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Exact correction factor for estimating the OR in the presence of sparse data with a zero 

cell in 2x2 tables  

Background 

Many research studies deal with sparse data in a contingency table(1). Contingency tables are 

referred to as sparse when many cells have small frequencies, or when some of them have 

empty cells. Sparsity is not restricted to the tables with smaller sample sizes alone, but could 

also occur with large sample sizes due to high concentration of frequencies in certain cells and 

small or empty counts in other cells(2). The impact of sparsity is expected to cause 

computational instability while estimating effect measures such as relative risk (RR) or odds 

ratio (OR).  Collapsing cells in a variable is usually done in r x c contingency tables if there is 

a natural way of combining them and the loss of information is limited(3). However, in many 

situations this may not be meaningful or possible.  

Empty cell or sparse data can cause bias in estimators of OR in 2x2 tables(4). When zero events 

occur in either or both groups of a study, the log-odds ratio and their standard errors become 

undefined. To overcome this problem, a continuity correction factor ‘ε’ is often added to each 

cell of the 2×2 table for the studies with zero events in either group(4). The traditional remedy 

is to add a constant 0.5 to each cell count, usually referred as continuity correction or Yates’ 

correction(5).  

However, more recent investigators have raised the question against the use of continuity 

correction and some of the researchers are not recommending it at all, because the effects of 

continuity correction on the study findings may be unfavorable(4). Agresti (1998) also 

suggested adding a very small constant (ε = 2) to all cells of the 2x2 table, when there is sparse 

data(6). Another suggestion from Subbiah and Srinivasan (2008) is that the nature of sparse 

data be classified as severe or moderate, and then a suitable correction factor can be added(7). 



The availability of many methods but no clear mention of the situation where each of the 

correction factors can be applied is a concern to researchers as conclusions drawn may be 

different from each method. Moreover, classifying the problem of sparsity as severe or 

moderate and then adding a suitable correction factor is a cumbersome procedure. 

Lyles et al (2012) have pointed out that Ratio estimators of effect such as relative risk and OR 

are ordinarily obtained by exponentiating maximum-likelihood estimators (MLEs) of log-

linear or logistic regression coefficients. As these estimators can provide positive finite-sample 

bias, they have proposed a simple correction that removes a substantial portion of the bias due 

to exponentiation(8). 

Bayesian methods have also been proposed to handle sparse data(9–12). Researchers frequently 

deal with non-informative priors that are subjective. For example, in stomach ulcer data(13,14), 

by selecting a non-informative prior for the regression coefficient mean as 0 with precision 

0.001, the OR becomes 0.003 (95%CI: 0.0, 0.024) or mean as 0 with precision 0.01, the OR 

becomes 0.011. (0.0, 0.109). These two estimations differ significantly.  Similarly, the OR is 

0.003(0.0002, 0.024) if the mean is set to 0.5 and the accuracy is 0.001. There is not much 

difference in the OR and the 95% CI when there is a difference in choosing the mean. However, 

there is a considerable change in the OR and 95% CI by selecting various precision of non-

informative prior values. Similarly, the OR and 95% CI for hyponatremia data(1) are 0.0002 

(0.0, 0.0018) when the precision is 0.001, and 0.0007 (0.0, 0.0069) while the precision is 0.01. 

The same difference is observed when the mean is 0.5 with the precision 0.001 and 0.01 

(APPENDIX III). 

 

Therefore, it is evident how to select the precision of non-informative priors. Although the 

general recommendation is to choose a larger variance (less precision), there is no specific 



recommendation in this section. Consequently, there is scope for variability in the posterior 

estimates based on the selection of prior values. 

Due to those afore mentioned issues, we propose to develop an algorithm that would be able to 

estimate exactly an epsilon ‘ε’ (correction factor), because applying  different correction factors 

in the same 2x2 contingency table can lead to different conclusions drawn(7). Therefore, the 

objective of this study is to present an iterative procedure that could estimate ε where the root 

mean square error (RMSE) in the estimation of the OR in 2x2 tables is minimal and the 

coverage probability (CP) is about 95%. Also, we presented a linear regression model that used 

sample size and proportions to identify the optimal correction factor ‘ε’. 

Statistical Methods 

Consider a 2x2 contingency table from a case-control study 

A B 

C D 

 

Assume the cell count of A is zero. Without loss of generality, assume the cell count A is zero. 

