
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/172102/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Guanghui, Yue, Zhang, Lixin, Du, Jingfeng, Zhou, Tianwei, Zhou, Wei and Lin, Weisi 2024. Subjective and
objective quality assessment of colonoscopy videos. IEEE Transactions on Medical Imaging

10.1109/TMI.2024.3461737 

Publishers page: https://doi.org/10.1109/TMI.2024.3461737 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020 1

Subjective and Objective Quality Assessment of
Colonoscopy Videos

Guanghui Yue, Member, IEEE , Lixin Zhang, Jingfeng Du, Tianwei Zhou,
Wei Zhou, Senior Member, IEEE , and Weisi Lin, Fellow, IEEE

Abstract— Captured colonoscopy videos usually suf-
fer from multiple real-world distortions, such as motion
blur, low brightness, abnormal exposure, and object oc-
clusion, which impede visual interpretation. However, ex-
isting works mainly investigate the impacts of synthe-
sized distortions, which differ from real-world distortions
greatly. This research aims to carry out an in-depth study
for colonoscopy Video Quality Assessment (VQA). In this
study, we advance this topic by establishing both sub-
jective and objective solutions. Firstly, we collect 1,000
colonoscopy videos with typical visual quality degrada-
tion conditions in practice and construct a multi-attribute
VQA database. The quality of each video is annotated by
subjective experiments from five distortion attributes (i.e.,
temporal-spatial visibility, brightness, specular reflection,
stability, and utility), as well as an overall perspective.
Secondly, we propose a Distortion Attribute Reasoning
Network (DARNet) for automatic VQA. DARNet includes two
streams to extract features related to spatial and tempo-
ral distortions, respectively. It adaptively aggregates the
attribute-related features through a multi-attribute associ-
ation module to predict the quality score of each distortion
attribute. Motivated by the observation that the rating be-
haviors for all attributes are different, a behavior guided
reasoning module is further used to fuse the attribute-
aware features, resulting in the overall quality. Experimental
results on the constructed database show that our DARNet
correlates well with subjective ratings and is superior nine
state-of-the-art methods.

Index Terms— Colonoscopy, video quality assessment,
subjective and objective quality assessment, deep neural
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I. INTRODUCTION

COLORECTAL cancer ranks as the third most lethal
cancer worldwide, posing a significant threat to millions

and exerting considerable pressure on healthcare systems [1]–
[3]. Colonoscopy allows physicians to directly inspect the
characteristics of lesions and remove suspected lesions at an
early stage to prevent further deterioration into tumors [4]–
[7]. However, owing to the specialized imaging environment,
the captured colonoscopy videos usually suffer from multiple
distortions, such as motion blur, low brightness, abnormal
exposure, and object occlusion [8], [9]. These distortions affect
the visual interpretation, potentially increasing the missed
diagnosis rate. Thus, effective and reliable Video Quality
Assessment (VQA) metrics are highly required to provide
quantitative quality feedback, based on which the physicians
can adjust their operations to obtain high-quality videos for
better diagnosis.

Generally, quality assessment methods can be broadly clas-
sified into subjective and objective methods [10]–[12]. The
subjective method evaluates video quality through subjective
experiments with predefined scoring rules, and is usually used
for database construction. A detailed methodology of subjec-
tive experiments is presented in Section III-B.2, including task
introduction, participant training, and subjective rating. In the
literature, the subjective method has been widely adopted to
investigate the perceptual quality of videos for entertainment
purposes, e.g., in-the-wild videos [13] and user-generated
content videos [14], [15]. However, related works on medical
images/videos are notably lacking. Among the few attempts,
researchers primarily focus on ultrasound images/videos [16],
dermoscopy images [17], and retinal images [18], while rarely
involving colonoscopy videos. To promote the development of
colonoscopy VQA, one simple idea is treating this problem
as a distortion classification task [19]. However, this idea
cannot inform observers of how much a video has strayed
from perfection. Another idea is evaluating the quality of
synthetically distorted videos [20]. Unfortunately, it impedes
our comprehensive understanding of authentically distorted
videos as synthesized distortions differ from authentic distor-
tions greatly. Thus, it is necessary to conduct subjective ex-
periments to detail the factors affecting the quality assessment
of authentically distorted colonoscopy videos and investigate
the impacting strength of each factor.
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Fig. 1. Illustration of distortion attributes considered in MAC-VQA:
the consecutive frames selected from different videos in the first two
columns are used to illustrate the distortion attribute of temporal-spatial
visibility, and the frames in the last four columns are used to illustrate the
distortion attributes of brightness, specular reflection, stability, and utility,
from left to right, respectively. Here, “utility” refers to the cleanliness of
the colon surface.

During the past years, many objective VQA methods have
been reported for natural scene videos [21], [22], in which
distortions are usually characterized by compression, blurry-
motion, exposure, flicker, etc. To quantify distortions, early
researchers primarily decomposed the video into frames and
analyzed each frame through handcrafted features by modeling
the properties of the human visual system or the rules of
natural scene statistics [23]. However, the use of handcrafted
features highly requires prior experience to distortion patterns,
making the designed VQA methods perform poorly when han-
dling videos with complex distortions. Recently, the rapid de-
velopment of Deep Neural Networks (DNNs) has brought new
solutions for VQA. DNN automatically learns the feature rep-
resentations of distortions, avoiding the subjectivity and limi-
tations of manually selecting features. Among many attempts,
Convolutional Neural Network (CNN) based VQA methods
are popular [24]–[26]. More recently, researches [27]–[29]
have explored the use of Transformers, which are capable
of efficiently modeling long-range dependencies, offering a
promising avenue for improving VQA accuracy. Despite this,
very few related works involve in the colonoscopy VQA task.
Different from natural scene videos, colonoscopy videos need
to be evaluated from multiple attributes, e.g., temporal-spatial
visibility, brightness, specular reflection, stability, and utility,
to ensure their usage in disease diagnosis. As shown in Fig. 1,
many distortions affect the quality of colonoscopy videos, such
as poor temporal-spatial visibility, low brightness, flicker, and
specular reflection, making the VQA task very challenging.
Current natural scene video-oriented VQA methods are not
suitable for the colonoscopy VQA task as they can only predict
the overall quality. Thus, it is necessary to design specific
quality assessment methods for colonoscopy videos.

In this study, we comprehensively study the colonoscopy
VQA task from both subjective and objective perspec-
tives. Specifically, we collect 1,000 authentically distorted
colonoscopy videos and conduct subject experiments to eval-
uate them from the overall quality as well as five distortion
attributes, i.e., temporal-spatial visibility, brightness, specular
reflection, stability, and utility. Overall, we collect 90,000
continuous-scale human opinions and construct a Multi-
Attribute Colonoscopy VQA (MAC-VQA) database. From the
subjective opinions, we find that these distortion attributes
have inherent relationships in the VQA task and correlate
differently with the overall quality. Based on these findings, we

propose a Distortion Attribute Reasoning Network (DARNet),
which can not only objectively estimate the overall quality
score but also derive the quality scores of distortion attributes.
Experimental results on the MAC-VQA database show that
our DARNet is competent for the colonoscopy VQA task.

