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Abstract
This paper proposes an Exponential HEAVY (EHEAVY) model, which specifies the 
dynamics of returns and realized measures of volatility in an exponential form.  The 
model ensures positivity of volatility and allows for asymmetric effects without restric-
tions on parameters, hence is more flexible. A joint quasi-maximum likelihood estimation 
and closed-form multi-step ahead forecasting is derived. The EHEAVY model is applied 
to 31 assets from the Oxford-Man Institute’s realized library, and the empirical results 
demonstrate that return volatility dynamics are driven by the realized measure, while the 
asymmetric effect is captured by the return shock. The out-of-sample forecast results show 
that the EHEAVY model has superior forecasting performance compared the HEAVY, 
AHEAVY, and realized EGARCH models. The portfolio exercise further confirms the 
superior economic value of the EHEAVY model, as measured by the certain equivalent 
return and expected utility.

Keywords HEAVY model · High-frequency data · Asymmetric effects · Realized 
variance · Portfolio

JEL Classification C32 · C53 · G11 · G17

1 Introduction

The modeling and forecasting of return volatility have significant implications in asset 
pricing, portfolio selection, and risk management practices. Many studies have introduced 
non-parametric estimators of realized volatility using intra-day data (Andersen et al. 2001; 
Barndorff-Nielsen and Shephard 2002; Barndorff-Nielsen et al. 2008, 2009) and volumi-
nous empirical evidence on modelling and forecasting the realized measure of volatility has 
been developed, for example, the ARFIMA model in the original or logarithmic form (see 
Andersen et al. 2003; Chiriac and Voev 2011; Koopman et al. 2005; Asai et al. 2012; Allen 
et al. 2014) and the Heterogeneous Autoregressive (HAR-RV) model by Corsi (2009).
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Recently, the intra-daily estimators of volatility - known as realized measures - have 
been used to improve the conditional volatility of daily return models. One of the popular 
models is the so-called “High-frEquency-bAsed VolatilitY”(HEAVY) model, initially pro-
posed by Shephard and Sheppard (2010). The two-equation system, the HEAVY-r and the 
HEAVY-RM, jointly estimates conditional variances of return and the realized measures 
of volatility based on daily and intra-daily data. The HEAVY model adopts to information 
arrival more rapidly than the classic daily GARCH process and hence it provides more 
reliable forecasts. Various extensions of HEAVY models have been developed. Hansen 
et al. (2012) introduced the Realized GARCH model that corresponds most closely to the 
HEAVY framework. The Realized GARCH model is based on measurement equations 
that tie the realized measure to the latent conditional variance of return. An exponential 
type of realized GARCH model is developed by Hansen and Huang (2016). Cipollini et al. 
(2013) refer to the HEAVY model by constraining the bivariate vector multiplicative error 
representation for squared returns and realized variance. Borovkova and Mahakena (2015) 
apply the HEAVY models with different error distributions, such as student-t and skewed-
t, and extend the HEAVY-r equation with a news sentiment proxy and a time to maturity 
variable. Karanasos et al. (2020) enrich the HEAVY model with long memory features and 
asymmetric effects. Yfanti et al. (2022) add a range-based Garman-Klass volatility to the 
HEAVY framework. The multivariate specification of the HEAVY model is developed by 
Noureldin et al. (2012) and extended by Opschoor et al. (2018), Creal et al. (2013), Shep-
pard and Xu (2019) and Bauwens and Xu (2023).

However, HEAVY models proposed so far are linear. The parameters in the HEAVY-r 
and HEAVY-RM equations are constrained to be positive to guarantee the positivity of vol-
atility, which can be too restrictive. Furthermore, the models do not fully address the asym-
metric effect, where variances react differently to positive and negative shocks. In compari-
son to GARCH models, HEAVY models have more possibilities to represent shocks using 
either return shock or realized return shock, but it is unclear which one is better suited to 
capture the asymmetric effects. In the HEAVY model by Shephard and Sheppard (2010), 
the dynamics of volatility are driven solely by lagged realized measure, making it easy to 
use lagged realized measures to capture the asymmetric effect. On the other hand, in the 
Realized GARCH model by Hansen et  al. (2012), Hansen and Huang (2016), the return 
shocks capture asymmetric effects in both the return and realized measure equations. In 
Karanasos et al. (2020)’s HEAVY model, both return shocks and realized return shocks are 
utilized to model the asymmetric effects.

In this paper, we introduce an EHEAVY model, which extends the linear HEAVY 
model by using an exponential form for both the return and realized measure equations. 
The EHEAVY model inherits the benefits of the EGARCH model, which guarantees that 
the conditional variance of return and realized measure is positive without imposing any 
restrictions on the parameter set, and enables incorporation of asymmetric effects natu-
rally. We propose a joint quasi-maximum likelihood (QML) estimation approach for the 
EHEAVY model, and our Monte Carlo simulations demonstrate that the QML estimator 
has desirable small sample properties.

Using the EHEAVY framework, we empirically investigate the presence of asymmetric 
effects in the volatility of 31 stocks from the Oxford Man institution of realized library, 
without imposing any positivity restrictions on the parameters. Our findings reveal that the 
asymmetric effects in the conditional variance of the return equation are captured by the 
return shock, rather than the realized return shock.

