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Abstract

As the global population ages, it becomes crucial for the early detection and prevention of

neurological aspects of ageing, such as cognitive decline. The human brain ageing process

is biologically complex and could be affected by various factors. Therefore, the determi-

nation of a person’s brain biological ageing process holds important clinical implications,

which reflect that person’s brain health and may indicate the risk of age-associated brain

diseases. To quantitatively measure the brain biological ageing process, brain age, de-

fined as the biological age of the brain, has been proposed, which has demonstrated huge

potential in clinical diagnosis.

Brain age can be estimated by brain age prediction models, which take in brain-ageing-

related information, such as brain MR scans, and adopt machine learning models to make

predictions. Despite the rapid research advancements in brain age prediction over the

past decade, brain age prediction framework has yet to mature before the implementation

in clinical practice. In this thesis, we propose three novel approaches, each focused on a

distinct perspective, to make the brain age prediction model a more reliable, practical,

and accurate tool for clinical diagnosis.

Our contribution is three-fold: firstly, we propose a skewed loss function to correct a

commonly-observed regression bias in brain age prediction models. The skewed loss func-

tion unifies the model training and bias correction stages, achieving improved accuracy

compared with the state-of-the-art practices in the literature. A dynamic training algo-

rithm is further proposed for the skewed loss function. It adopts a heuristic approach to

iteratively tune the hyperparameters of the skewed loss function, which has been proven to

be robust to different datasets, model architectures and problem domains. The proposed

skewed loss function makes the model produce unbiased estimations of brain age, which

makes brain age prediction a reliable and trustworthy tool for clinical use. Secondly, we

generalise brain age prediction for clinical-grade low-resolution MR images, which makes

it a practical and accessible tool for hospital settings. We propose an integrated workflow
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by combining brain super-resolution and age prediction models. Clinical MR images are

firstly super-resolved, before being fed into a pre-trained age prediction model, which

have been proven to achieve negligible differences in predicting age compared with high-

resolution images. A non-uniform sampling strategy is also demonstrated to improve the

image reconstruction quality especially in the high-frequency regions of the brain. Lastly,

we demonstrate the strength of adopting a multi-modal approach for predicting brain

age more accurately compared with uni-modal models. Structural T1-weighted MR im-

ages and diffusion MRI measures of the brain microstructures are adopted to provide the

model with a more complete picture of brain ageing. A tract-wise training approach is

also proposed for predicting brain age from diffusion MRI measures, which performs fea-

ture selections in the model training process. It prioritises more age-sensitive features and

discards less useful ones for brain age prediction, which achieves an improved accuracy

on a relatively small dataset.
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Chapter 1

Introduction

As the world’s population ages, the early prevention and detection of neurological aspects

of ageing is becoming a public priority. Ageing can result in substantial alterations to

the brain structures and is closely related to brain function [1]. The neurological ageing

process is biologically complex [2] and could be affected by various brain diseases, such as

cognitive decline and dementia. Such brain-related diseases can accelerate the biological

process of brain ageing, which makes the brain appear older. Therefore, chronological

age does not comprehensively represent the complexity and heterogeneity of neurological

brain ageing process [3]. To construct the biological age of the brain, brain age has been

proposed to assess the biological process of brain ageing [3]–[5].

Brain age offers numerous benefits for clinical diagnosis, allowing the assessment of brain

health at the individual level [1]. It has been playing an increasingly crucial role in clinical

analysis and applications [6], which holds enormous potential to help establish a deeper

understanding of brain biological ageing process.

1.1 What is brain age?

Human biological ageing process is complex and heterogeneous, which can not be com-

prehensively represented using chronological age. To better understand the biological

ageing of the brain, brain age has been proposed and defined as the biological age of the

brain [3]–[5]. It builds on the understanding that human brain undergoes characteristic

changes with advancing age and that various factors, such as brain diseases or lifestyle

changes, can accelerate or slow down the natural biological ageing process of the brain.

1



Chapter 1. Introduction

1.2 What is brain age prediction?

Brain age prediction provides a novel framework to measure the brain age. It typically

adopts machine learning (ML) in a prediction task where the machine is trained on

brain-ageing related information, such as structural magnetic resonance imaging (MRI),

of people without psychiatric or neurological diagnoses, and is later applied to new data,

resulting in a predicted brain age. Brain age prediction aims to build a mapping be-

tween brain-ageing related information and brain biological age through machine learning.

Figure 1.1 illustrates an overview of the brain age prediction. It takes brain-ageing re-

lated information as input and produce brain biological age as prediction based on the

input data.

Figure 1.1: An overview of the brain age prediction

Training such machine learning model requires a paired dataset of brain-ageing related

data and corresponding brain biological age for each participant. However, there exists

no approach to assess the actual brain biological age. Therefore, in the literature, brain

age prediction contains two underlying assumptions:

Assumption 1. People without psychiatric or neurological diagnoses experiences average

age-driven changes of the brain trajectories, so that their brain biological age equal to their

chronological age.

Assumption 2. The brain biological ageing process for people without psychiatric or

neurological diagnoses is continuous.

In that way, brain age prediction model can be formulated as building a machine learn-

ing model that takes ageing-related information about the brain, from people without

psychiatric or neurological diagnoses as input, and uses chronological ages, as output.

2
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1.3 Why does brain age prediction matter?

The human biological ageing process can be influenced by various internal and external

factors, such as genetic differences and brain injury from accidents. Huge variations

among people’s brain-ageing trajectories may result in the varying ages when people

develop age-related brain diseases [4]. Brain age prediction provides an effective approach

of measuring brain biological ageing process at the individual level, which make brain age

a personalised marker of brain health in the biological ageing process. From Figure 1.1,

after the model training phase, the trained model could be applied on new data, resulting

in predicted brain age for new participants. Such approach has been widely adopted

in research, providing a quantitative approach to investigate whether certain cognitive

training or pharmacological treatments can make any changes to the brain biological

ageing process [3], [6].

Brain age prediction is also particularly helpful for early prevention and detection of

neurological disorders. By comparing the predicted brain age with chronological age,

brain age delta can be naturally defined by subtracting chronological age from predicted

brain age, which can be used to identified whether there is a sign of accelerated or

delayed brain ageing. A positive brain age delta represents indicates more prominent

brain changes that commonly occur with ageing progression, whereas a negative brain

age delta signifies a more youthful brain pattern than expected for that individual’s age.

Brain age delta has been proven to be correlated with various cognitive disorders, such

as mild cognitive decline and dementia [7]–[9].

Therefore, a more complete picture of brain age prediction workflow is demonstrated in

Figure 1.2.

Figure 1.2: An complete overview of brain age prediction

3
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From Figure 1.2, after the model training process, the trained model can be applied on the

new participant. Afterwards, the brain age delta of the new participant can be calculated

to indicate whether this individual has a higher risk of a certain brain disease. Measuring

the brain ageing process at the individual level makes the brain age more crucial in

clinical applications for the early diagnosis of neurological diseases, which indicates clear

potential for clinical translation.

1.4 Why do brain age and brain age delta matter?

In clinical applications, brain age has been proven to correlate with a range of brain-

related disorders and is predictive of mortality risk [10]. It has also been found to be

associated with various lifestyle behaviours. Risky behaviours, such as smoking, alcohol

consumption [11], high diastolic blood pressure, and obesity [12] have been related to

accelerated brain ageing, whereas protective behaviours [13]–[15] show a delay in the

brain ageing process. Brain age reflects the biological ageing process of the brain and

brain age delta can be adopted to quantitatively measure the process of accelerated or

delayed brain biological ageing. Some researches have also identified that brain age delta

can be correlated with the severity of cognitive diseases [16]. Patients with Alzheimer’s

disease experience a high brain age delta (up to +10.0 years), whereas at its earlier stage

of mild cognitive decline, patients experience a lower positive brain age delta (up to

+6.2 years), which provides clear clinical potential of using brain age prediction as an

early-stage screening tool.

Introducing brain age in clinical analysis can help establish a deeper understanding of

the relationship between brain biological ageing and neurological diseases. Therefore,

measuring brain age can provide a window into general biological ageing as a potential

brain-ageing biomarker. It provides a signal indicating the brain health conditions at the

individual level, which can help early detection of brain diseases.

4
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1.5 Research landscapes in brain age prediction

Brain age prediction has attracted growing interest over the past decade for its clinical

promises in hospital settings. However, despite the rapid development over the past

decade, the brain age prediction framework has yet to mature before its implementation

in hospital settings and more researches are needed.

From Figure 1.2, the main backbone of the brain age prediction framework consists

of three components, brain-ageing related information (Data), machine learning

models (Models), and predicted brain age (Model Predictions). In the literature,

most studies in brain age prediction focus on at least one aforementioned component to

improve brain age prediction framework. In the following subsections, a brief introduction

of the current research avenues is illustrated for each aforementioned perspective.

1.5.1 From the data perspective

Brain MRI comes in multiple data modalities, two of the most useful in brain age pre-

diction being structural MRI and diffusion MRI. Structural MRI details the brain’s

anatomical structures, which is valuable for mapping brain anatomy, detecting struc-

tural abnormalities, and tracking changes in brain morphology over time. It also pro-

vides detailed images of the brain’s gray matter, white matter, and cerebrospinal fluid

spaces, allowing researchers to assess the brain volume and cortical thickness. Commonly

used MRI sequences in structural MRI include T1-weighted, T2-weighted, and FLAIR

(Fluid-Attenuated Inversion Recovery) images, each offering different contrasts to high-

light specific tissue types or abnormalities. Diffusion MRI, on the contrary, focuses on the

microscopic movement of water molecules, which is influenced by the underlying tissue

structure. The most commonly used form of diffusion MRI is Diffusion Tensor Imaging

(DTI), which measures the direction and magnitude of water diffusion in the brain. It

is critical for mapping white matter tracts, the pathways that connect different regions

of the brain. By visualizing these connections, diffusion MRI provides insights into the

brain’s connectivity and can detect abnormalities in the white matter which may be as-
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sociated with various neurological diseases. Different MR image modalities reflect the

brain ageing process from different aspects and combining them gives the model a more

complete understanding of brain ageing, which typically improves performance. Choos-

ing multiple brain MR image modalities for predicting brain age has been extensively

explored in recent years [17]–[19].

Apart from adopting multiple MR image modalities for brain age prediction, adopting

large datasets can also improve model performance, especially deep-learning-based mod-

els. In the literature, there have been several large-scale brain MR datasets for predicting

brain age, such as the UKBioBank [20] and OpenBHB [21] datasets. The UKBioBank

dataset includes more than 14,000 participants, with multiple image modalities, such

as Structural MRI, diffusion MRI, functional MRI, and Susceptibility-Weighted Imaging

(SWI). The OpenBHB dataset gathers more than 5,000 3D T1-weighted brain MRI from

Healthy Controls and is highly multi-sites, aggregating more than 60 centers worldwide

and over 10 studies. A larger brain MR image dataset essentially increases the diversity

of participants, making the model training more stable and increasing the generalisation

of models.

1.5.2 From the model perspective

Various models have been proposed over the past decade to predict brain age. Traditional

machine learning models and deep learning models have both been adopted in predicting

brain age. Generally speaking, traditional machine learning models are more likely to be

applied when non-imaging data, such as extracted features from the brain, is adopted

for predicting brain age. They are usually fast to train and require significantly fewer

computational resources compared with deep learning models. Their predictions are also

easier to interpret compared with deep learning models, which is beneficial in clinical

environments. Commonly adopted traditional models include ridge regression [18], [22],

[23], least absolute shrinkage and selection operator (LASSO) [17], [19], [24], relevance

vector regression (RVR) [5], [6], [19], [25], support vector regression (SVR) [18], [19], [24],

[26], [27], Gaussian Process Regression (GPR) [1], [18], and extreme gradient boosting
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(XgBoost) [19], [28]–[30].

With the rapid advance of deep learning models, various neural network architectures

have also been proposed for brain age prediction. Deep learning models are usually

adopted when imaging data is used for prediction. Deep learning models demonstrate

stronger learning capacities in retrieving information from data compared with tradi-

tional machine learning models and do not require any specific data preprocessing tech-

niques. Various deep learning model architectures have been proposed for brain age pre-

diction, such as Convolutional Neural Network (CNN) [1], Residual Network (ResNet)

[31], Inception-based network [32], Fully-Convolutional Network [33], Densely-connected

network (DenseNet) [34], and Transformer-based network [35], [36]. In the literature,

most model architectures for predicting brain age are directly generalised from those in

the computer vision field, such as DenseNet [37] and Transformer [38], as the backbones,

with additional optimizations for 3D MR images [34], [36]. However, there are also some

obstacles in training large deep-learning brain age prediction models. Firstly, MR images

are volumetric data, which requires 3-dimensional network layers, increasing the size of

models. Secondly, compared with computer vision field, the size of available MR dataset

is relatively small, with the largerst MRI dataset having just more than 14,000 images.

1.5.3 From the model prediction perspective

Another research avenue focuses on correcting model predictions after the model training

phase to prevent model from being biased or affected by any confounding factors. For

example, if the model predictions are biased towards particular groups of participants

due to confounding demographic variables, such as gender and age, the validity of brain

age as a brain health marker will be compromised.

One of the main prominent biases for brain age prediction models is called “non-zero

age-delta correlation (ADC) bias” [1], which has been consistently observed in many

studies. It manifests as systematic overestimations of brain age for young individuals

and underestimations for elderly participants. Mathematically speaking, the age-delta
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correlation (ADC) can be defined as

ADC = Corr(y, f(x)− y) (1.1)

where y represents ground truth (chronological age) and f(x) represents model predictions

(predicted brain age). And the “non-zero age-delta correlation (ADC) bias” indicates that

ADC = Corr(y, f(x)− y) ̸= 0 (1.2)

holds true for any brain age prediction models.

Such “non-zero age-delta correlation (ADC) bias” significantly weakens the clinical use

of brain age delta by introducing a spurious relationship between brain age delta and

chronological age, which typically requires further corrections to derive unbiased predicted

brain age [23], [39], [40]. The potential cause of this bias and correction approaches will

be more thoroughly discussed in Section 2.2.

1.6 Aims and objectives of the research

As is discussed in previous sections, brain age prediction can be performed at the in-

dividual level, which makes brain age a personalised marker indicating brain health,

demonstrating huge potential in clinical diagnosis. To validate brain age as the marker,

a reliable, practical and accurate brain age prediction model is the essential prerequisite.

Therefore, this research aims to develop novel algorithms and methodologies for brain

age prediction problems to make brain age prediction models more reliable, practical and

accurate, facilitating its clinical use.

To achieve this aim, the objectives of the thesis are summarised as follows:

• Propose algorithm especially for improving the reliability of model predictions,

which prevents potential regression bias in predicting brain age and makes the

model produce unbiased estimations of brain age.

• Propose algorithm especially for enhancing the practicality of brain age prediction,
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which makes brain age prediction accessible in clinical environments, allowing the

use of clinical-grade low-resolution MR images for predicting brain age.

• Propose algorithm especially for boosting the accuracy of predicting brain age,

which adopts the brain macro- and micro-structural data for multi-modal learning.

1.7 Thesis contributions and publications

The thesis presents a substantial body of work for brain age prediction methodologies

from three perspectives, which aim to achieve more reliable, practical and accurate brain

age prediction models. The main contributions of the thesis are summarised as follows:

• The first contribution of this thesis is about correcting a commonly observed regres-

sion bias in brain age prediction models to make the models more reliable. A skewed

loss function is proposed to correct the regression bias directly in the model training

phase, replacing the conventional symmetric loss functions, such as the L1 or L2

loss function. The skewed loss assigns different loss values depending on whether

the model overestimates or underestimates a participant’s age and is subject to

different participants’ chronological ages. It is the first integrated bias correction

approach that can be adopted for deep learning models. A dynamic training algo-

rithm is further developed to search the optimal hyperparameters for the skewed

loss function. The proposed algorithm adopts a heuristic approach to tune the hy-

perparameters iteratively, which has been proven to be robust to different datasets,

data distributions, model architectures, and problem domains.

• The second contribution of this thesis is about brain MRI super-resolution and

its application in brain age prediction models to make brain age prediction easily

accessible and practical. A direct and effective non-uniform sampling algorithm

is proposed for improving the reconstruction quality of high-frequency informa-

tion details in brain MRI super-resolution. This algorithm is the first work that

treats different brain regions separately, depending on their structural differences,

to improve the super-resolution quality of brain MR images. A modified brain age
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prediction workflow is then developed by integrating the brain MRI super-resolution

techniques before predicting brain age, which extends brain age prediction for low-

resolution clinical-grade MR images. The super-resolved MR images achieve in-

distinguishable accuracy compared with original high-resolution MR images, which

makes it feasible for clinical-level brain age prediction.

• The third contribution of this thesis is about multi-modal brain age prediction

using brain microstructural data and structural images to boost the predictive ac-

curacy of the model. A tract-wise approach is proposed for brain age prediction

using diffusion MRI measures and quantitative MRI measures of the white matter

tracts. The tract-wise approach prioritises more informative tracts of the brain

in the model training process, providing insights into more ageing-sensitive white

matter tracts. Unlike some schemes that perform feature selection before model

training, the tract-wise approach preserves the most complete information, keeping

all white matter tracts in consideration. A performance comparison is carried out

between structural images and microstructural measures in predicting brain age. A

two-stream framework is then proposed by combining information from structural

images and white matter microstructure measures, which provides the model with

a more complete picture of the brain, achieving improved accuracy compared with

any single data modality.

One journal paper is published based on the first contribution of the thesis, one conference

paper is accepted based on the second contribution of the thesis, and another journal

paper is under review based on the third contribution of the thesis. The papers are as

follows:

• Wang, H., Treder, M., Marshall, D., Jones, D. and Li, Y., 2023. A skewed loss

function for correcting predictive bias in brain age prediction. IEEE Transactions

on Medical Imaging, 42(6), pp.1577-1589.

• Wang, H., Marshall, D., Jones, D. and Li, Y., 2024. Improving High-Frequency

Details in Cerebellum for Brain MRI Super-Resolution (Accepted by 4th IEEE
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International Conference on ICT Solutions for eHealth).

• Wang, H., Mcnabbs, C., Messaritaki, E., Laguna, P., Jones, D. and Li, Y., A

Tractwise Approach for Brain Age Prediction using Measures of White Matter Mi-

crostructure (under review by IEEE Journal of Biomedical and Health Informatics).

1.8 Thesis outline

The remainder of the thesis is organised as follows:

• Chapter 2 presents a literature review. First, the development of the brain age

prediction problem and its clinical applications are reviewed. Then, the state-of-the-

art methodologies for correcting regression model bias for brain age prediction are

thoroughly studied. Afterwards, the recent advances in super-resolution techniques

for 2D natural images and 3D brain MR images are discussed. Finally, studies that

adopt multi-modal brain MRI data for predicting brain age are summarised.

• Chapter 3 focuses on a commonly-observed regression model bias in brain age pre-

diction problem. A skewed loss function approach is proposed to correct such bias

to derive unbiased estimations of brain age. To stabilise model performance, a dy-

namic algorithm is also developed to search for the optimal hyperparameters for

the skewed loss. The chapter concludes with a performance comparison between

the proposed skewed loss and the state-of-the-art correction approaches.

• Chapter 4 emphasises the usability of integrating the super-resolution techniques

into the brain age prediction, extending the brain age prediction to low-resolution

MR images. A non-uniform sampling strategy for brain MRI super-resolution is

also demonstrated to make the model focus more on the under-represented regions

of the brain, which improves the reconstruction quality for high-frequency details

in the brain.

• Chapter 5 highlights the potential of adopting measures of white matter microstruc-

ture, other than structural MR images, for brain age prediction. A tract-wise ap-

11



Chapter 1. Introduction

proach for predicting brain age is proposed by prioritising more informative white

matter tracts, which provides insights into the more ageing-sensitive white matter

tracts. Brain age prediction using structural images is also adopted as the contrast.

A two-stream approach is further proposed by fusing the information from struc-

tural images and microstructure measures to produce more accurate estimations of

brain age.

• Chapter 6 concludes the thesis and summarises the main contributions of this re-

search. It also suggests potential future research avenues for brain age prediction.

1.9 Summary

This chapter presents an overview of the background of brain age prediction and its

research avenues. Brain age prediction aims to estimate the biological ageing of the

brain using brain-ageing related information, such as brain MR images, with the help

of machine learning models. Despite the rapid research advancements over the past few

years, there is still a huge gap for its clinical use in hospital settings. This thesis focuses

on three distinct aspects of brain age prediction to make it a more reliable, practical,

and accurate tool,facilitating its application in hospital settings. In the next chapter,

a thorough literature review on the evolution of brain age prediction and its clinical

importance is presented.
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Literature review

In this chapter, we begin by exploring the evolution of brain age prediction over the

past decade, focusing on key techniques and their clinical significance. We then review

recent advancements aimed at enhancing the accuracy of brain age prediction, examining

these improvements from three distinct perspectives, which correspond to the detailed

discussions in Chapter 3, Chapter 4, and Chapter 5.

2.1 Brain age prediction

In this section, we review the development of model architectures for brain age prediction

and clinical applications of brain age.

2.1.1 Brain age prediction models

In the literature, both traditional machine learning models and deep learning models

have been adopted for predicting brain age over the past decade. Traditional machine

leaning models and deep learning models have their strengths and weaknesses, and no

one significantly outperforms the other in terms of model accuracy. It should also be

stressed that although there are some public datasets that have been adopted for brain

age prediction research, there is no public benchmark datasets for model evaluations.

Also, different brain MR image modalities have been adopted for predicting brain age

in different studies, which makes it difficult to fairly compare model performance across

different studies. There are also many studies that propose different models using private

datasets, which further makes it difficult for public evaluations. Another factor that

significantly affects model performance is the age range of the training dataset. Models

13



Chapter 2. Literature review

trained on a dataset with large age range tend to demonstrate larger mean absolute error

(MAE) compared with models trained on a smaller age range dataset.

Generally speaking, traditional machine learning models are more likely to be applied

when non-imaging data, such as extracted features from the brain, is adopted for pre-

dicting brain age. They are usually fast to train and require significantly fewer com-

putational resources compared with deep learning models. Their predictions are also

easier to interpret compared with deep learning models, which is beneficial in clinical

environments.

Commonly adopted traditional models include ridge regression [18], [22], [23], least abso-

lute shrinkage and selection operator (LASSO) [17], [19], [24], relevance vector regression

(RVR) [5], [6], [19], [25], support vector regression (SVR) [18], [19], [24], [26], [27], Gaus-

sian Process Regression (GPR) [1], [18], and extreme gradient boosting (XgBoost) [19],

[28]–[30]. Considering the wide range of brain-ageing datasets adopted in these studies,

the model performance also varies across different studies and different datasets. Xiong

et al. [19] adopted four models, LASSO, RVR, SVR, and XgBoost on the diffusion MRI

measures data from the UKBioBank dataset [20] and achieved an MAE around 3 years.

Cole et al. [17] adopted LASSO on multiple MR image modalities and achieved an MAE

of around 4 years.

With the rapid advance of deep learning models, various neural network architectures

have also been proposed for brain age prediction. Deep learning models are usually

adopted when imaging data is used for prediction. Deep learning models show stronger

learning capacities in retrieving information from data and do not require any specific

data preprocessing techniques. MR images, even after being minimally preprocessed,

such as image registration, can achieve satisfactory accuracy using relatively simple deep

learning models [1]. Cole et al. [1] first demonstrated the feasibility of performing brain

age prediction on raw 3D structural images using a plain convolutional network with

repeated 3D convolutional layers. Li et al. [31] later applied a 3D ResNet architecture on

the resting state functional MRI data to predict brain age. Rao et al. [32] developed an
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inception-based model [41] with global average pooling. Peng et al. [33] built a fully con-

volutional network, named Simple Fully Convolutional Network (SFCN), together with

KL-divergence as the loss function, which successfully achieved a new state-of-the-art per-

formance and ranked first place in the PAC2019 competition. Wood et al. [34] adopted

the 3D DenseNet architecture and applied brain age prediction on the clinical-grade MR

images, which generalises the brain age prediction on real-world MR images. Yin et al.

