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ABSTRACT12

Computational protein design has emerged as a powerful tool for creating proteins with novel functionalities.13

However, most existing methods ignore structural dynamics even though they are known to play a central14

role in many protein functions. Furthermore, methods like molecular dynamics that are able to simulate15

protein movements are computationally demanding and do not scale for the design of even moderately sized16

proteins. Here, we develop a probabilistic coarse-grained model to overcome these limitations and support17

the design of the structural dynamics of modular repeat proteins. Our model allows us to rapidly calculate the18

probability distribution of structural conformations of large modular proteins, enabling efficient screening19

of design candidates based on features of their dynamics. We demonstrate this capability by exploring20

the design landscape of 4–6 module repeat proteins. We assess the flexibility, curvature and multi-state21

potential of over 65,000 protein variants and identify the roles that particular modules play in controlling22

these features. Although our focus here is on protein design, the methods developed are easily generalised to23

any modular structure (e.g., DNA origami), offering a means to incorporate dynamics into diverse biological24

design workflows.25

INTRODUCTION26

The structural dynamics of proteins play a crucial role in their function and contribution to a wide variety27

of biomolecular processes1. Examples range from the active transport of molecules2, to the sensing of28

stimuli3. In the field of synthetic biology, computational protein design has emerged as a powerful tool29

for creating new proteins with desired functionalities. It has been used to support the design of florescence30
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activating proteins4, triose-phosphate isomerase (TIM) barrels5, proteins that can triggering immune re-31

sponses6, enzymes for catalysis7 and protein switches8, to name but a few. However, while the central32

role of protein structural dynamics is well known9, when it comes to engineering de novo proteins, their33

dynamics for the most part have been neglected.34

The most detailed predictions of protein dynamics are generated using molecular dynamics (MD) sim-35

ulations10–12. These provide atomistic detail and can capture the complex motions that proteins exhibit.36

Unfortunately, MD simulations are still time-consuming to perform and require substantial computational37

resources to be performed at scale, especially when simulating large proteins. Moreover, to achieve accurate38

prediction of dynamics, extensive sampling and long simulation times are necessary, limiting their applica-39

tion for selecting candidate designs from large variant libraries or to support rapid iterative design cycles.40

Some of these difficulties have been partially addressed by exploiting hybrid modelling approaches13,14,41

however, scalability issues remain.42

To overcome the computational limitations of molecular simulations, coarse-grained models have been43

developed15–17. These use simplified representations of proteins, typically abstracting multiple atoms as44

a single interaction site. This reduces the degrees of freedom in the model and enables simulations over45

much longer timescales. Coarse-grained models in some cases have been found to capture the essential46

structural and dynamical features needed for design tasks, while significantly reducing the computational47

demands18,19.48

A common coarse-grained approach for the prediction of protein dynamics is the elastic network model49

(ENM)20,21. ENMs approximate a protein structure as a network of interconnected springs, where each50

spring represents an interaction between two residues22. The model captures the collective motions of51

the protein by considering the harmonic vibrations around the equilibrium positions23. ENMs provide a52

simplified representation of protein dynamics and have been successful in modelling global, low-frequency53

motions and functionally important motions away from thermal fluctuations. However, they do not always54

fully capture higher frequency movements or the details of local interactions that result from non-collective55

motions24. Furthermore, the number of spring constants that must initially be fit changes depending on the56

number of amino acids present. This makes it difficult to rapidly evaluate similar candidates that differ in57

length, or whose model parameters are drastically different. Therefore, ENM models are typically unsuitable58

for iterative design workflows, where many diverse designs needs to be quickly evaluated at each cycle.59

In this work, we aim to overcome these limitations and strike a balance between the computational effi-60

ciency of a coarse-grained representation and the ability for it to capture key protein dynamics. We focus on61

the simulation of tandem repeat protein domains, as they can reach hundreds of amino acids in size, resulting62

in large global motions as well as confined local motions25. Repeat proteins are found widely in nature26,27
63
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and perform diverse biological functions28–30. They are characterised by the presence of repetitive struc-64

tural motifs/modules, which offers several advantages for modelling and de novo protein design. First, their65

modular nature greatly simplifies the prediction of tertiary structures, enabling the more rational design of66

novel sequences based on known repeat modules31 and the combination of different repeats32. Second, and67

most importantly, repeat proteins exhibit more predictable structural dynamics within each module33–35,68

making them a useful platform upon which dynamics can be effectively modelled and exploited in the de-69

sign process36. By capitalising on the repetitive architecture of these proteins, we are able to construct a70

coarse-grained model that can efficiently propagate expected structural dynamics through the chain of mod-71

ules making up a protein (Figure 1). We demonstrate how the speed of our model allows us to predict, score72

and extract profiles of protein dynamics in a modular design landscape, offering a means to quickly and re-73

liably discover candidates with desired structural and dynamical characteristics. In addition, we show how74

this comprehensive view of a design space can provide valuable information regarding the flexibility and75

responsiveness of candidate modules to the sequence context, and offer insights into how specific modules76

are likely to affect overall features of a larger repeat protein. As protein design moves towards applications77

that require the careful crafting of conformational changes in protein structure, our model provides a means78

to assess such features and support engineering workflows that place dynamics at the forefront.79

RESULTS80

Coarse-grained model of repeat protein dynamics81

The input to our model is a repeat protein library37 consisting of a set of protein modules (with each mod-82

ule comprising at least two repeats) and a connectivity matrix that defines the rules for assembling larger83

constructs, i.e., for a given module, which other modules are compatible and can be directly connected84

