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Abstract
This paper proposes and evaluates algorithms for calculating round trips of a prescribed length on directed street networks. 
This problem has several real-world applications, such as designing jogging routes and cycling tours. In this work, we focus 
specifically on methods that avoid the need to download, process, and store large map databases. At the same time, we aim 
for our methods to be fast, accurate, and capable of handling a wide range of prescribed distances, from just a few meters to 
many kilometres. To achieve this, our overall strategy involves using a small number of calls to a suitable online mapping 
service to collect relevant structural information for the problem at hand. All remaining computations are then performed 
locally on the client. Empirically, we demonstrate that our suggested techniques outperform existing open-source algorithms 
in terms of both accuracy and runtime requirements. Our most successful approach is based on multi-objective local search, 
utilizing specialized neighbourhood operators that exploit the underlying graph-theoretical properties of this problem, result-
ing in runtimes of around 2–3 s on a typical desktop computer.

Keywords Round trip planning · Multiobjective optimisation · Edge computing · Combinatorial optimisation · Graph 
theory

Introduction

This paper considers the problem of constructing fixed-
length routes that start and end at the same location on a 
map. This task has several practical applications including 
planning a jogging route in an unfamiliar location, organis-
ing a cycling tour, or determining a walking route that allows 
a user to complete their daily steps target.

In the absence of any restrictions, routes of a prescribed 
length are easy to create. For example, we may choose to 
simply travel up and down the same street repeatedly until 
the required distance is covered. Similarly, we could also 
perform laps of a small locality. In this work, however, 
we will consider methods of producing routes that avoid 

repetition. That is, where possible, users should be discour-
aged from having to travel along a street or footpath more 
than once. We will call such routes “round trips”, and give a 
formal definition in “Problem Definition and Complexity”. 
Two real-world examples are depicted in Fig. 1.

A common approach for producing round trips in street 
networks involves using online point-to-point routing ser-
vices (such as Google Maps) and asking users to manually 
specify a series of waypoints, which are then linked by a 
sequence of paths. This forms the basis of the online Strava 
Routes service, which also allows users to specify prefer-
ences for paths involving hills, dirt tracks, and popular exer-
cise trails. Similar schemes are also used by the popular 
online tools Komoot [19] and BRouter [12]. Typically, these 
approaches link waypoints using shortest paths, helping the 
solutions to “feel natural to the user, with no unnecessary 
detours” [1]. The shortest paths between two waypoints can 
also be calculated quickly on large maps, often in sub-linear 
time, using variants of the A* and Dijkstra’s algorithms [4].

A feature of the above approach is that it is the users’ 
responsibility to choose the appropriate waypoints; con-
sequently, a trial-and-error approach may be required to 
achieve a round trip of the correct length. In the past five 
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years or so, several tools have been made available that seek 
to automate this process. In April 2020, for example, Strava 
introduced a new feature for its paying subscribers that auto-
matically produces round trips close to a desired length from 
a user-selected starting point [22]. Similar tools are now also 
available with Garmin Connect [13] and on websites such 
as RouteLoops [21] and PlotARoute [20]. As commercial 
enterprises, the algorithms used to produce these round trips 
are not in the public domain; instead, users send their input 
via a web request, with solutions then being calculated on 
the server side.

An open-source heuristic for producing round trips of a 
prescribed length is provided by the cloud-based application 
programming interface (API) OpenRouteService [14], using 
their “round_trip” feature. The basic idea in this algorithm 
is to generate an n-sided polygon that is roughly regular in 
shape and whose perimeter is approximately equal to the 
desired length. The initial bearing of the polygon is selected 
at random. Each vertex in this polygon is then repositioned 
over a street or at an intersection, and these are used as inter-
mediate waypoints in the final round trip. When generating 
paths between these waypoints, efforts are also made to try 
to avoid using the same street segment more than once. Fur-
ther details of this approach are given in “Initial Comparison 
and Setup”.

Another website that contains tools for automatically pro-
ducing round trips is TrailRouter [15]. In addition to produc-
ing fixed-length round trips, this tool also seeks to maximise 
the amount of green space encountered along a route. The 
basic version of this algorithm operates similarly to Open-
RouteService’s, using n = 4 to produce eight separate round 
trips with initial bearings of 0◦, 45◦, 90◦,… , 315◦ . A second 
method is also used in which waypoints are placed on the 

perimeter of green spaces close to the starting point. In both 
cases, these waypoints are then linked using shortest paths as 
before. Weighting coefficients are also specified for different 
street segments to discourage their repetition and encourage 
paths that travel through green areas.

Note that all of these existing examples require significant 
resources to store and process the map database. OpenRou-
teService and TrailRouter, for example, use their servers 
to store the entire world map from OpenStreetMap, which 
contains information on nearly one billion ways [16]. The 
advantage of doing this is that various server-side actions 
can be performed that are not usually available on cloud-
based APIs. OpenRouteService, for example, uses its map 
database in conjunction with the open-source Java-based 
routing engine GraphHopper to “snap” GPS coordinates to 
the nearest location on a street segment. GraphHopper also 
contains functionality for adding user-defined weights on 
street segments, allowing the production of paths that avoid 
using street segments seen in other parts of the round trip. 
TrailRouter similarly makes use of GraphHopper and also 
performs large amounts of server-side preprocessing on the 
map database to provide “green ratings” for each street seg-
ment. Street segments with higher green ratings are then 
preferred by GraphHopper’s path-finding algorithms.

Related Works

From a research perspective, work in the area of round-trip 
production is somewhat limited in the literature. Partially 
related is the 1975 paper of Johnson [24], which reports an 
algorithm for enumerating all cycles in a graph. In theory, 
this method could be employed to generate a set of cycles 

Fig. 1  Example round trips of length ≈ 10 km (left) and ≈ 50 km 
(right). The left figure starts and ends at the Arc de Triomphe in cen-
tral Paris; the right figure starts at the western end of the Gower Pen-

insula, Wales. Due to the lack of alternative roads in the latter, the 
proposed round trip involves having to travel along some streets more 
than once
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(round trips) on a street network, with the user then select-
ing a member of this set that contains the start/end point 
and whose length is close to the desired target length. The 
algorithm of Yen [35] might also be used for similar pur-
poses by producing solutions one-by-one in increasing order 
of length until the target length has been reached (see [27], 
for example). In general, however, the number of cycles in 
a graph is known to grow at an exponential rate in relation 
to network size [10], making run times of these algorithms 
infeasible in most cases. As we will see in “Paper Aims and 
Contributions”, the exclusive use of cycles in this problem 
is also usually unsuitable in real-world applications involv-
ing street networks. More recently, Chalupa et al. [7] have 
presented integer programming formulations for the problem 
of finding the longest cycles in unweighted networks, though 
similar scaling-up issues to the previous approaches are still 
apparent.