It is worth noting that the EHEAVY model is closely related to Hansen and Huang 
(2016) realized EGARCH model, but there are some differences. Firstly, we adopt an 
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EGARCH specification and excludes the absolute standardized return in the return vari-
ance equation. This is because empirical results suggest that the return variance dynamics 
are primarily driven by the realized measure, not absolute standardized return. This aligns 
with previous findings in the HEAVY literature. In contrast, Hansen and Huang (2016) 
include the absolute standardized return in return variance equation.1 Secondly, Hansen 
and Huang (2016) use a measurement equation where the log of the realized measure of 
volatility is a function of the conditional volatility of return in the same period. In our 
model, we use a HEAVY-RM structure where the realized measure of volatility is a lagged 
function of realized measure. Therefore, the realized EGARCH model is used to estimate/
predict the conditional variance of return, while the EHEAVY model can also model and 
predict realized variance as in HEAVY-type models. Thirdly, we derive a joint quasi-maxi-
mum likelihood estimation approach for the EHEAVY model and a closed-form multi-step 
ahead forecasting procedure.

To assess the EHEAVY model’s performance, we conduct an out-of-sample forecasting 
exercise and compare it with the HEAVY, asymmetric HEAVY (AHEAVY) of Shephard 
and Sheppard (2010), and realized EGARCH model at the daily, weekly, and monthly hori-
zons. The results suggest that the EHEAVY model outperforms the benchmark HEAVY 
and AHEAVY models when forecasting the conditional variance of return. It performs 
similarly to the realized EGARCH model statistically, but the EHEAVY strategy leads to 
a portfolio with a higher certain equivalent return and expected utility than the realized 
EGARCH model. Overall, the out-of-sample forecasting exercise indicates the benefits of 
using the EHEAVY model, both in statistical and economic terms.

The remainder of the paper is organized as follows. Section 2 introduces the EHEAVY 
models. Section 3 presents the multiplicative error representation and the multi-step fore-
cast formulas. Section  4 describes the quasi-maximum likelihood estimation procedure. 
Section  5 presents the empirical application. Section 6 summarizes the findings and con-
cludes the paper. The supplementary appendix (SA) contains additional empirical results.

2  The exponential HEAVY models

The benchmark HEAVY specification of Shephard and Sheppard (2010) use two variables: 
daily financial returns ( rt ) and a corresponding sequence of intraday realized measures of 
volatility, RMt . Realized measures are theoretically high-frequency, nonparametric-based 
estimators of the variation of open-to-close returns. We form the signed square rooted 
realized measures as follows: R̃Mt =sign(rt)

√
RMt , where the sign(rt) = 1 , if rt ⩾ 0 and 

sign(rt) = −1 , if rt < 0 . R̃Mt is also known as the realized return. Then, the return and real-
ized measures are characterized by the following relation:

The first representation is multiplicative error specification, where the stochastic term �it 
( i = r,R) is independent and identically distributed, which is positively defined and has 

(1)
r2t = ht�rt

RMt = mt�Rt
or

rt =
√

htert
R̃Mt =

√

mteRt

1 Hansen and Huang use a squared standardized return. Actually, the effect between the absolute and 
squared standardized return is rather close. We adopt the absolute standardized return in line with the 
EGARCH model.
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a unit mean. This implies that �(r2
t
||Ft−1

)
= ht , where Ft−1 denotes information set up to 

period t − 1 . The second representation is a GARCH type model, where eit is independ-
ent and identically distributed, which has zero mean and unit variance. This implies that 
�ar(rt

||Ft−1 ) = ht . In other words, the GARCH model for the conditional variance of the 
returns (or the realized returns), is similar to the multiplicative error model2 for the condi-
tional mean of the squared returns (or the realized measures).

The EHEAVY model consists of the following two equations:

where corr(ert, eRt) = �.
The first equation is the EHEAVY-r equation and the second equation is EHEAVY-RM 

equation. In the EHEAVY-r equation, the parameter �r summarizes the persistence of vola-
tility, whereas �rR represents how informative the realized measures are about the future 
volatility of return. The asymmetric effect is represented by �rrert−1 . In the EHEAVY-RM 
equation, the parameter �R summarizes the persistence of realized measure volatility and 
the asymmetric effect is represented by �Rrert−1 . EHEAVY model is stationary if 𝛽r < 1 and 
𝛽R < 1 . One advantage of the EHEAVY versus HEAVY model is that the positivity of vari-
ance is guaranteed without any restrictions on the parameter set.

It is notable that the realized EGARCH model of Hansen and Huang (2016) also 
includes �rr|ert−1| in the return equation.3 Their representation is more like an EGARCH-X 
model, where both �rr|ert−1| and �rR|eRt−1| are included. Consistent with the evidence in 
the HEAVY literature, we find that the estimated �rr is very small or insignificant,4 which 
implies that the informative absolute (or squared) return about future volatility is small. So 
�rr|ert−1| is excluded in the EHEAVY model. The EHEAVY-r equation has the same num-
ber of parameters as the EGARCH model.

The EHEAVY-RM equation is closer to the HEAVY-RM of Shephard and Sheppard 
(2010) with the exponential representation. Shephard and Sheppard (2010) suggested an 
AHEAVY model, where the asymmetric effect is captured by the binary lagged realized 
measure in the HEAVY-r and HEAVY-RM equation. Our empirical evidence shows that 
the asymmetric effects are mostly captured by the return shock, not the realized measure. 
So, the EHEAVY model includes �rrert−1 and �rRert−1 terms to capture the asymmetric 
effects.