(Figure 1a, step 1). Note that these rules do not necessarily commute, such that “module B can follow mod-85

ule A” does not imply “module A can follow module B”. This library defines the overall accessible design86

space. However, it can be extended at any time by adding further modules and connectivity rules. We chose87

to use an existing repeat protein library that contains 34 modules that are on average 180 Å long, covering a88

wide range of structures38,39.89

In addition to the repeat protein library, we also require a dynamics database that can be used by the90

model to predict the movement of larger multi-module proteins (Figure 1a, step 2). The database consists91

of a large number of conformational snapshots for all possible combinations of three-module constructs.92

For our library, this equates to a total of 644 unique constructs that were 320 to 794 amino acids long, and93

100 conformational snapshots for each. These snapshots can be identified with minima in the rough energy94

landscape of the protein, and the movement of the protein is driven by thermal fluctuations, which on a slow95
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enough timescale cause jumps from one minima to another. These snapshots therefore allow us to infer the96

steady-state dynamics of proteins using a probability distribution of atomistic positions.97

Obtaining this information via experimental methods such as hydrogen-deuterium exchange via Nuclear98

Magnetic Resonance (NMR) or mass spectrometry (HDX-MS), is infeasible due to the total number of99

unique constructs in our library and the size of the molecules. Using computational methods like molecular100

dynamics (MD), simulations were also not feasible due to the size of the proteins. We therefore chose101

to use conformational snapshots generated using the relax protocol from the Rosetta modelling suite40
102

(Methods). We based our database on three module constructs due to this being the smallest number of103

modules where contextual effect of different neighbours on a given module can be observed. While it104

is possible to utilise higher-order contextual effects by using constructs with more than three modules,105

obtaining snapshots becomes computationally challenging due to the larger number of constructs that must106

be assessed and the increased number of residues per construct.107

For the model to efficiently use the information within the dynamics database, we generated coarse-108

grained descriptions that simplify the propagation of dynamical information throughout larger multi-module109

proteins (Figure 1a, step 3). We chose key anchor points, specifically the ends of α-helices, to capture the110

orientation of the module and then define the mean of these key anchor points as the centroid of the module.111

The locations of the centroids and the anchor points change depending on the conformation. Therefore, we112

use the conformational landscape in the dynamics database to build a probability density estimate for the113

locations of the centroids and their anchor points. As these descriptions are analogous to position vectors114

when the dynamics are neglected, we refer to them as probabilistic vectors. For each unique triplet of115

modules (a · b · c), the coarse-grained model is then generated as follows. We first perform a rigid body116

transformation on all of the conformations such that the centroid of the central module b (cccb) is located at117

the origin (000), and rotated appropriately such that any rotational symmetry from the placement of modules118

is removed. Using the conformational data, we then calculate the probability distribution P(ccca|cccb = 000)119

and P(cccc|cccb = 000), which captures the steady-state occupation probability density of module a relative to120

module b, and c relative to module b, respectively. For module b, we can also track an arbitrary number of121

reference points rrri (e.g., start and ends of alpha helices) via P(rrri|cccb = 000), which describes the steady-state122

occupation probability density of the ith reference point in module b relative to the centroid of module b.123

These probability density functions are estimated by fitting a Gaussian mixture that can be stored efficiently124

using the parameters of the mixture (i.e., means, covariances and weights of the constituent components).125

We precompute these parameters for all of the module triplets and use them for efficiently estimating the126

dynamics of larger constructs.127

Finally, to predict the dynamics of arbitrarily sized modular proteins, we use this description to estimate128
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the steady-state occupation probability density of the kth centroid in a many-module construct by identifying129

the constituting triplets that make up the larger construct, and perform the convolutions130

P(ccck|ccc1 = 000) =
∫

dccck−1 · · ·
∫

dccc2 P(ccck|ccck−1) · · ·P(ccc2|ccc1 = 000) (1)

when k ≥ 3 and where we condition the location of the centroid of the first module to be at the origin131

(Figure 1a, step 4). To illustrate the procedure, we can consider a three module construct, labelled 1, 2 and132

3. With the centroid of the first module ccc1 centred at the origin, P(ccc2|ccc1 = 000) describes the position of the133

second centroid ccc2 relative to the first. Similarly, P(ccc3|ccc2 = 000) describes the position of the third centroid134

ccc3 relative to a fixed ccc2 at the origin. In order to obtain the distribution of the position of ccc3 relative to the135

the fixed ccc1 at the origin, one needs to perform a convolution of the distributions. The probability density136

estimate for the reference points in the kth module can also then be computed via:137

P(rrri|ccc1 = 000) =
∫

dccck P(rrri|ccck)P(ccck|ccc1 = 000). (2)

Together, these equations allow us to propagate the local movements captured in our dynamics database138

through to larger constructs and estimate diverse structural dynamics from the centroids and reference points.139

This algorithm was implemented in a package called Dynamo (Data Availability). Dynamo is a native140

Python library written in Rust to ensure reliable and high-performance model generation and simulation.141

It also includes additional helper functions to simplify the creation of the dynamics database, the ability to142

define complex multi-module constructs beyond chains (e.g., star-like proteins), visualisation tools to better143

understand the inferred protein dynamics, and the ability to export data in standard Protein Data Bank (PDB)144

format for use in other tools.145

Model validation146

To verify the accuracy of our model, we assessed the differences between the dynamics predicted from our147

coarse-grained model with those extracted from the conformations obtained from the Rosetta relax protocol.148