A heuristic for computing jogging routes on maps was 
also previously proposed by Gemsa  et  al. [9]. In their 
work, street networks are represented as undirected planar 
embeddings and a solution is built by iteratively adding the 
boundary edges of different faces until the desired length is 
reached. A second method similar to the round_trip feature 
of OpenRouteService is also proposed that produces solu-
tions between a sequence of three or four waypoints, which 
their heuristic calculates automatically. Solutions are also 
evaluated according to the amount of repetition, the use of 
“nice” edges (such as those occurring in green areas), and 
the number of sharp turns.

In more recent work [26], the authors of this current paper 
describe two further heuristics for finding fixed-length round 
trips in undirected street networks. The first operates by con-
structing a pair of paths between the starting point s and a 
suitable street intersection t. These s-t-paths are then joined 
to form a round trip, with the aim being to identify the best 
option for t. In their heuristic, the authors use the algorithms 
of [5] to compute pairs of short edge-distinct (or vertex-
distinct) s-t-paths. Other approaches might also be used, 
however, such as those used for finding alternative point-to-
point routes in road networks [1, 29]. The second heuristic 
proposed in [26] is based on local search. In general, this 
was found to be faster and more accurate than their first 
heuristic, though its solutions often contained small detours 
that made them somewhat haphazard in appearance.

Note that the methods in [9, 26] only operate on undi-
rected graphs, making them unsuitable in applications 
involving one-way streets and unidirectional footpaths. As 
with the other methods  considered in this section, they also 
depend on having access to the entire street network during 
execution. In the experiments of [26] this was achieved by 
using the Python library OSMNX [6] to download and pro-
cess all street segments within k/2 metres of the given start-
ing point (where k is the desired length of the round trip). 

For higher values of k, though, this was seen to lead to long 
download times and large datasets. Using k = 20,000 m, for 
example, a location like central London was seen to involve 
over 90,000 street segments and 70,000 intersections. Simi-
larly, all of the reported experiments of [9] were conducted 
on a single, locally stored map of Karlsruhe, Germany, 
which comprised approximately 120,000 street segments 
and 100,000 intersections.

Paper Aims and Contributions

Our aim in the remainder of this paper is to develop fast and 
accurate heuristics that produce round trips in directed street 
networks. We also want these methods to produce solutions 
from any starting point on the Earth’s street network, but 
without needing to download and/or store large map data-
bases. They should also be able to cope with a wide range 
of prescribed distances, from just a few metres to many kilo-
metres, but still operate within timescales that are consist-
ent with online point-to-point routing services (that is, typi-
cally a few seconds). To do this, our proposed methods will 
use very limited numbers of strategically chosen requests 
to existing cloud-based mapping services. The information 
collected in these requests will then be used in conjunction 
with bespoke graph-theoretic operators to strategically build 
a pool of candidate round trips. Outside of the requests, all 
computations, such as processes for improving and combin-
ing these round trips, are performed on the client.

Our proposed strategy has three main advantages. First, 
unlike existing methods, it avoids the need of having to host 
and maintain large databases of map data. Second, it also 
allows the possibility of using commercial mapping services 
such as Google Maps which, unlike OpenStreetMaps, can 
provide live data on traffic conditions and road closures. 
Finally, adjustments for different modes of travel such as 
walking, cycling, and driving, can be made by simply chang-
ing the parameters of the online requests. The information 
returned from these requests can then be used to provide 
the user with information on the elevation, surface type and 
greenery ratings of the proposed solutions, as demonstrated 
in “ Conclusions and Further Work”.

Our main contributions are summarised as follows: 

1. The paper contains an examination of the computational 
issues surrounding the production of round trips in street 
networks, particularly looking at the graph-theoretical 
features of the problem and its underlying computational 
complexity. (See “Problem Definition and Complexity”.)

2. A new heuristic, the isochrone-polygon method, is 
proposed. Using just two or three API requests, this 
constructs a small pool of solutions that, on average, 
are superior to those returned by OpenRouteService’s 
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“round_trip” feature. (See “The Isochrone-Polygon 
Method and “ Initial Comparison and Setup”.)

3. The design and testing of two contrasting methods 
for improving solutions returned by the isochrone-
polygon method. The best of these uses multiobjec-
tive optimisation in conjunction with new graph-based 
neighbourhood operators to produce larger, improved 
pools of candidate solutions in short amounts of time. 
(See “Improving Solutions using Multiobjective Local 
Search”, “Learning Good Routes using Regression” and 
“Method Comparison”.)

All source code, problem instances, and results datasets used 
in this work can be downloaded from [28].

Problem Definition and Complexity

Let G = (V ,A,w) be an arc-weighted, directed graph with 
vertex set V, arc set A, and nonnegative weights w(u, v) for 
each arc (u, v) ∈ A . Street networks can be represented by 
such graphs using the arcs for individual street segments 
and the vertices for street intersections and dead ends. Here, 
weights correspond to travel distances (in metres) between 
adjacent vertices.

In mapping applications, each vertex v ∈ V  is associ-
ated with a particular GPS coordinate, denoted by GPS(v) . 
The above model is also usually extended so that each 
arc (u, v) ∈ A is defined by a series of GPS longitude/
latitude coordinates (x1, y1), (x2, y2),… , (xl, yl) , where 
GPS(u) = (x1, y1) and GPS(v) = (xl, yl) . These coordinates 
define the curvature of each street segment (u, v) and can 
also be used to calculate w(u, v) using:

where d(.) gives the geographical distance between two GPS 
coordinates (which can be reliably approximated using, for 
example, the haversine formula or Vincenty’s formulae). 
Often, mapping applications also make use of vertices to 

(1)w(u, v) =

l−1∑

i=1

d(xi, yi, xi+1, yi+1)

represent these intermediate coordinates, meaning that if 
(u, v) ∈ A and (v, u) ∈ A then w(u, v) = w(v, u) . This also 
allows the vertices of a street map to be partitioned into two 
classes:

Definition 1 A vertex v is considered intermediate if either 
of the following applies: 

 (i) v has exactly one incoming arc (u1, v) , exactly one 
outgoing arc (v, u2) , and u1 ≠ u2 ; or

 (ii) v has exactly two incoming arcs, (u1, v) and (u2, v) , 
exactly two outgoing arcs (v, u1) and (v, u2) , and 
u1 ≠ u2.

If neither of these cases applies, then v is classed as an inter-
section vertex.

If Case (i) of Definition 1 is satisfied, this means that v 
represents a coordinate occurring along a one-way street; 
if Case (ii) is satisfied, then v is a coordinate along a two-
way street. In practice, it is possible to reduce the size of 
such graphs by smoothing the intermediate vertices. This is 
achieved as follows.

• For Case (i), the vertex v and arcs (u1, v) and (v, u2) are 
removed and replaced by the single arc (u1, u2) , with 
w(u1, u2) set to w(u1, v) + w(v, u2).

