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Abstract: The collapse of Silicon Valley Bank in 2023 was historically significant, and based on past
experiences with similar banking sector shocks, it is widely expected to trigger domino effects among
tech giants and startups. However, based on the analysis of risk spillover networks established
by VARs estimation, we find little evidence of such a spread of risk contagion. We observe a clear
downward trend in the total connectedness index of large-cap tech companies right after the the
SVB collapse. Moreover, the market quickly responded in a way that isolated the financial services
subcategory within the tech sector, forming a distinct community in the network. This explains how
the risk contagion paths were cut off. We also provide visualised comparisons of contagion paths
within the tech network before and after the SVB’s collapse.
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1. Introduction

On 10 March 2023, the Silicon Valley Bank (SVB) announced its collapse, marking
the third largest bank failure in US history1. Within the same week, both Silvergate Bank
and Signature Bank also triggered the rescue scheme under the Federal Deposit Insurance
Corporation (FDIC) and Treasury. Even after the attempt through the newly formed bridge
bank, the failure was not fully entailed. Founded on 17 October 1983 in Santa Clara,
California, SVB had a distinct focus on supporting innovation and entrepreneurship in the
technology and life science sectors. For instance, SVB’s client base is heavily concentrated
in venture capital-backed and early-stage startup firms; approximately 51% of its clients
were from the early-stage technology and technology sectors2. SVB invested deposits
from tech companies in long-term treasury bonds, which are very sensitive to interest rate
changes. Hence, it is believed that the sharp rise in the Federal Reserve’s interest rate
resulted in significant losses from bond sales3, eventually leading to the collapse of the SVB
(Ali et al. 2024; Sanderson 2023; Yousaf and Goodell 2023).

SVB’s failure has become the largest banking crisis since the 2007–2008 liquidity crisis.
It was believed that this event would signal a butterfly effect across the US market, even
the global financial market, leading to a series of studies. For example, Yousaf and Goodell
(2023) explored the impact of SVB’s collapse on all stock sectors in the US using an event
study and only noted a significant drop in the return of the financial sector during the event.
Pandey et al. (2023) further examined the impact on global stock markets and concluded
that developed markets were more significantly affected, responding with higher abnor-
mal volatility in the short term. Naveed et al. (2024) highlighted that the cryptocurrency
market experienced a negative abnormal return on the day when SVB declared bankruptcy.
Liu et al. (2024) investigated the market reaction of SVB’s publicly traded depositors and
borrowers and found that borrowers have more negative abnormal returns than depositors.
Ali et al. (2024) focused on banking and tech firms in the US, Europe, and China. They
concluded that the banking sector experienced a significant negative return, while tech
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firms remained largely unaffected on the day of SVB’s collapse. As suggested by these
studies, different sectors experienced varying degrees of influence and responded at differ-
ent paces. Consequently, a series of studies analysed pre- and post-event contagion in the
global market to investigate structural changes within the system, particularly the shifts in
connections among the financial or banking sector and other sectors. Akhtaruzzaman et al.
(2023) explored SVB’s influence on contagion between financial and non-financial sectors.
The study concluded that banks played the most significant role in spreading financial
contagion. Banerjee et al. (2024) collected 60-minute interval data on ETFs to examine the
connectedness between 17 FinTech and traditional financial sector ETFs before and after
the 2023 bank crisis. Traditional financial ETFs were found to be net risk transmitters.

As a regional bank in the San Francisco Bay Area, SVB’s failure raised concern about
exacerbating the downturn of the tech industry, which offers a unique scenario to investigate
how volatility risk propagates within the tech sector. Immediately after the collapse, the
industry and market have clearly reported significant and direct loss in capital (e.g., Roblex)
across the globe4. Given SVB’s geographic focus and industry specialisation, technology
firms should be the first to respond to this news, potentially acting as the trigger for broader
market vibrations. However, this perspective has not been well explored in research on the
impact of SVB collapse. Despite regulatory intervention by FDIC, etc., that aimed to stabilise
the market through the bridge bank, it is important to understand how the SVB collapse
directly affect the tech companies and whether there has been volatility risk contagion.
While the banking and technology sectors mutually influence each other, with SVB acting as
a crucial source of funding for tech startups and tech companies contributing to the bank’s
deposit, disruptions in the tech sector can affect SVB’s financial health. However, this study
mainly focuses on how SVB’s failure impacts tech companies. This would further provide
an explanation on why the FDIC’s rapid responses through the bridge bank are partially
effective: On the one hand, the swift intervention prevented the contagion risk spill among
the tech industry due to the guarantee of retracing the “sunk” funds of these tech firms held
in the three large troubled banks, hence practically controlling the banking crisis. However,
on the other hand, the bank failure was fully entailed because the contagion risk rapidly
cascaded from SVB to Signature and Silvergate, as well as the wider banking sector.