Compared with prior research, our study has the following
technical advancements. First, unlike existing works that only
evaluate the video quality from a single perspective [24]–[26],
our study proposes a comprehensive VQA framework capable
of assessing the video quality from multiple perspectives. Such
an advantage makes it more suitable for the colonoscopy
VQA task. Second, different from prior studies [30], [31]
that directly map the features extracted from video frames
and sequences to a quality score, our study incorporates a
more refined procedure via a well-designed Feature Interaction
and Reasoning (FIR) unit to explore and integrate attribute-
aware features. This enhancement allows our network to
more effectively recognize video distortions. Lastly, motivated
by the observation that distortion attributes have inherent
relationships in the VQA task, we propose to adaptively
mine complementary information within different attribute
features using a Multi-Attribute Association (MAA) module.
Compared to traditional self-attention block [32], our MAA
module can interact with different features, contributing to
extracting more discriminative feature representations.

In summary, this study makes the following contributions.
• We construct the first comprehensive colonoscopy VQA

database that provides video quality annotations from
five distortion attributes (i.e., temporal-spatial visibility,
brightness, specular reflection, stability, and utility) as
well as an overall perspective. The database will be re-
leased at https://github.com/cheunglaihip/
DARNet.

• We provide a detailed discussion of the constructed
database, emphasizing the crucial aspects to consider
in the design of VQA methods. Additionally, based on
the constructed database, we explore the effectiveness of
nine state-of-the-art VQA methods on the colonoscopy
VQA task and provide a comprehensive summary of these
benchmarks.

• We propose a novel VQA network, termed DARNet. It
not only adaptively aggregates the attribute-aware fea-
tures to predict the quality scores of distortion attributes
but also takes into account the subjective rating behaviors
to derive the overall quality score. Extensive experiments
on the constructed database demonstrate that our method
outperforms the state-of-the-art methods.

II. RELATED WORKS

A. Video Quality Assessment Databases

In recent decades, the literature has reported numerous
VQA databases for natural scene videos based on subjective
experiments. Early researches mainly focus on videos with
synthetical distortions in consideration of various scenarios,
such as video storage and transmission [33]. More recently,
scholars have gradually realized the importance of medical
image and video quality, which is a prerequisite for achieving
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a high detection rate of diseases. For example, Yue et al. [9]
measured the quality of enhanced colonoscopy images gener-
ated by mainstream low-light image enhancement algorithms
based on subjective experiments. Lévêque et al. [20] evaluated
the quality of distorted videos with different transmission
errors and synthesized compression artifacts, constructing a
telesurgery VQA database. Münzer et al. [34] conducted
subjective experiments to explore the effects of compression
artifacts on both the technical and semantic quality of laparo-
scopic videos. Usman et al. [35] investigated the impact of
high efficiency video coder on Wireless Capsule Endoscopy
(WCE) videos, and constructed a WCE VQA dataset. Overall,
existing works mainly focus on synthetically distorted videos.
However, the synthetic distortions differ from authentic dis-
tortions greatly, limiting our comprehensive understanding of
colonoscopy videos in the clinical environment. Therefore, it
becomes critical to construct authentically distorted databases
for advancing the colonoscopy VQA task.

B. Video Quality Assessment Methods

In the early stage, researchers usually divide the video
into many frames and evaluate the quality of each frame
through popular Image Quality Assessment (IQA) methods.
The video quality is estimated by integrating the quality scores
of all frames [36]. However, these methods usually perform
poorly in complex scenarios as they fail to fully characterize
temporal distortions in videos. To address this problem, Saad
et al. [37] proposed a new VQA method, termed V-BLIINDS,
which measures frame-to-frame differences and motion-related
distortions using a spatio-temporal natural scene statistics
model. Considering that the 3D-DCT domain has the inher-
ent advantage over other 2D transformations in representing
spatio-temporal information, Li et al. [38] integrated the sta-
tistical spatio-temporal features in 3D-DCT domain, resulting
in a new VQA method. Korhonen et al. [39] proposed an
efficient VQA method that only computes high-complexity
features on representative frames. Tu et al. [40] selected 60
statistical features used in existing VQA methods and fused
them using a support vector regressor to estimate the video
quality. However, such methods rely heavily on the design
and selection of handcrafted features, which may lead to low
generalization ability due to knowledge bias.

During recent years, the rapid advancement of DNNs has
introduced new solutions to VQA. DNN-based methods auto-
matically learn the quality-aware features by updating network
parameters, overcoming the subjectivity and limitations of
handcrafted feature selection. Li et al. [25] divided the video
into frames and fed them into pre-trained CNNs to extract
features. After that, a gated recurrent unit and a temporal
pooling layer were used to integrate these frame-level features
for estimating video quality. Given that merely analyzing video
frames is difficult to fully characterize distortions, Sun et al.
[30] proposed a new VQA network that includes two branches
designed specifically for extracting spatial and motion-related
features. To reduce computational complexity, only sparse
video frames are fed into the upper branch and down-sample
video sequences were fed into the lower branch. Li et al.

[31] proposed a VQA network by transferring the knowledge
from two types of source domain, corresponding to spatial
and motion distortions in the video, respectively. Wu et al.
[41] employed a Transformer-based backbone to characterize
video distortions and introduced a fast VQA network by
using a grid mini-patch sampling strategy. However, existing
VQA methods only evaluate the video quality from an overall
perspective, and cannot fully match the needs of colonoscopy
VQA tasks, i.e., providing both the overall quality score and
quality scores for all distortion attributes.

III. MULTI-ATTRIBUTE COLONOSCOPY VQA DATABASE

A. Video Collection
In this study, we used an Olympus CV290 endoscope to

capture 40 long colonoscopy videos of at Shenzhen Univer-
sity General Hospital. These videos were collected from 40
patients, including 24 males and 16 females. The patients
range in age from 20 to 69, with a slight asymmetry in each
age group. Fig. 2 presents the gender and age distributions
of patients involved. The captured videos encompass various
scenarios of colon anatomy, such as the rectum, descending
colon, ascending colon, cecum, and terminal ileum, along with
surgical procedures to remove abnormal tissues. This ensures
the diversity of our data, with strong clinical representative-
ness. Each video has a duration from 15 to 30 minutes, with a
frame rate of 24 and resolution of 1920×1080. The main mode
of these videos is white light imaging, with a small portion of
segments being narrow band imaging due to clinical diagnostic
needs. Second, for privacy protection, we remove the patient’s
information shown on the video, such as name, age, gender,
treatment time, etc. Third, we cut the long videos and only
preserve video clips that are relevant to disease diagnosis.
Approximately 20 to 40 video clips are collected from each
patient, without any content repetition. As a result, we collect
a total of 1,000 short videos, each with a length of 9 to 11
seconds. Fig. 1 presents some examples.

Fig. 2. Gender and age distributions of patients involved in video
collection.

B. Subjective Quality Assessment
1) Choice of Quality-Related Attributes: Generally, video

quality is often affected by multiple attributes [42], such as
temporal-spatial visibility, brightness, and stability. A recent
study [43] stated that, apart from these common attributes,
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the quality of colonoscopy videos is also affected by specular
reflection because of the moist colon surface. Moreover, as
shown in Fig. 1, a colon surface is usually occluded by feces
and bubbles, potentially leading to diagnosis errors. In view
of these, we propose to comprehensively analyze the quality
of colonoscopy videos, not only providing the quality scores
for five distortion attributes, i.e., temporal-spatial visibility,
brightness, specular reflection, stability, and utility, but also
reporting the overall quality score. The descriptions of these
distortion attributes are given below.

• Temporal-Spatial Visibility: This attribute reflects the
amount of content information along both the spatial and
temporal dimensions. A higher value of temporal-spatial
visibility corresponds to more information.