3  Representation and forecasting

In this section, the EHEAVY models are represented as vector multiplicative error repre-
sentation, from which the closed-form formulas for multi-step ahead forecasts and a Quasi-
maximum likelihood estimation procedure can be derived.

(2)
log ht =�r + �r log ht−1 + �rR|eRt−1| + �rrert−1,

logmt =�R + �R logmt−1 + �RR|eRt−1| + �Rrert−1

2 Engle (2002) first proposed the multiplicative error model using the various GARCH family specifica-
tions to estimate the volatility, which is a non-negative process.
3 Hansen and Huang (2016) use a quadratic form �

rr
(e

rt−1)
2

4 See Table 3 or appendix A for detailed estimation.
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3.1  Vector multiplicative error representation

Defining xt = [r2
t
,RMt]

� , x̃t = [rt, R̃Mt]
� , �t = [ht,mt]

� and et = [ert, eRt]
� , the vector multi-

plicative representation of EHEAVY model is

where ⊙ denotes the Hadamard (element-by-element) product and D stands for independ-
ent and identically distributed. The error term et is a sequence of independent and iden-
tically distributed variable with mean 0 and time-invariant positive definite covariance 
matrix P with ones on the main diagonal so that E(xt|Ft−1) = �t , and

It is notable that if

the top part of (3) becomes the EGARCH model.

3.2  Multiple‑step ahead forecasting

The HEAVY and EHEAVY model can be used to predict both the conditional variance of 
return and the realized measure of volatility. The latter has been the subject of very active 
literature (see, for example, Andersen et al. 2001, 2003; Corsi 2009; Bollerslev et al. 2016; 
Taylor 2017).

Suppose the forecaster models xt and obtains s-step-ahead forecasts E(xt+s|Ft) , or in the 
shorthand notation Et(xt+s) , where Ft is the forecaster’s information set available at time t. 
Let �t+s|t = Et(xt+s) . Now let’s move steps ahead, xt+s , s > 0 is not known and needs to be 
substituted with its corresponding conditional expectation �t+s . The multi-step ahead fore-
casts of the EHEAVY model are not straightforward, as the conditional expectation of log 
function is not equal to the log function of the conditional expectation. To do so, we denote 
�t = log(�t) and

where ē = E(|et|) and �̄� = 𝜔 + Aē . If et is symmetric normally distributed, E(�et�) =
√
2∕� . 

More wisely, E(|et|) can be estimated by the unconditional mean of |et|.
And then, for s > 2,

which can be solved recursively for any horizon s. A closed form forecasts for �t+s|t can 
also be derived as:

(3)
�xt =

√
𝜇t ⊙ et, et�Ft−1 ∼ D(0,P)

log𝜇t =𝜔 + B log𝜇t−1 + Aet−1 + Γ�et−1�,

(4)�=

[
�r

�R

]
, A=

[
0 �rR
0 �RR

]
, Γ=

[
�rr 0

�Rr 0

]
, B=

[
�r 0

0 �R

]
.

(5)A=

[
�rr 0

0 �RR

]
, Γ=

[
�rr 0

0 �RR

]
,

(6)

𝜙t+1|t =𝜔 + B𝜙t + Γet + A|et|,
𝜙t+2|t =𝜔 + Aē + B𝜙t+1|t

=�̄� + B𝜙t+1|t,

(7)𝜙t+s|t = �̄� + B𝜙t+s−1|t,
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where �̃� =
(1−Bs−1)�̄�

1−B
.

We then derive a formula for �t+s|t = Et(xt+s) . With the log specification one would have 
to account for distributional aspects of log(�t+s|t) in order to produce an unbiased forecast 
of �t+s|t . Using the second-order approximation5

where �2
�,t+s|t is the s-step-ahead conditional second moment �t+s|t . The conditional second 

moments are estimated using their unconditional sample counterparts.
The EHEAVY model s-step ahead forecasts �t+s|t are derived by setting A,B,Γ to the 

matrices defined in (4). Then, the s-step ahead forecast of the conditional variance of return 
( ht+s|t ) corresponds to the first element of �t+s|t and the s-step ahead forecast of the realized 
measure of volatility ( mt+s|t ) corresponds to the second element of �t+s|t.

4  Estimation

The parameters in return and realized measure equation are not variation free in the 
EHEAVY models, hence a joint estimation method is required. Below we derive a Quasi-
maximum likelihood estimation approach.

We estimate the EHEAVY model using the vector multiplicative error representation 
shown in (3). More generally, let x̃t be a k−dimensional process, and let �� = [��

1
, ��

2
] , where 

��
1
= vech(P) , and the operator vech stacks the lower triangular elements of a symmetric 

( k × k ) matrix into a k × (k + 1)∕2 vector, and �′
2
 contains the parameters in �t . We assume 

that et follows a multivariate normal distribution, et|Ft−1 ∼ N(0,P) , where Ft−1 represents 
the information set available up to time t − 1 . The likelihood function is equivalent to the 
one in the Constant Conditional Correlation (CCC)-GARCH model (see Bollerslev 1990; 
Jeantheau 1998). Xu (2024) has shown that estimating vMEM using the likelihood func-
tion of the CCC-GARCH specification delivers desirable small sample properties, such as 
unbiasedness and efficiency. The log-likelihood function for the observation at time t is 
given by:

where Mt = diag(
√
�t) = diag(

√
�1t,

√
�2t, ...,

√
�kt).