In light of this, our study aims to answer the following research question: How does
the volatility risk contagion change among tech companies after SVB’s collapse? We also
take the view to treat the financial market as a complex network and believe the risk
transmission mechanism through which financial shocks spread needs to be modelled with
a systematic view. To the best of our knowledge, this is the first study that sheds light
on shock contagions among US technology companies responding to the SVB collapse,
providing different angles to the existing literature Ali et al. (2024), which only focus
on several tech companies in different countries, whereas we consider tech companies
on a system-wide level. Additionally, our study is also distinguished from the studies
mentioned previously, which only focus on testing the abnormal returns of different equities.
By modelling the complex pathways of volatility shock spillover among these companies,
investors can better assess their portfolios, and regulators can take relevant steps to regulate
the risk arising from similar failures.

We use the network approach to analyse contagion in the tech industry, a method
that provides a perfect ground to understand financial contagion within a complex system,
and such research has been growing rapidly in the literature to simplify complex financial
systems, with significant contributions from studies like (Allen and Gale 2000; Gai and
Kapadia 2010). And some recent studies continue to explore the contagion dynamics in the
financial market (Ahelegbey and Giudici 2022; Liu et al. 2017; Lyócsa et al. 2019; Tong et al.
2018). The network topology often offers both technically and visually powerful indicators
and analytical tools that demonstrate how the financial system (network structure) evolves
and how the different components relate to one another dynamically, hence revealing the
contagion clusters within the financial system and features such as network centrality
where the spillover ignites (Barigozzi and Hallin 2017; Long et al. 2017; Lyócsa et al.
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2019; Zhang et al. 2020). The most widely used method for measuring the contagion
connectedness network in the financial markets was proposed in Diebold and Yilmaz
(2009) and enhanced by Diebold and Yilmaz (2012) and Diebold and Yılmaz (2014). We
refer to it as the Diebold–Yilmaz connectedness approach for simplicity. For example, the
Diebold–Yilmaz connectedness approach is used in analysing the spillover of the stock
markets (Cheng et al. 2022; Mensi et al. 2018; Shen et al. 2022), cross-markets (Husain et al.
2019; Ma et al. 2019), and cryptocurrency markets (Guo 2024; Ji et al. 2019), etc. We also use
this method in this study due to its advantage in both modelling the connectedness level of
shock spillover and identifying risk transmitters and receivers. It effectively accounts for
how shock propagates through the system, which cannot be evaluated by methods with
lower computational complexity, such as correlation analysis (Forbes and Rigobon 2002),
the copula approach (Rodriguez 2007), and Granger causality (Billio et al. 2012). Comparing
with other risk contagion modelling techniques, such as GARCH-BEKK, DCC-GARCH,
etc., the Diebold–Yilmaz approach can capture the overall and directional spillover among
the variables and is computationally more efficient.

To explore the changes in shock contagion relationships within the tech industry after
the SVB collapse, we include the top 30 tech companies in the US by market capitalisation in
a network analysis. The econometric technique underlying the Diebold–Yilmaz approach is
the vector autoregression (VAR) model, which identifies directed links within the contagion
network. When constructing the network of a sector, challenges arise in the parameter
estimation of the VAR model due to the large number of nodes involved. It is also obvious
that we can only use short-term time series samples in such an event study. There are a
few techniques to solve this issue: for instance, the large Bayesian VARs (Korobilis and
Yilmaz 2018) and the LASSOed VARs (Demirer et al. 2018) are both proposed to handle
high-dimensional datasets. We adopt the latter approach in this study.

In general, our study makes several contributions to the literature. First, we extend
the shock contagion literature by investigating the volatility contagion network in the US
tech industry under the context of SVB’s collapse. Second, we contribute to the literature
on network analysis in modelling financial shock contagion, particularly in the context of
high-dimensional data modelling, while most existing studies do not target a large number
of variables. Third, we apply the direct Louvain algorithm for the community detection
in the shock contagion networks, which provides a better understanding to compare the
structure of the shock contagion networks.