• Brightness: Due to uneven lighting and elongated charac-
teristics of intestines, the captured videos are usually with
abnormal brightness. Excessively high or low brightness
results in poor quality of colonoscopy videos.

• Specular Reflection: This attribute affects the quality
of colonoscopy videos by the location and area of the
specular reflection.

• Stability: In colonoscopy, the relative motion between
camera and intestine brings blurriness and information
loss of the captured videos. The stability reflects the
degree of relative motion.

• Utility: Colonic contents, such as fluid, bubbles, and
feces, occlude the colon surface and affect the video’s
utility for disease diagnosis. The clearer the colon surface
is, the greater the utility of the video.

Notably, the overall quality score is not directly computed
from the quality scores of five distortion attributes using pre-
defined formulas during the rating stage. The reason can
be explained from three aspects. First, there is currently a
lack of systematic research and clinical evidence to clarify
how these influencing attributes interact to affect the overall
quality of the video. Second, according to the feedback of
gastroenterologists, partial attributes have indescribable cor-
relation and may result in a masking effect for the overall
quality when appearing simultaneously. For instance, high
stability is a necessary condition for high utility, but not
a sufficient condition. Third, the distortions usually do not
exist throughout the entire video sequence but only in video
segments, and the lengths of video segments occupied by
different distortions are not the same. Therefore, it is hard to
set a fixed weight for each distortion in computing the overall
quality scores for different videos.

2) Subjective Ratings: We recruit 15 postgraduates majored
in biomedical engineering (20 to 30 years old) to complete
the rating task. All subjects have normal or correct-to-normal
vision and sign the written consent form. This study is
approved by the Medical Ethical Committee of the Shenzhen
University Health Science Center (Number: PN-202300016).
The subjective experiment is conducted in a lab with envi-
ronment similar to doctor’s office. We set a flexible viewing
distance (i.e., one to three times the video height), allowing
subjects to find the most comfortable viewing position.

The experiment consists of training and test stages. In the
training stage, we first invite two senior gastroenterologists,

Fig. 3. Graphical user interface of the rating software designed for
subjective experiments. The left side of the interface is the video display
area, and the right side is the scoring area. Subjects should rate both
the overall quality score and quality scores for five distortion attributes.
A higher score indicates a lower degree of distortion and better quality.

who have more than ten years of working experience, to help
the subjects master the essential skills for colonoscopy video
analysis. Then, the experiment administrator provides detailed
descriptions of the study’s process and objectives, along with
50 sample videos to illustrate the rating system and rules.
All these videos are pre-scored by gastroenterologists. Only
subjects with more than 75% scoring accuracy to gastroen-
terologists on these videos are permitted to participate in the
formal experiment. In the test stage, subjects evaluate the qual-
ity of randomly played videos. To comprehensively evaluate
the video quality, they not only rate the overall quality on a
continuous scale from 1 to 5 but also to provide five continuous
scores from 0 to 3, representing the degrees of temporal-
spatial visibility, brightness, specular reflection, stability, and
utility, respectively. Through the setting of continuous scores,
we can evaluate the video quality in a more accurate manner.
For example, one can give a score of 1.5 if he/she hesitates
between 1 and 2. Here, a larger rating score corresponds to
better perceived quality. The reason why we utilizing different
scoring scales for the overall quality and each distortion
attribute lies in two aspects, which highly match the clinical
experience and needs of gastroenterologists. Specifically, on
the one hand, compared to the quality of distortion attributes,
the overall quality is a more comprehensive, nuanced, and
important indicator to determine whether a video is qualified
for diagnosis. As such, its scoring scale should be wider for
more detailed and fine-grained outputs. On the other hand,
the quality of distortion attributes is used to provide feedback
about which part should be adjust to improve video quality.
In this point, a basic scoring scale (e.g., [0-3]) narrower
than that of the overall quality is enough for each distortion
attribute. Such a setting also reduces the scoring burden. To
facilitate the experimental process, we design a rating software
using MATLAB 2021b, as shown in Fig. 3. Once the rating
task for a video is completed, the next video immediately
appears. The rating task includes 5 sessions, and the subjects
should evaluate 200 videos in each session. The subjects are
encouraged to stop to relieve visual fatigue every 20 minutes
during the test. All colonoscopy videos are displayed in a
random and non-repeating manner on a 27-inch 1920× 1080
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Fig. 4. Illustration of the correlation (in the form of Pearson Linear
Correlation Coefficient (PLCC) and Spearman rank-order correlation
coefficient (SRCC)) between the rated scores of each subject and the
average scores of two gastroenterologists. For each correlation metric,
we present both mean and standard deviation of values calculated for
the overall quality and other five distortion attributes. The descriptions of
PLCC and SRCC are given in Section V-A.2.

HP screen. Overall, a total of 90,000(=1000×15×6) quality
annotations are collected, where 1000, 15, and 6 denote the
video number, subject number, and quality score number per
video, respectively.

Furthermore, to illustrate the reliability of the rated quality
scores, we also investigate the scoring quality of each subject.
To be specific, we randomly select 100 videos and ask the two
senior gastroenterologists to rate them from the perspectives
of the overall quality as well as five distortion attributes. After
that, we calculate the correlation between the rated scores of
each subject and the average scores of two gastroenterologists
on these videos. As shown in Fig. 4, all subjects have a
strong rating correlation with gastroenterologists, with PLCC
and SRCC values greater than 0.7. This indicates that our
recruited subjects generally produce qualified and reliable
rating outcomes.

C. Subjective Data Processing and Analysis

1) Subjective Data Processing: Generally, differences in
task understanding often lead to varied subjective ratings.
Therefore, it is imperative to purify the gathered subjective
rating data. For this purpose, we filter out invalid data using
the outlier rejection method recommended by ITU-R BT.500
[44]. For a given video, we first calculate its mean score µk

and standard deviation sk across all subjects by

µk =
1

M

∑M

i=1
qi,k, (1)

sk =

√
1

M − 1

∑M

i=1
(µk − qi,k)2, (2)

where M is the number of subjects who participated in the
subjective experiment. qi,k is the rating score of the k-th video
by the i-th subject. The confidence interval for the k-th video
is defined as [µk-2sk, µk+2sk]. The rating score is considered
an outlier if it falls outside the confidence interval. The data
should be excluded when a subject’s scores considered outliers
are more than 5% and | (Ei−Li)

(Ei+Li)
| is less than 30%. Ei and Li

are the numbers below the lower boundary and above the upper
boundary of the confidence interval, respectively, for the i-th

Fig. 5. MOS distributions from the quality dimensions of (a) temporal-
spatial visibility, (b) brightness, (c) specular reflection, (d) stability, (e)
utility, and (f) overall quality.

Fig. 6. The correlation matrix (in the form of PLCC) between different
quality dimensions rated by all subjects. TSV, B, SR, S, U, and O denote
temporal-spatial visibility, brightness, specular reflection, stability, utility,
and overall quality, respectively.

subject. After analysis, none of the subjects is rejected among
the 15 subjects. Next, we convert the k-th raw-score qn,k by
the n-th subject to Z-score Zn,k as follows:

Zn,k =
qn,k − µn

sn
, (3)

where µn and sn are the mean and standard deviation across
all qualified rating scores of the n-th subject.