• For Case (ii), the vertex v and arcs (u1, v) , (u2, v) , (v, u1) , 
and (v, u2) are removed and replaced by the arcs (u1, u2) 
and (u2, u1) , with w(u1, u2) set to w(u1, v) + w(v, u2) and 
w(u2, u1) set to w(u2, v) + w(v, u1).

A demonstration of this smoothing process is shown in 
Fig. 2. Note that when an intermediate vertex v satisfying 
Case (ii) is smoothed, this will prevent round trips from 
being able to feature an arc (u, v) followed immediately by 
the arc (v, u). On a street network, this would correspond 
to a person being asked to switch direction part-way along 
a two-way street segment, which may not be desirable (or 
possible) depending on the circumstances at hand.

Given our arc-weighted directed graph G = (V ,A,w) , we 
now use the following terminology.

Intersection / dead end

Intermediate (i)

Intermediate (ii)

(a) (b)

v1

v3

v5

v8

v2
v4

v6 v7v9

Fig. 2  Demonstration of how graphs (street networks) with inter-
mediate vertices a can be smoothed to make a new, smaller graph 
(b). These smoothing actions are carried out by the Python library 

OSMNX, for example, [6]. Note that v1 has not been smoothed here, 
despite satisfying Case (i) of Definition 1. This ensures that the struc-
ture of the one-way cycle is maintained
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Definition 2 A walk is a series of pairwise adjacent vertices 
in G; a trail is a walk with no repeated arcs; and a path is a 
trail with no repeated arcs or vertices.

It is also useful to add a prefix u-v to these terms to denote 
a walk/trail/path that starts at vertex u and stops at v. In cases 
where u = v , the following terms can also be used.

Definition 3 A u-v-walk/trail/path is considered closed 
whenever u = v . Closed trails are also known as circuits; 
closed paths are known as cycles.

As mentioned earlier, our aim in this paper is to produce 
fixed-length round trips that avoid repetition and that start 
and end at the same predefined location. One possible prob-
lem definition is therefore as follows.

Definition 4 Let G = (V ,A,w) be a directed arc-weighted 
graph, s ∈ V be our start and end vertex, k ≥ 0 be our desired 
length, and let w(u, v) denote a nonnegative weight (length) 
for each arc (u, v) ∈ A . The k-length cycle problem involves 
identifying a solution S = (s = u1, u2,… , ul = s) that is a 
cycle, and whose length L(S) =

∑l−1

i=1
w(ui, ui+1) minimises 

the cost function f1(S) = |k − L(S)|.

Solutions under this problem definition naturally prohibit 
repetition, since cycles do not allow vertices or arcs to be 
used more than once. In applications with road networks, 
however, an insistence on using cycles is too strict because 
the underlying graphs are not necessarily biconnected. 
Examples of this can be seen in Fig. 2a. First, using s = v1 
we see that only one cycle is possible due to the presence of 
the articulation point v2 . Similarly, if s = v3 , then only solu-
tion (v3, v4, v3) can be formed. A more flexible specification 
of our problem might therefore be defined as follows.

Definition 5 Given the same input as Definition  4, the 
k-length circuit problem involves identifying a solution 
S = (s = u1, u2,… , ul = s) that is a circuit, and whose 
length L(S) =

∑l−1

i=1
w(ui, ui+1) minimises the cost function 

f1(S) = |k − L(S)|.

Here, the use of circuits instead of cycles permits vertices 
to be visited more than once, allowing a greater variety of 
solutions to be considered. Issues remain, however. First, 
this definition allows “out-and-back” solutions, such as 
(v5, v6, v7, v8, v7, v6, v5) in Fig. 2a which, while never using 
an arc more than once, certainly involves a lot of repetition. 
Secondly, this definition is still stricter than those used by 
the existing tools noted in “Introduction”, which often allow 
street segments to be traversed more than once in the same 
direction. (In Fig. 2a, for example, this would occur when 

forming a round trip using the polygon defined by vertices 
(v2, v8, v9).)

Our chosen problem definition, therefore, considers solu-
tions as closed walks that start and end at vertex s. To avoid 
repetition while still allowing the necessary flexibility, a 
second cost function f2 must now be used. To define this 
function, let S = (s = u1, u2,… , ul = s) be a closed walk, 
and let E(S) be a multiset containing each occurrence of an 
arc in S, with its direction removed. For example, the solu-
tion S = (v5, v6, v7, v8, v7, v6, v5) shown in Fig. 2a leads to 
the multiset E(S) = {{v5, v6} ∶ 2, {v6, v7} ∶ 2, {v7, v8} ∶ 2} , 
where numbers following colons represent the number of 
occurrences (multiplicity) of each undirected edge in E(S). 
The function f2 now measures the percentage of the overall 
round trip that involves travelling along street segments (in 
either direction) that have already been visited:

Here, x defines the multiplicity of the edge {u, v} in E(S). 
Note that measuring the percentage of overlap is preferable 
to using the total amount of overlap because using the latter 
would encourage very short round trips. Our final problem 
definition is therefore:

Definition 6 Given the same input as Definition  4, the 
k-length round trip (KRT) problem involves identifying a 
solution S = (s = u1, u2,… , ul = s) that is a closed walk of 
length L(S) =

∑l−1

i=1
w(ui, ui+1) , and that minimises the two 

cost functions, f1(S) = |k − L(S)| and f2(S).

Since f1 and f2 measure different characteristics, Defini-
tion 6 constitutes a multiobjective problem.

The three problem variants stated in Definitions 4–6 are 
all NP-hard. Definition 4 generalises the NP-hard problem 
of finding the longest cycle in an arc-weighted graph.1 In 
turn, this latter problem generalises the NP-hard problem 
of finding the longest cycle in an unweighted directed graph 
which, itself, is a generalisation of the NP-hard Hamilto-
nian cycle problem in directed graphs. Similar reasoning 
can be applied with Definitions 5 and 6. Definition 5, which 
considers circuits, is NP-hard since it generalises the NP

-hard problem of identifying a maximum-weight directed 
Eulerian subgraph in an arc-weighted directed graph [8, 33]. 
Basagni et al. [3] have also shown that the problem of calcu-
lating closed walks of length k is NP-hard in arc-weighted 
graphs. This latter problem forms a special case of the KRT 

(2)f2(S) = 100 ×

∑
∀({u,v}∶x)∈E(S)(x − 1) ⋅ w(u, v)

L(S)
.

1 To see this, observe that Definition 4 with a sufficiently large value 
for k, such as k ≥

∑
(u,v)∈A w(u, v) , requires the identification of the 

longest cycle in a graph G = (V ,A).
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problem of Definition 6 in which only f1 is considered, also 
proving its NP-hardness.