Let l(�) =
∑T

t=1
lt(�) , the QMLE for �̂� equals

(8)𝜙t+s|t =�̃� + Bs−1𝜙t+1|t

(9)�t+s|t ≈ exp(�t+s|t)(1 +
�2
�,t+s|t
2

)

(10)
lt(�) = −

k

2
log(2�) −

1

2
log |MtPMt| − 1

2
x̃t

�(
MtPMt

)−1
x̃t

= −
k

2
log(2�) − log |Mt| − 1

2
log |P| − 1

2
x̃t

�
M−1

t
P−1M−1

t
x̃t

5 The full approximation is given by exp
�
�
t+s∣t

��
1 +

∑∞

k=1

1

k!
�
k,t+s∣t

�
 where �

k,t+s|t is the s-step-ahead kth 
conditional moment about the conditional mean. See Taylor (2017) for the details of a full approximation.
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Explicit expressions for the score vector and the Hessian matrix of the log-likelihood func-
tion can be derived following the CCC-GARCH literature; see Nakatani and Teräsvirta 
(2009) lemma 3.1 and 3.2 for example.

The asymptotic distribution of QML estimators for the EHEAVY model is similarly 
complicated to the EGARCH and realized EGARCH models.6 Therefore, it is currently 
beyond the scope of this article to fully derive the asymptotic theory for the estimators. 
However, it is worth mentioning that Hansen and Huang (2016) did provide the asymptotic 
distribution of the QML estimator for the realized EGARCH model, but they did not estab-
lish the conditions under which this distribution holds. As a result, the asymptotic distribu-
tion cannot be verified.

In the absence of the asymptotic distribution theory, some results from a simulation 
study can provide insight into the performance of the QML estimators. The data gener-
ation processes in the simulation are as follows. The return and realized return data are 
simulated according to (3), assuming normality distribution. The parameters of the process 
from which the data are generated are taken from the empirical results reported in Table 3 
in the next section. A sample of T observations is generated and used for estimation; we set 
T = 2000 and 5000 to illustrate the impact of increasing the sample size. The largest sam-
ple size of 5000 is chosen close to the sample size of the application in Sect. 5.1. The data 
simulation and the parameter estimation is repeated S = 1000 times.

The simulation study focused on the bias, root mean squared error, and normality of 
the sampling distribution of the QML estimator. These results can help to provide some 
preliminary evidence of the estimator’s performance. The relative bias (RB) and root mean 
squared error (RMSE) are defined as

for the estimator �̂� of the parameter � (an element of � ) having the true value �0 and esti-
mated by �̂�s for the s-th simulated data set.

Table 1 provides a synthetic view of the simulation results. The relative bias from the 
QML estimator is small, even at a small sample size ( T = 2000 ). When the sample size is 
increased to 5000, both the RMSE and the relative biases decrease. These results indicate 
the likely consistency of the QML estimator. The Jarque-Bera statistics of the sampling 
distributions are reported as a test of the normality. The result shows that normality of 
QML estimators are rejected at sample size T = 2000 , but not at the sample size T = 5000 . 
In brief, the simulation results indicate that the consistency and the asymptotic normality 
are likely properties of the QML estimator. It is also notable that the QML estimator is 
actually a ML estimator since the estimated model is correctly specified in the simulation 
study.

�̂� = argmax
𝜃

l(𝜃).

(11)RB(�̂�) = 100 ×
1

S

S∑
s=1

(�̂�s − 𝜃0)

𝜃0
, RMSE(�̂�) = 100

√√√√1

S

S∑
s=1

(�̂�s − 𝜃0)
2,

6 The consistency and asymptotic properties of QML estimators for the multivariate EGARCH are not 
available under general conditions (see for example, Nakatani and Teräsvirta (2009) and Francq et  al. 
2013). A limitation in the development of the asymptotic properties for the EGARCH is the lack of an 
invertibility condition (see Wintenberger 2013; Martinet and McAleer 2018; Demos and Kyriakopoulou 
2019; Xu 2023 for a discussion)
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5  Empirical application

5.1  Data

We use daily data for 31 assets from the Oxford-Man Institute’s (OMI) realized library for 
the period between 03/01/2000 and 31/5/2021. The Symbol Names of 31 assets are pre-
sented in Table  A1. The OMI’s realized library provides daily stock market returns and 
various realized volatility measures calculated from high-frequency data sourced from the 
Reuters DataScope Tick History database. The data cleaning procedure and realized meas-
ure calculation are described in Shephard and Sheppard (2010). We use the realized kernel 
as the realized measure, estimated using the Parzen kernel function. This estimator is simi-
lar to the well-known realized variance, but is more robust to market microstructure noise 
and provides a more accurate estimate of the quadratic variation. The realized kernel is 
calculated as follows: RKt =

∑H

k=−H
k(h∕(H + 1))�h , where k(x) is the Parzen kernel func-

tion with �h =
∑n

j=∣h∣+1
xjtxj−∣h∣,t ; xjt = Xtj,t

− Xtj−1,t
 are the 5-minute intra-daily returns where 

Xtj,t
 are the intra-daily prices and tj,t are the times of trades on the t-th day. Shephard and 

Sheppard (2010) state that they choose the bandwidth H as in Barndorff-Nielsen et  al. 
(2009).

The realized measure is directly linked to the volatility of open-to-close returns, but 
only captures a portion of the volatility of close-to-close returns. In our estimation, we use 
both open-to-close returns and close-to-close returns.

