (u, v) ∈ Ap and

0 otherwise.
(10)

Now, using the binary decision variable Xu, where

Xu =

{

1 if u ∈ S and

0 otherwise,
(11)

the objective is to minimise the cost function

k
∑

i=1

k
∑

j=1

∑

∀u∈Vi

∑

∀v∈Vj

XuXvDuv (12)
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subject to

∑

∀u∈Vi

Xu = 1 ∀i ∈ {1, . . . , k}. (13)

Here, Equation (13) ensures that exactly one vertex is selected from each
independent set Vi (for i = 1, . . . , k) in Gp, as required.

Note that the above model involves just |V p| variables and k constraints.
On the other hand, the objective function given by Equation (12) contains
XuXv, making this a quadratic integer program. Although modern commer-
cial IP solvers can handle such formulations, the use of quadratic objective
functions can sometimes hinder performance. An option for linearising this
model is to introduce an additional parameter Ab

k×k corresponding to the
adjacency matrix for b

Ab
ij =

{

1 if (p, vi, vj) ∈ b ∧ p > 0 and

0 otherwise,
(14)

together with an auxiliary binary decision variable Yijuv, where

Yijuv =

{

1 if there exists an arc from vertex u ∈ Vi to vertex v ∈ Vj, and

0 otherwise,

(15)
and the following constraints:

0 ≤ Ab
ij +Xu +Xv − 3Yijuv ≤ 2 ∀i, j ∈ {1, . . . , k}, ∀u, v ∈ V p. (16)

These additional constraints ensure that the correct binary values are as-
signed to the variables Yijuv based on the values of the X variables. They
also allow us to restate the objective function in the required linear form:

k
∑

i=1

k
∑

j=1

∑

∀u∈Vi

∑

∀v∈Vj

YijuvA
b
ijDuv. (17)

Note, however, that this formulation is much larger than the previous, in-
volving a total of |V p|2k2 + |V p| variables and 2|V p|2k2 + k constraints.
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5. Optimisation Results

In this section, we present an evaluation of the two proposed IP formu-
lations. Two types of problem instances are considered: those based on Eu-
clidean distances and those based on lengths of shortest paths in a real-world
street network.

In our trials, individual problem instances were generated by first forming
a travel behaviour involving k vertices. Specifically, a travel behaviour b of
the prescribed size was formed by taking a random sample of arcs (without
replacement) from the set {(vi, vj) : i, j ∈ {1, . . . , k} ∧ i ̸= j}, ensuring
that each vertex vi (for i ∈ {1, . . . , k}) was included in b at least once. Each
probability in b was then set to 1/|b|.

To generate a Euclidean problem instance, the graph Gp = (V p, Ap) was
formed by first placing a prescribed number of vertices randomly into the
unit square. Each vertex was then also allocated to an independent set Vi (for
i ∈ {1, . . . , k}), ensuring that the number of vertices in each independent set
differed by at most one. The arcs of Gp were then set to Ap = {(v, v′) : v, v′ ∈
V p ∧ v ∈ Vi ∧ v′ ∈ Vj ∧ (p, vi, vj) ∈ b}. Finally, the arc weights wv,v′ were
set to the Euclidean distance between v and v′, multiplied by the associated
probability in b, as described earlier. For the geographic instances, the same
process was followed except that each vertex in V p was placed at a randomly
selected location on a real-world street network. Arc-weights wv,v′ were then
set to the length of the shortest paths between these points, calculated using
Dijkstra’s algorithm, multiplied by the associated probability.

In our trials, problem instances were generated using k ∈ {5, 10, 50},
|b| ∈ {1k, 2k, 3k, 4k}, and |V p| ∈ {50, 100, . . . , 3000}. For each combination
of these values, eleven Euclidean and geographic instances were generated,
giving 15,840 problem instances in total. For the geographic instances, a
35,000-vertex street network of Cardiff, Wales was used. This was generated
using the osmnx Python library [26], and all arc distances are stated in
meters. Both IP formulations were implemented using Gurobi 11.0.1 and
given time limits of 60 seconds per instance.1 A full listing of our results and
source code can be found online [27].