Note that the existing online methods for producing round 
trips reviewed in “Introduction” are all heuristic-based and, 
while featuring polynomial-time complexities, are unlikely 
to produce optimal solutions for most problem instances. 
This compromise is nearly always necessary with NP-hard 
problems. These methods also operate under slightly dif-
ferent problem interpretations to ours. In particular, over-
lap is not measured using a cost function like f2 ; instead, 
attempts are made to avoid overlap by equally spacing out 
the waypoints on the generated polygon and by using addi-
tional weights on arcs to penalise their repeated use in a 
solution. The effects of these differences are evaluated in 
“Initial Comparison and Setup”.

The Isochrone‑Polygon Method

In this section, we describe our initial algorithm for creating 
a pool of candidate solutions for the KRT problem. As stated 
earlier, this will operate by collecting information from a 
small number of calls to a suitable cloud-based mapping 
API. All remaining computation is then carried out on the 
client side.

Similarly to existing approaches, our method operates by 
constructing polygons on the map surface. The vertices of 
each polygon then act as a series of waypoints in a round 
trip. Here, however, adaptations are required because, unlike 
server-side implementations, most APIs do not provide con-
venient methods for quickly identifying whether arbitrary 
GPS coordinates are close to existing streets (and not, for 
example, in the middle of the sea). In addition, they do not 
usually provide the functionality for imposing weights on 
street segments to help avoid their repeated use in solutions.

To cope with these issues, our method begins by generat-
ing a (k/2)-metre isochrone I from the user-defined starting 
location s. Many popular mapping APIs allow the creation 
of such isochrones in a single request, including Bing Maps, 
Google Maps, Mapbox, ArcGIS, and OpenRouteService. 
The returned information is expressed as a list of GPS coor-
dinates that define a polygon containing the parts of the map 
that are accessible from s by a path of length k/2 metres or 
less. Note that I can also be used to gauge the accessibility 
of the region surrounding s. For example, if the area of I is 
small compared to the area of the (k/2)-radius circle cen-
tred at s, this suggests the presence of nearby regions that, 
while being within k/2 metres (as the crow flies), cannot be 
accessed along known streets or paths within this distance. 
An example isochrone is shown in Fig. 3, where s is located 
on a curving coastline.

Having gained the isochrone I, the next step is to gener-
ate polygons whose vertices are within the area enclosed by 
I. These vertices are then used as waypoints that are linked 
by shortest paths to form a round trip. Our strategy here, 
which is carried out on the client, is to generate a series of 
ellipses and, from each one, form a polygon by placing n 
evenly-spaced vertices along the circumference. The overall 
process is described by Algorithm 1. As shown, this method 
requires an initial bearing � and desired perimeter k′ for the 
generated polygons. These are determined by identifying 
the most distant point on the boundary of the isochrone (as 
illustrated in Fig. 3), which is intended to initially encourage 
the formation of round trips in the most accessible bearing 
from s. The algorithm then generates the list of polygons L 
by sweeping through the different bearings surrounding s, 
and adding polygons to L only when all of their n vertices 
are contained within I. After each sweep, the generated ellip-
ses are also progressively flattened, stretched, and reduced 
in size. This is intended to help fit the polygons when the 
isochrone is irregularly shaped. It also aids the production 

Fig. 3  Illustration of the isochrone-polygon method. Using a tar-
get of k = 10,000 m, the shaded area in the left image shows a 5000 
m isochrone I generated from an address on the coast of southern 

Wales. The arrow indicates the initial bearing, giving � = 80.3◦ and 
k� = 2 × 4845 = 9690 m. The right image shows the first ten poly-
gons generated by Algorithm 1, using n = 5



SN Computer Science           (2024) 5:868  Page 7 of 19   868 

SN Computer Science

of a diverse set of polygons. An example of this process is 
shown in Fig. 3 where, due to the shape of the isochrone, 
some of the polygons are quite elongated.

Algorithm 1  Generate polygons

Once the list L has been constructed, further API 
calls are required to calculate the shortest paths between 
the successive vertices (waypoints) in each polygon. 
Let L = (P1,P2,… ,P|L|) be our list of polygons, and let 
Pi = (pi,1, pi,2,… , pi,n) denote the vertices of each poly-
gon (where pi,1 = s for all i ∈ {1,… , |L|} ). A round trip 
for polygon Pi is therefore constructed by linking each 
(pi,j)-(pi,j+1)-path (for all j ∈ {1,… , n − 1}) , followed by a 
final (pi,n)-(pi,1)-path. Each of these paths is expressed as a 
sequence of GPS coordinates that correspond to interme-
diate and intersection vertices in the underlying street net-
work G = (V ,A,w) , as described in “Problem Definition and 
Complexity”.

It is common for mapping APIs to allow several way-
points to be specified in a single routing request. The free 
versions of Google Maps, Bing Maps, and MapBox, for 
example, allow up to x = 25 waypoints, while OpenRou-
teService allows up to x = 50 . Here, this means that up to 
⌊ x−1

n
⌋ complete round trips can be constructed per request. 

In cases where waypoints do not correspond to locations 
on a street, these APIs also adjust the GPS coordinates 
to the nearest street-side location. Consequently, each 
polygon Pi = (pi,1, pi,2,… , pi,n) maps to a second polygon 

P�
i
= (p�

i,1
, p�

i,2
,… , p�

i,n
) , which specifies the actual waypoint 

coordinates used for the round trip. An example is shown 
in Fig. 4.

Fig. 4  The left image shows a round trip generated by one of the pol-
ygons from Fig. 3. The polygon with the black outline indicates the 
positions of the actual waypoints used, P�

i
= (p�

i,1
, p�

i,2
,… , p�

i,n
) , which 

are slightly different to those of Pi . The three out-and-back sections 
that occur in this round trip are indicated by the circles. In the right 
image, these out-and-backs have been removed and, consequently, the 
waypoints of P′

i
 have been further adjusted
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The first image of Fig. 4 also indicates a tendency for 
this scheme to produce “out-and-back” sections in a solu-
tion. These are often undesirable because they can involve 
the user having to perform a U-turn at an awkward location. 
They also involve the repetition of streets which, accord-
ing to the KRT problem definition, we would like to avoid. 
To counter this, an optional step is to shorten each round 
trip by removing all instances of out-and-backs. This can be 
achieved by using the arcs of a round trip to define an undi-
rected simple graph. Degree-one vertices in these graphs 
(not including s) should then be removed one by one until no 
such vertices remain. The second image of Fig. 4 illustrates 
the effects of this additional process. In this particular case, 
the resultant round trip has no repetition.

Initial Comparison and Setup

In this section, we examine the solutions returned by Open-
RouteService’s round_trip algorithm and compare their 
quality to those of our isochrone-polygon method. The over-
all behaviour of OpenRouteService’s method is described 
in Algorithm 2.2 As described in “Introduction”, this is a 
server-side operation that starts by generating an n-sided 
polygon involving vertices p1,… , pn using a randomly 
selected initial bearing. A solution S is then formed by cre-
ating paths between each successive vertex in this polygon 
while also trying to avoid using the same street segment 
more than once.