Table  2 presents 31 assets extracted from the database and provides volatility estimates 
for their squared returns and realized kernel time series for the respective sample period. We 
calculate the mean and standard deviation (StDev) of the annualized volatility, which is the 
square root of 252 times the squared return or the realized kernel. The mean column shows 
that the assets have annualized realized measure of volatilities between 9% and 30% , with cor-
responding results for the squared close-to-close returns between 14% and 40% . On average, 
the realized measure is about 63% of the squared return. The realized measure misses out on 
the overnight return, which accounts for its lower level. On the other hand, the annualized 

Table 1  Simulation results 
for QMLE of the EHEAVY 
parameters

RB: relative bias (in percentages); RMSE: root mean squared error; 
see the definitions in (11). N. test: p-value of the Jarque–Bera normal-
ity test of the sampling distribution. The reported values are obtained 
from 1000 simulated samples of the data generating process defined 
in (2)

T = 2000 T = 5000

True RB RMSE N.test True RB RMSE N.test

w
r

−0.30 −1.347 15.265 0.000 −0.30 −0.491 1.490 0.990
w
R

−0.30 −0.878 10.842 0.000 −0.30 −0.166 1.704 0.882
�
rR

0.30 0.236 6.055 0.000 0.30 0.127 1.648 0.535
�
RR

0.40 0.513 6.681 0.000 0.40 −0.271 2.282 0.968
�
r

0.96 −0.392 6.252 0.000 0.96 −0.041 0.408 0.013
�
R

0.95 −0.414 6.259 0.000 0.95 −0.054 0.572 0.014
�
rr

−0.10 1.317 2.706 0.098 −0.10 0.650 1.111 0.032
�
Rr

−0.10 0.631 3.451 0.278 −0.10 −0.078 1.770 0.798
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volatility of open-to-close returns is similar to the annualized realized measure of volatility. 
It is typically slightly higher than the realized measure, but the difference is very small. The 
StDev column shows much higher standard deviations for the squared return than the realized 
measure. The standard deviations of squared close-to-close returns are usually twice as high as 
the standard deviations of the realized measure. The squared open-to-close returns also have 

Table 2  Data descriptive 
statistics

This table provides descriptive statistics for the dataset of 31 assets. 
Columns 2-3 report the corresponding time-series averages (Mean) 
and standard deviations (StDev) of the squared open-to-close returns 
( r2

t,oc
 ). Columns 4-5 report the corresponding Mean and StDev of the 

squared close-to-close returns ( r2
t,cc

 ). Columns 6-7 report the corre-
sponding Mean and StDev of the realized kernel ( rk

t
)

Symbol r2
t,oc

r2
t,cc

rk
t

Mean StDev Mean StDev Mean StDev

AEX 19.14 58.66 30.20 90.48 18.94 41.00
AORD 11.37 33.18 14.18 40.78 11.43 33.62
BFX 16.91 53.84 24.97 82.66 15.56 33.11
BSESN 26.52 73.62 34.11 113.67 21.74 55.93
BVLG 10.33 27.44 20.37 63.63 9.61 18.94
BVSP 32.46 84.07 52.22 154.24 30.25 59.08
DJI 19.23 62.21 22.57 87.40 17.04 40.12
FCHI 20.99 55.16 31.85 89.56 21.01 40.85
FTMIB 21.79 66.42 39.34 140.98 18.84 28.39
FTSE 21.33 64.90 21.73 65.81 20.27 51.21
GDAXI 24.64 66.65 33.99 98.28 24.44 48.37
GSPTSE 15.27 59.91 17.63 76.25 12.04 42.55
HSI 17.00 60.45 33.57 104.67 15.53 32.19
IBEX 23.02 65.02 33.73 101.83 23.17 41.90
IXIC 27.46 84.76 40.05 118.11 23.86 57.06
KS11 20.55 62.85 34.64 106.81 17.60 33.17
KSE 24.59 58.84 29.44 73.34 19.17 33.58
MXX 23.59 64.79 25.83 70.04 17.69 32.61
N225 19.72 71.59 35.04 100.69 17.60 49.25
NSEI 22.07 70.98 33.46 115.24 18.65 52.81
OMXC20 21.14 63.40 26.12 74.09 19.12 48.68
OMXHPI 21.90 61.17 28.30 77.33 20.08 44.57
OMXSPI 21.60 67.17 27.65 85.35 19.03 53.95
OSEAX 27.16 77.85 30.13 89.10 21.63 60.62
RUT 23.10 68.98 38.58 117.01 18.65 45.35
SMSI 22.77 69.16 32.52 107.83 21.71 47.22
SPX 19.90 64.16 24.46 86.94 16.68 40.08
SSEC 30.76 74.33 37.52 99.60 26.41 43.12
SSMI 14.76 52.42 21.43 68.79 13.74 35.12
STI 10.50 24.38 18.40 78.33 9.05 15.51
STOXX50E 26.55 75.92 32.56 90.84 25.59 57.26
Average 21.23 62.72 29.89 92.57 18.91 42.49
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much higher standard deviation than the realized measure. This shows that the realized meas-
ure is a more stable measurement of volatility than the squared returns.

5.2  Estimation results

We estimate the EHEAVY model using both the open-to-close returns and close-to-close 
returns. Table 3 presents summary statistics (median, minimum, maximum) of the param-
eter estimates of the 31 assets of EGARCH, EGARCHX, EHEAVY models. The detailed 
estimates for each of the assets are presented in Table A2 and A3 in the Appendix.