Subsequently, we use a linear mapping function to adjust
the Z-Score to the designated rating range, which is [0, 3]
for distortion attributes and [1, 5] for the overall quality. The
Mean Opinion Score (MOS) Mk for the k-th video is finally
calculated as the mean value of scaled Z-score Z ′

n,k:

Mk =
1

N
∑N

n=1
Z ′
n,k, (4)

where N denotes the number of qualified subjects. Through
the above process, we have six MOSs for each colonoscopy
video, showing its quality from the perspectives of temporal-
spatial visibility, brightness, specular reflection, stability, util-
ity, and overall quality, respectively.

2) Scoring Behavior Analysis: Fig. 5 shows the MOS distri-
butions. It is clear that, these distortion attributes are different
in MOS distributions. This inspires us to pay different focuses
on these distortion attributes when designing objective VQA
methods. To see the inherent relationship within these quality
influencing factors, we compute the correlation matrix between
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Fig. 7. The correlation matrix (in the form of PLCC) between different quality dimensions rated by each subject. TSV, B, SR, S, U, and O denote
temporal-spatial visibility, brightness, specular reflection, stability, utility, and overall quality, respectively.

the MOSs of every two quality dimensions, as shown in Fig.
6. Through the correlation matrix, we have several important
findings. First, all distortion attributes relate to the overall
quality, with the PLCC value between each attribute and
overall quality larger than 0.60. Second, the PLCC values
between these distortion attributes and the overall quality are
obviously different, indicating that the rating behaviors of
subjects vary among different attributes. Third, some distortion
attributes, e.g., stability and utility, are closely related. This
is because some colonoscopy scenarios, e.g., quick camera
movement for lesion search, affect the perceived quality in
these two dimensions simultaneously. Such observations can
also be found in the correlation matrix calculated from the data
of each subjects, as shown in Fig. 7. From the data in Fig. 7,
we can also find that the quality annotations are consistent
across different subjects.

IV. PROPOSED METHOD

A. Motivation
In this study, we propose a novel quality assessment method

for colonoscopy videos, named DARNet. It comprehensively
evaluates the video quality from five distortion attributes
(i.e., temporal-spatial visibility, brightness, specular reflection,
stability, and utility) as well as an overall perspective. The
technical motivations behind our DARNet are three-fold. 1)
Considering that the overall quality is the compounded result
of multiple distortion attributes, a multi-task learning frame-
work should be used to simultaneously output the overall
quality score and the quality scores of five distortion attributes.

Auxiliary tasks, i.e., quality prediction of five distortion at-
tributes, can help improve the performance of the main task,
i.e., overall quality prediction. 2) According to the results of
subjective experiments, these distortion attributes have certain
correlations in the VQA task. In this case, it would be
better to interact with the features of different auxiliary tasks
to achieve accurate quality predictions. 3) These distortion
attributes correlate differently with the overall quality, and the
rating behaviors for them vary greatly. Mimicking the rating
behaviors is an important clue for accurately predicting the
overall quality.

B. Overall Architecture

Fig. 8 shows the framework of DARNet. As shown, DAR-
Net consists of a Spatio-Temporal Feature Extraction (STFE)
unit and an FIR unit. The FIR unit comprises an MAA module
and a Behavior Guided Reasoning (BGR) module. For an input
video, we first feed it into the STFE unit to obtain a shared
feature Pα. Next, Pα is processed by Non-Linear Mapping
(NLM) operations separately to generate five sets of features
Pi (i ∈ {1, 2, · · · , 5}). These features are subsequently fed
into the MAA module to obtain attribute-aware features Si. By
inputting Si into the regression head, we can obtain the score
Yi of the i-th quality dimension. Finally, these attribute-aware
features are further interactively fused in the BGR module to
reason the overall quality score Yo.
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Fig. 8. The framework of DARNet consists of a Spatio-Temporal Feature Extraction (STFE) unit and a Feature Interaction and Reasoning (FIR)
unit. The former comprises two streams to extract features for characterizing spatial and temporal distortions. The latter includes a Multi-Attribute
Association (MAA) module and a Behavior Guided Reasoning (BGR) module. MAA adaptively aggregates the extracted features Pi and predicts the
quality score Yi of each attribute. BGR considers the feedback of subjects on the correlation of each distortion attribute to perform the interaction
between the attribute-aware features Si and derive the overall quality score Yo. To reduce computational burden, we feed 16 frames and 49
fragments into ResNet-50 and Swin-T, respectively. The fragments are spatially stitched to an integrated before feeding into Swin-T.

C. Spatio-Temporal Feature Extraction Unit

As discussed in Section III-B, the colonoscopy videos have
both spatial and temporal distortions. In view of these, we use
a STFE unit to extract both spatial and temporal features to
characterize these distortions.

As illustrated in Fig. 8, the STFE unit includes two parallel
branches (i.e., ResNet-50 and Swin-T). The upper branch,
i.e., ResNet-50 [45], is used to extract spatial features Fs ∈
R2048×H×W from video frames, where H and W are the
frame’s height and weight, respectively. We split the video into
consecutive frames and resize each frame to 224×224. Consid-
ering the duration difference between videos, we randomly se-
lect T frames from each video and input them into ResNet-50,
respectively. Following previous works [31], ResNet-50 is pre-
trained on IQA databases and keeps frozen during the training
stage. The lower branch, i.e., Swin-T (the abbreviation of
Video Swin Transformer Tiny [46]), is used to acquire spatio-
temporal features Ft ∈ RT×768×H×W from video sequences.
Compared to frames, video feature extraction requires more
computational resources because of high dimensionality. To
mitigate computational burden, we change the input of Swin-
T from video sequences to “fragments”, which are generated
using the sampling strategy reported in FASTER-VQA [41].
To be specific, for a video, we first cut it into 7×7 non-
overlapping grids in the spatial dimension, and randomly crop
a 32×32 mini-patch from each spatial grid. Meanwhile, we
cut the video into 8 uniform segments in the temporal space,
and select 4 consecutive frames from each segment. Notably,
to preserve temporal continuity between frames, mini-patches
in each spatial grid and temporal segment are aligned to form
a mini-cube. The mini-cube is named as “fragment”. Finally,
we stitch all the mini-cubes spatially to an integrated sample.
Here, T is set to 16.

To fuse the features from two branches, we apply two opera-
tions on the upper branch. First, we concatenate the features of
T selected frames, resulting in F ′

s ∈ RT×2048×H×W . Second,
we process F ′

s with a mapping block, which consists of two
linear layers and one ReLU function within them, to map
its size to that of Ft. After that, we integrate the resultant

feature F ′′
s ∈ RT×768×H×W and Ft using a fusion module,

resulting in Pα ∈ RN×C . The fusion module has a Fully
Connected (FC) layer, a GELU function, and another FC layer.
Here, N = T ×H ×W . Pα is further processed by a NLM
operation to generate five sets of features Pi for subsequent
quality prediction of multiple distortion attributes:

Pi = Mθi(Pα), (5)

where θi denotes the parameters of the NLM operation Mθi

for the i-th distortion attribute.

D. Feature Interaction and Reasoning Unit

Motivated by the observations from subjective experiments,
we propose a FIR unit to produce accurate quality predictions
by making inter-attribute interactions. As shown in Fig. 8,
the proposed FIR unit includes an MAA module and a BGR
module.