[42] introduced demographic variables for more accurate brain age prediction and eval-

uated the interpretability of 3D convolutional networks. Transformer-based models [38]

have also been applied in recent years. He et al. [36] applied the transformer to extract

global information from whole brain images and local information from image patches

and introduced a global-local transformer for brain age prediction. Hu et al. [35] com-

bined the transformer and the squeeze and excitation block [43] to help the transformer

to learn better local details. However, due to the computational cost, transformer-based

models are typically trained on 2D slices rather than 3D volumes.

Comparing model performance across different studies is also difficult for deep learning

models. Cole et al. [1] trained their CNN on the Brain-Age Healthy Control (BAHC)

dataset, with 2001 subjects, achieving an MAE around 5 years. Peng et al. [33] trained

their SFCN using UKBioBank dataset and achieve an MAE between 2 to 3 year. Wood et

al. [34] trained their DenseNet on private T2-weighted MRI dataset, achieving an MAE

below 2 years.

Although various deep neural network architectures have been introduced in brain age

prediction, the backbones of most models are generalised from their 2D versions, with

some additional optimizations for 3D volumetric data. Therefore, some standard mod-

els, such as SFCN [33] and DenseNet [34], have still been widely adopted nowadays,

considering their computational speed and learning efficiency.
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2.1.2 Clinical applications of brain age

Brain age has been adopted in various clinical assessments, aiming to help the early de-

tection of brain-related disorders and may lead to more timely and targeted interventions.

It has been adopted in various neurological conditions, such as the Alzheimer’s disease

(AD) [7], [9], [44], [45], mild cognitive impairment (MCI) [7]–[9], [44]–[46], and Trau-

matic brain injury [4], [47]. Also it has been linked to psychiatric disorders such as

schizophrenia [48]–[51], including major depressive disorder (MDD) [51]–[56] and autism

spectrum disorder [56]–[58]. Mohajer et al. adopted brain age prediction to confirm that

gray matter atrophy is associated with accelerated biological brain aging in patients with

mild cognitive impairment and Alzheimer’s disease [7]. Beheshti et al. demonstrated

that the brain biological ageing process accelerates along with the severity level increase

of Alzheimer’s disease using a brain-age score [44]. Participants with mild cognitive

impairment experience +2.38 years accelerated brain ageing, whereas participants with

Alzheimer’s disease experience +5.36 years accelerated brain ageing. Koutsouleri et al.

investigated how schizophrenia, major depression, personality disorder, and individuals

in at-risk mental states for psychosis affect the neuro-anatomical age using brain age pre-

diction [51]. Group analysis demonstrated that patients with schizophrenia experience

the highest level of brain ageing acceleration, achieving +5.5 years on average.

Apart from the relationship with brain-disorder diseases, brain age has also been linked to

various markers of health. Smoking, alcohol consumption [11], high blood pressure [12],

and obesity [12], [59], [60] tend to be associated with a positive brain age delta, whereas

regular meditation [13], practising music [14], and higher education level [15] have been

linked with delayed brain ageing. Ronan et al. demonstrated that overweight and obese

individuals are associated with a greater degree of brain volume atrophy, with maximal

effects in middle-age corresponding to estimated 10 years brain ageing acceleration [59].

Luders et al. applied brain age prediction for meditators’ brain and found out at the

age of 50, there exists an average 7.5 years delay in brain ageing process compared with

control groups [13]. Also, for every additional year over fifty, meditators’ brains were
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estimated to be an additional 1 month and 22 days younger than their chronological

ages.

Adopting brain age in clinical assessments can effectively indicate the risk of poten-

tial disease, even if no obvious clinical symptoms are observed [6]. If a high positive

brain age delta is observed, further tests could be conducted, which may reveal any pre-

symptomatic disorders. Alzheimer’s disease has been found to result in a high positive

brain age delta [7], [9], [44], [45], whereas its preclinical stage, mild cognitive impairment,

has been found to show a smaller brain age delta [7]–[9], [44], [45]. Therefore, adopting

brain age can be used to detect brain disorders in the early stage before the neurological

conditions become worse.

Despite the wide adoption of brain age prediction in brain ageing analysis, the brain age

prediction framework has yet to mature before the implementation in clinical settings. To

make brain age prediction applicable in hospital settings, some key problems need to be

solved [3]. Firstly, this field lacks consensus regarding the construction and evaluation of

developed brain age prediction models. Different datasets are adopted for model building

and testing, which make it difficult to compare different models. Secondly, most brain age

prediction models are trained and tested on high-resolution data from curated databases

that do not represent current practices in clinical imaging. Thirdly, brain-age estimation

can be subjected to confounding factors related to input characteristics deriving from

differences in scanners, image acquisition protocols, image quality, and preprocessing

pipelines [3]. Lastly, some statistical age-bias correction approaches, which can in certain

cases artificially inflate the model’s prediction accuracy or, under specific circumstances.

Therefore, care must be taken when performing different bias corrections.

2.2 Regression model bias

In the previous section, we highlighted the wide range of clinical applications of brain

age, demonstrating its strong potential as a biomarker of brain health. In this section,

we turn to the first objective of this thesis and present reviews on the regression bias
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in brain age prediction models. We first explain the reasons that cause this bias and

then demonstrate why such bias matters. Afterwards, we review the existing correction

approaches to tackle such bias.

In Section 1.5.3, we introduced the so-called “non-zero age-delta correlation bias”. Such

bias has been frequently observed in brain age prediction models [1], [10], [22], [26],

[33], [34], [39], [40], [61]–[64]. The predicted brain age tends to become older than the

actual chronological age for young participants and younger for older participants. In

Section 1.5.3, we noted that such bias behaves as a strictly non-zero correlation between

chronological age and brain age delta.

In the literature, this correlation is usually measured using Pearson’s r correlation [33],

[34], [62] or Spearman’s rank correlation [1], [39]. The Pearson’s r is defined as

r =
n
∑

y∆−
∑

y
∑

∆√
(n

∑
y2 − (

∑
y)2) (n

∑
∆2 − (

∑
∆)2)

(2.1)

where n, y, ∆ represents the number of participants, chronological age, and brain age

delta respectively. The Spearman’s rank correlation is defined as

ρ = 1− 6
∑

d2i
n(n2 − 1)

(2.2)

where di is the difference between the ranks of chronological age and brain age delta, and

n is the number of participants.

Pearson’s r measures statistical dependence between two sets of data in terms of the linear

correlation of the variables. Spearman’s rank correlation measures the linear correlation

between the rank values of two variables and hence quantifies monotonic relationships.

The range of both correlation coefficients lies between -1 (negative correlation) and 1

(positive correlation). In this way, the bias manifests as a negative age-delta correlation

(ADC) value.
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2.2.1 Why does the bias arise?

There have been different explanations of the cause of this bias in the literature. Liang et

al. [22] found that a negative ADC value consistently arises in a range of ageing datasets

regardless of the regression models being used. Le et al. [26] argued that bias is inevitable

for regression models due to the Regression to the Mean (RTM) phenomenon and hence

not limited to ageing datasets. Smith et al. [62] observed that a penalized regression

model and a non-Gaussian distribution of the participants’ chronological age can also

cause the model to make predictions towards the mean age. In Section 3.2.1, we will

provide another potential cause of such bias based on mathematical evaluations.

In real-world experiments, a relatively large ADC may be observed more frequently when

adopting relatively simple models and smaller datasets [22], [33], [39], [62]. There are

also some recent studies claiming that their models achieve a negligible bias using more

advanced model architectures [34], [42] and larger datasets. It may imply that such

age-related bias can be alleviated using more sophisticated model architectures.

2.2.2 Why does the bias matter?

Another question we would like to answer about the bias is why does it matter for

subsequent analyses.

The purpose of the brain age delta is to indicate overall brain health in the ageing process.

When brain age delta is adopted as the independent variable in the subsequent analysis

on a covariate A, one should always check whether A is associated with chronological age

or not. If covariate A is not related to chronological age, then it is safe to evaluate the

bivariate relationship between brain age delta and variable A. However, if A is correlated

with chronological age, a spurious relationship will naturally arise between the brain age

delta and variable A. The apparent relationship between brain age delta and variable

A might be more driven by the chronological age and not the brain age delta [62]. In

that case, the chronological age confounds the relationship between brain age delta and

variable A [65]. Therefore, the inclusion of chronological age dependence of brain age
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delta reduces its effectiveness as a biomarker of brain health.

2.2.3 Bias correction approaches

Although the observed bias may be alleviated by adopting more sophisticated models and

larger training datasets [34], the bias still needs to be eliminated, especially in situations

with low computing resources. To address such bias in brain age delta, a two-stage

correction approach has been proposed and widely adopted in the literature [10], [22], [39],

[40], [62], [63], [66]. It introduces a second-stage correction to correct model predictions

from the first stage, i.e., the brain age prediction model and the resultant corrected brain

age delta will then have no linear relationship with chronological age [39]. The pipeline

of the two-stage correction approach is demonstrated in Figure 2.1.

Figure 2.1: The pipeline of the two-stage correction approach. The “Corrected Brain

Age” block represents the final estimation of brain age and the corrected brain age should

have no linear relationship with chronological age.

The detailed two-stage correction approach implementations can be summarised below:

1. Stage 1 - Brain Age Prediction: Train a regression model f to predict chronological

age (Y) given brain MR images (X). The uncorrected brain age delta is defined as

δ = f(X)− Y (2.3)

2. Stage 2 - Bias Correction: Remove the dependence of uncorrected brain age delta

δ on the chronological age (Y).

Two different approaches have been proposed in the bias correction stage:

• Approach 1 [22], [62], [63], [66]:

1. Fit a linear regression between uncorrected brain age delta δ and chronological
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age Y
δ = β1 × Y + β0 (2.4)

2. The corrected predicted brain age is defined as

f(X)corrected = f(X)− (β1 × Y + β0) (2.5)

3. The corrected brain age delta is then defined as

δcorrected = f(X)corrected − Y (2.6)

• Approach 2 [10], [39]:

1. Fit a linear regression between predicted brain age f(X) and chronological age

Y
f(X) = β1 × Y + β0 (2.7)

2. The corrected predicted brain age is defined as

f(X)corrected = (f(X)− β0)/β1 (2.8)

3. The corrected brain age delta is then defined as

δcorrected = f(X)corrected − Y (2.9)

Regarding the first approach, there have been several studies [23], [64], [67] arguing that

this approach essentially corrects the target label (Y) and the model prediction is still

biased. Moreover, in a machine learning framework, the target value (Y) from the test

set should remain unknown when the correction approach is applied. Otherwise, one

can always make corrections towards the target value (Y) to achieve a significantly lower

error, which may be regarded as a data leakage problem [64]. The first approach uses the

chronological age (target value) to make corrections in (2.5), which violates the principles

of this predictive framework.

To apply the second approach in the brain age prediction framework, the linear regression

(2.7) is performed on the validation set and the resultant parameters (β0, β1) are assumed

to be generalised to the test set. In that way, the predictions from the test set can be
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corrected using (2.8).

The two-stage correction approach has become prevalent due to its robustness and user-

friendly nature. In Chapter 3, we will conduct a more detailed analysis of the two-stage

correction approach and we refer to the second approach [10], [39] as the default two-stage

correction approach in the rest of this thesis.

Despite the wide adoption of the two-stage correction approach, there also exist other

correction approaches to tackle the bias. Zhang et al. [40] argued that the two-stage

correction approach performs a group-level correction and ignores the bias for each age

group. They proposed age-level bias correction which can be integrated as an additional

stage of the two-stage correction approach. It performs a second correction for each age

group, which can be summarised as

δaci = (δi − ua)/σa (2.10)

where δaci denotes the age-level corrected delta over a sample of age a, ua and σa denote

the mean and standard deviation of the corrected delta from (2.6) and (2.9) over a sample

of age a.

In that way, the bias in each age group can be eliminated since

Ea[δ
ac
i ] = Ea[(δi − ua)/σa] = (Ea[δi]− ua)/σa = 0 (2.11)

However, the age-level bias correction [40] also needs to use the target value (Y) in the

correction, as is shown in (2.10).

Another argument about the two-stage correction approach is that it does not take ADC

directly into account. Instead of correcting the predictions of a biased model, Treder et

al. [23] proposed to fuse both stages by integrating a correlation constraint into the model

training stage. This results in a regression model that is unbiased to start with and hence

does not require post-hoc correction. To this end, the overall constrained optimization

problem can be defined as
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min L̃(y, ŷ)

s.t. |Corr(y, δ)| ≤ ρ

(2.12)

However, the authors use an analytical solution for ridge regression and kernel ridge

regression which does not extend to deep learning models.

2.2.4 Regression model bias summary

To sum up, the observed bias in brain age prediction models prevents the direct use of the

brain age delta as a biomarker and such bias needs to be addressed. The bias arises due to

the irreducible level of noise in the dataset, resulting in the model’s incapability to model

target labels accurately. Using more advanced models may alleviate such bias whereas

it requires more computational resources. Since chronological age is usually a crucial

factor in many brain-related clinical studies, the inclusion of this bias may introduce a

spurious relationship with other variables of interest if other variables are also associated

with age. The apparent relationship between the brain age delta and variables of interest

might be more driven by chronological age and not the brain age delta [62]. To address

this bias, different approaches have been proposed. A two-stage correction approach has

been widely adopted, considering its robustness and user-friendly nature. By adding a

correction stage after the model training process using linear regressions, the resultant

brain age delta will have no linear relationship with chronological age.

2.3 MRI super-resolution

In the previous section, we focused on methodologies for bias correction in brain age

prediction models. In this section, we switch to a different aspect, brain MRI super-

resolution, which could be incorporated into the brain age prediction to make it feasible to

predict brain age on low-resolution MR images. We first explain the background of super-

resolution and how does super-resolution model work Then, we review the development

of deep-learning-based super-resolution over the past decade and demonstrate its recent

advances in MR imaging applications.
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2.3.1 Super resolution background

MRI super-resolution aims to increase the image resolution for low-resolution MR images,

by reconstructing more fine-grained details, matching the details in the high-resolution

images. There are many different super-resolution strategies, such as single image super-

resolution (SISR) and multiple image super-resolution (MISR). In this section, we focus

on single image super-resolution (SISR) for brain MR images.

Training SISR models requires paired low resolution (LR) and high resolution (HR) im-

ages. The LR images are typically generated from the corresponding HR images. The

resolution downgrading process from the HR image X to the LR image Y could be sim-

plified as:

Y = f(X) (2.13)

where f is a certain type of function that causes a loss of image resolution. The SISR

problem is to find an inverse mapping function g which could recover the HR image X̂

from the LR image Y:

X̂ = g(Y ) = f−1(Y ) + r (2.14)

where r is the reconstruction residual.

In the literature, deep learning models have demonstrated superior performance in SISR

problem. The training process of SISR are as follows. Firstly, LR images are fed into the

training model, producing the model output image, which has the same shape with the

corresponding high-resolution image. Secondly, the differences between model output

image and target HR image are evaluated using some loss functions, such as L1 loss.

Lastly, model parameters are updated based on the loss values from the second step.
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2.3.2 Deep-learning-based super-resolution

Super-resolution (SR) using deep learning models has experienced significant progress

over the past decade. Dong et al. first proposed SRCNN in 2014, establishing the basic

structure for SR models [68]. Kim et al. later proposed VDSR that learns the residual

information between the low resolution (LR) and high resolution (HR) images [69], greatly

reducing the learning difficulty. Motivated by the success of the ResNet [70], several

ResNet-based SR models have been proposed [71], [72], achieving superior performance

with the help of the residual connection structure. In addition, the dense connection

structure [37] proposed by Huang et al. has also been applied to SR problems. Tong et al.

applied several dense blocks and added dense connections between different blocks to build

the SRDenseNet [73]. Zhang et al. later took the advantages of both residual and dense

connection to propose a residual dense network to further improve the reconstruction

quality [74]. With the help of the Transformer models [38], Lu et al. proposed ESRT,

which consists of CNN and transformer backbones, achieving competitive results with

low computational costs [75].

Generative adversarial network (GAN) [76] has also been applied to SR problems. Ledig et

al. proposed SRGAN, which generates more realistic images compared with a CNN-based

model [72]. Bell-Kligler et al. introduced an unsupervised model named KernelGAN [77],

using real LR images for model training. In addition, various model design strategies,

such as the learning-based upsampling [78], [79], recursive learning [80], [81] have also

been proposed for SR.

However, most of these works are designed for natural 2D images and a direct conver-

sion into their 3D versions generally fails to achieve a good trade-off between the model

complexity and accuracy.

2.3.3 Super-resolution on MR images

Brain age prediction models are typically trained using research-level high-resolution MR

images so that the model can learn more detailed structures from the brain. However, it
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becomes an obstacle to applying brain age prediction for clinical diagnosis where high-

resolution scanners may not be available. To mitigate the image resolution differences be-

tween clinical and research-level images, MRI super-resolution becomes a straightforward

solution. Incorporating super-resolution models into the brain age prediction framework

makes it feasible to predict brain age in clinical environments where high-resolution MR

scanners are not accessible.

MRI super-resolution does not require extra scan time or high-cost scanners to generate

a high spatial resolution image and can be used to enhance the image quality from the

low-field scanners. The overall pipeline of brain age prediction after the inclusion of MRI

super-resolution is demonstrated in Figure 2.2

Figure 2.2: The brain age prediction pipeline with super-resolution included. The LR

images are first fed into super-resolution models, generating corresponding super-resolved

images, which will be used for brain age prediction.

Unlike natural images, structural MR images contain four dimensions, greatly increasing

the model complexity as well as learning difficulty. Therefore, models using 2D image

slices or 3D image volumes have both been explored in recent years.

2D models are generally more stable and faster to train, whereas they normally fail

to learn the information from the third dimension. Zhu et al. proposed a 2D multi-

scale GAN with a lesion-focused approach to achieve a more stable training process

and better perceptual quality for SR images [82]. You et al. presented a 2D GAN model

incorporating cycle consistency and residual learning [83]. Du et al. built a 2D CNN with

residual connections for SR reconstruction of single anisotropic MR images [84]. Lyu et al.

established an ensemble learning framework using 2D GANs to integrate complementary

SR results from each GAN model [85]. Zhao et al. introduced a channel splitting block

to incorporate different information from different receptive fields to increase the model

learning capacity [86].
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On the contrary, 3D models can utilize the additional information from the volumetric

images and outperform the 2D models at the cost of model complexity. Pham et al. first

demonstrated that for brain MRI, 3D models outperform 2D models by a large margin

[87]. Chen et al. applied the dense connection structure extensively and proposed the 3D

mDCSRN model [88], which contains relatively few parameters. A GAN-based model [88]

has also been built by Chen et al., producing more perceptually better results. Li et al.

proposed a lightweight network, called VolumeNet, using separable 2D cross-channel con-

volutions [89], which has fewer parameters but still achieves superior performance. Zhang

et al. adopted the squeeze and excitation architecture [43] and attention mechanism to

make the model learn from the more informative regions of the brain [90]. With the

help of the Transformer models [38], Li et al. proposed a multi-scale contextual match-

ing method that can learn information from different scales [91]. Zhou et al. applied a

domain correction network that can super-resolve unpaired MR images [92].

There are also lots of works focusing on different aspects of MRI super-resolution, such

as models handling multi-scale LR images [93], [94], image quality transfer [95]–[97], and

models trained using real-world LR images [97], [98], and sub-cellular super-resolution

techniques [99]–[102].

To sum up, existing works on MRI super-resolution have achieved superior performance.

However, even the most advanced models, such as attention-based [90] or transformer-

based model [91], fail to handle the whole brain volume and the cerebellum at the same

time. The attention mechanism applied in such models [90], [91] offers an indirect way of

learning from more informative areas, whereas the performance is poor on the cerebellum.

2.4 Multi-modal MRI for brain age prediction

In the aforementioned two sections, we focused primarily on MR imaging-based models.

However, there are also lots of works focusing on predicting brain age using MR non-

imaging data.

Brain MRI data comes in many data modalities, such as structural T1-weighted imaging,
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structural T2-weighted imaging, functional MR imaging, and diffusion-weighted imaging.

Different imaging modalities reflect the brain ageing process from different perspectives

and combining various imaging modalities provides the model with a more complete pic-

ture of brain ageing, which generally improves the model performance. Among all MR

imaging modalities, T1-weighted MRI and diffusion-weighted MRI tend to demonstrate

significantly better performance in brain age prediction in the literature [17]–[19], [30],

[33], [34], [103]. T1-weighted MRI reveals the anatomical details of the brain structure,

whereas diffusion MRI measures the integrity of the brain microstructural tissue com-

partments and connectivity between different brain regions.

Different data modalities are preferred by different types of models. Deep learning mod-

els prefer structural MR imaging data, whereas diffusion-weighted imaging data is first

processed to extract relevant features and is typically trained using traditional statistical

models.

In this section, we first summarise works focusing on MR imaging data and MR non-

imaging data, using structural T1-weighted imaging and diffusion-weighted imaging as

examples respectively. Then we demonstrate the effectiveness of adopting multi-modal

models in brain age prediction compared with uni-modal models.

2.4.1 Predicting brain age using structural MR imaging data

With the development of deep learning techniques over the past decade, more effective and

efficient model architectures have been proposed [37], [38], [70], which attracts growing

interest in adopting MR imaging data for accurate brain age prediction [1], [33], [34],

[104].

Adopting imaging data for brain age prediction brings numerous benefits. First, the

raw imaging data contains the most complete information about the brain. Further

in-depth processing of the imaging data may extract more useful features, whereas it

also faces the risk of losing information about the brain. Second, using imaging data

naturally introduces deep neural networks as the prediction model. Neural networks
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have demonstrated their excellent capacities of learning information from imaging data

in the computer vision field, such as object detection [105], image segmentation [106], and

image super-resolution [107]. Therefore, adopting neural networks allows the models to

learn more high-level abstract brain features, which may discover more valuable insights

into brain ageing. Due to the strong learning capacities of neural networks, feeding

imaging data into the neural networks to predict brain age has been widely adopted in

the literature [1], [17]–[19], [33], [34]. Third, imaging data requires fewer preprocessing

steps before it can be used for brain age prediction. Take the structural T1-weighted MR

image as an example. The preprocessing of it generally contains skull-stripping, image

registration, bias field correction, intensity normalization, and black background removal,

which can be effectively performed using open-source libraries, such as FMRIB Software

Library (FSL) [108] and Advanced Normalization Tools (ANTs) [109]. On the contrary,

non-imaging data requires more steps to extract relevant features.

In Section 2.1, we reviewed the development of brain age prediction models and high-

lighted several efficient model architectures, such as DenseNet [34], SFCN [33], and

transformer-based model [36]. It should be noted that different imaging modalities can

always share the same model architecture to make predictions as long as they can be

represented as 2D-slice or 3D-volume data.

2.4.2 Predicting brain age using MR non-imaging data

The brain-related non-imaging features mainly come from more in-depth analysis of the

brain imaging data, such as diffusion MRI measures of the brain microstructure [30],

[110]. Despite the advantages of utilizing MR imaging data for brain age prediction, using

non-imaging features also holds its strengths. First, the complexity of the non-imaging

feature dataset is significantly smaller compared with 3D volumetric images. The feature

dataset usually comes in tabular format, which allows us to use simpler models, such

as XGBoost [111] and support vector regression [112], for faster training with a lower

requirement of computing resources. Second, it allows us to apply many traditional ML

techniques with more theoretical foundations. Commonly adopted techniques, such as
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Principal Component Analysis (PCA) for dimensionality reduction [113], SMOTE [114]

for data up-sampling, and SHAP [115] for explaining model predictions, can be applied

in the model pipeline to derive better performance.