Based on the estimation using open-to-close returns, the empirical results can be sum-
marized as follows. The EGARCH estimates are in line with expectations. The persistence 
parameter � is high and close to one, while the leverage parameter � is negative and sig-
nificant. In the EGARCH-X model, the estimated �rr is significant in 13 out of 31 cases, 
with a small median value of 0.02 and ranging from −0.032 to 0.142. The estimated �rR 
is significant in all 31 cases, with a much larger median value of 0.366 and ranging from 
0.211 to 0.602. This is consistent with the findings in the HEAVY literature, indicating 
that the future volatility of returns is mainly driven by the information from the realized 
measure. The estimated �rr is relatively large and significant in 28 out of 31 cases, while 
the estimated �rR is significant only in 4 out of 31 cases and with a much smaller size. This 
suggests that the leverage effects in the return volatility equation are mainly driven by the 
return shock, not the realized return shock. In the EHEAVY model, all coefficients are sig-
nificant in almost all 31 cases. In particular, the coefficients for asymmetric effect �rr and 
�Rr are negative and significant, indicating that the asymmetric effect is a common stylized 
fact in volatility modeling. The estimates of � are around 0.8 and very similar across assets, 
showing a high correlation between returns and realized returns. This is evidence of joint 
estimation of the return and realized return equations, as proposed in Sect. 4.

Based on the information criteria used, the EGARCH-X model has the highest log-
likelihood values. However, the log-likelihood gain of EGARCH-X over EHEAVY is 
only 17 (based on the median value) for the 4 additional parameters, indicating that the 
improvement is minor. On the other hand, the gains of both EGARCH-X and EHEAVY 
over EGARCH are substantial (median value 131 and 124, respectively). Additionally, in 
19 out of 31 cases, EGARCH-X has the highest log-likelihood values, while in 11 out of 
31 cases, EHEAVY has the highest log-likelihood values. When considering the BIC cri-
teria, the EHEAVY model shows a clear better fit than the other models, achieving the best 
BIC criteria in 21 out of 31 cases. It should be noticed that EGARCH and EHEAVY are 
not nested, but they have the same number of parameters, so choosing between them using 
their log-likelihood values is equivalent to a choice based on model choice criteria.

The results for close-to-close returns are similar to those obtained for open-to-close 
returns. The EHEAVY model outperforms the conventional EGARCH models. The lagged 
realized measure is found to be the main driver of return volatility dynamics, and asym-
metric effect is captured by previous period’s return shocks. Overall, these findings provide 
further support for the use of the EHEAVY model in volatility modeling.

5.3  News impact curve

Additional insights about the value of the EHEAVY structure are evident from the news 
impact curve. This curve, introduced by Engle and Ng (1993), illustrates the impact 
that return shocks having on volatility. The news impact curve measures the impact 
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that ert has on ht+1 in percentages, as defined by E
(
log ht+1 ∣ ert = er

)
− E

(
log ht+1

)
 . 

We plot the impact curve of the EHEAVY model, the EGARCH model, and the real-
ized EGARCH model of Hansen and Huang (2016). As return shocks are contempo-
raneously correlated with realized return shocks, one unit return shock will also incur 
� unit realized return shock. The news impact curve for the EHEAVY model is given 
by �rR|eRt−1| + �rrert−1 = ��rR|ert−1| + �rrert−1 . For the EGARCH and realized EGARCH 
models, the news impact curve is simply given by �rr|ert−1| + �rrert−1.

Taking EURO50 close-to-close return for example, the news impact curve is plotted 
in Fig. 1. As is evident from Fig. 1, the generalized structure of the EHEAVY model 
has a more profound effect on the news impact curve than the EGARCH and realized 
EGARCH model. The news impact curve of realized EGARCH model is very close 
to that of the EGARCH model, and it does not show an increasing news impact curve 
when news is positive. The EHEAVY model allows good news and bad news to have a 
different impact on volatility. It also allows big news to have a greater impact on volatil-
ity than the EGARCH and realized EGARCH model in both directions.

Figure 2 gives another example: SPX close-to-close return news impact curve. As in 
the previous example, the EHEAVY model shows the highest variation in both direc-
tions, indicating that it allows for big news to have a greater impact on volatility com-
pared to the EGARCH and realized EGARCH models. This is particularly evident in 
the positive news region, where the news impact curve for EHEAVY is significantly 
steeper than the other two models. Overall, the results suggest that the EHEAVY model 
provides a more accurate representation of the relationship between news and volatility, 
especially in capturing the asymmetry between positive and negative news impacts.

Fig. 1  News impact curve for the EGARCH, realized EGARCH and EHEAVY model: EURO50 close-to-
close return
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5.4  Forecasting comparison

Next, we will conduct an out-of-sample forecasting comparison. In this application, we 
will focus on forecasting the volatility of close-to-close returns, which is more suitable for 
most applications in portfolio allocation or risk management.

We will compare the EHEAVY model with the following three popular models: 1) the 
benchmark HEAVY model; 2) the asymmetric HEAVY (AHEAVY) model of Shephard 
and Sheppard (2010); and 3) the realized EGARCH of Hansen and Huang (2016). The 
out-of-sample period will comprise the last 1000 observations of the full-sample period 
for each asset. The four models will be re-estimated every observation based on a rolling 
sample window of sample size T − 1000 . As shown in Appendix table A1, the full sample 
size is around T = 5000 for most of the assets, which leaves the estimated sample around 
4000 observations. We will report s = 1 , 5, and 22 for horizons of 1-day, 5-day, and 22-day 
ahead out-of-sample forecasts.