We chose to consider a diverse set of 14 modular proteins where 10 were homogeneous containing 9 modules149

of the same type, while 4 were heterogeneous containing 4 modules of different types. These proteins ranged150

in size from 701 to 840 amino acids long.151

To compare the qualitative agreement between our model and the Rosetta relax data, we computed152

the displacements, rrr, between the specific centroids of the conformational samples and the mean centroid153

location across them all, and compared the distribution of its magnitude |rrr|. This distribution captures both154

the overall magnitude of any movement, as well as its shape. For example, if the centroid was distributed155

on the surface of a sphere of radius R, then the distribution of |rrr|, would reduce to the Dirac-delta function156

P(|rrr|) = δ (|rrr| −R). As the point cloud of rrr becomes more complex in shape, the distribution P(|rrr|) will157
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exhibit more complex features.158

For each modular protein construct, we plotted the distribution P(|rrr|), for the 3rd, 6th, and 9th cen-159

troids for the homogeneous constructs, while the 2nd, 3rd, and 4th centroids for the heterogeneous constructs160

(Figure 2a). In most cases, we found model predictions agreed well with the Rosetta relax data (i.e., the161

modes of the distribution coincided with each other). The main exception was the D4 construct, where162

the model predicted more movement than expected. A potential reason for this disagreement could be the163

larger number of rare conformations of the D4-D4-D4 triplet in the dynamics database used to parameterise164

the model. This would result in a wider exploration of the conformational landscapes and cause the model165

to infer larger movements that get propagated through the entire protein. For the H4 construct, we also166

overestimated the dynamics. However, the differences are smaller than those of the D4 construct.167

To compare the distributions further, we computed the percentage error in the means of the distributions168

for each of the centroids (Figure 2b, top panel). Again, we found that the largest differences between the169

model and Rosetta relax data was for the D4 construct. However, the average error across all constructs and170

centroids was only 0.24% which further provides evidence for the accuracy of the inferred movements of171

the proteins. To better assess the similarity in the shape of the distributions, we also calculated the Earth172

mover’s distance for each centroid in every protein construct (Figure 2b, bottom panel). We found that173

the average Earth mover’s distance across all centroids and constructs was only 0.95 Å,suggesting good174

quantitative agreement despite the coarseness of our the model.175

Visualisation of protein structural dynamics176

During model validation, it became clear that it was difficult to assess subtle differences in protein dynamics177

due to the need to observe both structural and movement features of the data simultaneously. To help178

overcome this, we developed a new visualisation technique that captures the major dynamical features of179

each module in the context of the core alpha-helices making up the protein (Figure 3). The visualisation is180

created by first extracting the steady-state distributions of each centroid within a construct and calculating181

the covariances in their movement. For each module covariance, the direction and magnitude of the principal182

variances can be described as three mutually orthogonal vectors. These can then be used to generate ‘fins’,183

spanning either side of the mean centroid position and parallel to the principal variances. To aid comparison,184

we colour the fin at a particular point in relation to the total variance in the distribution of centroid locations,185

which corresponds to the magnitude of any movement. We also overlay each helix as a semi-transparent grey186

cylinder to further portray the protein’s underlying structure. Using this visualisation technique, we could187

place the errors in the context of the protein size and shape and clearly see that our coarse-grained model188

was able to accurately capture the specific magnitude and direction of protein dynamics when compared to189
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the Rosetta relax data (Figure 3).190

Mapping out the design landscape of a repeat protein library191

The efficiency of our model enables us to predict the structural dynamics of large modular protein design192

spaces. To demonstrate this, we considered all possible 4-module protein designs using our modular protein193

database. We generated the structural dynamics of each of the 2,978 designs within this space and quantified194

two key features that covered the structural geometry and dynamics of each design. The first was the protein195

curvature α , defined as the ratio between first and last centroid distance and corresponding arc length. The196

second was the flexibility β , which captures the overall extent of the dynamics (see details in methods).197

Plotting the density of designs in relation to these features provided us with a uniquely complete picture of198

the available characteristics of all 4-module proteins (Figure 4a).199

Within the design space, we selected four examples with different properties and verified their qualitative200

agreement with data obtained from the Rosetta relax protocol. Our model predicted design I to be the most201

flexible (highest β ) and design IV the least (lowest β ). This was verified by the mean Root Mean Squared202

Deviation (RMSD) of the final centroid being the highest and lowest, respectively, and by distributions with203

the largest and narrowest distributions (Figure 4a, inset). Moreover, the model also captured the fact that204

designs II and III have very similar flexibility profiles corresponding to similar values of β and C4 RMSD205

distributions (Figure 4a, inset), whilst having very different sinuosity (Figure 4b).206

Proteins with multi-state potential207

The ability for a protein to adopt several distinct conformational states plays a crucial role in a wide variety208

of cellular processes spanning, the function of molecular motors41 to improved catalysis42. From a design209

perspective, being able to suggest candidate protein designs with an inherent propensity for multi-state210

conformations would be valuable as a starting point for switchable and dynamic protein functions. While211

both globular and non-globular proteins can exhibit multi-state dynamics, repeat proteins represent a highly212

predictable and versatile platform to design multi-state systems. Due to the localised interactions, multi-state213

dynamics exhibited by a repeat protein can emerge from the behaviour of the individual modules.214