The figures in Table 1 show the scaling-up properties of the two IP for-
mulations by giving, for each set of generated problem instances, the smallest
problem size in which optimality was not achieved. These demonstrate that

1Executed on Windows 64-bit 3.0 GHz machines with 16 GB of RAM.
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k 5 10 50
|b| 1k 2k 3k 4k 1k 2k 3k 4k 1k 2k 3k 4k
Euclidean Instances

Quadratic 2150 1850 1800 1800 1950 1200 900 750 900 600 450 350
Linear 300 300 300 300 150 150 150 150 50 50 50 50
Geographic Instances

Quadratic 2000 1700 1750 1700 2350 1350 1050 950 1300 600 450 350
Linear 300 300 300 300 150 150 150 150 50 50 50 50

Table 1: Smallest values of |V p| for which the IP methods failed to find optimal solutions
for any of the generated problem instances within the 60-second time limit.

the quadratic model can cope with much larger problem instances than the
linear model. This difference seems due to the larger number of variables
and constraints involved in the latter, which places much higher demands on
computer memory; indeed, in our trials, the linear model often halted with
an “out of memory” error for larger values of |V p| and k. There also appears
to be little difference in these patterns between the Euclidean and geographic
problem instances.

To further examine these scaling-up properties, Figure 7 shows the time
required by the quadratic IP formulation to find optimal solutions across
the various problem instances. We see that problem instances of up to
|V p| = 1800 vertices are solved within the time limit, though these times
depend on the parameters used to generate the problems. Specifically, in-
stances generated with lower values of |V p| and k, lead to fewer variables
and constraints in the IP, giving shorter solution times. Similarly, the use
of smaller travel behaviours (values for |b|) leads to fewer non-zero values
in the distance matrix D, giving a problem that is easier to solve. Again,
any differences in behaviour between the Euclidean and geographic problem
instances appear to be minor.

Figure 8 shows further characteristics of the quadratic IP by comparing
the best upper and lower bounds generated within the time limit. Here, the
upper bound gives the cost of the best observed feasible (integral) solution,
whereas the lower bounds give the minimum possible cost, derived using
relaxed versions of the problem. When these bounds are equal, as is the case
for the smaller problem sizes of Figure 8, this indicates that provably optimal
solutions have been found for the associated instances within the time limit
in all cases. For larger problems, however, we see that the gaps between these
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Figure 7: CPU time required by the quadratic IP to find optimal solutions for Euclidean
(left) and geographic (right) instances for k = 5 (top), k = 10 (middle) and k = 50
(bottom), using various values of |b| and |V p|. Each point in the charts is the median
across the 11 associated problem instances.

bounds widen, indicating an increased problem difficulty. Indeed, for larger
problem instances and values of |b|, positive lower bounds have not been
generated in many cases.
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Figure 8: Cost bounds generated by the quadratic IP with Euclidean (left) and geographic
(right) instances for k = 10, using various values of |b| and |V p|. Each point in the charts
is the mean across the 11 associated problem instances.

6. Applications of the Model

In this section, we demonstrate how the proposed model of connectivity
can be used to model and subsequently solve several real-world problems.
Specifically, we consider the problems of optimising a user’s home location,
optimising the location of a facility, and modelling the connectivity of a city
street network. The diverse nature of these applications illustrates the wide
applicability of our proposed model. This contrasts with most existing models
of connectivity, which are only applicable to the single problem of modelling
the connectivity of a city street network. Each of the above three problems
plus corresponding solutions are described in the following subsections.

6.1. Selecting a Home

In this section, we demonstrate how the proposed model of connectivity
can be used to provide a solution to the problem of a user selecting a residen-
tial property that maximizes their connectivity. This is a problem commonly
faced by people when renting or buying a new home. For a given street net-
work Gs = (V s, As), let U ⊂ V s be the set of candidate residential properties
that meet the user’s accommodation needs. Here, we are making the sim-
plifying assumption that residential properties are located at graph vertices.
The user wishes to select that element of U that maximizes their connectiv-
ity. Let b ∈ B be the user travel behaviour defined with respect to v ∈ U ,
selected uniformly at random from U . The connectivity of b models the con-
nectivity with respect to selecting v to be the residential property. Given
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this, the equivalence class [b]B contains the same number of elements as U .
Each element of [b]B models the travel behaviour with respect to selecting a
corresponding element of U to be the residential property. Let b′ ∈ B be the
travel behaviour that solves the optimisation problem defined in Equation (8)
with respect to the equivalence class [b]B. The element of U contained in b′

is the residential property that maximizes the user’s connectivity.
To illustrate the above, consider the street network displayed in Fig-

ure 9(a) where vertices v1, . . . , v6 are indicated. Let U = {v1, v4},
with vertex v2 as the user’s work location and vertices v3, v5 and v6
as the supermarkets that meet the user’s shopping needs. Using b =
{(0.4, v4, v2), (0.3, v2, v4), (0.2, v4, v3), (0.1, v3, v4)}, let [b]B be the equivalence
class of the user’s travel behaviour. This equivalence class states that that
the user plans for 40% of their trips to be from their residential property to
work, 40% from work to their residential property, 10% from their residen-
tial property to a supermarket, and 10% from the supermarket back to their
residential property.