1) Multi-Attribute Association Module: As illustrated by Fig.
6, every two distortion attributes have an inherent relationship
to the quality assessment task, with a correlation greater than
0.45. This inspires us to interact with the features of different
distortion attributes. For this purpose, we propose an MAA
module. It explores complementary information from different
features to achieve accurate quality predictions for multiple
distortion attributes simultaneously based on the attention
mechanism. As illustrated by Fig. 9, the MAA module takes
the features Pi (i ∈ {1, 2, · · · , 5}) as the inputs and outputs
the attribute-aware features Si. Specifically, it has five parallel
cross-attention (CA) blocks. Taking the n-th CA block as an
example, the feature Pn is mapped into the Query Qn ∈
RN×C via a linear mapping layer Wn

q . Also, the i-th feature
Pi (i ̸= n) is mapped into the Key Kn,i ∈ RN×C and
Value Vn,i ∈ RN×C via linear mapping layers Wn

k and Wn
v ,

respectively. The learned positional encoding [32] is added to
the Pn and Pi before processing them with the linear mapping
layer. The output On,i of the attention block is:

On,i = σ(QnK
T
n,i/

√
d)Vn,i, (6)
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where σ(·) is the Softmax function, and d = C is the feature
dimension. T denotes the transpose operation. By respectively
using other features to generate the Key and Value, we can
obtain four features from the attention block in total. After that,
we add each output with P ′

n and process the resultant feature
by Layer Normalization (LN) and Multi-Layer Perception
(MLP):

Fn,i = MLP (LN(P ′
n +On,i)), (7)

where P ′
n is the addition of Pn and positional encoding. Next,

all Fn,i are concatenated in the channel direction to generate
the n-th attribute-aware feature Sn ∈ RN×C′

. Finally, we
process Sn with a regression head, which consists of a linear
layer, a GELU function, and another linear layer, to generate
the quality score Yn of the n-th distortion attribute. Different
from traditional self-attention module [32] that derives the
Query, Key, and Value vectors from the same feature, these
vectors in our MAA module are derived from the features
of two different streams (see Fig. 8), specifically designed for
predicting quality scores of distortion attributes. Moreover, our
MAA module can integrate multiple features generated by the
attention operation, whereas traditional self-attention module
cannot. Such settings make our MAA module more suitable
for the colonoscopy task.

Fig. 9. Framework of the Multi-Attribute Association (MAA) Module.

2) Behavior Guided Reasoning Module: As observed in
Section III-C, the correlation coefficients between the over-
all quality and these distortion attributes are different, with
values of 0.91, 0.61, 0.74, 0.91, and 0.92 for temporal-spatial
visibility, brightness, specular reflection, stability, and utility,
respectively. This indicates that, the subjects have different
rating behaviors on different distortion attributes when eval-
uating the overall quality score of a video. In view of this,
we propose a BGR module to estimate the overall quality
score by considering the rating behaviors. As shown in Fig. 10,
our BGR module is based on the Graph Convolution Network
(GCN) [47], [48] and consists of two GCN layers. Specifically,
it takes the feature Hl (l ∈ {0, 1}) and the adjacency matrix
Â ∈ Rn×n as the inputs, and updates Hl via a GCN layer:

Hl+1 = h(D̂− 1
2 ÂD̂− 1

2HlW l), (8)

where h(·) denote the LeakyReLU function for the nonlinear
operation. D̂ is the diagonal matrix, and D̂i,i =

∑n
j=1 Âi,j .

To generate H0 ∈ Rn×P (P = N × C ′), we first concatenate
all attribute-aware features (Sn, n ∈ {1, 2, · · · , 5}) and then

Fig. 10. Framework of the Behavior Guided Reasoning (BGR) Module.

reshape the concatenated feature. W l is the l-th layer-specific
trainable weight matrix. The adjacency matrix Â is calculated
by:

Â = A+ IN , (9)

where A is the correlation matrix that includes the relationship
between different network nodes. IN denotes the identity
matrix used for self-connections. Different from previous
works [49] that initialize the parameters of A by representing
all network nodes with the same distortion attribute, our BGR
module sets all distortion attributes as network nodes and
gives specific considerations to their relationship based on the
behavioral feedback shown in Fig. 6. This setting makes our
BGR more interpretable and suitable for the colonoscopy VQA
task. Specifically, for the element in A, we can only set its
value to 1 when the PLCC value between the attributes in the
column and row is larger than 0.55. Finally, we map the output
H2 of the last GCN layer to the overall quality score Yo by
using a regression head.

E. Loss Function

We implement a multi-task learning strategy to optimize our
whole network. The total loss function of DARNet is defined
as:

Lt = L(Go, Yo) +
∑5

n=1
L(Gn, Yn), (10)

where Go is the MOS of the overall quality, and Gn is the
MOS of the n-th distortion attribute of the colonoscopy video.
In Eq. (10), the first and second terms are used to supervise
the main and auxiliary tasks, respectively. Following previous
works [47], [48], [50], we choose the widely used mean square
error loss as L(·, ·).

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Data Division: In this study, we randomly divide the
constructed MAC-VQA database into training and test sets
in a ratio of 8:2. To investigate the performance of a VQA
algorithm on individual data, the collected videos from each
patient exits in both training and test sets, without content
repetition. Furthermore, to avoid performance bias, we conduct
the random train-test split procedure 10 times, and the reported
results are the average of 10 test outcomes.
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TABLE I
RESULTS OF DIFFERENT VQA METHODS ON THE CONSTRUCTED DATABASE.

Methods Year Deep SRCC PLCC KRCC RMSE
TLVQM [39] 2019 ✖ 0.887±0.015 0.885±0.013 0.702±0.020 0.466±0.025
VIDEVAL [40] 2021 ✖ 0.888±0.008 0.891±0.006 0.709±0.009 0.461±0.013
VSFA [25] 2019 ✓ 0.932±0.008 0.934±0.008 0.775±0.015 0.356±0.019
Simple-VQA [30] 2022 ✓ 0.897±0.012 0.901±0.011 0.718±0.017 0.433±0.018
BVQA [31] 2022 ✓ 0.928±0.009 0.936±0.008 0.769±0.015 0.354±0.011
FAST-VQA-M [27] 2022 ✓ 0.898±0.015 0.902±0.013 0.721±0.020 0.433±0.020
FASTER-VQA [41] 2023 ✓ 0.930±0.011 0.930±0.011 0.771±0.019 0.369±0.021
DOVER [15] 2023 ✓ 0.933±0.009 0.936±0.009 0.778±0.016 0.352±0.022
Light-VQA [51] 2023 ✓ 0.836±0.014 0.842±0.012 0.643±0.014 0.550±0.023
DARNet(ours) 2024 ✓ 0.940±0.008 0.943±0.006 0.790±0.013 0.332±0.014

Fig. 11. Scatter plots of nine VQA methods and our proposed DARNet on the constructed database.

2) Evaluation Metrics: To quantitatively evaluate the perfor-
mance of VQA methods, we select four mainstream evaluation
metrics in the VQA field [52], including SRCC, PLCC,
Kendall rank-order correlation coefficien (KRCC), and root
mean square error (RMSE). Specifically, SRCC and KRCC as-
sess prediction monotonicity, while PLCC and RMSE measure
prediction accuracy. Notably, higher values of SRCC, KRCC,
and PLCC, along with lower values of RMSE, indicate better
performance. A nonlinear fitting function recommended by the
video quality experts group [53] is used to map the predicted
scores s to subjective scores f(s) before calculating PLCC
and RMSE:

f(s) =
η1 − η2

1 + e−
s−η3
η4

+ η2, (11)

where ηi (i ∈ {1, ..., 4}) are the fitting parameters.
3) Implementation Details: Our DARNet is implemented

within the PyTorch framework. In the training stage, we set
the batch size to 8 and apply the AdamW optimizer to train
the network by minimizing Eq. (10) for 70 epochs. The
initial learning rates for the backbone and the other layers are
1e-5 and 1e-4, respectively, decaying according to a cosine
annealing schedule. In the inference stage, for a query video,
we use the sampling strategy described in Section IV-B and
feed the sampled information into the well-trained model to
get the predicted scores. All experiments are conducted on a
workstation equipped with an NVIDIA RTX 3090 GPU.