Fig. 5  Accuracy of Algorithm 2 for differing values of k and n. Each point is the mean across the solutions returned from five calls to OpenRou-
teService’s round_trip feature

2 The open-source Java code for this can be found at [25].
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Algorithm 2  OpenRouteService round_trip method

Here, our client-side algorithms were programmed in 
Python 3.8 and were executed on 3.5 GHtz Windows 10 
machines with 8 GB RAM [28]. In our implementation of 
the isochrone-polygon method, we made use of the free and 
open-source API OpenRouteService. Consequently, each 
algorithm execution involved making one request to form the 

isochrone, and one additional request for each set of ⌊ 50−1

n
⌋ 

round trips produced. For all experiments, we used a random 
sample of 250 real-world postal addresses from across North 
America and Western Europe. A single problem instance is 
therefore defined by an address and a target length k. The set 
of addresses was generated by selecting random dwellings 

Fig. 6  Accuracy of the isochrone-polygon method (without out-and-back removal) for differing values of n and k. Each point is the mean across 
the first five solutions produced at each address
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from the USA, France, UK, Netherlands and Canada, with 
the number of addresses per country weighted by their rela-
tive number of households. This led to 155, 37, 33, 14, and 

11 addresses from each country respectively. Addresses for 
the UK were generated using the tool at [18], those for the 
USA and Canada came from [23], and the remainder were 

Fig. 7  Accuracy of the isochrone-polygon method (with out-and-back removal) for differing values of n and k. Each point is the mean across the 
first five solutions produced at each address

Fig. 8  Mean accuracy of Algorithm 2, the isochrone-polygon method (IP) and the isochrone-polygon method with out-and-back removal (IP w/ 
R). Note the differences in scales for cost function f1
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taken from [17]. The selected travel mode in all experiments 
was “foot-walking”, though solutions for hikers, drivers and 
cyclists can be achieved by simply changing the relevant 
input parameters.

Results

To assess the performance of Algorithm 2, trials on our 
random sample were performed using values of k ∈ {1000, 
5000, 10,000, 25,000, 50,000} (metres) and n ∈ {3, 4,… , 8} . 
For each (k, n) pair, five calls per address were then made 
to OpenRouteService’s round_trip feature to produce up to 
five different round trips. Figure 5 summarises the results of 
these trials. The top row shows the lengths of the returned 
solutions, expressed as the percentage difference to the target 
k; the bottom row shows the corresponding values for the 
percentage overlap ( f2 , Eq. (2)). Each box is formed from 
250 values, corresponding to the mean of the five values for 
each address.

Figure 5 indicates a tendency for Algorithm 2 to return 
solutions that exceed the target length k. This is quite natu-
ral since the distances between successive vertices in the 
polygon are calculated as straight lines whereas the physi-
cal paths between these are nearly always longer. In this 
sense, the perimeter of the polygon can be seen as a lower 
bound on the length of the resultant round trip. We also 
see that this effect worsens for higher values of n. In these 
cases, the algorithm must try and produce edge-distinct 
paths between a greater number of waypoints, which tends 
to result in lengthened round trips.

The bottom row of Fig. 5 shows how the amount of 
overlap also tends to increase for larger values of n. This 
is because, with a greater number of paths being gener-
ated, the potential for overlap increases. On the other 
hand, larger values of k result in less overlap, because 
the resultant round trips span a larger geographical area. 
Also observe that, on rare occasions, overlap costs of 50% 
are returned. In these cases, all streets are visited twice, 
indicating that the round trip is an out-and-back or (more 
generally) a tree.

Figure 6 shows the corresponding results for our isoch-
rone-polygon method (without out-and-back removal). As 
with Algorithm 2, there is also a tendency for solutions to be 
too long here, with higher values of n worsening this effect. 
Larger amounts of overlap are also apparent compared to 
Fig. 5 because, unlike Algorithm 2, this method contains no 
mechanism for avoiding the repetition of street segments. 
Overlap is also seen to worsen for smaller values of n, 
because the acuter angles that occur in the generated poly-
gons tend to encourage more out-and-backs in a solution.

Figure 7, however, demonstrates that the removal of out-
and-backs from the isochrone-polygon method’s solutions 
alleviates these issues. Specifically, their removal short-
ens round trips, helping to counter the overestimation seen 
in the previous results. Simultaneously, this removal also 
reduces the amount of overlap, helping to improve f2 . To 
show these differences more clearly, Fig. 8 shows a direct 
comparison of the mean values achieved for f1 and f2 by 
each method. For f1 , the isochrone-polygon method with 
out-and-back removals is clearly favourable, returning the 

Fig. 9  (Left) Twelve round trips starting in central Frankfurt using k = 5000 m. (Right) The corresponding smoothed, arc-weighted directed 
graph G = (V ,A,w)
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most accurate solutions across all tested values of k and n. 
For f2 , the isochrone-polygon method (without out-and-back 
removal) is by far the worst, while no significant difference 
was observed between the remaining methods.3

In addition to the greater accuracy of the isochrone-poly-
gon method (with out-and-back removal), also observe that 
it operates using fewer calls to the API. As described, Algo-
rithm 2 requires one call per solution. On the other hand, 
following the isochrone request, our method can produce 
up to ⌊ 50−1

n
⌋ different solutions per call. Consequently, all 

results from the isochrone-polygon method presented here 
were found using just two calls per run.

Improving Solutions Using Multiobjective 
Local Search

In the previous section, we saw that the isochrone-polygon 
method (with out-and-back removal) can produce several 
high-quality candidate solutions to the KRT problem using 
only a small number of API calls. In this section we show 
how parts of these candidate solutions can be combined by 
the client to form further solutions, helping to increase algo-
rithm accuracy.

To illustrate this, Fig. 9 shows twelve different round trips 
generated by the isochrone-polygon method. Each of these 
solutions is represented by a sequence of GPS coordinates; 
that is, intermediate and intersection vertices in the under-
lying street network. Consequently, we can combine these 
and use the smoothing actions from “Problem Definition 
and Complexity” to construct a corresponding arc-weighted, 
directed graph G = (V ,A,w) , as shown in the figure. This 
means that attempts can now be made by the client to find 
new high-quality solutions for the KRT problem using G. 
Note that G does not contain all streets and intersections 

within k/2 metres of the starting vertex s; instead, it only 
includes the streets and intersections used in the supplied set 
of round trips. This leads to smaller graph sizes but, poten-
tially, less accuracy. On the other hand, doing this eliminates 
the need for storing and/or downloading large street network 
databases. Here, we make use of both smoothing actions 
seen in “Problem Definition and Complexity”. In particular, 
the application of Case (ii) is desirable as it prevents the 
formation of solutions that will users to perform U-turns 
midway along a street. This helps to prevent the formation 
of out-and-backs in a solution.