We capitalised on this feature and developed a method to score candidate protein designs based on their215

potential for multi-state dynamics. Because multi-state dynamics are manifested as multi-modal probability216

distributions in the centroid positions, we could quantify the multi-modality of a construct by considering217

the probability density of the centroid of the final module. To do this, we first sampled from its probability218

density estimate. These samples were then split into training and testing sets using a k-fold validation219

scheme (k = 5). We used the training set to fit a Gaussian mixture model with the number of components,220

n, ranging from 1 to 5. For each fit, we obtained a score given by the likelihood of the appropriate test221
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sets, which was then normalised appropriately to construct a probability mass function over the number of222

components, p(n). The mode of this distribution corresponded to the modes of the centroid density, γ1. To223

score this aspect (i.e. presence of distinct multiple-modes), we then computed the reciprocal of the entropy224

of the probability mass function:225

γ2 =− 1
∑n p(n) log p(n)

. (3)

Low values of γ2 indicate a low confidence in the number of modes of the probability distribution of centroid,226

whereas high values a high confidence. Using this scoring we could rank candidates both on the number of227

modes present in their distribution and our confidence in this property.228

To demonstrate this approach, we again considered all 4-module constructs and screened them for po-229

tential multi-state dynamics. Of our eight top scoring candidates, several showed bi-stable or multi-stable230

dynamics with H10 and H11 being the most promising (Figure 5). Many displayed very wide distributions231

with no clearly separated modes. While these candidates may not exhibit strong multi-state behaviour, the232

large range of movement (60 Å for H5) would provide an ideal starting point for establishing multi-stable233

dynamics using external stimuli, such as an additional peptide chain43.234

The effect of specific modules on construct rigidity235

The ability to generate the structural dynamics for entire modular protein design spaces, offers the ability to236

unravel the potential roles that individual modules might play more broadly across many different designs.237

A key feature that often needs to be controlled when designing de novo proteins is the rigidity of the final de-238

sign. This can be quantified by calculating β , which captures the likely overall movement of a protein from239

the probabilistic conformational data (Methods). Given that the overall rigidity of a construct is determined240

by the modules present (e.g., some modules might stabilise the module while others might introduce more241

flexibility), it is possible to uncover the influence each module has when they are part of a larger construct.242

To do this, for a given module in an n module construct, all possible constructs can be separated into n+1243

subsets based on the frequency of that module within the construct (Figure 6a, left panel). For each of these244

subsets, a probability density function can be built based on the constructs present. To compare how the245

properties of these distributions change with the different counts of a particular module, we can then visu-246

alise the means and variances of the distributions in a two-dimensional parameter space plot (Figure 6a,247

right panel). The mean of the distribution (Mean β ) denotes the average flexibility of the population, while248

the variance of the distribution (Var β ) quantifies the heterogeneity. As the occurrences of a specific module249

increases, the trajectory in this parameter space determines the role that the module plays within the larger250

constructs. There are four key types of behaviour: (i) universally stabilising, (ii) universally destabilising,251

(iii) contextually stabilising, and (iv) contextually destabilising. Increasing the counts of a stabilising mod-252
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ule in a construct reduces its flexibility which causes the mean of the distribution Pn(β ) to decrease. When253

this stabilisation effect is universal, adding more of the given module in a construct drives down the dy-254

namics regardless of the local context where the module is being added, or the presence of other modules255

which in turn causes the variance of β to also decrease. Conversely, when the stabilising is contextual, the256

local context and combination of other modules present play more of an important role in the dynamics of257

the construct. In other words, the flexibility sub-population remains highly heterogeneous with increases in258

module counts which yields less reduction in the variance of β when compared with the analogue of the259

whole population. On the other hand, increasing the counts of a destabilising module causes the flexibility260

of the constructs to also increase. When the effect is independent of other contextual factors then it is called261

strongly destabilising yielding decreases in the variance of β . Whereas the weakly destabilising are those262

that increase the flexibility of the construct, but only within specific contexts. It should be noted that while263

we have here focused on flexibility/rigidity of the constructs, this types of approach can be used for any264

feature that can be calculated from the structural dynamics.265

To quantify the role that modules had in relation to protein rigidity, we generated the structural dynamics266

for all possible 6-module constructs and assessed the parameter space plots for 18 modules in our database267

(Figure 6b). These showed a broad range of behaviours across the modules. Most prominent was a universal268

stabilising effect, displayed by many of the modules and most prominently by D49, D54, D18 and D14.269

D79 showed a less universal stabilising effect, while several modules displayed non-uniform behaviours270

(e.g., D4, D53 and D64). We also found that 4 of the modules were universally destabilising (D14 j1 D54,271

D14 j1 D79, D14 j2 D54 and D14 j4 D79), with D14 j4 D79 having the strongest effect. Interestingly,272

while D14 is strongly stabilising with some contextual dependence when used as part of a junction module,273

D14 j2 D14, it becomes more universal with a weaker stabilising effect. Whereas when used as part of274

D14 j1 D14, it has no stabilising effect at all. The latter is due to the presence of a junction domain which275

hinders the packing of helices into tight conformations.276

To explore this unusual feature of the D14 module further, we considered constructs consisting of k277

consecutive repeats of D14 modules followed by 6− k consecutive repeats of D14 j1 D14 or D14 j2 D14.278

For each of these constructs, we compared the distributions of pairwise distances between all carbon alphas279

and normalised these to the largest distance in the smallest construct (i.e., six repeats of D14). We found that280

as the number of D14s decrease and the number of D14 j1 D14s increases, the distributions flatten out and a281

second prominent mode emerges (Figure 6c). This coincides with a less tight packing that ultimately leads282

to a less stable behaviour. In contrast, as the number of D14s decrease and the number of D14 j2 D14s283

increases, the mode increases but the variance of the distribution decreases, leading to more consistent284

packing and stable behaviour.285
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Modelling multi-chain constructs286