4) Compared Methods: We compare our DARNet with
nine state-of-the-art VQA methods, including TLVQM [39],
VIDEVAL [40], VSFA [25], Simple-VQA [30], BVQA [31],
FAST-VQA-M [27], FASTER-VQA [41], Light-VQA [51],
and DOVER [15]. TLVQM and VIDEVAL are traditional
handcrafted feature-based methods, while the others are DNN-
based methods. We use the official source codes and default
settings of these methods to train and test them on our
constructed database, with the same data division manner
described in Section V-A.1.

B. Comparison on the Whole Database

Table I shows the results of our proposed DARNet and
nine competing VQA methods. The best results are marked
in bold for convenient comparison.From the data in Table I,
we have several findings. First, traditional handcrafted feature-
based methods (i.e., TLVQM and VIDEVAL) have an inferior
capability for accurately evaluating colonoscopy videos com-
pared to DNN-based methods. A possible reason for this is
that, these methods cannot fully characterize the distortions
in colonoscopy videos because they rely heavily on the prior
experience, e.g., statistic regularity of distortions and human
visual system modelling, to characterize distortions in natural
scene videos. Notably, the distortions in colonoscopy videos
differ from those in natural scene videos greatly, as described
in Section III-B. The knowledge employed in TLVQM and
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TABLE II
THE PERFORMANCE OF THE COMPETING METHODS ON EACH DISTORTION ATTRIBUTE.

Methods
Temporal-Spatial Visibility Brightness Specular Reflection Stability Utility

SRCC PLCC KRCC RMSE SRCC PLCC KRCC RMSE SRCC PLCC KRCC RMSE SRCC PLCC KRCC RMSE SRCC PLCC KRCC RMSE
TLVQM [39] 0.838 0.857 0.651 0.336 0.686 0.714 0.501 0.547 0.781 0.788 0.584 0.413 0.901 0.903 0.725 0.327 0.845 0.835 0.647 0.394
VIDEVAL [40] 0.855 0.873 0.666 0.319 0.680 0.701 0.493 0.598 0.773 0.796 0.579 0.410 0.902 0.907 0.726 0.326 0.833 0.840 0.643 0.395
VSFA [25] 0.904 0.918 0.738 0.259 0.783 0.809 0.591 0.472 0.844 0.860 0.659 0.338 0.934 0.937 0.778 0.268 0.898 0.903 0.724 0.300
Simple-VQA [30] 0.885 0.904 0.707 0.281 0.710 0.734 0.519 0.546 0.802 0.813 0.609 0.385 0.900 0.911 0.725 0.316 0.852 0.863 0.667 0.352
BVQA [31] 0.899 0.915 0.729 0.261 0.765 0.794 0.576 0.479 0.844 0.863 0.659 0.339 0.927 0.934 0.767 0.275 0.889 0.896 0.714 0.315
FAST-VQA-M [27] 0.859 0.879 0.674 0.309 0.724 0.761 0.532 0.510 0.799 0.815 0.608 0.388 0.901 0.907 0.726 0.327 0.869 0.869 0.682 0.352
FASTER-VQA [41] 0.893 0.910 0.723 0.268 0.770 0.799 0.578 0.474 0.821 0.838 0.631 0.366 0.921 0.926 0.755 0.294 0.889 0.889 0.710 0.325
DOVER [15] 0.908 0.923 0.744 0.252 0.784 0.808 0.593 0.474 0.838 0.854 0.650 0.344 0.925 0.931 0.763 0.281 0.897 0.898 0.723 0.307
Light-VQA [51] 0.853 0.870 0.668 0.324 0.569 0.590 0.397 0.636 0.733 0.736 0.541 0.458 0.873 0.886 0.692 0.361 0.797 0.801 0.605 0.435
DARNet(ours) 0.910 0.924 0.744 0.252 0.798 0.821 0.607 0.459 0.841 0.855 0.654 0.343 0.928 0.933 0.768 0.276 0.906 0.914 0.737 0.283

VIDEVAL is not entirely suitable for the colonoscopy VQA
task. Second, among these DNN-based methods, methods
that combine 2D-CNN with video Transformer have more
advantages in performance than methods only based on video
Transformer. For instance, DOVER, which adds a 2D-CNN
branch to video Transformer, achieves considerable results,
with a SRCC value greater than 0.933. This may be attributed
to that, as the complement to video Transformer, 2D-CNN is
conducive to capturing frame-level features to better character-
ize spatial distortions. Third, our proposed DARNet achieves
better performance than all competing methods, with relatively
smaller standard deviation value at each evaluation metric.
This is because DARNet not only combines the merits of
2D-CNN and video Transformer, but also utilizes the multi-
task learning and specifically designed modules to improve
the quality-aware feature representation. More specifically,
considering the inherent relationships between distortion at-
tributes, it utilizes an MAA module to explore complementary
information from different features, enhancing the attribute-
related feature representations. In addition, it also incorporates
the prior knowledge from subjective rating behaviors when
fusing features of different distortion attributes, helping the
network producing more accurate predictions. Fig. 10 shows
the scatter plots of predictions versus subjective ratings. It
is obvious that our proposed DARNet can produce a more
compact scatter compared to competing VQA methods.

In addition, we investigate the correlation between the
quality scores rated by each subject and the associated pre-
dictions provided by our DARNet. As shown in Fig. 12,
the outcomes of DARNet are consistent with human visual
perception. Specifically, the correlation results between our
method and all subjects are consistent in 10 trials, with a
slight fluctuation less than 0.15 in each quality dimension. For
instance, both the mean values of PLCC and SRCC across 10
trials are greater 0.85 in overall quality. This demonstrates
that these subjects perform similarly in the quality rating
tasks. Moreover, the correlation results on brightness and
specular reflection are smaller than those on temporal-spatial
visibility, stability, utility, and overall quality. This indicates
that, compared to the other distortion attributes, brightness and
specular reflection are more challenging in accurate quality
prediction. Furthermore, it is also interesting to investigate
the performance of our method on each patient’s videos. For
this purpose, we first divide the test set into 40 groups based

on patient ID. Each group contains approximately 4 to 8
videos, collected from one patient. Then, for each group, we
calculate the PLCC and SRCC values between the predicted
scores and subjective ratings (i.e., the ground-truth scores) of
the overall quality. As shown in Fig. 13, the mean values of
PLCC and SRCC across 10 trials are greater than 0.80 and
0.75, respectively. Results on other distortion attributes show
similar conclusions, and we do not present them due to space
limitation. This indicates that our method performs effectively
on different patients’ data, showing strong generalizability.