The interpretation of odds ratio (OR) can be reversed as appropriate later on. The estimation of 

odds ratio for the 2x2 table is given by 

𝑂𝑅 =
𝐴𝐷

𝐵𝐶
                             ------------------------------ (1) 

 and the asymptotic standard error of the natural logarithm of the odds ratio is 

𝑆𝐸(𝑙𝑛 𝑂𝑅) = √
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If any of the cell counts is zero, then, in order to estimate the OR, a correction factor ‘ε’ is 

added to all the cells. That is, 



𝑂𝑅𝜀 =
(𝐴+𝜀)(𝐷+𝜀)

(𝐵+𝜀)(𝐶+𝜀)
                    -------------------------------- (3) 

Thus, the asymptotic standard error (ASE) for 𝑙𝑛(𝑂𝑅𝜀) is 

𝑆𝐸(𝑙𝑛 𝑂𝑅𝜀) = √
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As a result, the asymptotic confidence interval 100(1-α)% for OR estimate from exponentiating 

the following equation: 

(𝑙𝑛 𝑂𝑅𝜀) ± 𝑍𝛼
2⁄ 𝑆𝐸(𝑙𝑛 𝑂𝑅𝜀)   ------------------------- (5) 

Bootstrap SE in case of small sizes 

In order to estimate the SE in case of small numbers such as 10, 15 etc. and to validate the 

correction factor that is chosen based on small number with asymptotic SE we have used 

Bootstrap method of estimating SE. The scenarios are with which the bootstrap method was 

done using sample size (n=10,15 and 20) and epsilon (e= 0.1,0.2,0.3,0.4, 0.5 and 2).  

Evaluation of optimal correction factor (ε) using simulation data 

In order to identify the optimal correction factor, the commonly used statistics are bias, or 

Root Mean Square Error (RMSE). Walter and Cook (1991) used bias, AAE and RMSE to 

compare three different estimators for OR(15).  

On the basis of simulation data, the optimal correction factor was evaluated with known OR, 

and varying values of proportion and sample sizes based on case-control study design with 

ratio 1:1. Sparse data were simulated with various proportions such as p1 (0.001, 0.002, 0.003, 

0.004, 0.005, 0.006, 0.007, 0.008, 0.009 and 0.010) , p2 (0.30, 0.35, 0.40, 0.45, 0.50, 0.55 and 

0.60) with varying sample sizes (20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300 and 500) and 

various correction factors (ε) such as 0.005, 0.01, 0.03, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5 (Yate’s) 



and 2 (Agresti and Coull) were used.  Throughout our simulation study we assume that the 

column wise marginal distributions are independent binomial distributions. The column totals 

n1 and n2 are fixed and the success probability P1 is assumed to be too small so that first cell 

count is either zero or small. P2 is assumed to be large. This kind of simulation study was 

carried out by Walter (1975) in the paper titled “The distribution of Levin's measure of 

attributable risk”(16).  

The cell counts were estimated using the following equation based on the above mentioned 

parameters:  

𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑅 =
𝑝1∗(1−𝑝2)

𝑝2∗(1−𝑝1)
               ------------------------------ (6) 

The cell value A = p1*n1; B = (1-p1)*n1; C=p2*n2 and D= (1-p2)*n2. 

Following that, the adjusted OR is estimated using each correction factors based on the 

equation 3. 

Estimation of Bias  

The difference from the actual OR without ε that was used for simulation (assumed to be a 

parameter) to the adjusted OR with ε is the bias, i.e.  

𝐵𝑖𝑎𝑠(𝑙𝑛 𝑂𝑅𝜀) = 𝑙𝑛 (Actual OR) − 𝑙𝑛 (ORε). 

For each simulated sparse data in the traditional 2x2 table, ε was added to each cell, and then 

ASE and Bias were estimated.  

The optimal correction factor was chosen based on bias and variance trade-off principle, either 

graphically or based on the root mean squared error (RMSE). The RMSE is a fit statistic, which 

is the summary of the trade-off between bias and variance. i.e. 

𝑅𝑀𝑆𝐸 = √𝐵𝑖𝑎𝑠(𝑙𝑛 𝑂𝑅𝜀)2 + 𝑆𝐸(𝑙𝑛 𝑂𝑅𝜀)2        --------------------------- (7) 



We determined the optimal correction factor (ε), when the SE and bias values are “crossing 

each other”.   