So far, we have only considered single-chain repeats. However, building more complex structures quickly287

becomes infeasible, as many structures are not reducible to a single-chain design. Moreover, due to the288

repetitive nature of the sequences, long repetitive DNA molecules can be difficult to synthesise and large289

repeat proteins can be expresses in low yield. One approach that is observed in nature, and commonly used290

by protein engineers to overcome this limitation is to employ multiple chains that physically interact to form291

a larger structure.292

Tree-like structures bring together two or more single-chain repeat domains at branching points, which293

act like ‘hubs’ within the structure. To facilitate the design of tree-like structures using Dynamo, we ex-294

tended it’s capabilities to allow for hub modules within the parts database. Each hub is able to connect295

together multiple chains of modules together, allowing them to act as branches in the overall tree structure.296

To accommodate tree-like structures in our model, we exploited the fact that when two modules are297

coupled, they physically interact and are stuck together. In other words, they do not necessarily have to be298

part of a single chain. This allowed us to loosen our definition of a module to merely regions of a protein that299

can be reused in different designs. In reality, hubs could either be an expressible protein, or could emerge300

from the cross interactions between two or more linear chains of modules. In this second case, we offer301

the ability to subjectively define a region around the interaction as a module. In terms of the abstraction in302

the model, we make no distinction between either case and treat both similarly (i.e., we represent hubs in303

the same way as modules, but with that added ability of being able to connect to more than two modules).304

With this extension, we can represent an arbitrary tree-like structure using a set of modules and a list of305

connections for each.306

In order to predict the dynamics of tree-like structures, we exploited the fact that once represented307

using our model, the tree-like structure naturally defines a Bayesian network. We can therefore arbitrarily308

select an anchor module relative to which movement of other modules will be predicted, and then propagate309

movements using Eq. (1) for all branches emanating from the selected anchor module. The additional310

assumption underlying this approach is that the branches downstream of a hub do not physically interact311

with each other, which is valid when the ends of the branches are sufficiently separated.312

To test this functionality, we designed a star-like multi-chain protein where a D4 C4 G1 hub module is313

connected to four independent chains of four D4 modules (Figure 7a,b). We then predicted the structural314

dynamics for two different anchoring points at the central hub and at the end of one of the arms. As expected,315

this showed that anchoring at the central hub reduced the overall movements that could be achieved by the316

arms, while anchoring a single arm allowed for larger arm movements (Figure 7c).317
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DISCUSSION318

In this study, we developed a coarse-grained modelling approach to facilitate dynamics-driven repeat protein319

design. Our method successfully captured the essential features of modular protein dynamics and allowed320

for the exploration of their conformational space in a computationally efficient manner. For moderately321

sized proteins (4 or 6 modules long), the ability to calculate the conformational probability distributions322

and associated analyses in milliseconds on a standard desktop computer allowed us to exhaustively explore323

the structural dynamics for all possible designs, covering over 65,000 variants. The ability to provide such324

extensive coverage in protein design space enabled us to better understand how our design space covers325

particular features of interest, e.g., curvature and movement (Figure 4), and unravel the role that individ-326

ual modules play in supporting the flexibility/rigidity of a resultant protein (Figure 6). Furthermore, the327

generality of our approach is not limited to single-chain repeat proteins. We show that a simple extension328

enables the prediction of structural dynamics of multi-chain, tree-like modular proteins (Figure 7) and the329

underlying mathematical model can accommodate any modular component for which samples of structural330

conformations can be gathered. The current work was focused on a library of compatible alpha helical mod-331

ules, purely because of their availability, but, as more modular designs become available, our method can332

be apply to any modular system, even beyond proteins. Similarly, any dataset capturing population dynam-333

ics, either experimentally obtained or generated through simulations, could be used for the description and334

analysis of modular systems.335

A major advantage of our approach is that it allows us to capture the inherent flexibility of repeat pro-336

teins. Modular repeat proteins often exhibit structural plasticity, allowing them to adapt and interact with337

different ligands or partners. By evaluating the dynamics of repeat proteins using our coarse-grained model,338

we are able to observe conformational changes and fluctuations in protein structure. These insights provide339

valuable information about the flexibility of different regions within the repeat protein and how they might340

contribute to its function. Understanding the flexibility of repeat proteins is also crucial for designing pro-341

teins with adjustable properties or for engineering proteins that can undergo conformational changes (e.g.,342

upon binding to specific targets).343

Our approach also revealed the multi-stability of many repeat proteins (Figure 5), which is a desirable344

property in many applications. Multi-stability refers to the ability of a protein to adopt multiple stable345

conformations or functional states. By exploring the conformational space of repeat proteins, we identified346

distinct energy minima corresponding to different conformations. This finding suggests that repeat proteins347

can exist in alternative stable states, potentially enabling them to switch between different functional states348

or adopt different binding configurations. Exploiting the multi-stability of repeat proteins opens up new349
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opportunities for designing protein-based switches, sensors, or molecular machines with programmable350

functionalities. Our feature extraction method for identifying multi-stable features could be further refined351

to allow for greater specificity.352

With the advent of AlphaFold44, machine learning (ML) and generative artificial intelligence (AI) have353

become commonplace in protein design workflows45,46. While these approaches offer unprecedented ac-354

curacy in the prediction of protein structure from sequence alone, their use for the prediction of protein355

dynamics has been limited47. This stems in part from difficulties in generating the large training sets re-356

quired, although there have been recent efforts to overcome these issues48,49. A further challenge that357