To demonstrate some studies using non-imaging data, we select diffusion measures of

brain microstructure as an example. Diffusion MRI has become a powerful imaging

modality and provides a unique view into the physical properties of the connections in

the white matter tracts. There has been a lot of research on how diffusion MRI measures

change as age increases, on some particular white matter tracts [116]. Wang et al. [117]

adopted the FA map from diffusion MR images and trained a 3D convolutional network

to predict brain age. Chamberland et al. [113] applied the principal component analy-

sis (PCA) on the diffusion MRI measures data of the white matter tracts and found a

relatively strong correlation between the first principal component and age. Cole et al.

applied the least absolute shrinkage and selection operator (LASSO) to perform feature

selection, deriving a sparse linear model [17]. Chen et al. [118] applied a cascade network

without any feature selection and claimed to have a better performance compared with

classic machine learning models. Beck et al. [30] investigated the trends of different dif-

fusion MRI measures with age and adopted the XGBoost model to predict age. However,

their accuracy is relatively poor, due to the lack of a proper feature engineering process.

Richie-Halford et al. [110] developed the sparse group lasso method to select more infor-

mative features from the tracts by enforcing the global and bundle-level sparsity. Xiong

et al. further evaluated several machine learning models using predefined dMRI measures

but ignored proper feature selections [19]. Cai et al. proposed a two-stream framework by

combining DenseNet and Transformer for brain age prediction [119]. Instead of adopting

conventional diffusion MRI measures, they extracted diffusion MRI features using the

DenseNet automatically.

2.4.3 Multi-modal models for brain age prediction

Given various brain-related data modalities in the literature, it is straightforward to con-

sider adopting multi-modal models for brain age prediction. Since different data modal-
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Figure 2.3: The brain age prediction pipeline with multi-modal inputs.

ities reflect brain ageing from different perspectives, combining different modalities of

data provides a more complete picture of brain ageing for brain age prediction models.

It has been validated in many studies that adopting multi-modal models experience a

significant improvement in predictive accuracy compared with uni-modal models [17]–

[19], [33]. The overall pipeline of brain age prediction with multi-modal inputs is demon-

strated in Figure 2.3. However, it should also be noted that most studies claiming the

adoption of multi-modal models do not represent the real multi-modal models. In brain

age prediction literature, a more commonly adopted approach is to train different models

using different data modalities and combine the model predictions using model ensemble

or model averaging. Model architectures, that have multiple inputs, each dedicated for a

specific data modality, have been rarely explored.

2.5 Summary

In this chapter, we provide a thorough literature review in four perspectives. We first sum-

marise the evolution of brain age prediction models and demonstrate clinical applications

of brain age prediction. Then, we review the potential reasons and correction approaches

in the literature for the commonly observed “non-zero age-delta correlation bias”. Af-

terwards, we give a brief introduction on brain MRI super-resolution by demonstrating

the evolution of super-resolution techniques for 2D natural images and 3D MR images.

Lastly, we summarise different machine learning models for different MRI modalities,

such as structural MRI and diffusion MRI, and introduces some recent advancements by

adopting multi-modal approach for brain age prediction.
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In the next chapter, we turn to the first objective of this thesis to correct the “non-zero

age-delta correlation bias” to make brain age prediction more reliable and trustworthy.
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Reliable Brain Age Prediction - A Novel Skewed Loss

Function for Debiasing Regression Models

In this chapter, we focus on the first objective of this thesis to debias brain age prediction

models to make brain age a reliable marker of brain health.

We propose a novel bias correction algorithm for regression models by introducing a

skewed loss function to replace the ordinary loss functions, such as L1 loss, during

the model training phase. The regression model then behaves differently depending

on whether it makes overestimations or underestimations. This approach works with

any type of MR image and no specific preprocessing is required, as long as the image is

sensitive to age-related alterations in the brain. The proposed approach has been vali-

dated using three classic deep learning models on publicly available neuroimaging ageing

datasets. It shows flexibility across different model architectures and different choices of

hyperparameters. The corrected brain age delta from the proposed approach then has no

linear relationship with chronological age and achieves higher predictive accuracy than a

commonly used two-stage approach.

3.1 Introduction

The fundamental reason why brain age delta becomes prevalent in brain-related research

is that it shows significant correlations with various measures of ageing, such as the

decline in cognitive function, weaker grip strength, and walking speed [6], [10]. To act as a

marker of brain health, the brain age delta should remain independent from any potential

compounding factors in the brain-ageing analysis. In various brain-ageing research and

clinical studies, chronological age is usually the most obvious factor of many age-related
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brain diseases, such as cognitive decline and dementia [120]. Therefore, to adopt the brain

age delta in the early detection and prevention of brain-associated disease, its association

with chronological age needs to be addressed.

A nonzero age delta correlation (ADC) significantly weakens the validity of the brain age

delta as a biomarker. It may raise problems for subsequent experiments. For example,

when investigating if the brain age delta differs across groups with different degrees of

cognitive impairment, the differences in the brain age delta between groups may simply

be due to the group differences in chronological age distributions [67]. In that way, the

apparent relationship between the brain age delta and variables of interest might be more

driven by age and not the brain age delta [62].

In Section 2.2, we have also reviewed different bias correction approaches to mitigate

the dependence of the brain age delta on age. Most bias correction approaches can be

summarised as a two-stage approach as they involve first training a brain age prediction

model and applying the bias correction afterwards on the model predictions. However,

such an explicit correction approach is a post-hoc correction of the model predictions

(using a biased model) which can lead to sub-optimal results.

In this chapter, we propose a novel approach to correct this bias. Compared with existing

correction approaches, our approach only consists of a single training stage without the

need to apply a bias correction stage. Model predictions at the end of the training process

are unbiased. The overall workflow of the two-stage approach and our proposed approach

is illustrated in Figure 3.1. Also, we would like to stress that our approach only modifies

the loss function and can be combined with any existing differentiable models and any

model architectures (e.g. ResNet [70], VGG-19 [121], and DenseNet [37]). The detailed

implementations are available in the GitHub repository1.

To sum up, we propose a novel algorithm that solves the regression bias at the model-

building stage for any deep learning models. The proposed approach can be extended

to any type of model that could be trained with a symmetric loss function (e.g. linear

1https://github.com/hanzhiwangchn/MRI_Age_Prediction
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regression, Support Vector Regression).

Figure 3.1: A detailed workflow of brain age prediction in addressing regression bias

in brain age delta. The upper route represents the widely adopted two-stage approach

and the lower one represents our proposed approach. Each “Corrected Brain Age” block

represents the final estimation of brain age for each approach and the corrected brain

age should have no linear relationship with chronological age. Two estimates of corrected

brain age are then compared with chronological age respectively to see which one achieves

a lower mean absolute error.

Our main contributions in this chapter are:

1. We propose a novel approach that corrects regression model bias directly in the

model training phase. Compared with the commonly used two-stage approach, our

approach does not require an explicit bias correction stage. The proposed approach

acts as an alternative correction algorithm to the two-stage approach, whereas it

achieves significantly better accuracy. To the best of our knowledge, this is the first

such approach for deep learning models.

2. We develop a dynamic training strategy to search for the optimal hyperparameters

for our skewed loss, which has been proven to be robust to different datasets, data

distributions, model architectures, and problem domains.

This chapter is organised as follows. Section 3.2 provides a mathematical evaluation

of the cause of the regression bias and introduces the skewed loss function to solve it.

Section 3.3 proposes a robust training strategy for the skewed loss to make the model

performances consistent. Section 3.4 explains the experiment settings, including datasets,

models, and relevant training parameters. Section 3.5 demonstrates experiment results
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and model comparisons between the two-stage approach and our approach. Section 3.6

generalises the skewed loss to other problem domains using the apparent age prediction

problem. Section 3.7 discusses the advantages of the skewed loss and propose future

works. Section 3.8 summarises the overall approach to conclude this chapter.

3.2 Methodology

3.2.1 A mathematical evaluation of the regression bias

From our point of view, this bias comes from the irreducible level of noise in the dataset.

A mathematical evaluation is presented as follows:

Proposition 1. Given a dataset (xi, yi), where i = 1, 2, ..., N . Assuming that we would

like to predict the value of y given x and the hidden relationship between x and y is

y = h(x) + ϵ (3.1)

where h(x) is the hidden target function, ϵ is the noise term, and ϵ follows an unknown

distribution Pr(ϵ|µ, σ) with µ represents mean and σ represents standard deviation.

It can be proved that the covariance between ground truth y and model error e is strictly

non-zero.

Proof. Since the model and noise are independent, we have

Var(y) = Var(h(x)) + Var(ϵ) (3.2)

If we are trying to model h(x) using an estimator f(x), where f(x) is a generic regression

model with any degrees of accuracy, so that

y = f(x) + e (3.3)

where e is the model residuals.

Then the covariance between target label y and model residuals e is
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Cov(y, e) = Cov(y, y − f(x))

= Var(y)− Cov(y, f(x)) (3.4)

= Var(h(x) + ϵ)− Cov(f(x) + e, f(x))

= Var(h(x)) + Var(ϵ)− Var(f(x))− Cov(e, f(x))

= {Var(h(x))− Var(f(x))}+ σ2 − Cov(e, f(x)) (3.5)

From (3.4), it can be inferred that

Cov(y, e) = 0 ⇐⇒ f(x) = y + const ⇐⇒ Var(y) = Var(f(x)) (3.6)

From (3.6), the correlation between target value y and model residuals e stays zero if and

only if the target values y and model predictions f(x) have the same variance.

However, in the regression framework, f(x) is designed to estimate the hidden relation-

ship h(x) rather than y, and y is also corrupted with the noise term ϵ. Therefore, the

correlation between the target label and model residual is strictly always nonzero.

Take linear regression as an example and we are using Ordinary Least Square (OLS) to

solve it, (3.5) can be further simplified as

Cov(y, e) = {Var(h(x))− Var(f(x))}+ σ2 − Cov(e, f(x))

= {Var(h(x))− Var(f(x))}+ σ2

≈ σ2 (3.7)

Since for OLS, the model residuals and model predictions are orthogonal. However, such

orthogonality does not hold for other models, such as neural networks.

Even though the correlation value always stays non-zero, it should also be noted that a

relatively small ADC value does not prevent brain age delta as an effective biomarker. In

the literature, a general rule of thumb is that the age delta correlation should fall between
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-0.1 and + 0.1.

3.2.2 Skewed loss function

In this section, we introduce our approach for bias correction using the skewed loss

functions. We start by observing that regression models are trained by minimizing a loss

function. Commonly used loss functions include L1 or L2 loss, which can be represented

as:

LMAE(y, ŷ) =|y − ŷ|

LMSE(y, ŷ) =(y − ŷ)2
(3.8)

where y and ŷ represent the target and predicted value.

Regression loss functions are typically symmetric, i.e., overpredictions are penalized as

much as underpredictions. Therefore, one possible approach to counteract bias is to skew

the loss functions and penalize overpredictions more than underpredictions for low values

of y and vice versa. We denote this approach as a skewed loss function to reflect this

characteristic. To this end, let us define a step function s : R→ R as

s(x) = λ0 1R<0(x) + λ1 1R≥0(x) (3.9)

where 1U(x) is the indicator function (1 if x ∈ U and 0 otherwise) and λ0 and λ1 are the

heights of the steps. This implies that s(x) = λ0 for x < 0 and s(x) = λ1 for x ≥ 0.

Multiplying the step function with the original loss function, we obtain the skewed loss

functions

L̃(y, ŷ) = L(y, ŷ) s(y − ŷ) (3.10)

We can further simplify s(x) to have only one hyperparameter λ that controls the amount

of skew by setting λ0 := exp(−λ), λ1 := λ−1
0 = exp(λ). Then s(x) simplifies to

s(x) = exp(sgn(x)λ) (3.11)
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where sgn : R→ {−1, 1} is the sign function and λ controls the skew.

This simplification (3.11) reduces flexibility by imposing an “inverse symmetry” con-

straint on λ0 and λ1 in (3.9), whereas it also reduces model complexity with only one

parameter controlling the behaviour of the skewed loss.

To make the skewed loss function (3.10) compatible with the brain age prediction, two

more adjustments are needed:

1. Skewed loss should behave differently in different age ranges. For young partic-

ipants, it should assign more penalties to overpredictions than underpredictions.

For elderly participants, it should assign more penalties to underpredictions than

overpredictions.

2. The bias is more significant for participants with ages closer to either end of the

data range than those with ages closer to the mean age (of the training dataset)

[39]. Participants with age closer to either end of the data range need larger levels

of skew.

Therefore, we can further modify s(x) by setting λ as a function of chronological age

(y). The range of λ is then constrained within [−λmax,+λmax] where λmax is a positive

hyperparameter:

s(x, y) = exp(sgn(x)λ(y)) (3.12)

Based on (3.12), a general guide to defining λ(y) is that a smaller y should have a negative

λ while a larger y should have a positive λ. We propose two approaches to define λ(y)

using linear functions for simplicity.

• Approach 1: λ(y) can be defined as a linear function of y.

λ(y) = g(y)× λmax + (1− g(y))× (−λmax) (3.13)

g(y) = (y − ymin)/(ymax − ymin) (3.14)
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where ymin and ymax represent the minimum and maximum age of the dataset.

• Approach 2: λ(y) can be defined as a piecewise linear function of y by setting the

median value of y in the dataset as a midpoint.

λ(y) =

 (1− g(y))× (−λmax) if y ≤ ymed

g(y)× λmax otherwise
(3.15)

g(y) =

 (y − ymin)/(ymed − ymin) if y ≤ ymed

(y − ymed)/(ymax − ymed) otherwise
(3.16)

where ymin, ymax, and ymed represent the minimum, maximum, and median age of

the dataset.

The difference between these two approaches of defining λ(y) is that the first one assigns

the middle value of y (in the training set) to have a zero λ value, whereas the second

one uses the median value. For datasets with highly skewed age distributions, the second

approach results in a roughly equal number of participants having positive λ values and

negative λ values, which improves stability in practice.

By combining (3.10), (3.12), (3.15), and (3.16), we formally propose the skewed loss

function for brain age prediction

L̃(y, ŷ) = L(y, ŷ) s(y − ŷ, y) (3.17)

s(y − ŷ, y) = exp(sgn(y − ŷ)λ(y)) (3.18)

where λ(y) is defined using (3.15) and (3.16).

As an example, L1 and L2 skewed loss functions are illustrated in Figure 3.2.
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(a)

(b)

Figure 3.2: L1 and L2 skewed loss function illustrations. For each plot, the dotted and

solid lines represent the normal symmetric loss function and the skewed loss function

respectively. The horizontal axis means possible model predictions and the vertical axis

means the corresponding loss term for each prediction. For each plot, from left to right,

the skewed loss behaves differently in different age ranges and different ages are assigned

with different levels of skew using (3.15) and (3.16). λmax is set to 1 in both plots.

3.2.3 Effect of the skewed loss

The idea of employing a skewed loss function is to assign different loss values depending on

whether the model makes overestimations or underestimations. Because the regression

bias manifests as an overestimation for younger individuals, we assign more penalties

when the model overestimates ages for young participants to push the model to make

fewer overestimations. This idea is reversed on elderly individuals and we then penalize

the model more when it makes underestimations.

The effect of using the skewed loss in practice is illustrated in Figure 3.3. We can observe

that models using ordinary L1 loss have negative ADC values at the end of the training,

which is in line with previous studies, whereas models using skewed L1 loss end up with

larger ADC values. Figure 3.3 shows that by applying the skewed loss functions, the model

tends to make fewer overestimations for young individuals and fewer underestimations
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for elderly individuals so that the effect of a negative ADC is reduced.

(a)

(b)

Figure 3.3: ADC Comparisons between L1 and skewed L1 loss. The model is trained

separately using L1 and skewed L1 loss respectively. For each plot, the dashed and solid

lines represent the changes of ADC (measured in Pearson’s r) on the validation set in the

training process using L1 and skewed L1 loss respectively. λmax is set as 1 in (a) and 2

in (b).

3.3 Dynamic lambda training strategy

3.3.1 The necessity of dynamic lambda strategy

From Section 3.2.2, λmax is a hyperparameter in the skewed loss which controls the skew

of the loss function. From Figure 3.3, we can observe that setting λmax as 1 results in

a small negative ADC while setting λmax as 2 ends up with a small positive ADC. That
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indicates there should be an optimal value between 1 and 2 for λmax so that the ADC

can approach zero at the end of the training process.

However, due to the randomness of the network training process, different datasets used

for training, and different model architectures being used, it is not realistic to foresee the

optimal λmax that can push the ADC to zero before the training. To solve this problem,

we propose a dynamic lambda training strategy to tune λmax in the training process to

find the optimal value that is suitable for the current model. By dynamically changing

λmax in the training process, we can enable the model predictions to have (near) zero

ADC at the end of training.

3.3.2 Implementations of dynamic lambda strategy

The dynamic lambda strategy is formally presented in Algorithm 1. Some notations in

Algorithm 1 are defined in Table 3.1.

It should be noted that in a machine learning framework, independent test set should

not be adopted in the training phase. Therefore, validation set, split from the whole

dataset, is adopted to guide the model training process. Skewed loss function and other

bias correction approaches rely on an underlying assumption:

Assumption 3. A zero correlation on the validation dataset may indicate a near-zero

correlation on the test set

However, it should also be stressed that such assumption may not hold if there is a

distribution shift between the validation and test set.

It should be noted that hyperparameters in Table 3.1 are insensitive to different values

based on our experiment testing and the “Range” column in Table 3.1 aims to give a

general guide on how to set them. The suggested value for hyperparameters α and β

should be rounded to integer if needed.

In Table 3.1, hyperparameters α and β separate the whole training process into three

stages, all of which should have a similar number of epochs to ensure the model is prop-
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Table 3.1: Notations for Dynamic Lambda Strategy

Notation Type Description Range
Dvalidation Dataset validation set

γ hyperparameter total number of epochs
α hyperparameter stage-2 start epoch γ/3
β hyperparameter stage-3 start epoch 2γ/3
ϵ hyperparameter update interval of λmax [5, 10]

ADC variable age-delta correlation
M variable an array to save λmax

N variable an array to save ADC
θ hyperparameter correlation threshold [0.1, 0.2]
η hyperparameter a positive multiplier (1, 2)

Ls(λmax) function skewed loss controlled by λmax

erly trained in all stages. Hyperparameter ϵ determines how frequently we update λmax.

A too-small value of ϵ may prevent the model from training properly toward the newly

updated loss function, whereas a too-large value may prevent the model from finding

the adequate value of λmax due to fewer updates. Hyperparameter θ acts as a posi-

tive threshold determining whether to adjust λmax according to the current ADC value.

We will change λmax in the second stage only when the ADC falls outside of [−θ, θ].

Hyperparameter η determines how to change λmax in each update in the second stage.

3.3.3 Explanations for dynamic lambda strategy

Algorithm 1 divides the whole training process into three stages:

1. Stage-1: The aim is to pretrain the model with a fixed λmax to achieve relatively

high accuracy before any modifications are made. This is done because due to the

random initialization of the weights, ADC estimates in the first few epochs may be

uninformative.

2. Stage-2: From this stage, we are trying to find the optimal λmax that results in a

zero ADC on the validation set. It is generally assumed that the validation and

test set should be derived from similar distributions, so we assume a zero ADC on

the validation set should be generalizable to the test set. In this stage, we apply

a heuristic method to try different λmax values to make the ADC approach toward
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Algorithm 1: Dynamic lambda training strategy

Init: λmax ← 1; skewed loss Ls(λmax)
for i← 1 to γ do

if i < α then // stage-1

Train the network using Ls(λmax)
else if i < β then // stage-2

Train the network using Ls(λmax)
if (i− α) mod ϵ = 0 then

Calculate the current ADC on the validation set Dvalidation

Save λmax to M and ADC to N
if ADC > θ then

λmax ← λmax/η
else if ADC < −θ then

λmax ← λmax × η
end
Reinitialize Ls(λmax) with updated λmax

else // stage-3

Train the network using Ls(λmax)
if (i− β) mod ϵ = 0 then

Calculate the current ADC on the validation set Dvalidation

Save λmax to M and ADC to N
Fit a linear regression F between M and N
Select λmax resulting in a zero ADC using F as the optimal λmax

Reinitialize Ls(λmax) with optimal λmax

end

end

zero. We also save λmax and the corresponding ADC for Stage 3.

3. Stage-3: Using the previously saved λmax and ADC pairs from stage-2, we can fit

a linear regression model to find the optimal λmax that results in a zero ADC and

set it as the updated λmax. This method is repeated multiple times until the end of

training so that λmax is tuned iteratively. We use linear regression for its simplicity

and it has been proven to be effective in finding the optimal λmax in practice.

There is a slight increase in training time when using the skewed loss compared with using

a symmetric loss function because of the training of linear models in Stage-3. However,

it is usually negligible compared with training a network.

Throughout the training process, our approach tries to control ADC explicitly by iter-

atively tuning λmax. Therefore, by measuring ADC with different types of correlation,
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our approach can find the optimal λmax resulting in the specified correlation approaching

zero, which is not feasible for the two-stage approach.

The effect of using the dynamic lambda strategy is illustrated in Figure 3.4. In Figure

3.4, we train our model twice using symmetric L1 loss and skewed L1 loss with dynamic

lambda strategy. It can be easily observed that at the end of the training, the model

using skewed loss ends up with a (near) zero ADC on the validation set.

Figure 3.4: ADC Comparisons between L1 and skewed L1 loss. Dynamic lambda strategy

is applied for the skewed loss. The model is trained separately using L1 loss and skewed

L1 loss. The dashed and solid lines represent the changes of ADC (measured in Pearson’s

r) on the validation set in the training process using L1 and skewed L1 loss respectively.

3.4 Experiments

To empirically investigate our approach, we conducted experiments using two publicly

available ageing datasets and several classical neural network architectures. The models

were trained using the normal symmetric loss and the skewed loss respectively. The two-

stage approach was applied to models using the normal symmetric loss as the contrast.

3.4.1 Datasets

To validate the robustness of the skewed loss, we selected two public neuroimaging

datasets, Cam-CAN [122], [123] and ABIDE [124], with preprocessed 3D structural T1-
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weighted MR brain images. The dataset descriptions and the specific preprocessing

pipeline for each dataset can be found at the Cam-CAN2 and ABIDE3 website. The

data from the Cam-CAN are preprocessed using the Automatic Analysis pipeline [125]

and we selected the gray-matter density maps from it. The data from the ABIDE derives

from cortical thickness measures using ANTs pipeline [109] and we selected the 3D vol-

ume containing voxel-wise measures of cortical thickness from it. It should be stressed

that neither the two-stage approach nor our approach relies on a specific dataset or a

specific type of data. We focus on these two specific datasets because these images are

easier to access and do not require any further preprocessing, which provides a fairer

comparison set-up between methods. The 3D image resolutions are (96 × 112 × 96) for

the Cam-CAN dataset and (141 × 120 × 178) for the ABIDE dataset. To further com-

pare our approach and the two-stage approach, we randomly removed some participants

from both datasets to create two more modified datasets. We randomly removed some

participants whose ages were smaller than 60 for the Cam-CAN dataset to create the

skewed Can-CAN dataset and removed all participants whose ages were larger than 20

for the ABIDE dataset to create a symmetric ABIDE dataset. For CamCAN dataset,

we would like to evaluate the model performance on a skewed age distribution dataset so

that we chose age 60 as the split point. For ABIDE dataset, we would like to evaluate

the model performance on a more symmetric age distribution dataset so that we chose

age 20 as the split point to remove the long tails for ABIDE dataset.