Coverage Probability (CP) 

Coverage Probability was calculated using Monte Carlo simulation method, for every ε, that is 

ranging from 0.005 to 2. ε equal to 2 is nothing but the Agresti & Coull correction factor. For 

the simulation data, the CP was calculated using nominal method for the correction factors that 

were identified as the optimal based on the sample sizes. Similarly, parametric bootstrap 

method was used to compute 95% confidence interval(CI) and CP for real data and simulated 

data respectively(17). However, the Agresti and Coull method ε was not included in the real 

data evaluation. Based on the concept of 95% CI, the coverage probability for a parameter has 

to be ideally 95%. Conservatively, any CP lower or greater than 95±1  is not considered as 

good(17).  

Fitting a model for finding optimal correction factor (ε) 

The simulation was done to find optimal correction factor which ranges from 0.1 to 0.5, and 2. 

Moreover, the range of value from p1 and p2 are from 0.001 to 0.01 and 0.30 to 0.60 used in 

the simulation. Also, that, the sample size could be anywhere between 10 and 500. However, 

it may be impossible to identify the combination of these three and best epsilon. Therefore, the 

motivation is to establish the regression equation based on these parameters to estimate the 

optimal epsilon. 

The optimal correction factor (ε) was determined using simulated data with low RMSE and 

when both bias and ASE intersected. This was simplified using a function of the parameters 

such as sample size (N) and proportion of two groups (p1 and p2). The natural logarithm of 

the mentioned parameters was used to fit this in linear regression equation as: 

ln (ε) = α + β1*ln N + β2*ln p1+ β3*ln p2 



After estimating the regression coefficient, the optimal correction factor can be estimated for 

a given N, P1, and P2 using the following equation,  

𝜀 = 𝑒𝑥𝑝(α̂) ∗ 𝑁β1 ̂ ∗ P1

β2 ̂
∗ P2

β3  ̂
-------------------------- (8) 

 

Other methods of estimating OR with minimum bias: 

Lyles Method: 

Consider a generalized linear model of the form  

g[E(Y|X = x)] = β0 + ∑ βjxj

k

j=1

 

Where g(.) is a strictly increasing link function. Maximum likelihood estimator is  

βj
̂ = N (βj, σ2

j) 

 σ2
j is asymptotic variance of βj

̂ . Thus, βj
̂  is asymptotic median unbiased. The link function g 

is logit or logarithm, and the target parameter is OR = e
βj with estimator OR̂ = e

βj
̂

 (j =

1,2,3, … . k). The first order limiting distribution of OR̂ is also normal with mean OR; the log-

scale normal approximation is far more accurate for typical sample size. Then OR̂ will be more 

closely log normal with mean 

E(OR̂) =  e
βj+(

σ2
j

2
)

= e
βj ∗ e

(
σ2

j

2
)

= OR ∗ e
(

σ2
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2
)

  

However, OR̂ is subject to large overestimation error unless σ2
j is small. The bias factor e

(
σ2

j

2
)
 

is negligible for small but increase rapidly with σj. However, the approximate expectation of 

OR̂  overestimates OR by more than 50% for σ2
j ≥ 0.9. In order to reduce the bias, the 

following estimator of OR̂ was suggested by Lyles et al(8).  



OR̂BR = e
(

− σ2
j

2
)

∗  OR̂ .          ---------  (9) 

Where, σ2
ĵ is variance of βj

̂  

Datasets 

Hyponatremia Data 

The original data was obtained from a case-control study conducted at the Christian Medical 

College in Vellore, Tamil Nadu, India, to find the association between hyponatremia and 

hiccups. This dataset consists of 50 subjects with hiccups (cases) and 50 subjects without 

hiccups (controls). The hiccups groups were categorized according to the severity of the disease 

so that among 50 subjects with hiccups, 23 subjects had mild, 12 subjects had moderate, and 

15 subjects had a severe kind of hiccups. For the illustrative purpose, we considered the cases 

that had severe hiccups and 50 controls (1). 