We use the following two loss functions for the volatility of the close-to-close return

where ha
t+s|t denotes the s−step forecast using model a conditional on time t information.

In order to formally determine whether the quality of the forecasts differ significantly 
across the different models, we employ the Model Confidence Set (MCS) method developed 

(12)MSEa
t,s
(r2

t+s
, ha

t+s|t) =
T∑

t=T−1000+s

(r2
t+s

− ha
t+s|t)

2

(13)QMLIKa
t,s
(r2

t+s
, ha

t+s|t) =
T∑

t=T−1000+s

(
r2
t+s

ha
t+s|t

− log

(
r2
t+s

hat+s

)
− 1

)
.

Fig. 2  News impact curve for the EGARCH, EHEAVY and realized EGARCH model: SPX close-to-close 
return
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by Hansen et al. (2011). This method identifies the subset of models that includes the best 
forecasting model with 95% confidence. For each of the two loss functions and three forecast 
horizons, we can determine the MCS subset of models.

Table 4 compares the out-of-sample forecasts of different models by reporting the ratio of 
losses incurred relative to the benchmark HEAVY model. The table is divided into two panels, 
and panel A reports the average ratios calculated across the 31 assets. The results show that 
the EHEAVY model outperforms the HEAVY model, incurring significantly lower average 
losses for all three forecasting horizons, particularly when using the QLIK loss. Moreover, the 
realized EGARCH model and the EHEAVY model have comparable average losses across 
the three forecasting horizons, which are lower than the average losses incurred by the two 
HEAVY models. Notably, the AHEAVY model shows slightly better forecasting performance 
compared to the HEAVY model. Overall, the results suggest that the EHEAVY model pro-
vides the most accurate and reliable out-of-sample forecasts for the return volatility of the 31 
assets considered in this study.

Panel B in Table 4 summarizes the MCS of the out-of-sample forecasts by reporting the 
numbers of the asset for which each model is part of the 95% MCS. When the MSE loss 
function is used, it is observed that the four models are included in the 95% MCS for almost 
all assets, indicating that there is no clear winner in terms of forecast accuracy. However, for 
the EHEAVY and realized EGARCH models, a slightly higher number of assets are included 
in the MCS when the forecasting horizon is 22. When the QLIK loss function is used, the 
EHEAVY and realized EGARCH models are still included in the 95% MCS for almost all 
assets across the three forecast horizons, suggesting their superior forecast accuracy compared 
to the HEAVY and AHEAVY model. Only a few assets have the HEAVY model included 
in the 95% MCS for QML loss, while the AHEAVY model has a slightly higher number of 
assets included than the HEAVY model. These results suggest that the EHEAVY and realized 
EGARCH models are consistently among the best-performing models for most assets and loss 
functions considered in this study.

To summarize, the out-of-sample forecasting comparisons suggest that the EHEAVY 
model performs similarly well to the realized EGARCH model in forecasting the variance 
of returns, with both models exhibiting superior performance compared to the HEAVY and 
AHEAVY models.

5.5  Portfolio exercise

In addition to statistical gains in volatility predictability, market investors prioritize economic 
significance in assessing the quality of volatility forecasts. Specifically, they are interested 
in how well these forecasts perform in asset allocation. To evaluate the economic value of 
volatility forecasts, we adopt a mean-variance utility framework, where the investor allocates 
assets between stock and a risk-free asset. This approach is consistent with the portfolio allo-
cation literature (e.g., Campbell and Thompson 2008; Neely et al. 2014Rapach et al. (2010), 
Wang et al. 2016).

The mean-variance utility function can be expressed as:

where wt is the weight of stock in this portfolio, rt+s is the stock return, rt+s,f  is the risk-
free rate and � is the risk aversion coefficient. Dropping constant terms and expressing the 
excess return as re

t+s
= rt+s − rt+s,f  , the expected utility is

(14)Ut

(
rt+s

)
= Et

[
wt(rt+s − rt+s,f ) + rt+s,f

]
−

1

2
�Vart

[
wt(rt+s − rt+s,f ) + rt+s,f

]
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Maximizing Ut(rt+s) respect to wt yield the ex-ante optimal weight of stock index at day 
t + s

The volatility forecasts utilized in our analysis are obtained from the four models intro-
duced in the previous section. In terms of return forecasting, we employ a simple approach 
based on the historical average excess return over the estimation window, as suggested by 
Welch and Goyal (2008). In order to ensure realistic portfolio weights, we follow previous 
literature (e.g., Rapach et al. (2010), Neely et al. 2014) and constrain the optimal weight w∗

t
 

to the range of 0 to 1.5, which effectively precludes short sales and limits the leverage to no 
more than 50%.

The portfolio’s performance is assessed based on three metrics: portfolio excess return, 
Sharpe Ratio, and certainty equivalent return (CER). The CER is calculated based on the 
mean-variance utility function specified in (15), given the optimal weight w∗

t
 . The three 

metrics are estimated empirically by averaging the respective expressions across the same 
out-of-sample forecasts discussed in Sect. 5.4.

One issue with the three metrics is the potential mis-forecasting of returns. In other 
words, even if volatility forecasting is accurate, if the returns are not correctly predicted, 
the portfolio’s performance may be poor. Therefore, to avoid the misspecification of return 
forecasting, an expected utility-based approach following Bollerslev et al. (2018) has also 
been employed, which specifically focuses on volatility forecasting. This approach assumes 
a constant conditional Sharpe Ratio, defined as SR ≡ Et

(
re
t+1

)
∕

√
Et

(
ht+s

)
 . Under this 

assumption, the expected utility is

which simply depends on the position wt , together with the expected volatility Et

(
ht+s

)
.