Our approach and the two-stage approach will then be compared on all four datasets.

The description of each dataset is provided below and Figure 3.5 shows their chronological

age distributions:

• Cam-CAN dataset:

The Cam-CAN dataset contains 653 cognitively normal participants (mean age 54.3

years, standard deviation 18.5 years, range 18-88 years).

• Skewed Cam-CAN dataset:

2https://www.cam-can.org
3http://preprocessed-connectomes-project.org/abide/download.html
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The Cam-CAN dataset has a roughly balanced age distribution with slightly more

elderly individuals. We removed 70% of the participants with ages smaller than 40

years and 50% of the participants with ages ranging from 40 years to 60 years to

create a skewed age distribution.

The skewed Cam-CAN dataset contains 423 cognitively normal participants (mean

age 62.2 years, standard deviation 16.9 years, range 18-88 years).

• ABIDE dataset:

The ABIDE dataset contains 571 cognitively normal participants (mean age 17.1

years, standard deviation 7.7 years, range 6-56 years).

• Symmetric ABIDE dataset:

The ABIDE dataset has a highly skewed age distribution toward young ages. We

removed the participants whose ages are larger than 20 years to make this dataset

have a more symmetric age distribution.

The symmetric ABIDE dataset contains 415 cognitively normal individuals (mean

age 13.2 years, standard deviation 3.1 years, range 6-20 years).

3.4.2 Models

To validate that the skewed loss is robust to different network architectures, we imple-

mented three networks roughly based on ResNet [70], VGG [121], and GoogleNet [41]

architectures. We replaced the 2D convolution layers with 3D convolution layers [126]

and the specific implementations can be found in the GitHub repository mentioned in

Section 3.1. The ResNet contains six consecutive blocks in total. The first five blocks

adopt the same architecture design, which contains a convolution layer, a batch norm

layer, ELU activation, another convolution layer, another batch norm layer, and another

ELU activation in order, followed by a max pooling layer. The initial number of filter is

set to 8 and is doubled after each max pooling layer, except for the last one. The 6th

block consists of a flatten layer, a dropout layer, a fully connected layer, ELU activation,

and another fully connected layer in order to derive the final prediction. The VGG also
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(a) (b)

(c) (d)

Figure 3.5: Age distribution for the Cam-CAN and ABIDE datasets and their skewed

versions

contains six consecutive blocks in total. The first five blocks adopt the same architecture

design, which contains a convolution layer, a batch norm layer, ReLU activation, another

convolution layer, another batch norm layer, and another ReLU activation in order, fol-

lowed by a max pooling layer. The initial number of filter is set to 8 and is doubled

after each max pooling layer, except for the last two max pooling layers. The 6th block

consists of a flatten layer, a dropout layer, a fully connected layer, ReLU activation,

and another fully connected layer in order to derive the final prediction. The GoogleNet

adopts a slightly different design. It contains seven consecutive blocks in total. The first

block contains a convolution layer, a batch norm layer, ReLU activation, a max pooling

layer, another convolution layer, another batch norm layer, another ELU activation and

another max pooling layer in order. Block 2, 3, 4, 5, and 6 are inception blocks [41] with

number of filters set to 16, 32, 64, 126, and 192 respectively. In each inception block, we

follow the original architecture design using four different branches with 1 × 1 convolu-

tion, 3 × 3 convolution, 5 × 5 convolution, and 3 × 3 max pooling respectively, followed
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by a concatenation of the four different branches. The last block contains a average

pooling layer, a flatten layer, a dropout layer, a fully connected layer, ReLU activation,

and another fully connected layer in order to derive the final prediction. The number of

trainable parameters for each model architecture is demonstrated in Table 3.2.

It should be also noted that different choices of the model-dependent parameters do not

affect the final ADC value as neither correction approach focuses on the model architec-

tures. We denote our models as ResNet, VGG, and GoogleNet respectively in the rest

of this paper. Compared with the original network architectures, our models have fewer

layers due to the size of the dataset and the number of parameters is reduced below 1

million. All models only take the raw images as input and demographic variables such as

gender are not included to follow the conventions of brain age prediction problem [33],

[34].

Table 3.2: Number of trainable parameters

Model architecture Number of parameters
ResNet 960,769
VGG 474,857

GoogleNet 636,805

Also, we would like to stress that the brain age prediction model is a regression model

and hence the bias always exists regardless of different model architectures. The skewed

loss and the two-stage approach can both be applied to any model architectures and we

only select ResNet, VGG and GoogleNet architecture because they are still widely used

in practice [1], [31]–[33] and form the building blocks for more complex models.

3.4.3 Training and testing

The skewed loss approach is generic and can be applied to any symmetric loss function.

However, in the brain age prediction literature, MAE (i.e. average L1 loss) is the most

commonly used metric. Therefore, we focus our analyses on L1 loss.

Because the size of the datasets we used is relatively small, to prevent models from over-

fitting, we applied data augmentation in the training process using TorchIO [127]. In
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each training iteration, every input image had a probability of 50% being flipped around

the horizontal plane. Also, the L2 weight decay coefficient was set to 0.001.

During the training process, the Adam optimizer [128] was used as the default optimizer

for all models. The initial learning rate was set to 0.01 and then multiplied by 0.5 every

50 epochs. The batch size was set to 16 as default and the total number of epochs was

set to 400.

When we trained the model using the skewed loss, the hyperparameters used in Table

3.1 are set the same for all models. We set hyperparameter α to 150, β to 300, ϵ to 5,

θ to 0.15, and η to 1.5. It should be noted that the hyperparameter settings mentioned

above, such as L2 weight decay coefficient and skewed loss relevant parameters, are based

on our experiment testing.

Datasets were split using a stratified split strategy of which 80% was used for training,

10% for validation, and 10% for testing. To make full use of the whole dataset, we

applied a split strategy similar to cross-validation. We randomly split each dataset in 20

different ways so that no two train/validation/test sets are identical. Also, to minimize

the fluctuations of the model results due to random initialization of the weights, we

trained our model on each train/validation/test split 5 times. In that way, we ended up

training a specific model on a particular dataset 100 times.

3.5 Results

The performance comparisons between the two-stage approach and the skewed loss across

four datasets described in Section 3.4.1 are listed in the following subsections. We also

add the performances using the normal loss function before the correction stage as com-

parisons. The ADC is measured using Pearson’s r unless specified otherwise. In Section

3.5.3, we provide the performance using Spearman’s rank correlation coefficient to mea-

sure ADC to illustrate the flexibility of our approach.

It should also be noted that, unlike normal loss functions, correction approaches try
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to sacrifice model accuracy for more unbiased model predictions. Thus, all correction

approaches will result in an increase in MAE compared with normal loss. In our exper-

iments, model performance using normal loss could be regarded as the lower bound of

model errors.

To save space, Table 3.3 lists some notations used in the following subsections.

Table 3.3: Notations for Performance Comparisons

Notations Descriptions
Normal loss models using normal loss without two-stage approach
Two-stage models using normal loss with two-stage approach
Skewed loss models using the skewed loss with dynamic lambda strategy
Wilcoxon Wilcoxon signed rank test
Paired-t paired t-test

3.5.1 Model performance

From Section 3.4.3, we split each dataset using 20 different ways and for each split, we

train the network 5 times. At the end of the training, we calculate the average value of the

MAE and ADC from the 5 repeated runs to reduce fluctuations in model performances.

In that way, we end up with 20 pairs (one split for one pair) of averaged MAE and

average ADC between the two-stage approach and skewed loss. The significance tests are

performed by comparing the averaged MAE and ADC values across the 20 splits. The

model performance across four datasets is shown in Table 3.4 and the significance test

results between the two-stage approach and the skewed loss are shown in Table 3.5.

From Table 3.4, the skewed loss achieves a lower MAE compared with the two-stage

approach for most models. The averaged ADC of the skewed loss almost always falls

within -0.1 to +0.1, which indicates the bias in the brain-age delta has been significantly

reduced compared with normal loss. On average, the skewed loss increases the MAE by

0.2 years for the Cam-CAN datasets and 0.97 years for the ABIDE datasets, whereas the

two-stage approach increases the MAE by 0.28 years and 1.12 years.

From Table 3.5, some models using the skewed loss achieve significantly lower MAE com-
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Table 3.4: Model Performances on Four Datasets (mean ± standard deviation)

Dataset Model Normal loss Two-stage Skewed loss
MAE ADC MAE ADC MAE ADC

Cam-CAN ResNet 4.80±0.42 -0.28±0.12 5.06±0.49 -0.03±0.14 4.96±0.50 -0.03±0.13

VGG 5.09±0.44 -0.23±0.11 5.35±0.56 -0.02±0.14 5.22±0.59 -0.05±0.12

GoogleNet 5.10±0.54 -0.25±0.13 5.44±0.68 -0.03±0.14 5.22±0.60 -0.05±0.15

Skewed
Cam-CAN

ResNet 5.02±0.70 -0.35±0.19 5.31±0.71 -0.04±0.20 5.21±0.76 -0.07±0.20

VGG 5.23±0.66 -0.34±0.17 5.42±0.71 -0.06±0.19 5.43±0.75 -0.06±0.17

GoogleNet 5.28±0.71 -0.38±0.15 5.62±0.79 -0.05±0.19 5.67±0.76 -0.06±0.18

ABIDE ResNet 3.40±0.43 -0.62±0.15 4.71±0.97 -0.04±0.28 4.54±0.66 -0.08±0.26

VGG 3.33±0.32 -0.6±0.15 4.35±0.89 -0.06±0.24 4.19±0.69 -0.09±0.25

GoogleNet 3.37±0.37 -0.60±0.15 4.50±0.75 -0.08±0.25 4.36±0.65 -0.12±0.27

Symmetric
ABIDE

ResNet 2.08±0.27 -0.73±0.08 3.55±0.88 -0.05±0.20 3.28±0.81 -0.09±0.23

VGG 1.92±0.26 -0.64±0.11 2.81±0.60 -0.07±0.21 2.81±0.57 -0.03±0.24

GoogleNet 2.03±0.53 -0.64±0.11 2.93±0.73 -0.05±0.24 2.76±0.61 -0.07±0.23

Table 3.5: Significance Test between Two-stage and Skewed Loss with p-values

Dataset Model Wilcoxon Paired-t

MAE ADC MAE ADC

Cam-CAN ResNet 0.09 0.77 0.06 0.76

VGG 0.06 0.16 0.06 0.21

GoogleNet <0.01 0.19 <0.01 0.12

Skewed
Cam-CAN

ResNet 0.10 0.14 0.28 0.14

VGG 0.50 0.91 0.85 0.98

GoogleNet 0.85 0.91 0.72 0.66

ABIDE ResNet 0.70 <0.01 0.19 <0.01

VGG 0.09 0.16 0.12 0.05

GoogleNet 0.18 0.19 0.13 0.17

Symmetric
ABIDE

ResNet <0.01 0.07 <0.01 0.05

VGG 0.82 0.10 0.99 0.09

GoogleNet 0.01 0.45 <0.01 0.41

pared with the two-stage approach, for example, GoogleNet on Cam-CAN and symmetric

ABIDE datasets; ResNet on symmetric ABIDE dataset and VGG on Cam-CAN dataset.

For the rest models, the skewed loss is likely to achieve lower MAE compared with the

two-stage approach whereas the improvement is not significant enough.
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To sum up, both the two-stage approach and the skewed loss correct the model to have a

near-zero ADC at the cost of an increase in MAE, whereas using the skewed loss achieves

comparable or significantly lower MAE compared with the two-stage approach.

3.5.2 Model performance of ensemble models

In Section 3.5.1, we calculate the MAE of each model and take the average of MAE from

the 5 repeated runs. Alternatively, we can create an ensemble model by averaging the

model predictions of 5 repeated runs and then calculate its MAE and ADC. Because we

split the dataset in 20 different ways, we also end up with 20 ensemble models and thus

20 pairs of MAE and ADC for each model architecture. The ensemble model performance

across four datasets is shown in Table 3.6 and the significance test results between the

two-stage approach and the skewed loss are shown in Table 3.7.

Table 3.6: Ensemble Model Performances on Four Datasets (mean ± standard deviation)

Dataset Model Normal loss Two-stage Skewed loss
MAE ADC MAE ADC MAE ADC

Cam-CAN ResNet 4.00±0.24 -0.34±0.11 4.12±0.29 -0.03±0.12 4.07±0.33 -0.04±0.12

VGG 4.12±0.31 -0.29±0.10 4.26±0.39 -0.03±0.11 4.21±0.36 -0.06±0.11

GoogleNet 4.06±0.32 -0.32±0.13 4.20±0.48 -0.03±0.14 4.09±0.35 -0.05±0.14

Skewed
Cam-CAN

ResNet 4.33±0.61 -0.4±0.15 4.49±0.57 -0.04±0.21 4.38±0.66 -0.07±0.20

VGG 4.45±0.57 -0.39±0.15 4.50±0.56 -0.06±0.19 4.45±0.58 -0.07±0.17

GoogleNet 4.30±0.49 -0.46±0.12 4.38±0.48 -0.06±0.19 4.55±0.48 -0.07±0.17

ABIDE ResNet 3.02±0.35 -0.67±0.11 4.04±0.79 -0.04±0.30 3.66±0.43 -0.08±0.27

VGG 3.00±0.25 -0.64±0.13 3.79±0.76 -0.06±0.25 3.57±0.51 -0.09±0.25

GoogleNet 3.00±0.34 -0.66±0.12 3.89±0.60 -0.08±0.25 3.65±0.47 -0.12±0.27

Symmetric
ABIDE

ResNet 1.85±0.19 -0.82±0.04 2.67±0.57 -0.05±0.20 2.52±0.42 -0.09±0.24

VGG 1.67±0.19 -0.73±0.06 2.20±0.36 -0.07±0.21 2.30±0.39 -0.03±0.27

GoogleNet 1.79±0.50 -0.72±0.07 2.39±0.57 -0.05±0.26 2.20±0.47 -0.08±0.24

From Table 3.6, the skewed loss also achieves a lower MAE compared with the two-

stage approach for most models. The ADC of the ensemble model using the skewed loss

almost always falls within -0.1 to +0.1, which also indicates the bias has been significantly

reduced compared with normal loss. On average, the skewed loss increases the MAE by

0.08 years for the Cam-CAN datasets and 0.6 years for the ABIDE datasets, whereas the
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Table 3.7: Ensemble Significance Test between Two-stage and Skewed Loss with p-values

Dataset Model Wilcoxon Paired-t
MAE ADC MAE ADC

Cam-CAN ResNet 0.19 0.68 0.31 0.73

VGG 0.46 0.18 0.44 0.20

GoogleNet 0.14 0.16 0.10 0.13

Skewed
Cam-CAN

ResNet 0.28 0.13 0.31 0.13

VGG 0.41 0.91 0.49 0.78

GoogleNet 0.14 0.97 0.09 0.65

ABIDE ResNet <0.01 0.02 <0.01 0.02

VGG 0.04 0.26 0.05 0.09

GoogleNet <0.01 0.30 0.01 0.28

Symmetric
ABIDE

ResNet 0.15 0.17 0.07 0.24

VGG 0.26 0.18 0.24 0.17

GoogleNet <0.01 0.39 <0.01 0.40

two-stage approach increases the MAE by 0.12 years and 0.78 years.

From Table 3.7, ResNet on ABIDE dataset, VGG on ABIDE dataset, and GoogleNet on

ABIDE and symmetric ABIDE datasets achieve significantly lower MAE using the skewed

loss compared with the two-stage approach. For the rest models, the skewed loss tends

to achieve lower MAE compared with the two-stage approach whereas the improvement

is not significant.

To sum up, for ensemble models, the skewed loss can achieve comparable or significantly

better performances compared with the two-stage approach. Using the skewed loss in

ensemble models can also remove the bias in the brain age delta.

3.5.3 Performances using Spearman’s rank correlation as ADC

A further experiment is carried out to evaluate how our approach performs by changing

the ADC from Pearson’s r to other correlation metrics. Here, we demonstrated the

performances using ResNet on the Cam-CAN dataset with ADC measured in Spearman’s

rank correlation in Table 3.8 and Figure 3.6.

In Figure 3.6, we again train our model using L1 loss and skewed L1 loss with dynamic
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Table 3.8: ResNet Performance on Cam-CAN Using Spearman’s Rank Correlation as

ADC (mean ± standard deviation)

Model Metric Normal loss Two-stage Skewed loss
ResNet MAE 4.79±0.55 5.08±0.60 4.95±0.56

ADC -0.33±0.18 -0.02±0.20 -0.05±0.20

Figure 3.6: ADC Comparisons between L1 and skewed L1 loss. Dynamic lambda strategy

is applied for the skewed loss. The model is trained twice using L1 loss and skewed L1

loss respectively. The dashed and solid lines represent the changes of ADC (measured in

Spearman’s rank correlation) on the validation set in the training process using L1 and

skewed L1 loss respectively.

lambda strategy. We can observe that switching to different types of correlation metrics

results in the specified metric approaching zero. It shows the potential to be generalized

to other types of correlation metrics.

3.5.4 Consistency of correlation trends

Figure 3.3, Figure 3.4, and Figure 3.6 show the changes of correlation of a single model.

To further validate the stability of our approach, we can examine how the variance of

ADC changes in the training process. A large variance of ADC indicates large oscillations

in ADC and vice versa.

In Section 3.4.3, we train each model 5 times to reduce the fluctuations. Thus, we group

these 5 runs to calculate the mean and standard deviation of ADC. Figure 3.7 shows the
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Figure 3.7: Averaged ADC Comparisons between L1 and skewed L1 loss. The dashed

and solid lines represent the changes of ADC on the validation set in the training process

using L1 and skewed L1 loss respectively. The shaded area represents the mean ADC

plus or minus one standard deviation.

trend of averaged ADC of the 5 repeated runs.

From Figure 3.7, we can observe that the variance of ADC decreases in the training

process and arrives at a small value at the end of training. This indicates the ADC can

almost always arrive at (near) zero using the skewed loss on the validation set, which

further validates the stability of the skewed loss.

3.5.5 Robustness to data distribution shift

Machine learning models typically require that the training and test set should share

some similar properties like data distributions and the models are expected to learn these

similarities during the training process. However, due to the variability of the unseen

test data, these similarities may not always hold, which inevitably causes performance

degradation in most cases.

Although learning with distribution shift has been extensively studied in recent years, it

remains a challenging and ongoing topic in machine learning. In Section 3.5.1, we have

discussed the model performance of the skewed loss without distribution shift. Therefore,

it is crucial to investigate whether the skewed loss is robust to distribution shift or not.

57



Chapter 3. Reliable Brain Age Prediction

(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Age distributions of three types of train-test split. Each row represents a

different way of creating the training and test set. The left three plots represent the

three training sets and the right ones represent the corresponding test sets.

3.5.5.1 Experiment settings

To make the test set significantly different from the training set, we manually split our

dataset based on the participants’ chronological age. For illustration purposes, we only

selected the Cam-CAN dataset and ResNet architecture to discuss the distribution shift

problem. The Cam-CAN dataset was split into three groups. Group 1 consists of par-

ticipants with ages below 40 years. Group 2 consists of participants with ages above 40

years and below 60 years. Group 3 consists of participants with ages above 60 years.

The model was then trained three times using each correction approach. For each time,

one group was selected as the test set and the remaining two groups were combined as

the training set. The chronological age distribution of the training and test sets of the

three train-test splits are illustrated in Figure 3.8.
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3.5.5.2 Results

The model performance comparisons on three different train-test splits are shown in Table

3.9. The correlation is measured in Pearson’s r.

Table 3.9: Model Performance Comparisons When Facing Distribution Shift (mean ±

standard deviation)

Training Set Test Set Metric Normal loss Two-stage Skewed loss
Group 2 & Group 3 Group 1 MAE 15.4±1.51 14.54±1.22 14.50±1.30

ADC -0.85±0.05 -0.80±0.03 -0.75±0.03
Group 3 & Group 1 Group 2 MAE 6.9±0.31 7.75±0.25 7.44±0.39

ADC 0.08±0.005 0.14±0.01 0.11±0.01
Group 1 & Group 2 Group 3 MAE 15.45±1.12 11.4±0.38 10.63±1.88

ADC -0.7±0.03 -0.6±0.06 -0.52±0.06

Group 1 contains participants whose age is below 40 years; group 2 contains participants

whose age is above 40 years whereas below 60 years and group 3 contains participants

whose age is above 60 years.

3.5.5.3 Discussions

From Table 3.9, it could be observed that neither the skewed loss nor the two-stage

approach achieves a near-zero ADC at the end of the training, which indicates that

neither approach works well when facing distribution shifts.

However, by comparing the skewed loss and the two-stage approach, it could be observed

that the skewed loss suffers less in terms of both MAE and ADC in all three experiments.

Moreover, when Group 1 or Group 3 is selected as the test set, both correction approaches

decrease the MAE compared with the normal loss, which is not observed in Table 3.4

and Table 3.6.

The reason why the skewed loss and the two-stage approach are not robust to distribution

shift is that they both heavily rely on the validation set. The two-stage approach relies

on the validation set to calculate β0 and β1 in (2.7), whereas the skewed loss aims to

achieve a near-zero ADC on the validation set. For both approaches, the validation set is

used as the target for the model to optimize. If the validation set is significantly different
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from the test set, both methods will suffer.

There is one more point to be noted by comparing Table 3.9 and Table 3.4, it could also

be observed that MAE increases significantly. There are several reasons for this. Firstly,

the size of the training set becomes much smaller compared with the one used in Section

3.4. Secondly, take the first train-test split (Group 1 as the test set) as an example. In the

first train-test split, the training set only contains subjects whose age is above 40 years

so that the model is also more likely to give a prediction that is above 40 years, whereas

the true labels from Group 1 are all below 40 years. Therefore, when using Group 1 and

Group 3 as the test set, the MAE increases significantly.

To sum up, although both the two-stage approach and the skewed loss are not robust to

distribution shift, the skewed loss suffers less compared with the two-stage approach in

terms of both MAE and ADC.

3.6 Generalisation of the skewed loss

We have demonstrated the ability of the skewed loss to remove the dependence of brain

age delta on chronological age. We would like to stress that the skewed loss could also be

generalised to other problem domains regardless of brain age prediction. We provide a

simple example here to illustrate the generalisation of the skewed loss using the apparent

age prediction problem. It should also be noted that in apparent age prediction, achieving

a more accurate age prediction (a lower MAE) is the primary goal rather than a near-zero

correlation as in brain age prediction.

3.6.1 Apparent age prediction explained

Predicting a person’s real age based on a single-face image is a classic problem in the

computer vision field. However, the model performance can often be affected by outliers

represented by people who have an appearance that is not in line with their real age [129].

Therefore, a different approach has been developed known as apparent age prediction,

which is the age perceived by humans. The problem can then be formulated as building
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a regression model that takes a person’s face image as input and uses the apparent age

as output.

3.6.2 Experiments

To empirically investigate our approach on apparent age prediction, we conducted exper-

iments using a publicly available face dataset. The models were trained using the normal

symmetric loss and the skewed loss respectively. The two-stage approach was also applied

to models using the normal symmetric loss as the contrast.

3.6.2.1 Dataset

We selected the ChaLearn Looking at People 2015 competition dataset (LAP dataset),

which provided thousands of annotated images [130], [131]. The images were labelled

based on web applications that averaged the opinions of 10 independent users to obtain

the apparent age.

To preprocess the original dataset, we first ran a face detection program on all images to

remove the useless background information. The program could be found in a GitHub

repository4 and we applied the default HOG-based approach [132] to extract the face

from the whole image. The resulting face images were then resized to have a spatial

resolution of 100 × 100 pixels. In total, we obtained 4383 face images.