Tuberculomas Data 

The data was obtained from a retrospective study conducted in a neurosurgical unit of a tertiary-

care center from January 2000 to December 2015.In this study, they attempted to find the 

differences in the characteristics of the tuberculomas in the standard (ATT ≤ 2 years) and 

prolonged therapy (ATT >2 years) groups. Of 67 patients who received standard therapy, 24 

had the tuberculoma in infratentorial site and 43 had in Supratentorial/þinfratentorial. 

Similarly, of 19 patients who received prolonged therapy, all of them had the tuberculoma in 

Supratentorial/þinfratentorial(18). 

Results 

Optimal correction factor (ε) 

Table 1 shows the results of asymptotic standard error (ASE), bias and corresponding RMSE 

value of the simulated data for various values of ε and sample sizes respectively. 



When the sample size is 20, the ASE and the bias cross each other at the epsilon of 0.2 with 

RMSE of 3.94. The epsilon of 0.2 is similar for the sample sizes from 30 to 80 with lower 

RMSE. The similar findings are presented pictorially in figure 1 with the intersection of ASE 

and bias values which determined the optimal correction factor.   

 If the total sample size of a study is 40, we need to look at the RMSE row in Table 1 and find 

the minimal RMSE. The minimal RMSE in this situation is 3.336. Then check above the row 

of epsilon and find the one that equals 3.336, that is 0.2 in this case. This should be considered 

as the optimal correction factor and its corresponding coverage probability is 97.9%.  We 

chose 0.2 as the optimal correction factor since RMSE is the initial selection criteria. Despite 

the fact that the coverage probability for 0.3 is about 0.96 better than the CP for epsilon 0.2, 

we still suggest RMSE-based selection.  Similarly, for sample sizes of 90 to 200, the optimal 

epsilon was indicated as 0.3 by the lowest RMSE. The epsilon is 0.4 when the sample size is 

300 and 0.5 when the sample size is 500 or more. In many situations with epsilon 0.2 and 

various sample sizes, the coverage probability is higher than the nominal threshold of 95% (by 

2%). Appendix 1 provides exact correct factor for varying proportions and varying sample size. 

Coverage Probability 

Optimal correction factors for each sample size with fixed cell probabilities ranging from 0.001 

to 0.4 were obtained in Table 1. Based on equation 5, the nominal method's coverage 

probability (CP) was calculated and presented in Table 2. The parametric bootstrap technique 

was used to calculate the coverage probability for the optimal correction factor (epsilon) which 

was taken from Table 1. When the sample size is 20 and the epsilon is 0.2, then the CP of 

nominal method is 0.985. This was 0.980 using parametric bootstrap method. The CP of the 

nominal method was 0.984, 0.979, and 0.975 when the sample size was 30, 40 and 50 

respectively, with epsilon value 0.2. However, the CP of the parametric bootstrap method was 



0.870, 0.900 and 0.940 for those situations. When the sample size was between 60 to100, the 

CP of the nominal method was around 0.95 at corresponding epsilon values of 0.2 and 0.3. 

Similarly, when the sample size was 200 and 300, the CP of the nominal method was about 

0.907 and 0.864 at epsilon 0.3 and 0.4, respectively.  

Comparison of Bootstrap and Asymptotic SE in identifying epsilon 

Table 3 presents the parametric Bootstrap and Asymptotic SE, with various values of epsilon 

and sample sizes. The SEs based on asymptotic method overestimated the SE about 3 to 4 times 

more as compared to Bootstrap methods when the sample size is <=100. When the sample size 

was 10 and the epsilon was 0.2 then the ratio between Asymptotic SE vs Bootstrap method was 

2.7532. As the epsilon increased the ratio decreased for a given sample size. Also, that as the 

sample size increased above 1000 the ratio started approaching 1. Especially when the sample 

size is 1500 or more the ratio is about 1. Thus, the SEs become similar as sample size increased 

over 1500. Therefore, in order to facilitate the readers to estimate correct SE using Bootstrap 

method for small sizes, we have provided the Bootstrap code as well. 

Fitting a Regression model to find the optimal correction factor (ε) 

If a researcher wants to find out the optimal epsilon for their data, they have to substitute the 

values of sample size, proportions p1 and p2 in equation 8. This will provide approximately the 

optimal correction factor for their data. 

Based on equation (8), the estimated values of the parameters such as α, β1, β2, β3 are -0.399, 

0.333, 0.350, and 0.034 respectively.  