C. Comparison on Each Distortion Attribute
In this section, we investigate the effectiveness of VQA

methods on evaluating each distortion attribute. Table II shows
the results. Due to space limitation, we only present the mean
value of each evaluation metric across 10 trials. From Table
II, we have the following observations. Firstly, DNN-based
methods generally outperform handcrafted feature-based meth-
ods (i.e., TLVQM and VIDEVAL), on all distortion attributes.
The average SRCC values achieved by these two kinds of
methods are 0.889 and 0.847 in temporal-spatial visibility,
0.738 and 0.683 in brightness, 0.815 and 0.777 in specular
reflection, 0.913 and 0.902 in stability, 0.875 and 0.839 in
utility, respectively. Secondly, the results of each method vary
greatly across different distortion attributes. For example, the
SRCC values achieved by Light-VQA are 0.733 and 0.873
in specular reflection and stability, respectively. Thirdly, most
competing methods produce unsatisfactory performance on
brightness, with both SRCC and PLCC values lower than 0.78.
Last but not least, our DARNet shows leading advantages on
most distortion attributes. Specifically, it achieves the best 12
times and the second best 4 times in a total of 20 comparisons.
This indicates that our DARNet is superior to other VQA
methods in evaluating the distortion attributes in colonoscopy
videos.

D. Ablations Studies
In our DARNet, we employ ResNet-50 as a supplementary

feature extractor in the STFE unit to better characterize spatial
distortions and use an FIR unit to accurately estimate the
quality of colonoscopy videos from different perspectives. This
section conducts several ablation experiments to explore the
effectiveness of ResNet-50 and FIR unit. All experiments are
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Fig. 12. The PLCC and SRCC scores calculated between the predicted scores of our model and the associated ratings of each subject in each
quality dimension. TSV, B, SR, S, U, and O denote temporal-spatial visibility, brightness, specular reflection, stability, utility, and overall quality,
respectively.

Fig. 13. The PLCC and SRCC scores calculated between the predicted scores and subjective ratings of the overall quality on each patient’s videos.

carried out using the same settings described in Section V-A.3.
Due to space limitation, only the mean results across 10 trials
are present.

1) Effectiveness of the Supplementary Feature Extractor: In
our DARNet, ResNet-50 is used as a supplementary feature
extractor of Swin-T. Here, we learn a new VQA model
by removing ResNet-50 from the STFE unit. In this case,
only Swin-T is used to extract spatio-temporal features. The
experimental results are tabulated in Table III, in which the
best results are marked in bold. From the data, we can find
that the removal of ResNet-50 will bright obvious performance
drop. For instance, there is approximately 2.6%, 3.2%, 8.0%,
2.7%, 2.0%, and 1.9% of SRCC decrement when evaluating
the temporal-spatial visibility, brightness, specular reflection,
stability, utility, and overall quality, respectively. This demon-

strates that ResNet-50 plays a positive role in accurately eval-
uating the quality of colonoscopy videos. A possible reason
for this is that ResNet-50 helps the network capture more
frame-level spatial features, which serve as the supplementary
information for Swin-T in understanding spatial distortions.

2) Effectiveness of the FIR Unit: To investigate the effective-
ness of the FIR unit, we remove it from DARNet and directly
feed the feature Pi from the STFE unit into a regression head
to estimate the quality score of the i-th distortion attribute.
To estimate the overall quality score, all the features (i.e.,
P1, P1, · · · , P5) are concatenated and input into another
regression head. As tabulated in Table III, compared to the
standard DARNet, the network without the FIR unit shows
a decrement of 4.3%, 4.2%, and 4.7% in terms of PLCC,
SRCC, and KRCC, respectively, when evaluating specular
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TABLE III
ABLATION EXPERIMENT RESULTS OF RESNET-50 AND FIR UNIT.

ResNet-50 FIR SRCC PLCC KRCC RMSE

Temporal
Spatial

Visibility

✖ ✖ 0.855 0.871 0.670 0.323
✓ ✖ 0.875 0.896 0.697 0.291
✖ ✓ 0.884 0.901 0.709 0.285
✓ ✓ 0.910 0.924 0.744 0.252

Brightness

✖ ✖ 0.654 0.679 0.469 0.590
✓ ✖ 0.771 0.798 0.580 0.485
✖ ✓ 0.766 0.785 0.575 0.498
✓ ✓ 0.798 0.821 0.607 0.459

Specular
Reflection

✖ ✖ 0.713 0.715 0.518 0.462
✓ ✖ 0.799 0.812 0.607 0.386
✖ ✓ 0.761 0.773 0.569 0.419
✓ ✓ 0.841 0.855 0.654 0.343

Stability

✖ ✖ 0.882 0.887 0.703 0.355
✓ ✖ 0.908 0.915 0.740 0.310
✖ ✓ 0.901 0.908 0.727 0.321
✓ ✓ 0.928 0.933 0.768 0.276

Utility

✖ ✖ 0.885 0.879 0.704 0.334
✓ ✖ 0.889 0.894 0.711 0.314
✖ ✓ 0.886 0.892 0.707 0.316
✓ ✓ 0.906 0.914 0.737 0.283

Overall

✖ ✖ 0.913 0.913 0.744 0.408
✓ ✖ 0.925 0.927 0.763 0.374
✖ ✓ 0.921 0.925 0.757 0.381
✓ ✓ 0.940 0.943 0.790 0.332

TABLE IV
ABLATION EXPERIMENT RESULTS OF THE MAA AND BGR

MODULES.

BGR MAA SRCC PLCC KRCC RMSE

Temporal
Spatial

Visibility

✖ ✖ 0.875 0.896 0.697 0.291
✓ ✖ 0.878 0.896 0.700 0.291
✖ ✓ 0.909 0.922 0.742 0.255
✓ ✓ 0.910 0.924 0.744 0.252

Brightness

✖ ✖ 0.771 0.798 0.580 0.485
✓ ✖ 0.776 0.802 0.584 0.481
✖ ✓ 0.786 0.810 0.596 0.470
✓ ✓ 0.798 0.821 0.607 0.459

Specular
Reflection

✖ ✖ 0.799 0.812 0.607 0.386
✓ ✖ 0.797 0.810 0.604 0.388
✖ ✓ 0.837 0.850 0.650 0.349
✓ ✓ 0.841 0.855 0.654 0.343

Stability

✖ ✖ 0.908 0.915 0.740 0.310
✓ ✖ 0.908 0.916 0.736 0.309
✖ ✓ 0.926 0.931 0.736 0.280
✓ ✓ 0.928 0.933 0.768 0.276

Utility

✖ ✖ 0.889 0.894 0.711 0.314
✓ ✖ 0.892 0.895 0.715 0.312
✖ ✓ 0.904 0.912 0.734 0.288
✓ ✓ 0.906 0.914 0.737 0.283

Overall

✖ ✖ 0.925 0.927 0.763 0.374
✓ ✖ 0.926 0.929 0.766 0.368
✖ ✓ 0.939 0.942 0.787 0.335
✓ ✓ 0.940 0.943 0.790 0.332

reflection. This indicates that the proposed FIR unit contributes
to achieving accurate quality predictions. In the FIR unit,
we utilize some regression heads to help the network learn
attribute-aware features under the supervision of quality scores
rated for distortion attributes. Here, we further investigate
the performance of DARNet when removing these regression
heads. In this case, the network no longer uses the multi-task
learning strategy and only preserves the supervision for overall
quality. Experimental results show that, under such a setting,
our method achieves a SRCC value of 0.933, a PLCC value
of 0.936, a KRCC value of 0.777, and a RMSE value of 0.352

in evaluating overall quality. Compared with the results (see
the last row of Table III) of our standard method, there is
an approximate performance drop of 0.7%, 0.7%, 1.3%, and
2.0% in these four evaluation metrics, respectively. A possible
reason for this is that, the network’s ability to extract quality-
aware features has decreased, as no supervisory information is
provided and transmitted along the regression head. Overall,
through the above results, we can conclude that the usage
of attribute regression heads contributes to achieving good
performance in our VQA task.