3.6.2.2 Models

We adopted the ResNet [70] architecture to demonstrate the effectiveness of the skewed

loss in this problem. As for the choices of model-dependent hyperparameters, we also

followed the conventional design strategy discussed in Section 3.4.2. The specific imple-

mentations could also be found in the GitHub repository mentioned in Section 3.1.

4https://github.com/ageitgey/face_recognition
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3.6.2.3 Training and testing

The general training and testing strategy stays almost the same as the brain age pre-

diction. Because of the size of the LAP datasets, to prevent models from over-fitting,

we applied data augmentation in the training process. In each training iteration, every

input image had a probability of 50% being flipped horizontally. Also, the L2 weight

decay coefficient was set to 0.001.

During the training process, the Adam optimizer [128] was used as the default optimizer

for all models. The initial learning rate was set to 0.01 and then multiplied by 0.5 every

50 epochs. The batch size was set to 64 as default and the total number of epochs was

set to 300.

When we trained the model using the skewed loss, the hyperparameters used in Table

3.1 are set the same for all models. We set hyperparameter α to 50, β to 150, ϵ to 3, θ

to 0.15, and η to 1.2.

Datasets were split using a stratified split strategy of which 80% was used for training,

10% for validation, and 10% for testing. Also, to minimize the fluctuations of the model

results due to the random initialization of the weights, we trained our models using skewed

loss and normal loss 5 times respectively.

3.6.3 Results

The model performance comparisons on apparent age prediction are shown in Table 3.10

and Figure 3.9. The correlation is measured in Pearson’s r.

It should be noted that considering the small size of this dataset and low spatial resolution

(100 × 100), the MAE should still be considered acceptable compared with other studies

[129], [133].

From Figure 3.9, We can observe that the skewed loss also achieves a near-zero correlation

at the end of the training, which proves that the skewed loss could be generalized to other

areas regardless of the brain age prediction.
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Table 3.10: ResNet Performance on Apparent Age Prediction (mean ± standard devia-

tion)

Model Metric Normal loss Two-stage Skewed loss
ResNet MAE 8.32±0.22 15.42±1.22 13.64±0.99

correlation -0.75±0.06 0.02±0.04 0.01±0.06

Figure 3.9: ADC Comparisons between L1 and skewed L1 loss. Dynamic lambda strategy

is applied for the skewed loss. The model is trained twice using L1 loss and skewed L1

loss respectively. The dashed and solid lines represent the changes of ADC (measured

in Pearson’s r) on the validation set in the training process using L1 and skewed L1 loss

respectively.

3.7 Discussion

In this chapter, we have proposed a skewed loss function and dynamic lambda training

strategy to solve the nonzero ADC bias in brain age prediction. By debiasing predictions

from brain age prediction models, we make the brain age delta robust to the confounding

factor, chronological age, making it more reliable for future research and clinical studies.

The skewed loss counteracts this bias by switching the normal symmetric loss function

into a skewed form. The dynamic lambda strategy tunes λmax iteratively to search for

the optimal value that can enable the model predictions to have a near-zero ADC at the

end of training.

The most significant difference between the skewed loss and the two-stage approach is
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that the skewed loss controls ADC explicitly whereas the two-stage approach controls it

implicitly. That means changing the way we measure ADC from Pearson’s r to other

types of correlation metrics, our approach could have a similar effect with the specified

correlation metric approaching zero. In Section 3.5.3, we showed that using Spearman’s

rank correlation can also achieve similar performances.

We also demonstrated in Section 3.5 that both the skewed loss and the two-stage approach

can achieve a near-zero ADC, whereas the skewed loss achieves comparable or even better

model performances in terms of MAE compared with the two-stage approach. Theoret-

ically speaking, a two-stage approach leads to a result that is strictly worse in terms of

minimizing both MAE and ADC than a single integrated approach. In the two-stage

approach, the model is optimized to minimize MAE. When correction is applied after-

wards, there is no guarantee that the MAE will remain low. In an integrated approach,

the model is optimized to minimize MAE conditioned on a desired maximum value of

ADC [23]. Knowledge of the constraint allows the model to find a better local minimum

to solve the task of minimizing both MAE and ADC. Also, the skewed loss only aims to

encourage the model to make predictions towards the opposite side, i.e., from overesti-

mations toward underestimations for young individuals and vice versa. In terms of MAE,

there is no difference between overestimations and underestimations. In Section 3.5.5,

we also evaluated whether the correction approaches are robust to distribution shifts.

Although neither approach always achieves a near zero ADC, the skewed loss has been

proved to suffer less in terms of both MAE and ADC from Table 3.9.

We have also demonstrated in Section 3.6 that the skewed loss, as well as the two-stage

approach, could also be generalised to other areas. The observed bias is also commonly

known as the regression dilution bias, which could be found in almost any regression

model. However, whether to apply the skewed loss, as well as other approaches, depends

on different applications. In brain age prediction, a near-zero ADC is the primary goal as

a non-zero ADC could cause spurious relationships in subsequent experiments, whereas

in apparent age prediction, a more accurate age estimation is more important.
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It should also be noted that both the two-stage approach and the skewed loss have

their advantages and shortcomings. Regarding the two-stage approach, it is easier to

implement, because, in each stage, only one metric (MAE or ADC) is optimized. However,

when the correction is applied afterwards, there is no guarantee that the MAE from the

first stage remains low, which can be observed in Table 3.4. As for the skewed loss, it is

obvious that by optimizing the two metrics (MAE and ADC) in a unified approach, the

model takes care of both metrics at the same time. As for the shortcomings, a successful

search of λmax is crucial for the skewed loss approach. In Algorithm 1, we provide a

heuristic way to search for it which proves to be robust. However, the two-stage approach

does not require this additional hyperparameter searching.

There are still some aspects that require further improvements. Firstly, it would be

preferred to apply the skewed loss on a larger dataset. Secondly, our approach can

only be applied in regression models. Peng et al. [33] treated brain age prediction as

a classification task and applied a weighted sum to calculate the predicted brain age.

The two-stage approach can be applied to that situation while ours cannot. Also, it is

useful to apply the skewed loss function in a case study to assess its sensitivity to detect

pathological changes in patients. Although our approach achieves a near-zero ADC value

that is similar to the two-stage approach, a case study can further confirm the relevance

of our approach rather than through the ADC value.

3.8 Summary

To conclude, we developed the skewed loss function to counteract the regression bias in

brain age prediction. In most cases, it achieves a better performance than the existing

two-stage approach. Also, our approach has been verified in different datasets using

different neural network architectures. By taking ADC explicitly into consideration in the

training process, our approach also shows the potential to remove nonlinear relationships

by measuring ADC using relevant correlation metrics.

In the next chapter, we turn to the second objective of this thesis to make brain age
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prediction a more practical and accessible tool in clinical settings to facilitate its real-

world use.
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Practical Brain Age Prediction - Generalisation on

Low-Resolution Images via Super-Resolution

In this chapter, we turn to the second objective of this thesis to generalise brain age

prediction for low-resolution MR images via super-resolution, making brain age prediction

a practical and accessible application for clinical diagnosis.

We firstly propose a simple yet effective approach for the conventional patch-based

training strategy for MRI super-resolution models by balancing the proportion of im-

age patches containing high-frequency details, making the model focus more on high-

frequency information in tiny regions, especially for the cerebellum. Compared with

the conventional patch-based training strategy, the resultant super-resolved MR image

from our approach improves significantly on the high-frequency details in the cerebellum.

Secondly, we demonstrate an integrated brain age prediction workflow by incorporating

MRI super-resolution. Brain age prediction model is typically trained on research-grade

high-resolution images, which may face performance degradation in clinical settings, since

clinical-grade MR images tend to have lower image resolutions. By adopting MRI super-

resolution on clinical-grade MR images, more image details can be reconstructed, which

exhibits negligible differences in predicting brain age compared with high-resolution im-

ages, after being fed into a pretrained brain age prediction model.

4.1 Introduction

High spatial resolution (HR) structural MR images contain detailed anatomical informa-

tion, which is preferable in clinical diagnosis. However, HR images come at the cost of

longer scan time, smaller spatial coverage, and lower signal-to-noise ratio [134], which
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poses difficulties for the clinical environment due to hardware limits. One solution for

this problem is to apply the single image super-resolution (SISR) technique, which only

requires a low spatial resolution (LR) image to reconstruct its HR counterpart. It does

not require extra scan time or high-cost scanners to generate an HR image and could

be used to enhance the image quality from the low-field scanners. Nowadays, SISR has

already been applied for medical image diagnosis, such as brain tumour detection [135].

Training SISR models requires paired LR and HR images so that the models can learn the

mapping from the LR to HR images. Due to the rare availability of paired MR images,

synthetic LR images, generated from their HR counterpart, have been widely used in the

literature. To mimic the behaviours of the real-world low-field scanners, the HR images

are typically transformed into the k-space using the Fast Fourier Transform (FFT), and

the resolution degradation is performed on the k-space data [136].

In many previous studies, the synthetic LR images are similar to the original HR im-

ages, even if only keeping the central 25% k-space data [88], [89], [136]–[138], which may

face performance degradation on the real-world LR images. In this chapter, we firstly

investigate whether these previously proposed models are capable of learning more com-

plex mappings when using more blurry LR images as input. We follow the procedures

precisely in generating the LR images [88], [136], [138], while only keeping 6.25% of the

k-space data. By keeping a smaller proportion of the original k-space data, there exists

a more significant difference between the synthetic LR and the authentic HR images.

A more fundamental question in brain MRI super-resolution is about the patch-based

training strategy. Conventionally, image patches sampled uniformly from the whole brain

volume, rather than the whole images, are fed into the model as input to prevent hardware

memory issues [88], [89], [136]–[138]. However, such uniform sampling introduces a data

imbalance issue. The cerebrum, containing low-frequency information, generates far more

patches than the cerebellum, whereas the latter contains more complex structures. It

could result in the model being more focused on the information from larger regions

of the brain and ignoring the fine-grained details in tiny areas. In the literature, the
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reconstruction of the cerebrum has achieved almost indistinguishable performance using

relatively small models [88]. However, there is still a huge gap between the super-resolved

cerebellum and the authentic HR image, even using decent models [90], [91]. To solve the

data-imbalance issue, we propose a simple yet effective algorithm via a non-uniform patch

sampling for the conventional patch-based training strategy to treat the whole brain and

cerebellum equally to derive better super-resolution quality.

Lastly, we propose an integrated brain age prediction workflow by incorporating the brain

MRI super-resolution, generalising brain age prediction for low-resolution MR images.

Brain age prediction models are typically trained using HR brain images so that the

models can learn more detailed information about the brain structures. Performance

degradation usually happens if different types of data are adopted in the testing time, for

instance, images with lower resolution compared with high-resolution training images.

With the help of the brain super-resolution techniques, an LR image will be super-

resolved firstly and then used for predicting brain age, which makes predicting brain age

more practical and accessible even in clinical environments.

Our main contributions in this chapter are:

1. We evaluate the capacity of several renowned models using more blurry LR images

as input, compared with previous studies. By keeping 6.25% of the k-space data

rather than 25% in the literature, the synthetic LR images look more similar to the

real-world MR images generated from low field scanners, which may improve model

generalization ability on real-world low-field scanners.

2. We propose a direct and effective method using a non-uniform sampling for the

patch-based training strategy to improve the reconstruction quality for high-frequency

details, especially for the cerebellum. To the best of our knowledge, the proposed

method is the first work that treats the brain volume as two separate regions for

brain MRI super-resolution tasks.

3. We integrate the brain MRI super-resolution into the brain age prediction frame-

work, which makes it feasible to predict brain age from low-resolution images. Com-
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pared with high-resolution images, low-resolution images achieve negligible differ-

ences in predicting brain age. We also provide an evaluation of the super-resolution

technique and demonstrate the effectiveness of adopting super-resolved MR images

for training a brain age prediction model. The super-resolved images achieve com-

parable predictive performance compared with HR images. The implementations

are available in the GitHub repository 1.

This chapter is organised as follows. Section 4.2 proposes a non-uniform sampling ap-

proach for improving the high-frequency details for brain MRI super-resolution. Section

4.3 explains the settings of the experiments, including dataset and model architectures.

Section 4.4 demonstrates quantitative experiment results and model comparisons. Sec-

tion 4.5 provides a use case of the proposed super-resolution approach using brain age

prediction. Section 4.6 illustrates the integrated brain age prediction workflow by incor-

porating brain MRI super-resolution and demonstrates performance evaluations. Section

4.7 discusses the advantages of the proposed approach and propose future works. Section

4.8 summarises the overall approach to conclude this chapter.

4.2 A non-uniform sampling for MRI super-resolution

As we previously mentioned in Section 4.1, the conventional uniform patch sampling

results in a data imbalance issue between the over-represented region (cerebrum) and

under-represented region (cerebellum), whereas the latter has more complex details and

requires much more data to learn.

Ideally, a second model could be trained using only the cerebellum images, which is

expected to achieve better results on the cerebellum. However, it requires additional

training resources and might introduce problems when merging the two resultant images.

Therefore, a unified approach could be proposed by balancing the number of patches

from the cerebrum and cerebellum during the training process. Such non-uniform patch

sampling makes the model focus more on under-represented regions. To keep the overall

1https://github.com/anonymousreviewonly/MRI_SR
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training time unchanged, the number of generated patches stays unchanged, whereas

more patches come from the cerebellum compared with conventional patch sampling.

The non-uniform sampling approach is formally presented in Algorithm 2. Some notations

in Algorithm 2 are defined in Table 4.1.

Table 4.1: Notations for Non-uniform Sampling Approach

Notation Type Description
Dbrain constant whole brain MRI dataset
Dbrain i constant whole brain MR image with index i
Dbrain patch constant whole brain MRI patch dataset
Dcere constant extracted cerebellum dataset
Dcere i constant extracted cerebellum image with index i
Dcere patch constant extracted cerebellum patch dataset
Nepoch variable number of epoch
Nsub variable number of subject

Algorithm 2: A Non-uniform Sampling Approach
Given Whole Brain MRI Dataset Dbrain of length Nsub

for i← 1 to Nsub do
Extract the cerebellum Dcere i from the whole brain volume Dbrain i

end
Concatenate all cerebellum volumes into a cerebellum dataset Dcere

for j ← 1 to Nepoch do
Generate patch dataset Dbrain patch from Dbrain

Randomly select 50% patches from Dbrain patch and discard rest patches
Generate patch dataset Dcere patch from Dcere with same length of Dbrain patch

Concatenate Dbrain patch and Dcere patch randomly as the training set
Model Training

end

The intuition of the proposed approach is straightforward. Since the brainstem contains

few patterns, the brain super-resolution focuses more on the cerebrum and cerebellum.

Also, as the cerebrum and cerebellum contain disparate structures, it is natural to treat

the whole volume super-resolution as two sub-volume super-resolution tasks. Therefore,

by keeping a 50/50 data distribution of image patches, the model becomes less biased

towards the cerebrum, which naturally helps the reconstruction in the cerebellum. The-

oretically speaking, such non-uniform sampling might cause performance degradation in

the cerebrum, as less information is used for training. However, in Section 4.4.2, we

demonstrate that our modification results in negligible difference compared with conven-

tional uniform sampling. Also, the proposed non-uniform sampling improves the recon-
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struction quality for the cerebellum significantly, resulting in more high-frequency details

being restored in cerebellum.

4.3 Experiments

4.3.1 Dataset and data preprocessing

To fairly compare different models and training strategies, we chose a widely used and

publicly accessible brain structural MRI database, the Human Connectome Project (HCP)

[139]. It contains 3D T1-weighted MR images from 1113 subjects acquired via the Siemens

3T platform using a 32-channel head coil on multiple centres. The images come in high

spatial resolution as 0.7 mm isotropic in a matrix size of 320 × 320 × 256. These high-

quality images serve as the authentic HR images in the following experiments. We further

randomly chose 800 images as the training set, 100 images as the validation set, and the

rest 213 images as the test set.

We further performed the Brain Extraction Tool (BET) [140] on the original HR images

to delete non-brain tissue to make our model focus only on the brain structures to improve

performance.

To generate the corresponding LR images, we followed the same pipeline demonstrated

in [88]. The detailed steps are as follows:

1. Applying the FFT to authentic HR images to convert the original image into the

k-space data.

2. Masking (zeroing) the outer part of the 3D k-space data along two axes representing

two MR phase encoding directions.

3. Applying the inverse FFT to the masked k-space data to generate the synthetic LR

images.

An illustration of masking the k-space data is shown in Figure 4.1. The above LR image

synthesis procedure mimics the real MR image acquisition process where a low-resolution
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MRI is scanned by reducing acquisition lines in phase and slice encoding directions. It

should be noted that the synthetic LR images have the same size as the HR images,

avoiding the checkerboard artefacts [141].

A hyperparameter, named “scale factor”, is introduced in the demonstrated image syn-

thesis pipeline, which determines the proportion of masked k-space data. A larger scale

factor masks more k-space data, resulting in more blurry images. In Figure 4.1, we set

the scale factor to 2. Therefore, only the central 25% (1/2× 1/2) of the k-space data is

preserved. Using a scale factor of 2 is common in many studies [88], [89], [136], whereas,

in this chapter, we set the scale factor to 4, preserving the central 6.25% (1/4×1/4) of the

k-space data, to evaluate the models on more blurry LR images. An image comparison

using different scale factors is shown in Figure 4.2.

Moreover, as the proposed non-uniform sampling, described in Section 4.2, requires a

separate sampling on the cerebellum, a separate dataset containing the cerebellum is

created. It is achieved by using FastSurfer [142], a deep-learning-based open-sourced

brain segmentation software2. FastSurfer automatically labels the cerebellum regions for

extraction. The cerebellum extraction pipeline is demonstrated in Figure 4.3. It should

be stressed that segmentation masks are generated using only the authentic HR images,

and the corresponding masks will be applied on both HR and LR images to ensure

both HR and LR cerebellums are also voxelwise paired. A diagram of the overall image

preprocessing is shown in Figure 4.4.

4.3.2 Models

We chose two widely recognized models in this field, mDCSRN and mDCSRN-WGAN

[88] to evaluate the proposed approach. We chose these two models since they both adopt

the DenseNet [37] as the backbone, which is still popular in various model designs. Also,

they represent two distinct model designs, CNN-based and GAN-based models.

It should be noted that there are no limitations in the choice of model architectures since

2https://github.com/Deep-MI/FastSurfer
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(a)
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(b)
−→

(c)
−→

(d)

Figure 4.1: An illustration of masking the k-space data. (a) represents the HR image.

(b) is obtained by applying FFT to (a). (c) is obtained by masking (zeroing) the phase

and slice encoding directions of (b) and (d) is generated by applying inverse FFT on (c).

We set the scale factor to 2.

(a)

(b)

Figure 4.2: MR image and corresponding k-space data comparisons using different scale

factors. In (a), from left to right, it shows the original HR image, and LR image using

a scale factor of 2 and 4. (b) shows the corresponding k-space data using different scale

factors. For scale factors 2 and 4, the central 25% and 6.25% of the data are preserved.

the proposed approach focuses primarily on data sampling. We chose DenseNet-based

models for their stability and effectiveness. The mDCSRN model adopts a DenseNet [37]
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(a)
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−→

(d)
−→

(e)

Figure 4.3: An illustration of the cerebellum extraction pipeline using FastSurfer. (a)

represents the authentic HR image. (b) is obtained by applying FastSurfer to (a). (c) is

obtained by selecting the cerebellum-related mask of (b) and (d) is generated by applying

the cerebellum mask (c) on (a). Finally, we remove the useless background in (d) to derive

(e). FastSurfer labels the cerebellum automatically for delineation.

Figure 4.4: A diagram of MR image preprocessing.

architecture with 4 dense blocks. The mDCSRN-WGANmodel uses the same architecture

of mDCSRN as the generator and uses the Wasserstein GAN [143] to guide the model

training. We adopted the identical model architecture settings from the mDCSRN and

mDCSRN-WGAN mdoels in our experiments.
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4.3.3 Training and testing

In the training process, Adam optimizer [128] is used as the default optimizer for all

models. The initial learning rate is set to 0.001 and then multiplied by 0.5 every 10

epochs. The batch size is set to 64 as default and the total number of epochs is set to

50. We use the L1 loss for mDCSRN and the generator of the mDCSRN-WGAN model

since L1 loss has been shown to generate more realistic images than L2 loss [144]. The

size of image patches is set to 32× 32× 32 for all patches. The hyperparameter settings,

such as learning rate, are based on our experiment testing.

To evaluate the super-resolution performance, we used the structural similarity index

(SSIM), peak signal-to-noise ratio (PSNR), and normalized root mean squared error

(NRMSE) to measure the similarity between super-resolved (SR) images and HR images.

SSIM uses the mean, variance, and covariance to estimate the similarity of the two images.

PSNR is used to further quantify the recovered image quality using the mean squared

loss. NRMSE is a more direct way to measure the pixel-wise similarity between the

original and super-resolved images. In general, lower NRMSE, higher PSNR, and higher

SSIM values represent better super-resolution results. Although these metrics have been

criticized that a high score does not represent a better image quality [107], they are still

the most commonly used metrics, and no other perceptual quality metrics for 3D MR

images have been applied in the literature.

4.4 Results

In this section, we first demonstrate the SISR model performance using synthetic LR

images, generated under a scale factor of 4. Then, we compare the model performance

between the conventional patch sampling and the proposed non-uniform sampling. Since

the CNN-based model performs similarly to the GAN-based model, to avoid unnecessary

repetition, we only demonstrate sample output images from the mDCSRN model as

an illustration. When conducting the significance test, the paired t-test is adopted by
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default.

4.4.1 Model performance under a scale factor of 4

Figure 4.5 demonstrates the model performance of the whole brain volume using the

mDCSRN model in three perspectives. It can be observed that the SR image is similar

to the HR image in most regions of the brain, especially in the cerebrum. It indicates

that relatively simple models, such as mDCSRN, are still capable of handling more blurry

patterns, especially in the cerebrum region. The quantitative analysis is demonstrated

in Table 4.2. From Table 4.2, it could be observed that both mDCSRN and mDCSRN-

WGAN significantly improve the image quality in all three metrics compared with the

baseline (p <0.01).

Table 4.2: Model performance of the whole brain volume (mean ± standard deviation)

Model Image Pair PSNR SSIM NRMSE

None
(Baseline) HR & LR 32.33 ± 2.92 0.92 ± 0.01 0.148 ± 0.09

mDCSRN HR & SR 34.23 ± 2.14 0.95 ± 0.01 0.119 ± 0.06

mDCSRN
-WGAN HR & SR 34.19 ± 2.11 0.95 ± 0.02 0.121 ± 0.07

4.4.2 Comparisons between conventional and proposed sam-

pling

Table 4.3 demonstrates the quantitative analysis of model performance for mDCSRN and

mDCSRN-WGAN. For each model, we compare the conventional sampling approach and

the proposed approach on the whole brain volume and the cerebellum respectively. We

also add the PSNR, SSIM, and NRMSE values between the HR and LR images as the

baseline to demonstrate the improvement of our approach.

From Table 4.3 nad Table 4.4, when considering the reconstruction quality of the whole

brain volume for both mDCSRN and mDCSRN-WGAN model, the conventional patch-

based training approach achieves comparable performance with our sampling approach

77



Chapter 4. Practical Brain Age Prediction

(a)

(b)

(c)

Figure 4.5: An illustration of the HR, LR, and SR brain image using the mDCSRN

model. (a), (b), and (c) shows the sagittal, coronal, and axial view.

in all three metrics. There are no significant differences in all three metrics when eval-

uated on the whole brain volume between the two sampling approaches, whereas both

approaches outperform the baseline performance significantly (p <0.05). When evalu-

ated on the cerebellum, our proposed sampling approach significantly outperforms the

conventional sampling approach for both mDCSRN and mDCSRN-WGAN models in all

three metrics (p <0.05).