Here, our approach is to generate new solutions for G 
using local search, a general-purpose methodology that 
seeks to identify high-quality solutions within a space of 
potential solutions. Local search operates by moving among 
solutions within this space using a neighbourhood operator 
that makes small alterations to the current solution. Because 
the KRT problem is multiobjective, here we choose to make 
use of the Pareto local search framework of Paquete et al. 
[31] given in Algorithm 3. As with most multiobjective opti-
misation algorithms, this uses the concept of dominance for 
distinguishing between solutions. For the KRT problem, 
which uses the two cost functions f1 and f2 , this is defined 
as follows.

Definition 7 Let S and S′ be two candidate solutions to the 
KRT problem. Also, assume (as is the case here) that we are 
seeking to minimise the cost functions f1 and f2 . Then S is 
said to dominate S′ , written S ⪯ S� , if and only if:

• f1(S) ≤ f1(S
�) and f2(S) < f2(S

�) , or
• f1(S) < f1(S

�) and f2(S) ≤ f2(S
�).

If neither S ⪯ S� nor S� ⪯ S , then solutions S and S′ are said 
to be mutually non-dominating.

(a)                                                           (b)                                                           (c ) (d)
s

ui

v

u'i

G'

Fig. 10  Part a shows an example graph G with solution S (in blue) 
and a selected vertex ui ∈ S . Part b shows the graph G′ formed with 
respect to G, S, and ui . Part c shows a solution S′ , formed by replacing 

the ui-v path in S by a ui-v in G′ . Part d shows the solution formed by 
adding to S the cycle defined by a ui-u′i path in G′

3 According to a two-tailed Wilcoxon signed-rank test (at the 0.05 
level) using sample sizes of 30, corresponding to the mean values for 
f2 at each tested value of k and n.
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Algorithm 3  Pareto local search

As shown, Algorithm 3, starts with an archive set A of 
mutually non-dominating solutions. Each of the solutions in 
this archive is then marked as unvisited. In each iteration, an 
unvisited solution S is selected from the archive set, and new 
solutions S� ∈ N(S) are generated using a neighbourhood 
operator (see below). These new solutions are then added 
to A if they are not dominated by a solution already in the 
archive. In addition, if the new solution is seen to dominate 
any solutions currently in the archive, these are deleted from 
A . This process continues until all solutions in A have been 
visited. The output A is a set of non-dominating solutions 
that are equal to, or an improvement on, the input set. Note 
that, under just one cost function, Algorithm 3 is equivalent 
to the steepest descent local search algorithm. Like steep-
est descent, the total number of iterations performed by the 
algorithm also depends on the number of improving moves 
that are carried out, which cannot be predicted.

Neighbourhood Operator

The solution space for the KRT is the set of all walks that 
start and end at vertex s. Neighbourhood operators for this 
problem should therefore take a member S of this space and 
make alterations that result in a new, different solution S′ . In 
this sense, we say that S′ is a member of the set of solutions 
that are neighbours of S, written S� ∈ N(S).

To def ine the neighbourhood operator,  let 
S = (s = u1, u2, u3,… , ul = s) be a candidate solution, writ-
ten as a sequence of vertices in G. The arcs of S are therefore 
defined by the multiset {(ui, ui+1) ∶ i ∈ {1, 2,… , l − 1}} . An 
intuitive neighbourhood operator is to now take two verti-
ces ui, uj ∈ S (where i < j ), remove the corresponding ui-uj
-walk in S, and then form a new (neighbouring) solution S′ 
by adding a new, different ui-uj-walk. This new walk can be 
generated using path-finding algorithms such as breadth-first 
search, depth-first-search, or randomised variants of these.

Our proposed neighbourhood operator extends this idea 
by allowing several new solutions to be evaluated following 
a single application of a path-finding algorithm. The idea 

f1

f 2

x

(a) (b)

Fig. 11  Part  a demonstrates how the perimeter x for a polygon Pi 
(where i ≥ 2) is calculated in Algorithm 5. As shown, the previously-
observed solutions (along with the origin (0, 0)) are used to generate 
a line of best fit. This is then used with k to determine the required 

value x. Part b demonstrates the calculation of the normalised S-met-
ric using an archive set of mutually non-dominating solutions. The 
value of the S-metric corresponds to the area of the shaded part



 SN Computer Science           (2024) 5:868   868  Page 14 of 19

SN Computer Science

is to select a vertex ui ∈ S and try to produce paths from 
this to all other vertices uj>i ∈ S without using the arcs cur-
rently in S. It proceeds as follows. Given G, S, and a vertex 
ui ∈ S , a new graph G′ is first constructed. This is simply a 
copy of G with all the arcs of S removed. Next, an additional 
dummy vertex u′

i
 is added to G′ , and all incoming arcs of ui 

are redirected to u′
i
 (that is, all arcs of the form (v, ui) are 

replaced by (v, u�
i
) ). Finally, a path-finding algorithm is used 

to form a directed tree T in G′ that defines paths from ui to all 
reachable vertices in the set {ui+1, ui+2,… , ul, u

�
i
} . Figure 10 

shows example applications of this neighbourhood operator. 
In particular, Part (d) illustrates the effects of adding a new 
ui-u′i-path to the solution. This equates to adding a new sub-
cycle at vertex ui.

Note that Line 4 of Algorithm 3 involves evaluating all 
members of the set N(S). This involves applying our neigh-
bourhood operator for each vertex ui ∈ S . A full description 
of how this is done is given by Algorithm 4.

Algorithm 4  Evaluate neighbourhood set

Learning Good Routes Using Regression

An alternative to using local search with the KRT problem 
is to employ a method that makes a series of calls to the 
mapping API. At each iteration, this method should then 
use information gained in previous calls to try to identify 
better waypoints for the construction of solutions. Recall 
from “The Isochrone-Polygon Method” that the isoch-
rone-polygon method operates by first creating a polygon 
P = (p1,… , pn) , where each vertex pi is at a particular GPS 
coordinate. P is then used with the API to construct a round 
trip solution S. In turn, this process gives a second polygon 
P� = (p�

1
,… , p�

n
) where each p′

i
 corresponds to the actual 

waypoints used for S. At this point, we might now choose 
to use S and P′ to inform the production of a new polygon 
for use with the API. Specifically, if the current solution S is 
seen to be too short (that is, L(S) < k ), then this new polygon 

Fig. 12  S-metric values for the five algorithm variants for differing values of k. Each box plot is formed from 250 data points, one per address
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should be an enlarged version of P′ . Similarly, if L(S) > k , 
the new polygon should be a shrunken version of P′.

A description of our proposed method is given in Algo-
rithm 5. As shown, the process starts by using an initial 
polygon P1 to produce a solution S1 and its actual waypoints 
P′
1
 . At each iteration i ≥ 2 , the information gained in itera-

tions 1,… , i − 1 is then used to build a regression model 
that is used to calculate the perimeter x for the new polygon 

Pi . This polygon is then used to produce Si and P′
i
 . Here, 

our proposed method uses a simple linear (least-squares) 
regression model for determining the perimeter of new poly-
gons. A demonstration of how x is calculated with this linear 
model is shown in Fig. 11a. Other regression models may 
also be used in practice, though we must bear in mind that 
the number of data points in these models will be rather 
small due to the limited runtimes being imposed.