In the subsequent sections of the paper, we proceed as follows. Sections 2 and 3
provide the methodology applied and a detailed description of the data used for analysis.
Section 4 summarises the results, and we conclude the paper in Section 5.

2. Methodology

The Diebold–Yilmaz connectedness measure and network approach are typical meth-
ods applied in financial contagion studies, associating interconnections among stocks to
shock spillovers across the entire financial system (Ahelegbey et al. 2021). Our aim is to
explore the changes in volatility shock contagion effects among the largest 30 US tech
companies under the context of the SVB collapse. We examine both static and dynamic
connectedness. Static connectedness is estimated based on a long-term network structure
spanning from 2019 to 2023, covering a total of 5 years. Dynamic connectedness captures
the changes of connectedness based on short-term networks calculated using 6-month
rolling windows. In addition to analysing the overall network connectedness, we also
explore the properties of shock spillover networks before and after the SVB collapse, as
well as changes in community and clustering structures in response to this event.
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2.1. Constructing Shock Contagion Networks

In this study, we focus on the volatility connectedness among the large-cap tech
sector. The daily volatility σit for equity i on day t is calculated using Parkinson’s method
(Parkinson 1980):

σit =

√
1

4 ln(2)
ln
(

Hit
Lit

)2
, (1)

where Hit, Lit are the high price and low price of market i on day t, respectively. The
advantage of using Parkinson’s volatility is that it considers intraday information. This
volatility time series data are used to construct shock contagion networks and calibrate con-
nectedness.

We establish directed networks of shock spillovers among the tech companies. The
network G is written as a duplet (V, E). V = {vi : i = 1, 2, ..., K} is the vertices set,
represented by K tech companies.

E =


e1,1 e1,2 e1,3 · · · e1,K
e2,1 e2,2 e2,3 · · · e2,K

...
...

...
. . .

...
eK,1 eK,2 eK,3 · · · eK,K


is an asymmetric weighted adjacency matrix, in which ei,j represents the strength of
spillover effect from vi to vj. According to the Diebold–Yilmaz network approach, the
asymmetric weighted adjacency matrix E is derived from the forecast error decomposition
of a VAR model (see the initial work of Diebold and Yilmaz (2009)). We briefly recap the
method here.

2.1.1. The Diebold–Yilmaz Network

The construction of the shock contagion network starts with the VAR(p)model:

yt = µ +
p

∑
i=1

Aiyt−i + ut, ut ∼ N (0, Ω), (2)

where yt is a K× 1 vector of volatility at time t, Ai is the K×K transition matrix on lag-i, and
ut is a K-dimensional multi-variate normal residual with zero mean and time-independent
covariance matrix Ω = (σ2

ij)i=1,2...,K;j=1,2,..,K. We estimate the VAR model over both fixed
periods and rolling windows to obtain the dynamics of volatility connectedness.

A stationary VAR model has the following moving average representation MA(h),
where yt can be represented as a weighted sum of past and present errors and a con-
stant term,

yt =µ +
h

∑
i=0

Φiut−i, (3)

where Φi = A1Φi−1 + A2Φi−2 + · · ·+ AhΦi−h and Φ0 is the identity matrix.
Considering a shock δ = (δ1, δ2, · · · , δK)

′ occurring at time t, Koop et al. (1996) and
Pesaran and Shin (1998) define the generalised impulse response function that measures
the impact of each variable in response to a shock δj =

√
σjj on the j-th element:

GIRFjt(h) = E(yt+h | ujt = δj,Ft−1)−E(yt+h|Ft−1)

= (
ΦhΩbj
√

σjj
)(

δj
√

σjj
)

= σ
− 1

2
jj ΦhΩbj

,h = 1, 2, ... (4)
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where Ft−1 is the state of the past information until t− 1, and bj is the j-th column of the
K× K identify matrix.