The reason for the improved performance on the cerebellum is clear, as we have increased

the proportion of image patches from the cerebellum for models to learn. The potential

reason for the comparable performance on the whole brain volume between the conven-

tional and the proposed approach is that the number of patches from the whole brain is

redundant. Reducing the proportion of patches from the over-represented regions does

not affect model performance significantly. Also, at the beginning of each epoch, random

patches will be selected until the end of training. Therefore, the model is still able to

learn information from all whole brain patches.
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Figure 4.6 and Figure 4.7 demonstrate the super-resolution performance between the

conventional approach and the proposed approach on both whole brain volume and cere-

bellum respectively. It can be observed that our approach achieves almost the same

performance in the whole brain volume, whereas reconstructs more details in the cere-

bellum.

Therefore, compared with the conventional sampling approach, the proposed non-uniform

sampling approach achieves comparable performance on the whole brain volume, whereas

significantly improves the reconstruction quality for the fine structures in the cerebellum.

Table 4.3: mDCSRN model performance of the whole brain and cerebellum (mean ±

standard deviation)

Brain Regions Image Pair PSNR SSIM NRMSE

Whole Brain
HR & LR (baseline - no model) 32.33 ± 2.92 0.92 ± 0.01 0.148 ± 0.09

HR & SR (conventional sampling approach) 34.23 ± 2.14 0.95 ± 0.01 0.119 ± 0.06

HR & SR (our approach) 34.18 ± 1.98 0.95 ± 0.02 0.120 ± 0.05

Cerebellum
HR & LR (baseline - no model) 28.37 ± 2.66 0.88 ± 0.01 0.15 ± 0.10

HR & SR (conventional sampling approach) 28.89 ± 1.81 0.905 ± 0.01 0.135 ± 0.06

HR & SR (our approach) 29.62 ± 1.55 0.93 ± 0.01 0.127 ± 0.02

Table 4.4: mDCSRN-WGAN model performance of the whole brain and cerebellum

(mean ± standard deviation)

Brain Regions Image Pair PSNR SSIM NRMSE

Whole Brain
HR & LR (baseline - no model) 32.33 ± 2.92 0.92 ± 0.01 0.148 ± 0.09

HR & SR (conventional sampling approach) 34.19 ± 2.11 0.95 ± 0.02 0.121 ± 0.07

HR & SR (our approach) 34.13 ± 2.17 0.95 ± 0.03 0.122 ± 0.05

Cerebellum
HR & LR (baseline - no model) 28.37 ± 2.66 0.88 ± 0.01 0.15 ± 0.10

HR & SR (conventional sampling approach) 28.91 ± 1.73 0.902 ± 0.02 0.139 ± 0.04

HR & SR (our approach) 29.47 ± 1.81 0.918 ± 0.02 0.124 ± 0.05

4.5 Evaluation via brain age prediction

To further validate the effectiveness of the proposed super-resolution sampling approach,

we provide an example use case of super-resolved MR images via brain age prediction.
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(a)

(b)

Figure 4.6: HR, LR, SR (conventional sampling), and SR (the proposed sampling) whole

brain volume illustrations by mDCSRN model. (a) shows the sagittal view and (b) shows

the coronal view.

(a)

(b)

(c)

Figure 4.7: An illustration of the HR, LR, SR (with conventional sampling), and SR

(with the proposed sampling) cerebellum image by mDCSRN. (a), (b), and (c) show the

sagittal, coronal, and axial view.
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4.5.1 Experiment settings

DenseNet architecture is selected for brain age prediction considering its performance

and speed and the HCP dataset is also adopted for brain age prediction. Then, the HR

images are used to generate corresponding LR images, as discussed in Section 4.3.1.

Afterwards, the generated LR images are super-resolved using the mDCSRN models

trained with conventional sampling and the proposed sampling approach respectively,

generating two super-resolved images for each LR image. Therefore, two super-resolved

MR image datasets are created. One adopts the conventional uniform sampling and the

other uses the proposed non-uniform sampling.

The two SR image datasets are used to train the brain age prediction model respectively,

resulting in two brain age prediction models, each dedicated to a sampling strategy. Two

more brain age prediction models are also trained using original HR images and LR

images respectively as the contrast. In total, four brain age prediction models are trained

using HR images, LR images, SR images (conventional approach), and SR images (our

approach) respectively.

To decrease the variations in the model training process, each model is trained five times.

The Mean Absolute Error (MAE) is adopted as the evaluation metric. In the training

process, Adam optimizer [128] is used as the default optimizer for all models. The initial

learning rate is set to 0.01 and then multiplied by 0.5 every 30 epochs. The batch size is

set to 64 as default and the total number of epochs is set to 300.

4.5.2 Results

Results in Table 4.5 demonstrate the model performance of brain age prediction using

HR images, LR images, SR images from conventional patch sampling, and SR images

from our approach respectively.

It can be observed that SR images from our approaches achieve comparable predictive

accuracy compared with SR images from conventional patch sampling, and both ap-
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proaches surpass LR images significantly (p <0.05). The HR images show slightly better

performance compared with super-resolved images from both approaches, whereas the

difference is not significant.

The model performance is expected. Because, in brain age prediction, the model predicts

age based on the whole brain volume rather than the cerebellum. The improvements in

the cerebellum, discussed in Section 4.4, are likely to be ignored by the model. However,

it also validates that our approach achieves almost the same reconstruction quality on

the whole brain volume, compared with the conventional approach. Therefore, we have

validated that the super-resolved MR images derived from the proposed non-uniform

sampling strategy can be applied for subsequent clinical analysis and it may demonstrate

more significant improvements in some cerebellum-specific analysis.

Table 4.5: Model performance of brain age prediction evaluation (mean ± standard

deviation)

Model Input Images MAE

HR images 2.25 ± 0.27

SR images
(conventional sampling approach)

2.38 ± 0.31

SR images
(our approach)

2.33 ± 0.34

LR images 3.01 ± 0.28

4.6 Generalising brain age prediction for LR images

As we mentioned in Section 4.1, introducing brain MRI super-resolution into brain age

prediction holds many benefits, making it applicable to predicting brain age for low-

resolution MR images, especially for clinical environments. To demonstrate the usability

of this combination, experiments are conducted by comparing the prediction accuracy of

super-resolved MR images and HR images. A detailed illustration of the integrated brain

age prediction workflow with super-resolution included is demonstrated in Figure 4.8.
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Figure 4.8: A detailed brain age prediction workflow with MRI super-resolution. A brain

age prediction model is trained using HR images and it can be used to predict brain age

for both high-resolution images and low-resolution images after being super-resolved.

4.6.1 Experiment settings

As is shown in Figure 4.8, the integrated brain age prediction workflow requires two

trained models, the super-resolution model and the brain age prediction model. In Sec-

tion 4.4, we have trained the mDCSRN model and mDCSRN-WGAN model for super-

resolution. The two models will be used as super-resolution models, illustrated in Figure

4.8.

In terms of model architectures for brain age prediction, we choose the DenseNet [34]

architecture and SFCN [33] architecture considering their performance and speed.

HCP dataset, mentioned in Section 4.3.1, is still used in brain age prediction. The

HR image dataset is split using a stratified split strategy of which 80% was used for

training, 10% for validation, and 10% for testing. Then, similar to Section 4.5, the

testing HR images are used to generate corresponding testing LR images as discussed

in Section 4.3.1. Afterwards, the generated testing LR images are super-resolved using

the mDCSRN model and mDCSRN-WGAN trained with conventional patch sampling

and the proposed sampling approach respectively, generating four testing super-resolved

MR images for each LR testing image. Therefore, four super-resolved MR image testing

datasets are created.

The HR image training dataset is used to train the brain age prediction model. The HR

image testing dataset and the four super-resolved image testing datasets are tested. To

decrease the variations in the model training process, each brain age prediction model is
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trained five times. The Mean Absolute Error (MAE) is adopted as the evaluation metric

commonly used in age prediction research. In the training process, Adam optimizer [128]

is used as the default optimizer for all models. The initial learning rate is set to 0.01 and

then multiplied by 0.5 every 30 epochs. The batch size is set to 64 as default and the

total number of epochs is set to 300.

4.6.2 Results

Results in Table 4.6 demonstrate the model performance of brain age prediction using

HR testing images, LR testing images and the four super-resolved testing images using

conventional patch sampling and our approach form mDCSRN and mDCSRN-WGAN

models respectively. Table 4.7 demonstrates the significance table of model performance

compared with HR-image-based model. It can be observed that using the same pre-

trained model for brain age prediction, four different SR testing datasets perform similarly

in terms of MAE. The HR images show slightly better performance compared with super-

resolved images from all four sources, whereas the difference is not significant. On the

contrary, when adopting the LR images for prediction, we can observe a significant model

performance degradation in terms of MAE, illustrating a clear distribution shift problem.

The performance table indicates that the testing performance of super-resolved images

is comparable with HR images even if the brain age prediction models are trained using

the HR images. The distribution shift problem is not significant in the refined brain age

prediction framework, and the super-resolved images are capable of displaying similar

information compared with the original HR images.

Therefore, we have demonstrated that the brain MRI super-resolution can be integrated

into brain age prediction, which makes it feasible to predict brain age for low-resolution

MR images. Such modification does not introduce a significant distribution shift problem

for brain age prediction as long as the super-resolution model is properly trained.

84



Chapter 4. Practical Brain Age Prediction

4.6.3 Summary

The integrated brain age prediction with MRI super-resolution included demonstrates

strong potential in clinical diagnosis. A sophisticated large-scale brain age prediction

model can be pre-trained using research-level high-resolution MR images. Then, in clin-

ical environments, clinical-graded MR images can be super-resolved to the target reso-

lution used to train the age prediction model. In this way, brain age can be predicted

on the super-resolved images in clinical situations, which makes brain age accessible in

clinical situations.

Table 4.6: Model performance of integrated brain age prediction framework (mean ±

standard deviation)

DenseNet MAE SFCN MAE

HR images 2.50 ± 0.27 HR images 2.97 ± 0.27

SR images
(mDCSRN;

conventional sampling)
2.61 ± 0.28

SR images
(mDCSRN;

conventional sampling)
3.09 ± 0.31

SR images
(mDCSRN;

our approach)
2.58 ± 0.21

SR images
(mDCSRN;

our approach)
3.13 ± 0.29

SR images
(mDCSRN-WGAN;

conventional sampling)
2.65 ± 0.28

SR images
(mDCSRN-WGAN;

conventional sampling)
3.10 ± 0.22

SR images
(mDCSRN-WGAN;

our approach)
2.63 ± 0.23

SR images
(mDCSRN-WGAN;

our approach)
3.15 ± 0.21

LR images 4.04 ± 0.15 LR images 4.29 ± 0.20

4.7 Discussion

We have proposed a simple yet effective algorithm, via a non-uniform sampling strat-

egy, for conventional patch-based training in brain MRI super-resolution problems. We

have also proposed an integrated brain age prediction workflow, by integrating the brain

MRI super-resolution, to make it feasible to predict brain age for low-resolution images

in the clinical environments. We provide a different perspective by observing the brain
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Table 4.7: Model performance significance table of refined brain age prediction framework

compared with HR images

DenseNet p-values SFCN p-values
SR images
(mDCSRN;

conventional sampling)
0.81

SR images
(mDCSRN;

conventional sampling)
0.73

SR images
(mDCSRN;

our approach)
0.86

SR images
(mDCSRN;

our approach)
0.58

SR images
(mDCSRN-WGAN;

conventional sampling)
0.65

SR images
(mDCSRN-WGAN;

conventional sampling)
0.64

SR images
(mDCSRN-WGAN;

our approach)
0.72

SR images
(mDCSRN-WGAN;

our approach)
0.49

LR images 0.01 LR images 0.01

structures in super-resolving brain MR images. By maintaining a 50/50 data distribu-

tion of patches, our approach achieves comparable reconstruction performance on the

whole brain volume, whereas significantly surpasses the conventional approach on the

cerebellum. More high-frequency details in the cerebellum have been restored from our

approach.

We have demonstrated the capacity of several renowned models by using much more

blurry LR images as input in Section 4.4. In the literature, a scale factor of 2 has been

widely adopted to generate LR images. In this paper, we select a scale factor of 4 to

generate LR images and the models are still capable of learning the mappings between

the LR and HR images.

We have shown that our non-uniform sampling strategy across the whole brain volume

does not result in significant reconstruction degradation in the non-cerebellum regions.

The most probable reason behind this is that in the conventional approach, the number

of patches from the over-represented regions is already redundant, and non-cerebellum

regions contain simpler patterns. As we demonstrated in Figure 4.5 and Table 4.3, the

mDCSRN model can achieve indistinguishable reconstruction quality over non-cerebellum

regions.
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We have also provided a use case for MRI super-resolution via brain age prediction.

From Table 4.5, the super-resolved MR images demonstrate significantly better predictive

accuracy in predicting brain age compared with LR images (p <0.05). Although the HR

images achieve the highest accuracy, the difference between HR images and super-resolved

images is not significant. In terms of the two super-resolution sampling approaches,

since the proposed approach focuses primarily on the cerebellum, there is no significant

difference between the two approaches for age prediction using the whole brain volume.

By inserting the brain MRI super-resolution into the brain age prediction, model predic-

tions using LR images achieve comparable performance compared with high-resolution

testing images. The prediction accuracy difference between HR images and super-resolved

images is negligible. It improves the flexibility of input data in brain age prediction so

that the brain age prediction can handle HR and LR images. The most probable reason

is that brain MRI super-resolution can achieve excellent performance in super-resolving

the cerebrum and brain age prediction focuses more on the structures of the cerebrum,

since it shows more apparent alterations in the ageing process and is also the largest

region in the brain.

There are still some aspects that require further improvements. Firstly, although our

approach focuses on data balancing and does not depend on model architectures, it

might be worthwhile to apply such sampling to more advanced architectures. Also, our

proposed sampling strategy is mainly based on intuitions. Given that the brain mainly

contains the cerebrum, cerebellum, and brainstem, whereas the latter contains very few

structures, it is reasonable to treat the whole brain volume SR into two sub-volume SR

problems and apply a 50/50 data distribution for the cerebellum and non-cerebellum

regions. However, more sophisticated sampling methods could be explored to evaluate

the optimal combination of the two regions.
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4.8 Summary

To conclude, we propose a more effective sampling approach for the conventional patch-

based training strategy for brain MRI super-resolution problems. By using a non-uniform

sampling across the whole brain volume, the model tends to learn more high-frequency

details from the cerebellum, rather than being focused on non-cerebellum regions due to

data imbalance. With the help of the proposed sampling approach, we improve the model

performance on the cerebellum significantly and also achieve comparable performance on

the whole brain volume. We also refine the brain age prediction workflow by inserting the

brain MRI super-resolution techniques, making the brain age prediction a more practical

application for clinical diagnosis and capable of handling more diverse images.

In the next chapter, we turn to the last objective of this thesis to improve the model

predictive accuracy using a multi-modal approach.
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Accurate Brain Age Prediction - Multi-Modal Learn-

ing with structural MRI and diffusion MR measures

In this chapter, we turn to the third objective of this thesis to demonstrate a multi-modal

approach for predicting brain age more accurately.

We propose a tract-wise approach for predicting brain age using diffusion MRI and quan-

titative MRI measures of the white matter tracts. The tract-wise approach prioritises

more informative white matter tracts and discards less useful ones, providing insights

into the more ageing-sensitive white matter tracts. We further compare brain age pre-

diction that uses structural T1-weighted images to prediction that uses diffusion MR

measures of the white matter tracts. By comparing the model accuracy of the two data

modalities, we illustrate that diffusion MR measures are also sensitive in predicting age.

A two-stream brain age prediction framework is further proposed by fusing the model

predictions from diffusion MR measures and structural T1-weighted images, achieving

improved performance compared with any single data modality.

5.1 Introduction

The rapid advance of deep learning techniques over the past decade makes it feasible

for training deep neural networks on structural MR images to derive the predicted brain

age [1], [31], [33], [34], [42]. In the literature, structural MRI and diffusion MRI are

the most widely-adopted MR imaging modalities for brain age prediction [17], [19], [33],

[34], [36], [117]–[119]. Structural MRI provides detailed information about the brain’s

anatomical structures and diffusion MRI captures the integrity and connectivity of the

brain microstructure.
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With the advance of deep learning models, it has become a common practice to train

neural networks on MR images to predict brain age. Structural MR images, such as T1-

weighted images, have demonstrated satisfactory accuracy in predicting age for healthy

people [1], [33], [34], [36], [104]. However, there are few studies in directly predicting brain

age using neural networks on diffusion MR images [117]. A more common practice to

predict brain age using diffusion MRI data is to first extract features from diffusion MR

images and then model brain age using the extracted features, rather than raw images

[17], [19], [30], [110], [118], [119], [145].

To quantify the brain microstructural alterations in the ageing process, various diffu-

sion MRI measures of white matter microstructure, such as fractional anisotropy (FA),

mean diffusivity (MD), and radial diffusivity (RD), have been proposed and adopted for

predicting brain age [17], [19], [30], [110], [145]. Since diffusion MRI measures can be es-

timated on each white matter tract, it results in a large number of diffusion MRI features

and different feature selection approaches have been explored [17], [19], [110], [118], [145].

In this chapter, we propose a tract-wise approach to prioritise more informative white

matter tracts for accurate brain age prediction, providing insights into the more ageing-

sensitive white matter tracts. The selection of informative tracts happens in the model

training process and all white matter tracts have the chance of being selected. We

demonstrate that although some tracts are more likely to be prioritised, all white matter

tracts are adopted for predicting brain age using the model ensemble. We also train neural

networks on 3D structural T1-weighted MR images as the contrast to further investigate

any possible advantages of using white matter microstructure measures.

The two data modalities mentioned above contain distinct information about the brain

and therefore complement each other, providing a more complete picture of the brain and

of how it ages. Therefore, we further provide a two-stream brain age prediction frame-

work containing two separate routes, for structural images and measures of white matter

microstructure respectively. The structural image pipeline adopts several renowned neu-

ral networks to make predictions, as stated in the literature [33], [34]. The microstructure
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measures pipeline adopts traditional models, such as XGBoost, to make predictions as

the microstructure measures come in tabular format. The two separate pipelines are later

combined to create an ensemble model to produce the final age prediction, which outper-

forms any single pipeline. The implementations of the proposed two-stream framework

are available in the GitHub repository1.

Our contributions in this chapter are:

1. We propose a tract-wise approach for accurate brain age prediction using diffusion

MRI measures of white matter microstructure. The tract-wise approach priori-

tises more informative white matter tracts in the model training process, providing

insights into more ageing-sensitive tracts. The proposed approach serves in both

dimension reduction and feature selection aspects by first separating different white

matter tracts and then prioritising more ageing-sensitive ones for predictions. Un-

like some schemes that perform feature selection before model training [17], [118],

[145], the tract-wise approach preserves the most complete information, keeping all

white matter tracts in consideration.

2. We provide a comparison between structural T1-weighted MR images and diffusion

MRI measures of white matter microstructure in predicting brain age. Apart from

diffusion MRI measures, quantitative MRI measures, such as myelin water fraction

(MWF) and intracellular volume fraction (ICVF), are also added to model brain

age. A two-stream brain age prediction framework is further proposed by combin-

ing information from structural images and white matter microstructure measures,

which provides the model with a more complete picture of the brain, achieving an

improved accuracy compared with any single data modality.

This chapter is organised as follows. Section 5.2 introduces our dataset and relevant

preprocessing pipelines. Section 5.3 proposes a two-stream framework for structural MR

images and white matter microstructure measures respectively. Section 5.4 demonstrates

experiment results and model comparisons. Section 5.5 discusses the advantages of the

1https://github.com/hanzhiwangchn/Microstructure_Age_Prediction
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multi-modal approach and proposes future works. Section 5.6 summarises the overall

two-stream framework to conclude this chapter.

5.2 Dataset acquisition and preprocessing

The dataset used in this chapter contains two data modalities, 3D structural T1-weighted

MR images and diffusion MRI measures of the white matter microstructure. The dataset

was collected at the Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff

University.

MRI data were collected using an ultra-strong magnetic field gradient (300 mT/m) 3T

Connectom MRI scanner, modified from a 3T Magnetom Skyra (Siemens Healthcare,

Erlangen, Germany), and a 32-channel receive-only head coil (same vendor).

5.2.1 Dataset description

The dataset contains 123 cognitively normal participants (mean age 33.1 years, standard

deviation 10.4 years, age range 19-68 years). The dataset age distribution is illustrated in

Figure 5.1. As is shown in Figure 5.1, our dataset has a skewed age distribution towards

young ages whereas it has a relatively wide age range.

All participants were required to meet MR safety requirements for scanning. Exclusion

criteria included diagnosis of any heart or breathing problem; high blood pressure; nerve

issues, including carpal tunnel syndrome and nerve damage; history of stroke, brain

tumour or brain injury; dizziness, palpitations or fainting; diabetes; current or previous

diagnosis of psychiatric condition; use of medication known to alter breathing, blood

pressure or mood; pregnancy or breast-feeding; heavy use of tobacco; frequent migraines;

epilepsy; and history of concussion resulting in loss of consciousness. The study was

approved by the Cardiff University School of Psychology Research Ethics Committee.

All participants gave informed written consent.
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Figure 5.1: Age distribution of our dataset

5.2.2 Dataset acquisition

5.2.2.1 T1-weighted structural images

T1-weighted images were acquired using a magnetization-prepared 180-degree radio-

frequency pulse and rapid gradient-echo (MPRAGE) sequence. Acquisition parameters

were as follows: repetition time (TR) 2300 ms, echo time (TE) 2 ms, field of view (FOV)

256× 256× 192 mm, matrix size 256× 256× 192, voxel size 1× 1× 1 mm, flip angle 9°,

inversion time (TI) 857 ms, in-plane acceleration (GRAPPA) factor 2 and phase-encoding

direction anterior-to-posterior (AP).

5.2.2.2 Diffusion MRI

Multi-shell diffusion-weighted MRI data were acquired using protocols described by Koller

et al. [146] for the Microstructural Image Compilation with Repeated Acquisitions (MI-

CRA) dataset. Data were acquired using a single-shot spin-echo, echo-planar imaging

sequence. It was acquired in both anterior-to-posterior (AP) and posterior-to-anterior
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(PA) phase-encoding directions. AP data comprised two shells of 20 diffusion encoding

directions (uniformly distributed according to Jones et al. [147]) at b = 200 s/mm2

and b = 500 s/mm2, one shell of 30 directions at b = 1200 s/mm2 and three shells of

61 directions each at b = 2400 s/mm2, 4000 s/mm2 and 6000 s/mm2, in addition to

two leading non-diffusion-weighted (b = 0 s/mm2) images and 11 non-diffusion-weighted

images dispersed throughout (33rd volume and every 20th volume thereafter). PA data

comprised two leading non-diffusion-weighted images, one shell of 30 directions at b =

1200 s/mm2, and a final non-diffusion-weighted image. Data acquisition details for all

b-values were as follows: TR 3000 ms, TE 59 ms, FOV 220 × 200 mm in-plane, matrix

size 110×110×66, voxel size 2×2×2 mm, with in-plane acceleration (GRAPPA) factor

2. Diffusion gradient duration and separation were 7 ms and 24 ms, respectively.

5.2.2.3 Multi-component relaxometry data

Multi-component relaxometry data were acquired using sequences implementing the McDESPOT

protocol [148], including a T1-weighted 3D spoiled gradient-recalled echo sequence (SPGR)

image, an inversion recovery (IR)-prepped spoiled gradient-recalled echo sequence (SPGR-

IR) image and a steady-state free precession (SSFP) image. Data acquisition details were

as follows: for SPGR: TR 4 ms, TE 1.9 ms, 8 flip angles (3, 4, 5, 6, 7, 9, 13, and 18°);

for SPGR-IR: TR 4 ms, TE 1.9 ms, flip angle 5°, full k-space acquisition in PE and

slice directions; for SSFP: TR 4.54 ms, TE 2.27 ms, 8 flip angles (10, 13.33, 16.67, 20,

23.33, 30, 43.33 and 60°). For all multi-component relaxometry data, the phase-encoding

direction was AP, FOV 220× 220× 179 mm, matrix size 128× 128× 104 and voxel size

1.72× 1.72× 1.72 mm isotropic.