Table 1  S-metric values, 
percentage deviations between 
k and f1 , and final archive set 
sizes from the five algorithm 
variants for differing values of k 

All figures are taken from 250 data points, one per address. The bold typeface indicates the best-observed 
values; asterisks indicate where these values were seen to be significantly different to the second-best val-
ues at the 0.001 level

IP(12) IP(24) LS(12) LS(24) RI

S − metric(mean ± s.d.)

k = 1000 0.295 ± 0.283 0.428 ± 0.327 0.654 ± 0.297 *0.763 ± 0.257 0.597 ± 0.304
k = 5000 0.186 ± 0.271 0.388 ± 0.346 0.704 ± 0.323 *0.818 ± 0.272 0.649 ± 0.332
k = 10,000 0.172 ± 0.264 0.369 ± 0.328 0.741 ± 0.320 *0.850 ± 0.256 0.710 ± 0.326
k = 25,000 0.142 ± 0.241 0.350 ± 0.343 0.767 ± 0.306 *0.880 ± 0.232 0.746 ± 0.329
k = 50,000 0.089 ± 0.198 0.326 ± 0.339 0.800 ± 0.287 *0.892 ± 0.226 0.756 ± 0.330
Percentage deviation between k and the minimum value for f1 in the archive (mean ± s.d.)
k = 1000 12.77 ± 16.85 9.502 ± 15.45 3.346 ± 11.73 2.429 ± 10.35 2.736 ± 9.736
k = 5000 17.52 ± 20.75 9.821 ± 15.52 4.193 ± 14.34 1.779 ± 10.14 2.693 ± 10.71
k = 10,000 17.96 ± 20.31 11.87 ± 16.98 3.666 ± 12.88 1.824 ± 9.711 1.523 ± 6.092
k = 25,000 14.51 ± 17.90 9.542 ± 13.14 1.645 ± 7.210 0.233 ± 0.890 1.644 ± 7.364
k = 50,000 15.40 ± 20.34 10.56 ± 15.50 1.293 ± 7.978 0.518 ± 4.641 1.519 ± 7.654
Final archive size |A| (mean ± s.d.)
k = 1000 2.057 ± 1.025 2.195 ± 1.307 4.159 ± 3.555 *4.195 ± 3.638 3.268 ± 1.921
k = 5000 1.616 ± 0.774 1.728 ± 0.930 3.320 ± 3.494 *3.416 ± 3.783 2.284 ± 1.514
k = 10,000 1.540 ± 0.755 1.684 ± 0.965 2.848 ± 2.595 *2.904 ± 2.945 2.092 ± 1.438
k = 25,000 1.448 ± 0.658 1.456 ± 0.739 2.368 ± 1.869 *2.568 ± 2.956 1.676 ± 1.170
k = 50,000 1.238 ± 0.480 1.262 ± 0.532 *2.044 ± 1.796 2.020 ± 2.494 1.419 ± 0.675

Table 2  Run times (in seconds) 
of the three optimisation 
algorithms for differing values 
of k 

All figures are the mean plus/minus the standard deviation taken from 250 data points, one per address. 
The bold typeface indicates the best-observed values; asterisks indicate where these values were seen to be 
significantly different to the second-best values at the 0.001 level

Method k = 1000 k = 5000 k = 10,000 k = 25,000 k = 50,000

Run times, including latency (mean ± s.d.)
LS(12) *0.492 ± 0.118 *0.700 ± 0.396 *1.226 ± 1.446 *2.526 ± 5.516 *3.261 ± 7.368
LS(24) 0.798 ± 0.217 1.126 ± 0.431 1.856 ± 1.594 3.757 ± 6.776 4.792 ± 7.405
RI 2.932 ± 0.959 3.669 ± 1.044 4.646 ± 1.560 7.320 ± 5.271 10.279 ± 7.557
Run times without latency (mean ± s.d.)
LS(12) *0.038 ± 0.038 *0.177 ± 0.411 *0.620 ± 1.474 *1.655 ± 5.431 *1.751 ± 7.330
LS(24) 0.067 ± 0.065 0.279 ± 0.432 0.887 ± 1.667 2.414 ± 6.737 2.686 ± 7.399
RI 0.143 ± 0.050 0.509 ± 0.243 1.246 ± 1.336 3.180 ± 5.191 4.793 ± 7.158
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Algorithm 5  Regression-based improvement

As noted previously, our chosen API allows the produc-
tion of several solutions per call. Here, we therefore use 
Algorithm 1 to produce up to ⌊ 50−1

n
⌋ initial polygons. A 

separate regression model is then maintained for each of 
these initial polygons, with ⌊ 50−1

n
⌋ new solutions being pro-

duced at each iteration. As with our local search method, 
each solution produced is then considered for inclusion in 
the final archive set A using the dominance criteria given 
in Definition 7.

Method Comparison

In this section, we compare the performance of the isoch-
rone-polygon method, multiobjective local search, and 
the regression-based improvement algorithm. In all trials 
reported here, out-and-back removal was employed, and 
n = 4 vertices were used in the generated polygons, allow-
ing up to twelve separate round trips to be generated in each 
API call. The remaining experimental details are the same 
as “Initial Comparison and Setup”.

Two variants of the isochrone-polygon method are con-
sidered here. After determining the isochrone, the first of 
these, IP(12), uses just one further call to produce twelve 
solutions. These are then used to form the archive set A of 
mutually non-nominating solutions. Similarly, the second 
variant, IP(24), uses two calls to produce 24 solutions for the 
construction of A . Our local search algorithm extends this 
approach by using these solutions to form the arc-weighted 
graph G = (V ,A,w) as described in “Improving Solutions 
using Multiobjective Local Search”. This graph, together 
with A , is then used as input for Algorithm 3. These algo-
rithms are labelled LS(12) and LS(24) in the following 
tables and figures. Note that the local search method makes 
no further calls to the API during execution.

In our trials, all applications of local search used breadth-
first search (BFS) for producing the tree T (as seen in Line 
3 of Algorithm 4). This path-finding algorithm identifies 
paths between vertices that contain the fewest possible 

number of arcs. In our trials, we also experimented with a 
randomised version of BFS in which vertices were removed 
from random positions in the BFS queue (as opposed to just 
the head of the queue); however, no significant differences 
in performance were observed between these variants.4 
Hence, only results from the BFS variant are reported here. 
Using our arc-weighted graph G = (V ,A,w) , the complexity 
of BFS is O(|V| + |A|) ; consequently, each application of 
Algorithm 4 (and iteration of Algorithm 3) has complexity 
O(|S|(|V| + |A|)).