remains is the high-computational cost of running ML models after training. While acceptable for small358

design spaces containing hundreds of possible designs, larger design spaces remain inaccessible due to the359

computational demands. An interesting future direction would be use ML to generate the conformational360

snapshots needed to parameterise the modules of the Dynamo model49. This would then offer the means to361

blend ML predictions at the protein module level, with Dynamo’s efficiency in combining that data at the362

level of large single-chain repeat proteins or multi-protein assemblies.363

The past decade has seen the design of de novo protein structures explode. Looking forward, the next364

frontier will be the design of protein dynamics and the push towards implementing complex molecular func-365

tions that require carefully choreographed structural changes over time. Tools like Dynamo will be crucial366

for accelerating our ability to practically explore the dynamics of repeat proteins and modular biological367

structures, supporting steps towards this goal.368

METHODS369

Repeat protein library370

We use a reduced subset of an existing repeat protein library38,39 consisting of 11 homo-modules, and 23371

junction modules that consists of two homo-modules interfaced together with a junction modules. The372

repeat protein library can be used as part of the Elfin37 tool or directly from the data repository (i.e.,373

https://github.com/Parmeggiani-Lab/elfin-data) where atomistic position data for all374

of the modules are stored as PDB files in the compressed tarball pdb aligned.tar.bz2.375

Coarse-grained representation376

Given that an atomic description is far too detailed for our purposes, it was important to find a simpler377

representation that is computationally tractable. An option would be to use the coordinates of the Cα atoms,378

and it would be possible to move to this level of detail at some point in the future, but for this work we find an379

even coarser description of secondary structures works well. Specifically, we use the STRIDE algorithm50,51
380
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as it exploits dihedral angle information in addition to the hydrogen bonds. While STRIDE can find all the381

structures in each of the conformations, the start and end locations can vary in the order of a few residues.382

Thus, to compare each of the conformations, we take the intersection of the start and end locations among383

all of the conformations. In other words, for a given alpha-helix identified, the residues that are part of it are384

given by all of the residues that are common across all of the conformations that have been attributed to the385

same alpha-helix.386

Generating the dynamics database387

To build the dynamics database we employed the Elfin software suite37 to construct first all possible three388

module constructs. An exhaustive approach was used resulting in 644 repeat proteins. Each of these repeat389

proteins are single chains and they consist of three modules with capping repeats at both ends. Capping390

repeats are used to ensure solubility of the proteins when expressed, but in this work, they also prevented391

edge-dependent artifacts, such as opening of the terminal helices during relax. These proteins were further392

relaxed using the Cartesian relax protocol in the Rosetta relax application40,52,53 to obtain a low energy ref-393

erence structure with packed side chains. Using these reference structures, an additional round of relaxation394

was used to obtain 100 conformations given as atomistic positions in PDB files. For this latter relaxation395

the FastRelax protocol was used and no conformations were rejected once they were obtained. All Rosetta396

related tasks were performed using Rosetta version 3.9 and ‘ref2015’ score function for the relaxations.397

Abstract representation and rules of combination398

Before we consider the dynamics of modules in a chain, we first construct a set of rules and axioms that are399

necessary to construct larger proteins. We start with the 2D representation before generalising to obtain the400

3D representation.401

We have to design a unique local representation and connection rules that result in a unique “deter-402

ministic” solution. Let C = {U1, · · · ,U1} be the set of modules and ⊕ be a non-commutative operation403

to combine two modules. Suppose a module is defined in the following way, (a) a bounding box defined404

by a set of points that are measured relative to the centroid of mass (centroid). (b) a vector defining the405

location of the adjacent centroid w.r.t the current vvvn. (c) a vector connecting the current centre of mass to406

the previous, vvvp. With these properties, we define the operation M1 ⊕M2 as the following. (1) Translate407

M2 such that its centroid, ccc2 = ccc1 + vvvn:1→2. (2) Rotate, M2 about its centroid such that vvvp:1→2 is parallel to408

vvvp:1→2. Notice that with just the operation (1), it is not sufficient to create a unique M3 = M1 ⊕M2 as M2409

can freely rotate about its centroid. Having the vector vvvp with which to align vvvn ensures that vvvn can only410

point in a single direction, i.e. removes radially non-uniqueness.411

Generalising to 3D, we find the following problem. While, M2 and M1 are aligned with respect to the412
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centroid and the vvvn, we find that properties (a)-(c) and (1) and (2) are no longer sufficient to remove the413

problem of non-uniqueness. This is due to the fact that the module M2 can freely rotate about the vector414

vvvn:1→2. The simplest way to amend this is by having another vector which is not parallel to the vvvn415

Defining units for database416

For our particular protein database, we can distil all of these ideas from the previous section into a concise417

system. Note that for clarity, we use the term unit to define the mathematical representation of the protein,418

and reserve the term module to refer to the actual protein module.419

From our database, each one of the 644 repeat proteins, defines a unique triplet of modules, (LMR).420

Given that the position and movement of elements within a module depend on its context, i.e. neighbouring421

the modules L and R, it is necessary to define a module for each unique triplet of modules. In other words,422

our database of units has a size of 644, whereas the number of unique modules is only 34.423