5.2.3 Structural image preprocessing

The raw structural T1-weighted MR images experienced a series of preprocessing steps

before being used in the structural image stream.

Skull-stripping was first applied to the raw images to remove the non-brain tissues to

delete unnecessary information for brain age prediction, using an open-sourced software,
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named deepbrain 2. Afterwards, we performed rigid registration to register the extracted

brains to the MNI152 space using the linear registration tool (flirt) [149] from the FMRIB

Software Library (FSL). Then, the image intensities were z-score normalized based on the

individual mean and standard deviation using the fslmath command. Lastly, we removed

the black background to reduce the overall image size to 153× 192× 161.

5.2.4 Microstructure measures data preprocessing

5.2.4.1 Diffusion MRI preprocessing

Multi-shell diffusion-weighted MRI data were corrected for thermal noise, signal drift,

susceptibility-induced distortions, motion and eddy current-induced distortions, gradient

non-linearity, and Gibbs ringing artefacts.

Using the FSL brain extraction tool [140], the first non-diffusion weighted image from

each phase-encoding direction was masked to exclude all non-brain data. Diffusion MRI

noise level estimation and denoising was performed using a Marchenko-Pastur princi-

pal component analysis (MP-PCA)-based approach [150]–[152] in MRtrix3 [153]. Next,

within-image intensity drift was corrected by fitting the diffusion-weighted MRI data to

temporally interspersed b0 (non-diffusion-weighted) images. Slicewise OutLIer Detec-

tion (SOLID) [154] was then applied, employing lower and upper thresholds of 3.5 and

10, respectively, using a modified Z-score and a variance-based intensity metric. The

susceptibility-induced off-resonance field was estimated from the non-diffusion-encoded

data collected in AP and PA phase-encoding directions using FSL’s topup [155], [156]

and corrected, along with eddy current-induced distortions and subject movements, using

FSL’s eddy tool [157]. In-house code was then used to correct for gradient non-linearity

distortions in MATLAB. Lastly, Gibbs ringing correction was performed using the local

subvoxel-shifts method [158].

The fibre orientation distribution function was calculated in MRtrix3 [153] using multi-

shell multi-tissue constrained spherical deconvolution [159]. These data were then used for

2https://github.com/iitzco/deepbrain
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white matter bundle segmentation (tractography) and composite hindered and restricted

model of diffusion (CHARMED) [160] analysis.

CHARMED [160] analysis was conducted using in-house code, run in MATLAB. First, a

standard CHARMED model was fit using additional data gathered from the multi-shell

multi-tissue constrained spherical deconvolution fiber orientation distribution to select

the number of compartments in each voxel and constrain their orientation. Parameters

initialized during this step were then used to generate restricted fraction maps, repre-

senting the total amount of restricted diffusion within each voxel.

5.2.4.2 Tract segmentation

White matter tracts were reconstructed from constrained spherical deconvolution peaks

using a combined tract segmentation and orientation mapping approach [161], [162],

available in TractSeg [163]. We reconstructed 10 major white matter tracts (consisting

of 29 individual fibre bundles), including: Arcuate fasciculus (left and right), corpus

callosum (rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus,

and splenium), cingulum bundle (left and right), corticospinal tract (left and right),

inferior fronto-occipital fasciculus (left and right), inferior longitudinal fasciculus (left

and right), superior longitudinal fasciculus (sections I, II and III left and right), uncinate

fasciculus (left and right), fornix (left and right), and thalamocortical (prefrontal) tract

(left and right).

5.2.4.3 Multi-component relaxometry data preprocessing

Preprocessing of multi-component relaxometry data included brain extraction of T1w

MPRAGE data using HD-BET [164] followed by resampling of MPRAGE and masked

brain-extracted data to SPGR-IR resolution using Advanced Normalization Tools [109].

SSFP and SPGR data were corrected for motion using the FSL motion correction tool

(mcflirt) [165] and SPGR-IR data were registered to the motion-corrected SPGR data

using FSL’s linear registration tool (flirt) [149]. These data were then used to create B1,

T1 and B0 maps using functions from QUantitative Imaging Tools (QUIT) [166]. Finally,
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multi-component DESPOT (mcDESPOT) using a three-compartment model [148] was

used to separate SPGR and SSFP signals into multiple discrete pools, representing myelin

water and intra/extra-cellular water or cerebrospinal fluid (CSF).

5.2.5 Microstructure measures data summary

After the preprocessing of the diffusion and quantitative measures of the white matter

microstructure mentioned in Section 5.2.4, we ended up with eight measures of white

matter microstructure, namely myelin water fraction (MWF), intracellular volume frac-

tion (ICVF), fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD),

axial diffusivity (AD), total restricted fraction (FRtot), and kurtosis fractional anisotropy

(KFA). To extract the values of microstructural measures for each tract, we choose the

median value for the tract average, as this helps to ignore large outliers from the bundle

ends. Therefore, we formulated the white matter microstructure measures dataset in a

matrix of shape 123× 29× 8. The first dimension represents the number of subjects, the

second represents the number of extracted tracts, and the last one represents the number

of measures (MWF, ICVF, FA, MD, RD, AD, FRtot, and KFA).

The structural MR image dataset and microstructure measures dataset mentioned above

are private datasets for research purposes at the Cardiff University Brain Research Imag-

ing Centre, Cardiff University. However, it should be stressed that the proposed tract-wise

approach is generic and works with any diffusion data, as long as they can be formatted

in the shape of (number of subjects × number of tracts × number of microstructural

measures). There are no specific requirements for the acquisition parameters, such as a

specific b value in diffusion MRI. The model performance may vary when using differ-

ent data to predict brain age, but the proposed tract-wise approach workflow remains

consistent for different data.
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5.3 A two-stream brain age prediction framework

The two-stream brain age prediction framework contains two separate routes for diffu-

sion MRI measures of white matter microstructure and 3D structural MR images. The

proposed two-stream framework is illustrated in Figure 5.2.

Figure 5.2: A two-stream brain age prediction framework using white matter microstruc-

ture measures and 3D structural MR images.

5.3.1 Microstructure measures pipeline

5.3.1.1 Overview

Due to distinct changes in the trajectory of different white matter tracts as age increases,

we assume that some particular tracts may be more sensitive to ageing than others

[167], [168]. Therefore, we propose a tract-wise training approach to enhance the model

performance by prioritising more informative tracts.

The tract-wise training approach is formally presented in Algorithm 3. Some notations

in Algorithm 3 are defined in Table 5.1.

The proposed tract-wise approach, illustrated in Algorithm 3 can be divided in three

stages:

1. Dimension reduction: The whole microstructural dataset is divided into N tract

tract-specific sub-datasets, where the model α is fitted on each sub-dataset. This

tract-wise model training reduces the number of features fromN tract×N measures

to N measures for each model α.
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Table 5.1: Notations for Tract-wise Training Approach

Notation Type Description
D constant microstructural measures dataset

N sub constant number of subjects
N tract constant number of tracts

N measures constant number of microstructural measures
α model unfitted model
αi model fitted model with index i
γ variable Mean Absolute Error
γi variable Mean Absolute Error with index i

N top variable number of top-performing tracts
L variable an array to save fitted models
M variable an array to save mean absolute errors
N variable an array to save indices

Algorithm 3: A Tract-wise Training Approach
Given Dataset D with shape N sub×N tract×N measures; Corresponding training set
Dtrain, validation set Dval, test set Dtest; unfitted model α

for i← 1 to N tract do
Create tract-specific datasets Dtrain i, Dval i, and Dtest i for tract with index i
Train model α on Dtrain i and calculate MAE on Dval i

Save fitted model αi in L and MAE γi in M
end
Select N top lowest values from M and save their indices to N.
for i← 1 to N tract do

if i in N then
Test fitted model αi on the tract-specific test set Dtest i

Save predictions from model αi for each subject in Dtest i

end

end
Average all N top predictions for each subject in Dtest i to derive the final prediction.

2. Feature selection: After obtaining the fitted models on each sub-dataset, their

performance is measured on the validation set. We then select N top models with

the smallest validation errors out of the N tract fitted models, which are then

adopted for testing.

3. Ensemble testing: The selected N topmodels represent the prioritised tracts. In the

test set, only the prioritised white matter tracts are adopted for the final prediction

where their predictions are averaged to derive the final prediction.

We set the number of top-performing tracts to 3 to ensure a good balance between model

accuracy and prediction stability. It is chosen based on our experiment testing. Generally

speaking, selecting more tracts results in less variance in model performance since the final
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prediction is the averaged prediction of all selected tracts. However, it may include some

tracts that do not perform very well and result in decreased accuracy. And vice versa.

Every tract has the chance to be prioritised by the different models using the tract-wise

approach and tracts being more frequently selected indicate that they are more sensitive

to ageing compared with other white matter tracts.

5.3.1.2 Pipeline details

Utilizing a tract-wise training approach transforms our dataset into a 2D matrix, allowing

the application of traditional machine learning models.

To preprocess the data, we first employ the Robust Scaler [169] on each tract-specific

dataset to normalize the value range within each dataset. The Robust Scaler removes

the median and adjusts data based on the interquartile range (the first and third quar-

tiles), helping the models converge faster. Afterwards, we apply the Principal Component

Analysis (PCA) to the scaled data, selecting the top 6 principal components for dimen-

sionality reduction. PCA serves not only as a dimensionality reduction technique, but it

transforms different diffusion MRI measures into orthogonal features for age prediction

as well. The choice of the number of principal components is based on the proportion

of explained variance, and we choose 85% as the threshold. Furthermore, given our

small dataset size and the skewed age distribution favouring young subjects, we perform

data augmentation using the Synthetic Minority Over-Sampling Technique for Regres-

sion with Gaussian Noise (SMOGN) [170] to augment our training set, achieving a more

balanced age distribution. SMOGN generates synthetic, fake samples based on the k-

Nearest Neighbors (KNN) distance for regression problems, which is particularly helpful

on imbalanced dataset. This data augmentation approach effectively doubles the size

of our training set, which significantly stabilizes model predictions and improves model

accuracy.

In terms of model selection, we opt for three distinct models, namely the Support Vector

Regression (SVR) [112], XGBoost [111], and the stacking model. This model selection is

based on the favourable balance between model performance and computational speed.
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Figure 5.3: Detailed steps of the microstructure measures pipeline

The stacking model employs the SVR as its first layer model and stacks the XGBoost as

the final model. Grid Search has also been applied to explore the optimal hyperparameter

settings for all three models. To further enhance predictive capabilities, we apply the

model ensemble by averaging predictions across SVR, XGBoost, and the stacking model

to derive the final brain age estimation. The workflow of the microstructure measures

pipeline is summarised in Figure 5.3.

5.3.2 Structural image pipeline

To emphasize the advantages of the proposed tract-wise approach on microstructure mea-

sures for brain age prediction, neural networks trained using 3D T1-weighted structural

images are adopted as the contrast.

5.3.2.1 Overview

The structures of the structural MRI-based model pipeline adhere to standard procedures

outlined in the literature [1], [33], [34], [42]. Neural networks take the preprocessed

3D structural T1-weighted MR images described in Section 5.2.3 as input, producing

predictions for brain age as output. To further improve predictive accuracy, the model

ensemble, described in Section 5.3.1, is adopted by averaging predictions across all model

architectures to derive the final brain age estimation.

5.3.2.2 Models

Despite the vast variety of network architectures in the literature, we choose two renowned

model architectures, namely SFCN [33] and DenseNet [34], in this chapter for their stabil-
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ity and effectiveness. Model-dependent parameters, such as the number of filters in each

layer, are adapted based on our dataset. The number of parameters is reduced below 1

million for each model.

The SFCN follows the identical architecture design from its original work [33]. It contains

6 consecutive blocks in total and number of filter for each convolution layer is set to 16.

Each of the first 4 consecutive blocks consists of a 3 × 3 × 3 3D convolution layer, a Batch

Norm layer, a Max Pooling layer and a ReLU activation. The 5 th block contains one 1 ×

1 × 1 3D convolution layer, a Batch Norm layer and a ReLU activation. The 6 th block

contains an average pooling layer, a dropout layer, an 1 × 1 × 1 3D convolution layer and

a fully connected layer to derive the output. The DenseNet [34] also follows the identical

architecture design from the MONAI package [171]. The initial number of filter is set to

16 and growth rate is set to 8. It contains four dense blocks, which have 4, 8, 12, and

10 dense layers respectively. A 3D adaptive average pooling layer is applied afterwards,

followed by a flatten layer and a fully connected layer to derive the final prediction. The

number of trainable parameters for each model architecture is demonstrated in Table 5.2.

The workflow of the structural image pipeline is summarised in Figure 5.4.

Table 5.2: Number of trainable parameters

Model architecture Number of parameters
SFCN [33] 471,301

DenseNet [34] 348,427

Figure 5.4: Detailed steps of the 3D structural image pipeline. The structural images are

fed into model SFCN and DenseNet respectively, where predictions from both models are

ensembled to derive the final predictions.
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5.3.3 Training settings

The microstructure measures and structural image datasets are split using the same

stratified split strategy, of which 80% is used for training, 10% for validation, and 10% for

testing. The stratified split strategy is performed to maintain a similar age distribution

across the train, validation and test set. To make full use of the dataset, we apply a

split strategy similar to cross-validation. We randomly split each dataset in 20 different

ways so that no two train/validation/test sets are identical. Moreover, to minimize the

variances of the model predictions from both streams due to random initialization of the

model weights, we train our models on each train/validation/test split 3 times. In that

way, we end up training a specific model on a particular dataset 60 times.

When producing predictions for each participant, the two streams perform differently. In

the microstructure measures pipeline, the predictions of the selected models trained on

the top 3 more informative tracts are first averaged to produce the estimated brain age.

In the structural image stream, the networks give the predicted brain age directly.

In terms of the network settings, we choose the Mean Absolute Error (MAE) as the loss

function for all network models. The skewed loss function, demonstrated in Chapter 3

is not adopted considering the small size of our dataset. Introducing the skewed loss

can debias the model predictions, whereas the small validation set does not provide a

good representation of the true age-delta correlation across the whole dataset. During

the training process, the Adam optimizer [128] is used for all models. The initial learning

rate is set to 0.01 and is multiplied by 0.5 every 50 epochs. The batch size is set to 32

and the total number of epochs is set to 200.

Because the size of our dataset is relatively small, to prevent networks from overfitting,

we apply data augmentation in the training process using TorchIO [127]. In each training

iteration, every input image has a probability of 50% being flipped around the horizontal

plane. The L2 weight decay coefficient is set to 0.001. It should be stressed that all

hyperparameter settings, such as learning rate and batch size, mentioned above are chosen

based on our experiment testing.
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5.3.4 Testing settings

As we described in Section 5.3.3, each model is repeated 3 times, producing 3 brain age

estimations, to prevent fluctuations in model performance. Therefore, we provide two

ways to evaluate model accuracy, which will be used in Section 5.4.

On one hand, we can create an ensemble model by averaging all 3 predictions to give an

averaged age prediction and MAE is calculated based on the averaged predictions for each

dataset split. On the other hand, MAE can be calculated for each of the 3 predictions,

resulting in 3 MAE values. These MAE values are then averaged to produce an average

MAE for each dataset split. Two ways of calculating MAE discussed above are both

reported in Section 5.4.

The illustration of the training and testing process on each dataset split is shown in

Figure 5.5. The two streams share the same strategy.

The illustration of the training and testing process on each dataset split is shown in Figure

5.5. Figure 5.5 shows how the ensemble model predictions are calculated for each stream.

Take the microstructural measures stream as an example. All models (SVR, XGBoost,

and Stacking) in the microstructural measures stream are trained three times, generating

three predictions from each model. The three predictions from the same model are first

averaged and the resultant three averaged predictions from three different models (SVR,

XGBoost, or Stacking) are further averaged to produce the final ensemble prediction.

This strategy stays the same for structural images.

5.4 Results

The performance comparisons between the microstructure measures pipeline and struc-

tural image pipeline described in Section 5.3 are listed in the following subsections.

To save space, Table 5.3 lists some notations used in the following subsections.
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Figure 5.5: An illustration of the training and testing process on each dataset split. The

two streams share the same strategy. For each split, each model from the same stream

is repeated three times to prevent model performance fluctuations, producing three age

estimations, which are then averaged to derive an estimation for the current model.

Different models from the same stream are then averaged to produce the final estimation

for the current data split. We only show two models here as an illustration.

Table 5.3: Notations for Performance Comparisons

Notations Descriptions
Stacking SVR-XGBoost stacking model

Averaged model model-averaging of all trained models
Single Model

Averaged MAE
Averaged MAE for single model across all splits

Ensemble Model
MAE MAE for averaged predictions across all splits

In Table 5.3, notations “Single Model Averaged MAE” and “Ensemble Model MAE”

represent the two ways of calculating MAE, discussed in Section 5.3.4.

5.4.1 Performance of microstructure measures pipeline

From Section 5.3.3, we split the microstructure measures dataset using 20 different splits,

and for each split, we train each model 3 times. The model performance table of the

microstructure measures pipeline is demonstrated in Table 5.4.

As shown in Table 5.4, the ensemble model (model averaging across all three repeated

runs) outperforms the single model for each model architecture, on accuracy and stability.
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Table 5.4: Model Performances of the microstructure measures pipeline (Unit: years)

Single / Ensemble Model Mean Std Min Max

Single Model
Averaged MAE

SVR 3.61 0.62 2.42 5.02

XGBoost 3.88 0.67 2.71 5.74

Stacking 3.85 0.77 2.53 6.23

Averaged model 3.23 0.58 2.00 4.63

Ensemble Model
MAE

SVR 3.47 0.52 2.47 4.46

XGBoost 3.42 0.49 2.54 4.71

Stacking 3.20 0.73 2.46 5.68

Averaged model 3.10 0.50 2.04 4.13

Also, the averaged model outperforms any single model by averaging different model

architectures.

Therefore, we can create an ensemble model by averaging all model architectures and all

three repeated runs, which achieves a mean MAE of 3.10 years for the microstructure

measures pipeline.

5.4.2 Performance of structural image pipeline

The same MAE calculation used in Section 5.4.1 can also be performed on the structural

image pipeline. Therefore, we also end up with 20 averaged MAE results for each neural

network and 20 MAE results for each ensemble model (one split corresponds to one MAE

result). The model performance table of the structural image pipeline is demonstrated

in Table 5.5.

Table 5.5: Model Performances of structural image pipeline (Unit: years)

Single / Ensemble Model Mean Std Min Max

Single Model
Averaged MAE

SFCN [33] 4.01 0.87 2.7 6.37

DenseNet [34] 3.68 0.89 2.15 6.01

Averaged model 3.55 0.80 2.28 5.53

Ensemble Model
MAE

SFCN [33] 3.71 0.72 2.51 5.15

DenseNet [34] 3.45 0.93 2.02 5.51

Averaged model 3.34 0.75 2.12 4.79
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From Table 5.5, similar conclusions can be drawn. DenseNet shows better accuracy

compared with the SFCN model. However, the difference is not significant. The ensemble

model shows increased accuracy due to the averaged prediction from the three repeated

runs and the averaged model still outperforms any single model architecture.

Therefore, we also create an ensemble model by averaging all model architectures and all

three repeated runs, which achieves a mean MAE of 3.34 years for structural MR images.

5.4.3 Performance of the two-stream framework

From Section 5.4.1 and Section 5.4.2, it is straightforward that measures of the white mat-

ter microstructure also show predictive ability in brain age prediction. The microstructure

measures pipeline has achieved similar performance compared with the structural image

pipeline.

As we previously discussed in Section 5.1, white matter microstructure measures and

structural images contain distinct information about brain ageing and their informa-

tion complements each other, which can be combined to create another ensemble model.

Therefore, another straightforward ensemble model is built by averaging the model pre-

dictions from both pipelines for each subject and each dataset split. Despite adopting

a conventional fusing method (model averaging), the ensemble model has achieved an

improved accuracy compared with any single pipeline. More advanced fusing methods

are left as future works and will be evaluated in the future.

By combining the ensemble model performance from both pipelines, the performance

table of the two-stream framework is illustrated in Table 5.6. The significance table is

illustrated in Table 5.7.

Table 5.6: Ensemble Model Performances of all pipelines (Unit: years)

Pipeline Mean Std Min Max R2

Microstructure measures pipeline 3.10 0.50 2.04 4.13 0.93

Structural image pipeline 3.34 0.75 2.12 4.79 0.92

Two-stream framework 3.00 0.49 2.08 3.87 0.93
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Table 5.7: Significance test of pipeline performance with p-values

Pipelines Paired-t

Microstructure Measures & Structural Images <0.01

Microstructure Measures & Two-stream framework 0.15

Structural Images & Two-stream framework <0.01

From Table 5.6, it can be demonstrated that the two-stream framework achieves improved

accuracy in predicting brain age compared with any single data modality. From Table

5.7, by introducing information from the measures of white matter microstructure into

the prediction framework, we significantly enhance the accuracy of predicting brain age

compared with commonly adopted image-based models, resulting in more reliable and

improved outcomes.

5.4.4 Tracts of interest

The adoption of the tract-wise approach highlights the more informative tracts for pre-

dicting brain age. A histogram of the frequency of selected tracts is illustrated in Figure

5.6. The tract frequency represents how many times is a particular tract selected for each

model and each dataset split. From Figure 5.6, there are significant differences in the

frequency of being selected among all white matter tracts, supporting our assumption

that some particular tracts experience more age-related alterations in the ageing process

than other tracts. For each model architecture and each model’s repeated run, different

tracts are selected. It can be observed that all white matter tracts are adopted in predict-

ing brain age, providing a more complete picture of the brain microstructure. If feature

selection is performed before model training [19], [118], [145], some tracts with a lower

frequency, shown in Figure 5.6, may be removed and result in a decreased performance.

The tracts that the tract-wise approach identified as most informative are the genu,

rostral body, and anterior midbody of the corpus callosum, the left fornix, and the left

thalamo-prefrontal tract. These tracts have been reported in the literature to be some

of the latest to complete their maturation through myelination, which can extend to the

third or fourth decade of life, and to be some of the first ones to be affected by ageing.
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Figure 5.6: Frequency of prioritised tracts for all models.

The anterior section of the corpus callosum is more susceptible to brain ageing compared

to the posterior section [172] with a steeper age decline than other tracts [103], [173],

[174]. Also, selective vulnerability to ageing has been reported in late-myelinating tracts

such as the genu of the corpus callosum and the fornix [175], [176]. Finally, the synaptic

connectivity of thalamo-prefrontal tracts increases into at least the late teen years, with

that of the left tract exhibiting a steeper increase with age than the right one [177].