Now, let b′ ∈ B be the travel behaviour that solves the optimisation
problem defined in Equation (8) with respect to the equivalence class [b]B
defined above. Figure 9(b) displays the shortest paths corresponding to each
trip in this travel behaviour. The element of U contained in b′ is the vertex
v1 and this is the residential property that maximizes the user’s connectivity.
From the above figure, we see that this residential property is near to both
the user’s work location v2 and a supermarket v5.

6.2. Facility Location

We now demonstrate how our proposed model can be used to provide a
solution to the facility location problem. This problem involves determining
an optimal location for a given facility with respect to user accessibility [28].
For a given street network Gs = (V s, As), let F ⊂ V s be a set of candidate
locations where the facility might be located. Also, let U ⊂ V s be the set
of facility users’ home locations, and let λ : U → [0, 1] be a map of the
corresponding relative frequencies (such that

∑

u∈U λ(u) = 1.0). Given this,
we define the following travel behaviour b, where v is selected uniformly at
random from F :

b = {(λ(u), u, v) : u ∈ U} (18)

The connectivity of this travel behaviour models the accessibility with
respect to placing the facility at location v. Recall from the proposed model of
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Figure 9: In (a), the vertices v1 and v4 are residential properties that meet the user’s
accommodation needs, v2 is the user’s work location, and v3, v5 and v6 are supermarkets
that satisfy the user’s shopping needs. The blue lines in (b) show the shortest paths
between each pair of vertices in the optimal travel behaviour.

connectivity that “type” is a mapping (type : V s → S) from vertices to their
corresponding type. Also let this mapping be defined such that each element
of U is mapped to a unique type and each element of F is mapped to the
same type. Given this, the equivalence class [b]B contains the same number
of elements as U . Each element of [b]B now models the travel behaviour
with respect to placing the facility at a corresponding element of U . Let
b′ ∈ B be the travel behaviour that solves the optimisation problem defined
in Equation (8) with respect to the equivalence class [b]B. The element of F
contained in b′ is therefore the facility location that maximizes accessibility.

To illustrate this, consider the city street network displayed in Fig-
ure 10(a), where the sets of red and blue vertices correspond to the sets
F and U respectively. The vertex contained in b′ is the lowest blue vertex in
Figure 10(a) and this is the facility location that maximizes accessibility. We
can see from the figure that this location is the most spatially central of the
three vertices in F . The shortest path between each pair of vertices in b′ is
represented using blue lines in Figure 10(b).

6.3. Modelling City Connectivity

As a final example, we now show how our model can be used to measure
the connectivity of a given city street network. Here, we define the connec-
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Figure 10: In (a), the sets of blue and red vertices correspond to candidate facility locations
and user home locations respectively. Part (b) shows the shortest paths between each pair
of vertices in the optimal travel behaviour.

tivity of a city street network to be the connectivity of the corresponding
mean or average user travel behaviour. Population travel behaviour data is
usually very sensitive because, from such data, one can infer much private
information regarding the individuals in question [29]. Although some orga-
nizations such as Google and the UK Office for National Statistics (ONS)
do have population travel behaviour data, this data is not publicly available.
For example, the UK ONS states that such data is “protected by the highest
level of access limitation and are available only to approved researchers via
the Virtual Microdata Laboratory (VML)”.2

To address this challenge, for a given city street network we propose to
approximate the corresponding mean user travel behaviour as follows. First,
we select 2000 pairs of spatial coordinates uniformly at random within the
street network bounding box and map these to the corresponding pair of
nearest vertices. Next, for each of these pairs of vertices (v, v′) we add the
trip (1/2000, v, v′) to the travel behaviour in question. Given this user travel
behaviour, we evaluate the connectivity of the street network in question by

2https://www.ons.gov.uk/census/2011census/2011censusdata/

originanddestinationdata/secureoriginanddestinationtables
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computing the connectivity of this travel behaviour.
Broadly speaking, the proposed model of city connectivity will determine

that a city with more direct routes between pairs of vertices has greater con-
nectivity. In fact, in this particular case, it is closely related to the models of
city connectivity based on the concept of directness described in Section 2.
Recall that, directness is defined as the ratio of the straight line distance to
the street network distance between pairs of vertices. Street networks with
greater directness between pairs of vertices will therefore be determined to
have greater connectivity by the proposed model. This relationship provides
a useful way to interpret existing models of city connectivity based on di-
rectness in terms of the proposed model of travel behaviour. That is, these
existing models implicitly assume a travel behaviour consisting of trips be-
tween random locations in the network. At present, a standard framework
for comparing different models of city connectivity does not exist, therefore
it is difficult to quantitatively compare the proposed model to other existing
models.