To define a unit, from a triplet LCR repeat protein, we employ the following steps. We first separate the424

helices that belong to L, C and R. We then compute centroids, cccL, cccC, and cccR for the modules, L, C and R,425

respectively. We define a reference, RRR(L→C) = [eee1,eee2,eee3]. The vectors eeei are normalised orthogonal vectors,426

with eee1 parallel to cccC−cccL, and eee2 parallel to eee1×hhhL, where hhhC is the vector from the mean bottom of helices427

in module C to the mean top. Having define, RRR(L→C), perform a rigid body transformation by multiplying428

all points in C and R with the inverse of RRR(L→C). We can then define another reference frame for RRR(C→R)
429

following the same constraints as before but modules C and R. To connect with the module R, we define430

the vector vvvn = cccR − cccC. Lastly, we can define any other reference points within the module C, e.g. those of431

a bounding convex hull. In summary, we compute RRR(C→R), vvvn and any bounding box points relative to the432

centroid of C and with the additional constraint that RRR(L→C) = III.433

With this abstract representation, we define the non-commutative operation ⊕, for M1 ⊕M2 as the fol-434

lowing. (1) We translate M2 such that its centroid is at ccc1 +vvvn:1→2. (2) Perform a rigid body transformation435

for all of the vectors and reference frame in M2 by the RRR(C→R) reference frame of M1. With these two rules,436

we can construct any valid chain of modules.437

Generalising the module abstraction to include dynamics438

Having designed the module framework, we now move on to generalising the frame to capture the dynamics439

involved. Such a generalisation is relatively straightforward, one can define vectors within the framework,440

which includes the basis vectors in reference frames to be probabilistic. In other words, instead of using a441

single vector, we use a cloud of vectors given by a probability density function which we call probabilistic442

vectors.443

Depending on which aspects are turned into a probabilistic vector, we can approximate the dynamics444
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with increasing fidelity: 1. A static representation as defined in the previous sections; 2. The centroid vectors445

are probabilistic which captures bulk location. 3. The centroid vectors are probabilistic, and the reference446

frames connecting modules are probabilistic which together capture bulk location and bulk orientation.447

4. The centroid vectors are probabilistic, and vectors to reference points are probabilistic. Captures bulk448

location orientation and location of reference points. For our analysis, we consider only the fourth case. It is449

important to note that the addition of two probabilistic vectors (p-vectors), is a convolution, while a rotation450

results in the rotation of the mean and covariance of the distributions.451

To obtain these probability vectors from the conformations, we let Mi and ccci be the number of points452

of interest and the location of the centroid for the ith module. For each module, we then define a set of453

probability distributions given by454

Si = {P(xxxi,1 | ,ccci = 0), · · · ,P(xxxi,Mi | ,ccci = 0)} (4)

where xxxi, j is the jth point of interest of the ith module. In addition, to Si, we define the coupling distribution455

P(ccci+1 |ccci = 0) that describes the steady-state movement of the next module ccci+1 relative to the present one456

ccci, giving a total of Mi +1 p-vectors.457

In order to represent these p-vectors, an appropriate probability density estimation is required that satis-458

fies a set of criteria: (i) it must have a parametric description for efficient storage; (ii) the density estimation459

must allow for rapid convolutions; (iii) the number of parameters must be “containable” so that it does not460

grow too large when we have many convolutions; and (iv) must be easily computable with arbitrary mo-461

ments. These criteria are satisfied by a Gaussian mixture model. To fit a Gaussian mixture model with the462

appropriate number of components, we employed a k-fold validation protocol on the conformational data.463

We first train a Gaussian mixture with a different number of components, n, and use the likelihood estimate464

of the test set from the model to score the fit. We selected the number of components that gave the highest465

likelihood score.466

Flexibility score to assess protein rigidity467

To assess the rigidity of a protein, we exploited the fact that this feature manifests itself in the model as468

centroids with distributions that have narrow variance. One can imagine an isosurface that expands outwards469

from a fixed centroid to the opposite which has the most movement. The larger the volume encapsulated470

by the surface the more flexible the protein and vice versa. To estimate this isosurface, for each centroid,471

we sampled from its Gaussian mixture density estimate giving three-dimensional points in space. We then472

projected these points onto a plane that is normal to the centroid backbone. Using this, we can fit a two-473

dimensional normal distribution to the points on the plane, from which an elliptical contour can be inferred474

that captures a given amount of the variance. In our case, we used the 95th percentile, which is approximately475
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two standard deviations from the mean. Connecting the ellipses with a linear interpolation gave us a pseudo-476

isosurface from which we then computed the volume enveloped. For convenience, we defined the cubic root477

of this volume as the flexibility score (β ) so that the score scales linearly with the number of modules.478

Given two constructs, the more rigid example will have a narrower envelope of movement resulting in a479

lower isosurface volume and β score. Such flexibility scores provided a convenient way to compare the480

rigidity of different proteins.481

Computational tools482

All computational simulations and analyses were run using Python version 3.11.4.483

DATA AVAILABILITY484

The Dynamo package used to generate all the results for this article is split into two parts. The first part,485

called ‘dynamo’, is a native Python library built in Rust for evaluating the steady-state dynamics of large486

bio-molecular constructs. This library is not focused on modular repeat proteins and can be used for any487

modular structures. It is available at: https://github.com/seeralans/dynamo. The second part,488

called ‘dynamo-rp’, is a Python library for coarse-grained modelling of repeat proteins and is available at:489

https://github.com/seeralans/dynamo-rp.490
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Figure 1: Overview of the coarse-grained model for the structural and dynamical design of615

modular proteins. (a) Workflow for generating a coarse-grained model of protein structural dynamics.616

The model relies on an underlying repeat protein library that contains well defined protein modules and617

rules for how these can be assembled (Step 1). Using this information, a dynamics database of all three618

module proteins capturing the relative movements between all atoms in the protein is generated (Step 2).619