This leads to the definition of generalised forecast error variance decomposition in the
Diebold–Yilmaz approach:

Θg
i,j(H) =

σ−1
jj ∑H−1

h=0 (b′iΦhΩbj)
2

∑H−1
h=0 (b′iΦhΩΦ′hbi)

. (5)

Because ∑K
i=1 Θg

ij ̸= 1, to normalise the variance decomposition matrix, Diebold and Yilmaz
(2012) suggested

Θ̃g
ij(H) =

Θg
ij(H)

∑K
j=1 Θg

ij(H)
, (6)

such that we have ∑K
j=1 Θ̃g

ij(H) = 1 and ∑K
i,j=1 Θ̃g

ij(H) = K. Θ̃g
ij(H) measures the cumula-

tive shock spillover from equity i to equity j over H time periods following the shock. The
total spillover index, also referred to as the total connectedness index (TCI), measuring the
overall connectedness in a network is defined as:

TCI(H) =
∑K

i,j=1;i ̸=j Θ̃g
ij(H)

∑K
i,j=1 Θ̃g

ij(H)
=

∑K
i,j=1;i ̸=j Θ̃g

ij(H)

K
(7)

We know that, for any H ∈ Z+, TCI(H) is bounded between 0 and 15. A larger TCI
means the shocks in one company are more likely to spread to other companies, suggesting
a potentially higher risk contagion. In addition to TCI, directional connectedness provides
more details on how shocks are transmitted from one company to all other companies and
vice versa. We can calculate the directional volatility connectedness from others to equity
i as

Sg
i←•(H) =

∑H
j=1;j ̸=i Θ̃g

ij(H)

K
, (8)

similarly, the directional volatility connectedness to others from equity i is

Sg
•←i(H) =

∑K
j=1;j ̸=i Θ̃g

ji(H)

K
, (9)

and the net pairwise connectedness is

Sg
ij(H) =

Θ̃g
ij(H)− Θ̃g

ji(H)

K
, (10)

which captures the net directional volatility spillover between two companies. These
connectedness measures can be organised into a connectedness table (see Table 1).

Table 1. Connectedness table.

y1 y2 · · · yK Sg
i←•(H)

y1 Sg
11(H) Sg

12(H) · · · Sg
1K(H)

∑K
j=1;j ̸=1 Θ̃g

1j(H)

K

y2 Sg
21(H) Sg

22(H) · · · Sg
2K(H)

∑K
j=1;j ̸=2 Θ̃g

2j(H)

K
...

...
...

. . .
...

...

yK Sg
K1(H) Sg

K2(H) · · · Sg
KK(H)

∑K
j=1;j ̸=K Θ̃g

Kj(H)

K

Sg
•←i(H)

∑K
j=1;j ̸=1 Θ̃g

j1(H)

K
∑K

j=1;j ̸=2 Θ̃g
j2(H)

K · · · ∑K
j=1;j ̸=K Θ̃g

jK(H)

K
∑K

i,j=1;i ̸=j Θ̃g
ij(H)

K
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This connectedness table allows us to track pairwise connectedness between all pairs
of companies as well as system-wide connectedness. We follow Diebold and Yılmaz (2014)
to construct the NPDC (net pairwise directional connectedness) matrix E as the asymmetric
weighted adjacency matrix in our shock contagion networks. Denote the connectedness
matrix S as

S =



Sg
11(H) Sg

12(H) Sg
13(H) · · · Sg

1K(H)

Sg
21(H) Sg

22(H) Sg
23(H) · · · Sg

2K(H)

Sg
31(H) Sg

32(H) Sg
33(H) · · · Sg

3K(H)
...

...
...

. . .
...

Sg
K1(H) Sg

K2(H) Sg
K3(H) · · · Sg

KK(H)


, (11)

where Sg
i,j(H) ̸= Sg

j,i(H). Then,

E = max[S − ST , 0]. (12)

2.1.2. LASSO-VAR Estimation

In the model calibration, we find that the VARs parameter set is much larger than the
number of observations. This leads to a high dimensionality issue in parameter estimation.
We follow the LASSO-VAR technique documented in Demirer et al. (2018), which addresses
this challenge by LASSO regularisation. The idea is to penalise the parameters that are only
slightly informative and shrink them towards zero.

The number of VAR parameters depends on the number of lags, so choosing the
optimal lag order p is important. The number of parameters for the transition matrixes
A1, · · · , Ap that need to be estimated is K2 p + K. LASSO estimation is used when the
observation is less than the parameters that we need to estimate.