To illustrate our proposed model of city street network connectivity we
considered the set of street networks corresponding to all 66 UK cities. For
each city, we selected a location in the city centre and extracted the street
network within a ten-kilometre bounding box centred at this location. Table
2 displays the names of the UK cities in question plus the number of vertices
and arcs in the corresponding graph representations. Figure 11 displays the
street networks for the cities of Edinburgh and Hull.

Given the stochastic nature of the proposed model of connectivity, we
computed the connectivity of each city ten times. Table 3 displays the mean
and standard deviation statistics of these values for each city. Note that the
relative magnitude of the standard deviation values is not significant, sug-
gesting that the proposed model is a robust estimate. From these statistics,
we see that the city of Edinburgh has the greatest connectivity. That is, the
street network distance between random pairs of vertices is the smallest in
this street network. On the other hand, the city of Hull is determined to have
the lowest connectivity.

7. Conclusions

This work has proposed a model of street network connectivity that is
defined with respect to user travel behaviour. To the authors’ knowledge, this
is the first such model to consider travel behaviour in this way; consequently,
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City |V s| |As| City |V s| |As|
Aberdeen 9,403 21,808 Liverpool 32,130 73,907
Armagh 2,226 5434 London 47,049 111,353
Bangor 3,327 7,426 Manchester 45,384 104,503
Bath 8,987 19,821 Newcastle 30,269 67,663
Belfast 18,743 42,478 Newport 10,997 23,747
Birmingham 38,129 84,886 Newry 3,757 8,503
Bradford 31,348 71,174 Norwich 13,074 28,113
Brighton 6,663 16,048 Nottingham 23,707 52,196
Bristol 23,446 52,146 Oxford 7,667 16,716
Cambridge 8,131 17,454 Perth 3,113 6,897
Canterbury 6,263 13,719 Peterborough 10,389 21,608
Cardiff 15,198 33,605 Plymouth 10,236 22,695
Carlisle 4,555 10,224 Portsmouth 13,679 30,304
Chelmsford 6480 13982 Preston 13998 30701
Chester 9,319 20,353 Ripon 2,148 4,796
Chichester 5,403 11,932 St Albans 13,126 28,887
Coventry 13,667 29,955 St Asaph 6,154 13,667
Derby 12,834 27,689 St Davids 338 787
Derry 5,549 12,147 Salford 42,071 96,544
Dundee 7,385 17,018 Salisbury 3,138 6,887
Durham 11,851 26,133 Sheffield 22,260 50,846
Edinburgh 15,166 34,973 Southampton 18,854 40,807
Ely 3,658 7,720 Stirling 5,585 12,221
Exeter 8,430 18,361 Stoke-on-Trent 16,803 37,608
Glasgow 30,435 70,423 Sunderland 18,744 42,155
Gloucester 10,577 22,629 Swansea 10,268 22,599
Hereford 3,736 8,361 Truro 3,201 7,271
Inverness 4,842 10,329 Wakefield 21,430 46,702
Hull 14,363 30,774 Wells 3,663 8,349
Lancaster 5,167 11,871 Westminster 47,193 111,630
Leeds 29,734 67,011 Winchester 5,910 12,749
Leicester 19,045 41,882 Wolverhampton 25,580 57,243
Lichfield 11,348 24,306 Worcester 8,040 17,587
Lincoln 8,062 17,544 York 7,774 16,817
Lisburn 11,220 25,271

Table 2: The names of the 66 UK city considered plus the number of vertices (|V s|) and
arcs (|As|) in the corresponding graph representations.

there are several opportunities for future research and development. We now
consider three such options.