For example, N=20, p1=0.001, p2 = 0.40, then  

ε = exp (-0.399) * 200.333* 0.0010.350* 0.400.034 

ε = 0.157 ~ 0.2. 



For various combinations of p1, p2 and sample size the epsilon is presented in Appendix II. 

For example, in appendix II, if p1=0.001, p2=0.30 and with sample size 100, the epsilon based 

on equation (8) is 0.27 while this is 0.3 by simulation with asymptotic method. Similarly, if 

p1=0.005, p2=0.40 and with sample size 40 the best epsilon value from the suggested model 

is 0.35 and from the simulation with asymptotic method is 0.30. Based on the above two 

example, the impact in the quality is 0.03 and 0.05 units. Thus, the regression is as good as 

simulation with asymptotic method. 

Other methods of estimating OR with minimum bias (Lyles Method):  

Table 4 presents the mean bias and RMSE based on the Regression Method and simulation 

with asymptotic method for p1=0.001 and various values for p2 and various sample sizes. In 

order to compare the two methods, we have used RMSE statistics. When the sample size is 

small (n=20) and the p2=.3 with p1=0.001, the asymptotic method provided epsilon as 0.2 while 

the Lyles method provided this as 0.3. When the sample size is 40 for the same proportions 

both the methods provided the epsilon was 0.3. However, when the sample size is 100 then the 

epsilon was 0.5 and 0.4 for Lyles method and asymptotic method respectively. The same trend 

was observed when the p2 was 0.4, or 0.5 with various sample sizes. When the sample size was 

500 then both methods suggested epsilon as 0.5. The asymptotic method provided epsilon 

which is about 0.1 units lower than the Lyles method. Throughout, Lyles method gives very 

low RMSE. As sample size increases RMSE of both methods were close to each other. 

  



Real time data: 

The distribution and results of real time sparse data were presented in Table 5. In 

hyponaetremia data with sample size of 65, we have compared severe hiccups with the subjects 

who did not have hiccups (Control). According to Table 1 with sample size 70, and the RMSE 

row, the minimum RMSE was 2.908 and the corresponding epsilon was 0.2. Thus, the optimal 

correction factor for this study is 0.2 with coverage probability 96.6% and this was evaluated 

using Monte Carlo simulation method. The rows were interchanged in order to get the zero 

value into ‘A’ cell. After that, OR was computed and then inverted into the original form of 

the OR. Based on Yates correction, the inverted OR was 320 with 95 % CI: 15, 6687, when the 

epsilon was 0.5. According to this study's suggestion, the optimal epsilon is 0.2, with an OR 

and 95% confidence interval is 836 (9.1, 77013.9). Based on the bootstrap method, the CI for 

corresponding OR is 325.7, 3720.2. This approach is much narrower than the 95% CI based on 

normal method. Likewise, for the tuberculomas study, the optimal epsilon is 0.2 that provided 

the OR 53.8 (0.6, 4529.4) and 95% Bootstrap CI (26.2, 99.04). 

Discussion 

When dealing with binary type response variables, the existence of zero cell observations is 

unavoidable for many medical researchers. It arises most often when the sample size is small 

or when there is strong association hyponatremia and severe hiccups study(1). This paper 

investigated the optimal correction factor for estimating the OR, minimizing the RMSE, and 

maintaining the coverage probability. Agresti and Coull’s (1998) suggestion of adding a count 

in all cells of the 2x2 table provides a 95% CI that is closer to the nominal confidence interval. 

However, this study, as well as Subbiah and Srinivasan’s (2008) paper highlighted the fact that 

the narrow CI does not have higher coverage, but rather a lower coverage probability.  Subbiah 

and Srinivasan’s (2008) suggestion of finding the type of sparsity and adding an appropriate 



correction is cumbersome. Despite the fact that they have provided the algorithms for 

identifying the sparsity and correction factor, it is still rather not easy and practical.  