Finally, for the regression-based improvement algorithm 
(RI), an iteration limit of l = 10 was used in all trials. This 
means that, including the production of the isochrone, eleven 
calls to the API are required per run. (Additional iterations 
of this algorithm were not seen to make further improve-
ments to solutions in general.)

Algorithm Accuracy

To compare the quality of the solutions produced by our 
five algorithm variants, we use the well-known S-metric [2]. 
This measures the quality of an archive set A by calculating 
the volume of the space existing between A and a single 
reference point. A demonstration is provided in Fig. 11b. 
To be valid, the reference point must be dominated by all 
solutions in the archive. Here, reference points for each 
problem instance were calculated by examining the returned 
archive sets of each algorithm and then taking the maxi-
mum observed values for both cost functions. As shown in 
Fig. 11b, volumes were then normalised to assume a value 
between zero and one, with larger values reflecting a higher-
quality archive set.

Figure 12 summarises the S-metric values achieved by 
the five algorithms for various values of k. As might be 
expected, for all values of k the isochrone-polygon method 

4 In this section, all claims of statistical significance are made 
according to two-tailed paired t-tests ( p ≤ 0.001 ) using results col-
lected across all 250 problem instances.
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gives significantly better archive sets when the number of 
solutions it initially produces is doubled from 12 to 24. The 
addition of local search also makes large improvements to 
these results, with the 24-solution variant producing sig-
nificantly better results than the twelve-solution variant for 
all values of k. In our trials, the 24-solution variant of local 
search was also seen to produce significantly better results 
than the regression-based improvement method for all val-
ues of k, although the latter was also seen to be a significant 
improvement on both isochrone-polygon variants. A sum-
mary of these S-metrics is also shown in Table 1, indicating 

the superiority of the archive sets returned by the 24-solution 
variant of the local search algorithm.5

Note that, unlike the local search algorithm, the regres-
sion-based improvement method does not optimise f2 
directly during execution. It is therefore relevant to also 
compare algorithm accuracy according to cost function f1 
only. To do this, Table 1 also gives information on the mini-
mum observed value for f1 in the archive sets. (Specifically, 
for each algorithm this is expressed as a percentage devia-
tion between the f1 value and k, averaged across the problem 

Fig. 13  Screen shot of the out-
put produced by our implemen-
tation [28]

5 A full listing of the results achieved by each algorithm on each 
instance can be found in [28].
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instances.). This reveals no significant differences between 
LS(24) and RI for any of the tested values of k, suggesting 
that, while these algorithms have similar capabilities for 
reducing f1 , the local search method is more effective at 
also reducing f2.

Archive Sizes and Execution Times

In comparing these algorithms, it is also useful to look at 
the sizes of the archive sets produced, since larger values 
for |A| will give users a wider choice of solutions. Table 1 
summarises this information. As shown, the best results are 
again returned by the local search methods—indeed, across 
all values of k, both variants of local search were seen to 
produce significantly larger archive sets than the regression-
based improvement method.

Table 2 summarises the run times of the three optimi-
sation algorithms with and without latency (here latency 
refers to the time taken between sending the API request 
and receiving the response). As shown, in both cases the 
regression-based improvement method takes the longest to 
execute due to the larger number of requests made and its 
associated bookkeeping. The 24-solution variant of local 
search also takes slightly longer than the twelve-solution 
variant in both cases because (a) it makes an additional call 
to the API, and (b) the larger number of solutions leads to 
graphs G = (V ,A,w) that have more vertices and arcs. That 
said, across our experiments with local search, 96% of runs 
were seen to terminate in less than six seconds, including 
latency.

Table 2 also demonstrates that run times lengthen when 
longer round trips are required. Some of these increases are 
due to the API, which requires more server-side computa-
tion time for calculating paths between distant waypoints. 
An extreme result was also witnessed for one address in 
our sample, located in rural Alberta, Canada. This particu-
lar case featured a very irregularly shaped isochrone whose 
outline tended to closely follow the small number of roads 
in the locality. As a result, it took Algorithm 1 over 100 s to 
identify suitable polygons for this case. One way of rectify-
ing this problem would be to simply reduce the number of 
increments in each for-loop of the procedure.

Conclusions and Further Work

This paper has proposed several fast-acting heuristics for 
the NP-hard k-length round trip (KRT) problem. Unlike 
existing approaches, these algorithms involve only small 
amounts of data transfer and do not need to store large map 
databases; however, they are still able to produce accurate 
solutions in short amounts of time (typically a few seconds), 
even over large geographical areas. “Initial Comparison and 

Setup” has demonstrated that our isochrone-polygon method 
produces solutions of greater accuracy than OpenRouteSer-
vice’s round_trip algorithm. “Method Comparison” has also 
shown that solution quality can be further improved using a 
fast, bespoke local search algorithm (and to a lesser extent, 
a regression-based improvement method).

During our research, we explored the idea of replacing 
the local search procedure with a variant of Johnson’s algo-
rithm that enumerates all cycles in the directed graph G that 
contain s. Given excess time, this approach is guaranteed 
to find the optimal (Pareto) archive set of cyclic solutions. 
However, it suffers from two drawbacks. First, the method 
only considers cycles which, as noted in “Problem Defini-
tion and Complexity”, is usually too restrictive for practi-
cal applications. Second, the run times of this approach are 
often excessive because the number of cycles usually rises 
exponentially with respect to graph size.

The screenshot in Fig. 13 shows an example output from 
our downloadable implementation [28]. This output is writ-
ten in html and viewed in a web browser. In addition to the 
interactive visualisations of round trips, other information is 
displayed in this output including elevation profiles, surface 
types, and greenery ratings. In future work, our multiobjec-
tive algorithm could be modified so that these features are 
also optimised. For example, additional cost functions might 
be used to help identify round trips that minimise the amount 
climbed or maximise the amount of paved surfaces. Other 
factors, such as the amount of lighting [30], the required 
number of street crossings [11], or the predicted traffic den-
sity, might also be considered, providing that this real-world 
information can be reliably determined.

Related to this, it would also be useful to further consider 
the aesthetics of a solution. Rossit et al. [34], for example, 
have noted that visual attractiveness is an important factor in 
vehicle routing problems, with users often preferring solu-
tions that are judged to be compact and logical. Again, such 
factors could be incorporated into our optimisation methods 
using additional cost functions. These might involve com-
paring a solution’s similarity to a standard geometric shape, 
or measuring how easy it is for a user to memorise its direc-
tions. It would also be useful to constrain round trips so that 
they do not stray too far from their designated starting point. 
This could be used during pandemics, for example, when 
governments urge the public to stay within limited distances 
of their homes.

As noted in “Initial Comparison and Setup”, the algo-
rithms presented here have been implemented in Python. 
We imagine that it be straightforward to reimplement these 
methods in JavaScript so that clients could download and 
execute these algorithms directly in a web browser. Shorter 
run times are also to be expected if compiled programming 
languages such as Java, Go, or C++ were to be used [32].
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