5.4.5 Performance comparisons with previous studies

In the literature, the accuracy of brain age prediction models varies significantly, de-

pending on various model architectures and datasets. The proposed image pipeline and

microstructure measures pipeline both achieve a good trade-off between model accuracy

and training complexity compared with previous studies.
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5.4.5.1 Structural image-based models

Structural image-based brain age prediction has achieved satisfactory accuracy due to the

increasing size of the dataset. Wood et al. used a training sample of 12,949 participants

[34], which is more than two orders of magnitude than ours, to achieve an MAE of 2.1

years. Peng et al. achieved an MAE of around three years using a few thousand images

[33], which is still more than one order of magnitude than ours. However, the main

reason for achieving such high accuracy is not the adoption of more advanced models

but the huge size of the dataset. Using a huge dataset not only entails a much higher

cost in terms of participants and scanning time but also increases the model training

complexity. Our image pipeline is generic and therefore also benefits from the adoption

of larger datasets. In our image pipeline, we extensively applied model ensemble for

each model architecture and each model’s repeated run to aggregate average-performing

models into a top-performing model, achieving an MAE of 3.34 years on average.

5.4.5.2 Microstructure measures-based models

Compared with models using structural images, models using microstructural measures

for brain age prediction require significantly fewer samples. As the microstructural mea-

sures reveal age-related alterations of the brain, the selection of more informative mea-

sures becomes crucial for predicting brain age. Beck et al. [30] adopted a sample size

of 702 and achieved MAEs between 6.99 and 9.82. Their performance is poor as they

adopted each microstructure measure separately, rather than combining all measures for

prediction. Cole [17] adopted a dataset with more than 2000 participants and applied

LASSO to reach an MAE of 3.879 for diffusion MRI data. However, feature selection

using LASSO fails to provide any complete information about which tract or measure

performs better compared with other tracts or measures. Xiong et al. [19] trained several

models on a dataset with 14,000 participants without any feature selections and achieved

similar performance as ours. However, the participants’ age of their dataset is older com-

pared with ours, which makes it easier to predict brain age, as the brain alterations due

to ageing become more significant compared with middle-aged participants. Cai et al.
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[145] adopted reinforcement Q-Learning to select important features and had a dataset

of 212 participants. However, similar to Xiong’s work [19], their model focused on age

prediction for children and adolescents, whose age range is limited.

Compared with previous studies mentioned above, our dataset focuses on middle-aged

participants. The proposed tract-wise approach performs automatic feature selection

based on model performances on all white matter tracts, which indicates more aging-

sensitive tracts. Also, we performed another model ensemble for the selected tracts when

making predictions which further improves the model accuracy to achieve an MAE of

3.10 years.

5.5 Discussion

We have proposed a tract-wise approach for accurate brain age prediction using diffu-

sion measures of white matter microstructure. The tract-wise approach identifies more

informative white matter tracts in the model training process and prioritises those tracts

to produce the final brain age estimation. Every tract has the chance of being selected

under different model configurations. Therefore, employing a model ensemble to further

aggregate all models makes sure that information in all tracts is considered to produce

the final prediction.

We have also shown that diffusion measures of white matter microstructure and structural

T1-weighted images complement each other in brain age prediction. While T1-weighted

imaging provides insight into the gross anatomical structure of the brain, we can obtain

additional complementary information about the microstructural properties of the white

matter using quantitative mapping techniques. By combining information from different

aspects, the proposed two-stream brain age prediction framework obtains a more complete

picture of brain ageing, resulting in improved predictive accuracy. In the literature, multi-

modal models have also been applied to improve the performance, but they tend to adopt

a specific type of data, such as using multi-modal images [33], [119] or using multi-modal

diffusion MRI measures [17], [19], [30], [110]. Also, they tend to apply the same model
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architectures for all data modalities. In contrast, the proposed two-stream framework

combines more distinct data modalities and applies more diverse model architectures for

age prediction compared with previous research.

We have also demonstrated the effectiveness of our microstructure measures pipeline

using a dataset with a small sample size but a relatively wide age range. PCA trans-

forms the diffusion MRI measures and quantitative MRI measures into a set of orthogonal

features, avoiding the collinearity issues [113]. SMOGN data augmentation further gener-

ates synthetic samples, doubling the size of our training set, which significantly enhances

the model accuracy and stability [170]. The microstructure measures pipeline achieves

an MAE of 3.10 years, which is satisfactory compared with other diffusion MRI-based

studies [17], [19], [30], [110], [118], [178], given the relatively small sample size.

We have also illustrated that extensively using model ensemble significantly boosts model

accuracy. In this chapter, we apply the model ensemble for each model architecture, each

model’s repeated run, and each data modality. From Table 5.5 and Table 5.4, we can

easily observe that the ensemble model significantly outperforms the single model in terms

of accuracy and stability.

There are also some avenues for future work. Firstly, in the microstructure measures

pipeline, we build a multi-modal ensemble model, which adopts diffusion MR measures

and quantitative MR measures. However, in the structural image pipeline, we only use

structural T1-weighted images as input. Including other image modalities, such as T2-

weighted images, may be beneficial to improve the model stability. Secondly, we apply

model averaging to fuse model predictions from different data modalities. More advanced

model fusion methods will be evaluated to further boost the model performance.

5.6 Summary

To conclude, we have proposed a tract-wise approach by prioritising ageing-sensitive

white matter tracts for brain age prediction. By selecting more informative tracts and

discarding less useful ones in predicting brain age, our model achieves an accurate age
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prediction using a relatively small sample size. The tract-wise approach makes it possi-

ble to evaluate each tract separately and more frequently selected tracts indicate more

significant alterations in the microstructural measures with advancing age. The most

frequently selected tracts are the genu, rostral body, and anterior midbody of the corpus

callosum, which have also been reported in the literature. Also, by fusion model pre-

dictions from microstructure measures and structural images, the two-stream brain age

prediction framework achieves an improved predictive accuracy compared with any single

data modality.
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Chapter 6

Conclusion and Future Work

This thesis presented a substantial body of work in the area of brain age prediction. This

chapter provides a concluding summary of each chapter, the main contributions of the

thesis as well as the proposed future work.

6.1 Brain age prediction revisit

Brain age prediction aims to evaluate the biological process of brain ageing, which shows

potential in both research field and clinical applications.

In terms of research perspective, brain age prediction serves as a simplified approach

to evaluate the brain ageing process. It serves as a tool to evaluate the effectiveness

of some interventions in clinical trials of age-associated neurodegenerative diseases or

aimed at promoting healthy brain ageing. By tracking the changes of the predicted brain

age over time, the impact of lifestyle changes, pharmacological treatments or cognitive

training programs on brain ageing can be evaluated [3]. In terms of clinical applications,

brain age prediction could be used for early prevention and detection of neurological

aspect of ageing. Using brain age as a screening tool could facilitate early detection of

disorders or even their pre-clinical stages, which, in turn, would allow early intervention.

Early intervention in age-related disorders is an important clinical focus. There are many

studies demonstrating that people with Alzheimer’s disease tend to have large positive

brain age delta whereas in its earlier stage, such as mild cognitive decline, they tend to

have a smaller brain age delta [27]. In clinical applications, if a patient is observed to

have a relatively large positive delta, it will allow early detection of brain related diseases,

before it becomes serious.
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The algorithms demonstrated in Chapter 3, Chapter 4, and Chapter 5 aim to refine the

brain age prediction framework in different aspects, mitigating its gap between research

and clinical use. The skewed loss function demonstrated in Chapter 3 correct the re-

gression bias in brain age prediction, which removes the effect of chronological age when

evaluating the relationship between brain age delta and any cognitive diseases. The in-

tegrated brain age prediction framework demonstrated in Chapter 4 makes it possible to

predict brain age in clinical settings, which improves the generalisation ability of brain

age prediction, making it more easily accessible in the hospitals. The multi-modal learn-

ing approach demonstrate in Chapter 5 focuses on the predictive accuracy of brain age

prediction models. By adopting multiple data modalities in predicting brain age, the

brain age prediction model evaluates the brain biological ageing process more accurately.

6.2 Concluding summary

The neurological aspect of ageing is biologically complex and can be affected by various

internal or external factors, such as brain-associated diseases or brain injury from acci-

dents, resulting in accelerated or delayed brain ageing. People with accelerated brain

ageing experience a higher risk of neurological diseases, as the brain appears older than

healthy people with the same chronological age. Therefore, brain age prediction tries

to quantify the actual brain ageing process, which provides a personalised biomarker in-

dicating brain health. The scope of this thesis is focused on the development of novel

algorithms that make brain age prediction models more reliable in research analysis, more

practical in clinical diagnosis and more accurate in measuring brain ageing process.

Chapter 2 presented a thorough literature review on brain age prediction from four per-

spectives. Firstly, the development of brain age prediction models over the past few

years is summarised and the clinical significance and potential of brain age are illus-

trated. Then, the commonly observed regression bias in brain age prediction models

is explained and commonly adopted bias correction approaches are summarised. After-

wards, the recent advances in brain MRI super-resolution techniques are reviewed, which
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demonstrates the potential to generalise brain age prediction models for clinical-grade

MR images. Lastly, the MR imaging modalities for predicting brain age are studied and

multi-modal brain age prediction models are summarised.

Chapter 3 presented algorithms for debiasing model predictions to make the brain age

prediction model more reliable by producing an unbiased estimation of brain age. A

skewed loss function is proposed to eliminate the regression bias by assigning different

loss values based on whether the model over-predicts or under-predicts a participant.

The proposed skewed loss replaces the conventional symmetric loss function used in the

model training phase and the model can produce an unbiased estimation of brain age at

the end of the training process. A dynamic training algorithm is further proposed for the

skewed loss, which searches for the optimal hyperparameters using an iterative approach.

By combining the skewed loss function with the dynamic training strategy, the regression

bias can be eliminated at the end of the model training process, which has been proven to

be robust to different datasets, data distributions, model architectures, and even problem

domains.

Chapter 4 generalised brain age prediction models for low-resolution images, which makes

brain age prediction a more practical and accessible application for clinical diagnosis. A

straightforward and effective non-uniform sampling algorithm is proposed by prioritizing

models with more high-frequency information, which improves the reconstruction quality

of the cerebellum for brain MRI super-resolution. By comparing the proposed sampling

approach with the conventional sampling approach, our non-uniform sampling demon-

strates indistinguishable performance on the whole brain volume. In contrast, it improves

significantly on the cerebellum. A refined brain age prediction workflow is then proposed

by incorporating super-resolution into brain age prediction models. Given a pre-trained

brain age prediction model, the low-resolution MR images are first super-resolved and

then adopted to produce the predicted brain age. Performance comparison between au-

thentic high-resolution testing images and super-resolved testing images is conducted

and insignificant differences are observed. It opens the window for predicting brain age

in clinical diagnosis, where high-resolution MR images are not always accessible, making
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brain age prediction a more practical and accessible tool in practice.

Chapter 5 demonstrated a multi-modal approach for predicting brain age using macro-

and microstructural brain MR imaging, which produces a more accurate estimation of

brain age by providing a more complete picture of the brain ageing process. A novel

tract-wise feature selection approach is proposed to prioritize more informative tracts for

predicting brain age, providing insights into more ageing-sensitive white matter tracts.

Unlike some other approaches that perform feature selection before model training, the

tract-wise approach is performed in the model training process, which preserves the most

complete information, keeping all white matter tracts in consideration. In addition, a

performance comparison between models using structural images and models using mi-

crostructural measures is carried out. A two-stream framework is then proposed by

combining information from structural images and white matter microstructure mea-

sures, which provides the model with a more complete picture of the brain, achieving

an improved accuracy compared with any single data modality, which demonstrates the

strength of adopting multi-modal models for predicting brain age, instead of uni-modal

models.

6.3 Contributions of the thesis

This thesis has contributed one journal paper [104] and one conference paper with the

second journal paper under review. The main contributions of this thesis include:

• To eliminate the regression bias in brain age prediction models to make brain age

a reliable biomarker, a skewed loss function and a dynamic training algorithm are

proposed for deep learning models. The proposed skewed loss tackles the observed

bias by assigning different loss values based on whether the model overestimates

or underestimates the participant’s age. It implicitly makes the model produce

fewer overestimations for young individuals and fewer underestimations for elderly

participants. The proposed approach is the first work that corrects the bias in an

integrated approach for deep learning models. Compared with the widely-adopted
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two-stage correction approach [10], [39], [63], our approach achieves an improved

accuracy in predicting brain age. At the end of the training phase, model prediction

is always unbiased, without the need to perform a second stage correction. Our

approach has been validated on two public neuroimaging datasets and is robust

to different model architectures and correlation metrics. Apart from the brain age

prediction problem, our approach can also generalise to different problem domains

(Presented in Chapter 3).

• To generalise brain age prediction in the clinical environment to make brain age

prediction a more practical tool for diagnosis, a modified brain age prediction

workflow is demonstrated by incorporating the super-resolution techniques. The

clinical-grade MR images are first super-resolved before being fed into the brain

age prediction models to predict the age. Adopting image super-resolution effec-

tively mitigates the image resolution differences between clinical and research-level

images, of which the latter are used to train the brain age prediction model. The

super-resolved MR images achieve indistinguishable accuracy compared with orig-

inal high-resolution MR images, which makes it feasible for clinical-level brain age

prediction. An effective non-sampling approach is also proposed for improving the

reconstruction quality of the cerebellum for super-resolution tasks. This algorithm

is the first work that treats different brain regions separately, depending on their

structural differences, to improve the super-resolution quality of brain MR images.

The proposed algorithm has been evaluated using CNN-based and GAN-based mod-

els on the publicly available HCP dataset (Presented in Chapter 4).

• To optimise the accuracy of the brain age prediction model, a multi-modal approach

is proposed by fusing the information from structural MR images and microstruc-

tural MR measures, to predict brain age. We propose a tract-wise approach for

predicting brain age using brain microstructural MR measures which demonstrates

superior accuracy using a small sample dataset. The tract-wise approach prioritises

more informative tracts of the brain in the model training process, providing insights

into more ageing-sensitive white matter tracts. Unlike some schemes that perform
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feature selection before model training, the tract-wise approach preserves the most

complete information, keeping all white matter tracts in consideration. Adopting

a tract-wise approach decomposes the 3D MR measures dataset into multiple 2D

datasets, which reduces the dimensionality issues and makes model ensemble from

different datasets a straightforward approach to predict brain age. Our approach

has been validated on a brain microstructural measures dataset collected at Cardiff

University and applies to other datasets as well (Presented in Chapter 5).

6.4 Future works

In this thesis, we proposed algorithms for improving brain age prediction models from

three perspectives, each dedicated to a specific chapter, to make brain age prediction

models more reliable, practical, and accurate. Despite those approaches, there is sufficient

scope for future work:

• More advanced model debiasing approaches

Model debiasing plays a crucial role in brain age prediction models since a biased

estimation of brain age weakens its validity as the biomarker. Firstly, it would be

crucial to thoroughly investigate under which circumstances, such as the expected

size of the dataset and expected model complexity of the prediction models, the

observed age-associated bias can become negligible to the predicted brain age, i.e.,

age delta correlation falls between -0.1 and +0.1. The main motivation behind it is

that all correction approaches proposed so far [23], [39], [40], [104] sacrifice model

accuracy for the unbiased predictions and correction approaches could significantly

decrease the model performance. In that way, the advantages of using more ad-

vanced models can be weakened after the corrections. In the literature, there have

been some studies that produce minor bias. For instance, Wood et al. [34] pro-

duced a correlation of -0.18 between brain age delta and chronological age. It is

still unknown what is the expected model complexity for the brain age prediction

problem. Secondly, more accurate bias correction approaches are needed. The two-
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stage approach and integrated approach both focus on the group-level corrections

and there is no guarantee that a near-zero ADC still holds in any subset age groups.

Zhang et al. [40] proposed an age-level correction approach that tries to answer this

problem, whereas their method requires the true target label, which validates the

principles of the predictive framework.

• Incorporating models from other brain-imaging fields

As for incorporating models from other brain-related fields to facilitate brain age

prediction, brain MR super-resolution provides a more affordable way to train a

brain age prediction model using low-resolution images. It also makes it feasible to

predict brain age from low-resolution images, given a pre-trained brain age predic-

tion. Some other areas may be included as well, such as brain segmentation and

brain abnormality detection.

Brain segmentation separates the whole brain volume into different regions and

some weighting matrix map can be built to highlight the importance of different

regions. For example, the prefrontal cortex and hippocampus are believed to be

affected more by ageing, whereas the occipital shows the least influence in the

ageing process [179], [180]. Therefore, the locations of the prefrontal cortex and

hippocampus on the weighting map should have larger weights than the occipital

locations. Such an explicit weighting map makes the model pay greater attention

to more valuable and informative regions, which may improve the performance.

Brain abnormality detection and classification may also help the model predict

based on different abnormalities. Brain diseases, such as brain tumours and Alzheimer’s

disease, tend to result in positive brain age delta. However, different diseases may

affect brain age at different levels. Combining information on different diseases

might also help in brain age prediction.

• Towards true multi-modal learning

Speaking of multi-modal model learning, most studies that use different data modal-
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ities in brain age prediction tend to train models using a specific data modality and

aggregate different models afterwards [17], [19], [30], [33]. The performance im-

provement after adopting such an approach comes from the use of multi-modal

data as well as model ensemble. In terms of training a single model, there is no

difference among different data modalities and the model can not learn any in-

formation from other data modalities. Therefore, it would be interesting to build

new model architectures that learn from different modalities of data together in the

model training process, i.e., a model with multiple inputs, which might improve the

model performance as well.
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[16] L. C. Löwe, C. Gaser, K. Franke, and A. D. N. Initiative, “The effect of the apoe

genotype on individual brainage in normal aging, mild cognitive impairment, and

alzheimer’s disease,” PloS one, vol. 11, no. 7, e0157514, 2016.

[17] J. H. Cole, “Multimodality neuroimaging brain-age in uk biobank: Relationship to

biomedical, lifestyle, and cognitive factors,” Neurobiology of aging, vol. 92, pp. 34–

42, 2020.

[18] X. Niu, F. Zhang, J. Kounios, and H. Liang, “Improved prediction of brain age

using multimodal neuroimaging data,” Human brain mapping, vol. 41, no. 6,

pp. 1626–1643, 2020.

[19] M. Xiong, L. Lin, Y. Jin, W. Kang, S. Wu, and S. Sun, “Comparison of machine

learning models for brain age prediction using six imaging modalities on middle-

aged and older adults,” Sensors, vol. 23, no. 7, p. 3622, 2023.

[20] K. L. Miller, F. Alfaro-Almagro, N. K. Bangerter, et al., “Multimodal popula-

tion brain imaging in the uk biobank prospective epidemiological study,” Nature

neuroscience, vol. 19, no. 11, pp. 1523–1536, 2016.

123



Bibliography

[21] B. Dufumier, A. Grigis, J. Victor, C. Ambroise, V. Frouin, and E. Duchesnay,

“Openbhb: A large-scale multi-site brain mri data-set for age prediction and de-

biasing,” NeuroImage, vol. 263, p. 119 637, 2022.

[22] H. Liang, F. Zhang, and X. Niu, “Investigating systematic bias in brain age estima-

tion with application to post-traumatic stress disorders,” Human brain mapping,

vol. 40, no. 11, pp. 3143–3152, 2019.

[23] M. S. Treder, J. P. Shock, D. J. Stein, S. Du Plessis, S. Seedat, and K. A. Tsve-

tanov, “Correlation constraints for regression models: Controlling bias in brain

age prediction,” Frontiers in psychiatry, vol. 12, 2021.

[24] A. Lombardi, A. Monaco, G. Donvito, N. Amoroso, and S. Tangaro, “Brain age

prediction with morphological features using deep neural networks: Results from

predictive analytic competition 2019,” Frontiers in Psychiatry, vol. 11, p. 619 629,

2021.

[25] B. Mwangi, K. M. Hasan, and J. C. Soares, “Prediction of individual subject’s

age across the human lifespan using diffusion tensor imaging: A machine learning

approach,” Neuroimage, vol. 75, pp. 58–67, 2013.

[26] T. T. Le, R. T. Kuplicki, B. A. McKinney, et al., “A nonlinear simulation frame-

work supports adjusting for age when analyzing brainage,” Frontiers in aging

neuroscience, vol. 10, 2018.

[27] L. Baecker, J. Dafflon, P. F. Da Costa, et al., “Brain age prediction: A compari-

son between machine learning models using region-and voxel-based morphometric

data,” Human brain mapping, vol. 42, no. 8, pp. 2332–2346, 2021.

[28] A.-M. G. De Lange, M. Anatürk, S. Suri, et al., “Multimodal brain-age prediction

and cardiovascular risk: The whitehall ii mri sub-study,” NeuroImage, vol. 222,

p. 117 292, 2020.

[29] M. Anatürk, T. Kaufmann, J. H. Cole, et al., “Prediction of brain age and cog-

nitive age: Quantifying brain and cognitive maintenance in aging,” Human brain

mapping, vol. 42, no. 6, pp. 1626–1640, 2021.

124



Bibliography

[30] D. Beck, A.-M. G. de Lange, I. I. Maximov, et al., “White matter microstruc-

ture across the adult lifespan: A mixed longitudinal and cross-sectional study

using advanced diffusion models and brain-age prediction,” NeuroImage, vol. 224,

p. 117 441, 2021.

[31] H. Li, T. D. Satterthwaite, and Y. Fan, “Brain age prediction based on resting-

state functional connectivity patterns using convolutional neural networks,” in

2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018),

IEEE, 2018, pp. 101–104.

[32] G. Rao, A. Li, Y. Liu, and B. Liu, “A high-powered brain age prediction model

based on convolutional neural network,” in 2020 IEEE 17th International Sympo-

sium on Biomedical Imaging (ISBI), IEEE, 2020, pp. 1915–1919.

[33] H. Peng, W. Gong, C. F. Beckmann, A. Vedaldi, and S. M. Smith, “Accurate brain

age prediction with lightweight deep neural networks,” Medical Image Analysis,

vol. 68, 2021.

[34] D. A. Wood, S. Kafiabadi, A. Al Busaidi, et al., “Accurate brain-age models for

routine clinical mri examinations,” NeuroImage, 2022.

[35] Y. Hu, H. Wang, and B. Li, “Sqet: Squeeze and excitation transformer for high-

accuracy brain age estimation,” in 2022 IEEE International Conference on Bioin-

formatics and Biomedicine (BIBM), 2022, pp. 1554–1557. doi: 10.1109/BIBM55620.

2022.9995270.

[36] S. He, P. E. Grant, and Y. Ou, “Global-local transformer for brain age estimation,”

IEEE transactions on medical imaging, vol. 41, no. 1, pp. 213–224, 2021.

[37] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected

convolutional networks,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2017, pp. 4700–4708.

[38] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Advances

in neural information processing systems, vol. 30, 2017.

[39] A.-M. G. de Lange and J. H. Cole, “Commentary: Correction procedures in brain-

age prediction,” NeuroImage: Clinical, vol. 26, 2020.

125

https://doi.org/10.1109/BIBM55620.2022.9995270
https://doi.org/10.1109/BIBM55620.2022.9995270


Bibliography

[40] B. Zhang, S. Zhang, J. Feng, and S. Zhang, “Age-level bias correction in brain age

prediction,” NeuroImage: Clinical, vol. 37, p. 103 319, 2023.

[41] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[42] C. Yin, P. Imms, M. Cheng, et al., “Anatomically interpretable deep learning

of brain age captures domain-specific cognitive impairment,” Proceedings of the

National Academy of Sciences, vol. 120, no. 2, e2214634120, 2023.

[43] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–

7141.

[44] I. Beheshti, N. Maikusa, and H. Matsuda, “The association between “brain-age

score”(bas) and traditional neuropsychological screening tools in alzheimer’s dis-

ease,” Brain and Behavior, vol. 8, no. 8, e01020, 2018.

[45] D. P. Varikuti, S. Genon, A. Sotiras, et al., “Evaluation of non-negative matrix

factorization of grey matter in age prediction,” Neuroimage, vol. 173, pp. 394–410,

2018.
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