In a 2x2 table, the method for determining the optimal correction factor is dependent on the 

total sample size.  For example, when the sample size is 20, the Yates correction (epsilon=0.5) 

provides us a coverage probability of 16.5%, while the optimal epsilon is 0.2, provides us a 

coverage probability of 98.5%, which is closer to the desired value of 95%.  The epsilon 

remains the same up to sample size 80; i.e. 0.2. However, the coverage probability improves 

as the sample size increases. When the sample size is 300 or more, then the CP decreases very 

much, while the RMSE is smaller. However, the bootstrap CIs are closer to the 95%, suggesting 

that the correction factors that we have suggested are robust. According to Agresti and Coull 

(1998); Sweeting (2004), we have also used CP as the main indicator of validation. Our 

Bootstrap evaluation also suggested the same using the identified optimal correction factor.    

Furthermore, we validated the optimal correction factor using RMSE, which is a function of 

bias and SE, while previous papers have used only the CP method. 

Puhr et al (2017) have reported that “Firth’s penalization is equivalent to maximum likelihood 

estimation after adding a constant of 0.5 to each cell”(19). Thus, the proposed optimal 

correction factor provided a narrow length of the CI, as suggested by the bootstrap method 

compared to Yates correction (or) Penalized logistic regression method. That is, based on the 

Yates correction of 0.5, the OR and 95% CI was 320.3 (16.3, 6292.9), while this was 836 

(325.7, 3720.2) based on the proposed epsilon (0.2) and bootstrap CI.  As a result, the proposed 

epsilon’s CI, the length of the CI is much narrower, while the CP is also closer to 95%. We are 

not in a position to compare the proposed method with Agresti and Coull’s (1998) method, 

since their epsilon is 2, and CP is around 0%, suggesting that the 95%CI is totally away from 

the actual parameter (OR) that come out of the data. This was pointed out by Subbiah and 

Srinivasan (2008). That is, the higher the value of epsilon, then the narrower the CI. However, 



the CP may be very low and nowhere close to the desired CP. As a limitation, since the epsilon 

is a fraction, traditional 2x2 calculators may not be able to accept the correction factor in the 

2x2 cell, as these are assumed to be count data. We need to do this calculation manually. 

However, we have provided the R codes in the Appendix. Though there are good amount of 

work has been going on using Bayesian method we would limit our scope to frequentist method 

as most of the researchers are still ignorant about Bayesian methods. Also, that in the absence 

of prior or using non-informative prior provides varying epsilon. We would like to demonstrate 

the use of Bayesian method for sparse data in future communication. 

In addition, this study found that the epsilon increases as the sample size increases. However, 

we also expected that the epsilon has to decrease as the sample size increase. One probable 

reason could be that the epsilon is not like MSE or variance of an estimator that needs to depend 

on sample size.  In the literatures, the suggestion to handle sparse data is adding a constant 0.5 

(Yates correction) or 2 (Agresti and Coull) have been recommended irrespective of the sample 

size. If severe sparsity is present, then this will be the case even when we have a moderately 

large sample size. For example, if 0.001 is the probability of the first cell in the 2x2 contingency 

table, then we cannot expect a single value in the first cell in most of the realizations. However, 

the reasonable question that we could ask is whether epsilon decreases as the probability of 

first cell becomes large. This needs to be investigated further. 

Lyles et al (2012) method is easy to use as compared to simulation with asymptotic method. 

Based on our extensive simulation with various levels of p1 and p2 and sample size we have 

found out that Lyles method suggested the epsilon which is 0.1 unit more that the simulation 

with asymptotic method. However, when the sample size is about 500, both the method 

provided the same correction factor. Therefore, still we recommend the simulation with 

asymptotic method as we have provided correction factors for various values of p1, p2 and 

sample size in Appendix II. Limitation of the Lyles method is that if any one of the cell values 



is zero then we may not be able to use Lyles method. In this situation, someone uses regression 

method to find correction factor, he/she could use for examples p1=0.0001 when the cell value 

A is zero (p1=0).  

In conclusion, we illustrated a proposed method using simulated and real time data and 

recommended a new method to find optimal correction factor for the sparse data in a 

conventional 2X2 table model based on sample size and proportions. The optimal correction 

factor does not change whether we use Bootstrap or Asymptotic SE when the total size of a 

table is less than or equal to 40.  In addition, we have also presented a regression model to 

identify optimal correction factor using above mentioned parameters which is an easier method 

for medical researchers. However, we recommend that regression equation can be used to find 

out the best epsilon, and then OR can be calculated using either Lyles method or simulation 

with asymptotic method with the help of epsilon. 
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