One of the major challenges of applying the proposed model in practice
is that it requires an accurate model of user travel behaviour. User travel
behaviour data is highly sensitive because it is possible to infer many pri-
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Figure 11: The street networks for the UK cities of Edinburgh and Hull are displayed in
(a) and (b) respectively, where street segments are represented by black lines.

vate details about the user in question [29]. In cases where such data is not
available, the proposed model is not applicable or can only be applied us-
ing artificial travel behaviour that represents an approximation to the real
behaviour. In this work, we used the latter approach when modelling the con-
nectivity of a given city street network. Developing better approximations of
user travel behaviour represents a useful direction for future research that, if
successful, would result in a more accurate model of connectivity.

Our proposed model of connectivity assumes that the connectivity be-
tween two locations is exclusively a function of the network distance between
the locations in question. However, the connectivity between two locations
is also a function of other factors including street type and traffic volume
that, in turn, influence travel time. For example, two locations connected by
streets with low traffic might be considered as being more connected than
those with high congestion. Furthermore, the proposed model assumes zero
travel time or cost between street network intersections, which is not the
case at busy intersections [30]. Developing a better model of connectivity
between locations also represents a useful direction for future research that,
if successful, would result in a more accurate model of connectivity.

Although we have shown our formulation of CONNECT to be NP-hard,
we have seen that we can quickly solve fairly large instances of the problem
using a compact quadratic IP formulation with a contemporary off-the-shelf
solver. There also exist certain special cases of this problem that can be solved
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City Connectivity City Connectivity
Edinburgh 10,910 ± 124 Newcastle 13,560 ± 112
Sunderland 11,275 ± 135 St Albans 13,566 ± 147
St Davids 11,279 ± 171 Lichfield 13,588 ± 225
Aberdeen 11,489 ± 154 Salisbury 13,619 ± 248
Brighton 12,076 ± 167 Chichester 13,713 ± 193
Swansea 12,637 ± 126 Bath 13,718 ± 299
Lancaster 12,647 ± 185 Durham 13,726 ± 254
Birmingham 12,662 ± 157 Winchester 13,727 ± 241
London 12,689 ± 189 Stirling 13,777 ± 239
Cardiff 12,727 ± 123 Derby 13,790 ± 175
Armagh 12,812 ± 180 Oxford 13,805 ± 154
Wolverhampton 12,823 ± 147 Exeter 13,825 ± 238
Plymouth 12,881 ± 192 Hereford 13,853 ± 221
Lisburn 12,908 ± 205 York 13,881 ± 151
Westminster 12,914 ± 213 Nottingham 13,903 ± 213
Manchester 13,076 ± 148 Chelmsford 13,933 ± 153
Bradford 13,138 ± 144 Ely 13,955 ± 90
Sheffield 13,166 ± 227 Worcester 13,980 ± 256
Leeds 13,193 ± 182 Cambridge 14,075 ± 144
Coventry 13,228 ± 199 Ripon 14,076 ± 142
Leicester 13,264 ± 113 Liverpool 14,140 ± 188
Portsmouth 13,284 ± 196 Newport 14,210 ± 116
Carlisle 13,288 ± 201 Chester 14,215 ± 114
Bristol 13,318 ± 123 Preston 14,281 ± 196
St Asaph 13,338 ± 121 Derry 14,304 ± 223
Wells 13,368 ± 149 Peterborough 14,356 ± 165
Glasgow 13,375 ± 157 Gloucester 14,546 ± 247
Newry 13,414 ± 211 Perth 14,685 ± 197
Salford 13,416 ± 155 Dundee 14,710 ± 186
Stoke-on-Trent 13,443 ± 204 Bangor 14,987 ± 201
Wakefield 13,466 ± 218 Inverness 15,293 ± 212
Norwich 13,478 ± 166 Truro 15,538 ± 204
Lincoln 13,506 ± 207 Southampton 16,259 ± 252
Canterbury 13,512 ± 259 Hull 18,750 ± 221
Belfast 13,540 ± 156

Table 3: The mean (± standard deviation) connectivity values for each UK city as deter-
mined by the proposed model of city connectivity.

in polynomial time. For example, if a travel behaviour b corresponds to a
directed path, then, as illustrated in Figure 12, a graph can be constructed
whose optimal solution corresponds to the shortest x-y-path. Further research
may also reveal other special cases that are polynomial-time solvable.
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Figure 12: Part (a) shows a travel behaviour corresponding to a path. Part (b) shows
the corresponding arc-weighted, directed k-partite graph Gp = (V p, Ap) where V p =
(V1, V2, V3), plus two additional vertices x and y. The shortest x-y-path corresponds to
the optimal solution.
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