3) Effectiveness of the MAA Module: We further explore the
effectiveness of the MAA module in the FIR unit through
ablation experiments. Specifically, we remove the MAA mod-
ule and directly map the feature Pi to the quality score of
the i-th distortion attribute using a regression head, resulting
in a new VQA model. As shown in Table IV, the MAA
module is conducive to achieving accurate performance. For
instance, its usage brings an increment of 2.6% and 3.4%
in terms of PLCC and SRCC, respectively, when evaluating
temporal-spatial visibility. This may be attributed to that the
MAA module helps the network adaptively learn and integrate
complementary information from distortion attributes using a
CA mechanism. Here, we further investigate the performance
of our method when removing the CA operation between these
attributes that have a weak correlation. To be specific, only
two attributes with a correlation score over the threshold T
are considered to use a cross-attention operation in the MAA
module. We set T to 0.55. Taking the attribute of brightness as
an example, according to the results (see Fig. 6) of subjective
experiments, it has correlation scores of 0.49, 0.48, 0.52,
and 0.59 with temporal-spatial visibility, specular reflection,
stability, and utility, respectively. In view of this, we only
use the CA operation to integrate the features of brightness
and utility. As shown in Table. V, the results of the VQA
model (named Manu-M) learned by integrating features from
manually selected correlated attributes are similar to that of
our standard VQA model (named Auto-M to distinguish) that
adaptively integrates features from all attributes. This indicates
that the usage of the CA mechanism in our MAA module helps
the network effectively select useful information in an adaptive
manner, without any experience-supported manual selection
process. In other words, benefiting from the CA mechanism,
our network become more flexible and intelligent.

4) Effectiveness of the BGR Module: We carry out more
ablation experiments to explore the effectiveness of the BGR
module in the FIR unit. Specifically, we remove the BGR
module and directly fuse all attribute-aware features (i.e., S1,
S2, · · · , S5) using the linear mapping operations to predict the
overall quality score. As shown in Table IV, the newly learned
VQA model is inferior to our standard DARNet. For instance,
removing BGR module leads to a performance decrement of
1.1% and 1.2% in terms of PLCC and SRCC, respectively,
when evaluating brightness. This may be attributed to that this
module considers the correlation between distortion attributes,
which helps the network learn more complementary informa-
tion from them. In summary, the BGR module plays a positive
role in achieving accurate prediction.
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TABLE V
RESULTS COMPARISON UNDER DIFFERENT CONFIGURATIONS OF THE MAA MODULE.

Methods Temporal-Spatial Visibility Brightness Specular Reflection
SRCC PLCC KRCC RMSE SRCC PLCC KRCC RMSE SRCC PLCC KRCC RMSE

Manu-M 0.912 0.925 0.747 0.250 0.797 0.819 0.605 0.461 0.840 0.853 0.652 0.345
Auto-M 0.910 0.924 0.744 0.252 0.798 0.821 0.607 0.459 0.841 0.855 0.654 0.343

Methods Stability Utility Overall
SRCC PLCC KRCC RMSE SRCC PLCC KRCC RMSE SRCC PLCC KRCC RMSE

Manu-M 0.930 0.934 0.770 0.274 0.904 0.910 0.736 0.290 0.939 0.942 0.787 0.335
Auto-M 0.928 0.933 0.768 0.276 0.906 0.914 0.737 0.283 0.940 0.943 0.790 0.332

E. Discussions
Colonoscopy is a primary choice for screening colorectal

diseases. However, captured colonoscopy videos are usually
with inadequate quality due to factors caused by poor envi-
ronmental conditions and moving cameras. Low-quality video
not only prevents reliable diagnosis by gastroenterologists,
but also affects the performance of computer-aided diagnosis
systems. Therefore, it is necessary to design an effective
VQA method to monitor the quality of captured colonoscopy
videos. Unfortunately, we have witnessed intense discussions
on proposing VQA methods for natural scene videos, yet rare
efforts for colonoscopy videos.

In this study, we advance this topic from two aspects. First,
we propose and release the first multi-attribute colonoscopy
VQA database. The constructed database includes 1,000 real-
world videos, each of which is annotated from five distortion
attributes as well as the overall perspective. The results of
subjective ratings indicate that these distortion attributes have
inherent relationships in the VQA task and correlate differently
with the overall quality. This finding provides us insights for
designing effective colonoscopy VQA methods. Nine state-of-
the-art VQA methods specifically designed for natural scene
videos are tested to investigate whether these methods still
guarantee the general effectiveness on the colonoscopy data.
The results are thoroughly discussed, with a conclusion that
we still need to design specific colonoscopy VQA methods.
Second, based on the observations from subjective ratings, we
propose a specific colonoscopy VQA method, named DARNet.
Our DARNet follows a multi-task learning framework, using
some auxiliary tasks, i.e., quality predictions of five distortion
attributes, to boost the performance of the main task, i.e.,
overall quality prediction. The key technical contribution of
DARNet is a well-designed FIR unit, which explores and
integrates attribute-aware features for accurate quality predic-
tion. The FIR unit consists of an MAA module and a BGR
module. The former explores complementary information by
make interactions between multiple attribute features, while
the latter estimates the overall quality by considering the
rating behaviors. Experimental results on our constructed
database show that our proposed DARNet is competent for the
colonoscopy VQA task, with promising results. In addition,
as a data-driven VQA method, our DARNet also show great
potential in accurately evaluating the quality of nature scene
videos. This conclusion is drawn from the results on a natural
scene-oriented VQA database, named MaxWell [15]. MaxWell
has 4,543 videos (including 3,634 training videos and 909 test
videos), and each video is annotated from the perspectives

of aesthetics, technology, and overall quality. Compared to
the second best method DOVER, our DARNet has a PLCC
advantage of 4.8%, 5.1%, and 0.4% on these three quality
perspectives, respectively.

As an important technique for selecting high-quality video
data, our DARNet has many practical applications. One
the one hand, it can provide nuanced and detailed quality
scores for videos from the perspectives of five attributes
(i.e., temporal-spatial visibility, brightness, specular reflection,
stability, and utility) and overall quality, reminding gastroen-
terologists to adjust their operations to obtain high-quality
videos for better disease diagnosis in colonoscopy. On the
other hand, considering the emerging demand for learning
robust computer-aided diagnosis models by using multi-center
data, it can be used as an effective quality examiner to select
high-quality colonoscopy videos from different centers.

VI. CONCLUSION

This research conducts a comprehensive study on the
colonoscopy VQA field from both subjective and objective
perspectives. To cope with the challenge of insufficient public
database, we first build a colonoscopy VQA database based on
rigorous subjective experiments. Each video is annotated from
five distortion attributes and the overall quality. The subjective
experiment results show that these five distortion attributes
not only have inherent relationships in the VQA task, but
also correlate differently with the overall quality. Based on
this finding, we propose a novel quality assessment network,
termed DARNet, for colonoscopy videos. The proposed DAR-
Net extracts spatio-temporal features using a STFE unit to
characterize the complex distortions and adaptively integrates
the extracted features using an FIR unit. Thanks to the effective
cooperation of these two units, the DARNet provides compre-
hensive quality assessment for the colonoscopy video, with
better performance than nine state-of-the-art VQA methods.
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