This can be via detailed simulations (e.g., using Rosetta) or derived from experimental data. The resultant620

dynamics database is then used to build coarse-grained descriptions of each triplet of modules, defining621

centroids for each module and an arbitrary number of reference points, e.g., the end points of alpha helices622

(Step 3). Finally, these coarse-grained descriptions are stitched together to enable the efficient propagation623

of movements of larger proteins build from the repeat protein library (Step 4). (b) The coarse-grained624

model can be used to accelerate the design of proteins built using the repeat protein library. A typical library625

defines a vast potential design space that would be impossible to exhaustively search. The speed of the626

coarse-grained model allows for large regions of this space to probed (e.g., millions of designs) and key627

structural and dynamical properties measured (e.g., flexibility or potential for multi-state dynamics). This628

information can be used to guide future areas to explore and the properties of the simulated designs can be629

filtered on properties that are essential to the desired function of the protein. Using this approach a targeted630

set of designs that can be feasibly built is output for detailed experimental testing.631
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Figure 2: Comparison of conformational data obtained using the Rosetta relax protocol633

and our model (Dynamo). (a) Distributions capturing the fluctuations in the position of centroids (Cx)634

relative to their respective mean. Each centroid has a mean position, and the displacement from this mean635

and samples of centroid positions obtained from our model (grey filled distribution) or through Rosetta relax636

(solid black line) is given by r. Distributions shown for ten homogeneous 9-module constructs. A molecular637

visualisation of the construct is shown on the right of each plot. (b) Similar distributions as described in638

panel (a) for four heterogeneous 4-module constructs. The modules in the heterogeneous constructs are:639

H1 = D14 j1 D14x4 188; H2 = D14 j1 D18x4 31; H3 = D49 j1 D49x4 49; H4 = D79 j1 D14x4 131. (c)640

Comparison between the probability densities in panels (a) and (b) between the model and the Rosetta relax641

data for each centroid: (top) percentage error of the mean of the distributions, (bottom) a full distribution642

comparison using the earth mover’s distance. Bars correspond to centroids C2 to C9 (left to right) for the643
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9-module homogeneous constructs and C2 to C4 (left to right) for the 4-module heterogeneous constructs.644
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Figure 3: Visualisation of the structural dynamics of several modular protein designs. Data646

shown for the Rosetta relax protocol (top) compared to our model (bottom). The two fins are parallel to the647

two directions with the most movement and envelope the 95th percentile of the centroid density distributions,648

while the colour and width of the fins correspond to the largest movement (dark blue to yellow denoting649

small to large movements, respectively). The alpha helices are represented by grey semi-transparent cylin-650

ders. The modules in the heterogeneous constructs are: H1 = D14 j1 D14x4 188; H2 = D14 j1 D18x4 31;651

H3 = D49 j1 D49x4 49; H4 = D79 j1 D14x4 131.652
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Figure 4: Exploring the design landscape of all 4-module protein chains containing 2,978654

unique designs. (a) Smoothed density plot of all 4-module protein chains from our model. The position655

of four selected designs is indicated. Note that 0 ≤ α ≤ 1, but kernel density estimates can give non zero656

probability outside of this range, for clarity of visualisation we have chosen not remove the small region of657

probability estimate for α > 1. Insert shows the probability distribution of the root mean squared deviation658

(RMSD) of the final module in the chain (C4) for the four highlighted designs (I–IV), as calculated from full659

length Rosetta relax runs. This distribution captures the general range of dynamic movements the module660

experiences and correlates with the flexibility (β ). (b) Structural visualisations of specific protein designs661

highlighted in panel a. Individual modules denoted in different colours from N- (blue) to C-terminus (red).662
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Figure 5: Exploring potential multi-stable behaviour of 4-module constructs. The eight most664

highly-ranked constructs after scoring each on their potential for multi-stable behaviour. The position of the665

centroid of the last module, r, is visualised as a probability distribution projected onto orthogonal planes.666

Each distribution is built by sampling 106 centroid positions from the model. The modules in the heteroge-667

nous constructs are: H5 = D14 j1 D14x4 239; H6 = D14 j1 D14x4 241; H7 = D79 j2 D14x4 117; H8668

= D14 j1 D14x4 240; H9 = D18 j1 D14x4 117; H10 = D14 j1 D14x4 117; H11 = D14x4 117; H12 =669

D49 j1 D14x4 117.670
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Figure 6: Analysing the role of each module on the flexibility of 6-module constructs. (a) The672

module specific effect is summarised by a plot showing the mean and variance of β probability distributions,673

with points for constructs containing 0 to 6 instances of the modules of interest (small white filled to large674

black filled circle) . A summary statistic is plotted (red cross) of the entire set of all 6-module designs.675

Changes in the mean and variance of β as the number of instances of a module increase relate to stabilising or676

destabilising effects that are either context dependant or universal for all other modules. (b) Module specific677

effect plots for each module in every 6-module construct. (c) Probability density of all-to-all pairwise678

distances of alpha carbons in a construct containing a combination of D14 and D14 j1 D14 or D14 j2 D14,679

normalised to the maximum distance of a pure D14 construct (177 Å). k indicates the number of D14680

modules in the protein.681
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Figure 7: Estimating dynamics of a multi-chain tetrameter (a) A schematic representation of a683

multi-chain construct and the two distinct modules used in the construct. (b) Molecular visualisation of the684

multi-chain construct. We use D4 C4 G1 hub with four D4 modules connected to each of the four arms of685

the hub. (c) A visualisation of the structural dynamics predicted using our model with two different anchor686

points (red circle).687
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