The optimal portfolio that maximizes utility is obtained by investing the fraction of 
wealth w∗

t
=

SR∕�√
Et(ht+s)

 in the risky asset. This "volatility timing" behavior mimics the trad-

ing behavior of many hedge funds with explicit volatility targets and "risk parity investors". 
We use SR = 0.4 and � = 2 as the annualized Sharpe Ratio and coefficient of risk aversion, 
respectively, as suggested by Bollerslev et al. (2018).7

To explicitly quantify the utility gains from different volatility models, let Ea
t
(⋅) denote 

the expectations from model a. Also, let Et(⋅) denote the expectations from the true 
(unknown) risk model. Assuming that the investor uses model a, to choose the position 
wa
t
= 20%∕

√
Ea
t

(
ht+s

)
 , the expected utility, Ua

t
≡ Ut

(
wa
t

)
 , may be expressed as

(15)Ut

(
wt

)
= wtEt(r

e
t+s

) −
1

2
�w2

t
Et(ht+s).

(16)w∗
t
=

1

�

Et(r
e
t+s

)

Et(ht+s)
.

(17)Ut

(
wt

)
= wtSR

√
Et

(
ht+s

)
−

�

2
w2
t
Et

(
ht+s

)
,

7 However, we also explore the sensitivity of our results to different values of SR and � . Nevertheless, we 
find that the overall conclusions are robust to these parameter choices.
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Importantly, the expected returns do not enter this expression. We then evaluate this 
expected utility empirically by averaging the corresponding realized expressions over the 
same out-of-sample forecasts as discussed in Sect. 5.4.

where the true volatility is proxied by r2
t+s

 , as in (12) and (13).8
To formally determine whether the portfolio excess return, CER, and expected utility 

significantly differ across the different risk models, we apply the MCS test. This approach 
identifies the subset of models that contain the models that imply the best criteria with 95% 
confidence. It is worth noting that the MCS test cannot be applied to Sharp ratio, as Sharp 
ratio is a scalar for each asset.

Table  5 presents the results of the portfolio analysis for the four models. The analy-
sis is conducted for three investment horizons: 1-day, 5-day, and 22-day. The ratios of the 
economic values incurred by different models relative to those of the benchmark HEAVY 
model are reported.

Panel A presents the average ratios calculated across the 31 assets. The results show 
that the EHEAVY model outperforms the other three models in terms of return, Sharpe 
Ratio, CER, and expected utility across all three investment horizons. Specifically, for the 
1-day horizon, the EHEAVY strategy generates a portfolio with a return of approximately 
8%, a Sharpe Ratio of about 58%, a CER about 105%, and an expected utility about 77% 
higher than the HEAVY strategy. The realized EGARCH and AHEAVY models also show 
improved performance compared to the HEAVY model, but the magnitudes of improve-
ment are not as large as that of the EHEAVY model. Similar results can be found for the 
5-day and 22-day ahead forecasts.

Panel B summarizes the MCS of the out-of-sample forecasts by reporting the numbers 
of the asset in which each model is part of the 95% MCS. The analysis reveals that for port-
folio return, there are no significant differences among the four models, as they have simi-
lar numbers of assets included in the 95% MCS at the three forecasting horizons. However, 
when the CER and expected utility are considered, the EHEAVY model exhibits superior 
forecasting performance, with a significantly larger number of assets included in the 95% 
MCS compared to the other three models. The realized EGARCH model also performs 
well, ranking second in terms of number of assets included in the 95% MCS. On the other 
hand, the HEAVY and AHEAVY models have a few number of assets included in the 95% 
MCS.

In summary, the portfolio analysis reveals that the EHEAVY model outperforms the 
other models in terms of economic value, as measured by the CER and expected utility. 
This suggests that the EHEAVY model can significantly improve the economic value of 
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volatility forecasts. This is particularly useful for investors, traders, and risk managers who 
need to make informed decisions based on their expectations of future market volatility. 

6  Conclusions

This paper introduces the EHEAVY model as an extension of Shephard and Sheppard 
(2010) HEAVY model with several improvements. Firstly, the EHEAVY model maintains 
variance positivity without restricting the parameter set, making it more flexible. Secondly, 
it includes asymmetric effects which are crucial in volatility modelling. Thirdly, it provides 
a joint quasi-maximum likelihood estimation and closed-form multi-step ahead forecast 
procedure. Empirical findings indicate that the return volatility dynamic is primarily influ-
enced by the realized measure, and the asymmetric effect is due to return shocks rather 
than the realized measure. The out-of-sample forecasting comparisons demonstrate that the 
EHEAVY model outperforms other models in forecasting volatility statistically, which is 
further confirmed by a portfolio analysis. Overall, the results suggest that the EHEAVY 
model exhibits excellent forecasting performance compared to HEAVY and other compet-
ing models.

The EHEAVY model has a simple structure, a straightforward estimation and inference 
procedure. It can significantly improve the economic value of volatility forecasts. Thus, 
the market practitioners can readily use the model to forecast volatility. With more accu-
rate forecasts, these market participants can better assess and manage their risks, and make 
more informed investment decisions. For future research, the EHEAVY model can be 
extended by adding other realized measures, additional exogenous variables, jump compo-
nents in return or realized measure equations.
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