The L1 (LASSO) regularisation introduces a penalty term λ ∑
p
i=1 ∥Ai∥q in the ordinary

least squares (OLSs) estimation:

(µ̂, Â1, · · · , Âp)LASSO = arg min
(µ,A1,··· ,Ap)∈RK(p+1)

[
T

∑
t=1
∥yt − µ−

p

∑
i=1

Aiyt−i∥2 + λ
p

∑
i=1
∥Ai∥

]
, (13)

where λ controls the amount of penalisation. The optimal value for the regularisation
parameter λ is important for the performance of the LASSO-VAR model, and λ is selected
by a 10-fold cross-validation.

2.2. Network Analysis

As suggested by Diebold and Yılmaz (2014), the Diebold–Yilmaz connectedness ap-
proach marries VAR variance decomposition theory with network theory. Following the
shock contagion networks construction in the previous section, we analyse network prop-
erties, including network density and distributions of in- and out-degrees, to compare the
network structure before and after the SVB event. Additionally, we want to investigate
whether, in general, the tech companies in the same sub-categories in the GICS classification
show similar behaviours in propagating or receiving risk and how the community structure
has been impacted by the collapse of SVB. To achieve this, we introduce the application of
the direct Louvain algorithm to cluster the communities in the shock contagion network.

2.2.1. Network Properties

Network density, denoted as ρ, measures the connectivity in a network and is calcu-
lated as:

ρ =
M

K(K− 1)
, (14)
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where M is the total number of edges in the network and K is the number of vertices in
the network. It measures the actual connections between the vertices compared with the
maximum possible connections, ranging from 0 to 1. A higher density indicates that the
companies are more connected and there is greater risk spillover in the network. In contrast,
a lower density suggests a sparser network with less risk contagion paths. We can have a
general idea of the changes in the network structure by comparing the network density
before and after the collapse of SVB.

The weighted in-degree of a vertex vj is the sum of the weights of all incoming edges
to vj, which captures the net risk connectedness of vertex vj transferred from other vertices.
It can be represented as:

Din
j =

K

∑
i=1

ei,j. (15)

Similarly, the weighted out-degree of a vertex vj is the sum of the weights of all outgoing
edges from vj and is given by:

Dout
j =

K

∑
j=1

ej,i. (16)

The weighted in- and out-degrees indicate which vertices are most affected by the shocks
and which are the key risk transmitters in the network. Vertices with significant changes in
these measures may show their importance in the network.

2.2.2. Community Detection

To detect community in the network, a classical way is to find a partition of the vertices
set that maximises the modularity; we adopt the direct Louvain algorithm proposed by
Dugué and Perez (2022). Modularity measures the strength of the division of a network
into communities. A higher modularity value indicates that there are more connections
within the community rather than between them. A partition C of a network G = (V, E)
is a collection of disjoint subsets C = {C1, ..., Cn} of vertices set V; every vertex vi ∈ V is
included in exactly one subset community Ci. The modularity Q for this directed network
is defined as

Q =
1
M ∑

vi ,vj∈V

[
Avivj −

din
vi

dout
vj

2M

]
δ(Cvi , Cvj), (17)

where M is the total edges in the graph, and A is the adjacency matrix of network G, where

Avivj =

{
1 if ⟨vi, vj⟩ ∈ E,
0 if ⟨vi, vj⟩ /∈ E.

vj is a neighbouring vertex of vi if Avivj = 1. din
vi
= |{vj ∈ V : ∃(vi, vj) ∈ A}|, dout

vi
= |{vj ∈

V : ∃(vj, vi) ∈ A}| are the in-degree and out-degree of vi, respectively. δ(Cvi , Cvj) = 1
if vi = vj; otherwise, it is 0. Louvain’s algorithm computes gain modularity for the
directed graph:

∆Q =
dC

vi

M
−


dout

vi ∑
vj∈C

din
vj
+ din

vi ∑
vj∈C

dout
vj

M2

, (18)

where dC
vi
= |{vj ∈ C : ∃(vi, vj) ∈ A}| stands for the degree of vertex vi in community C,

∑
vj∈C

din
vj

(
∑

vj∈C
dout

vj

)
is the total number of in (out) edges to all vertices within community

C. The algorithm starts from a singleton partition, where each vertex in the network is
considered a separate community, and the modularity Q is calculated for each vertex in
its own community. Next, for every vertex vi, it assesses the impact on modularity if vi
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were to be removed from its current community and placed it into the community of its
neighbouring vertices. The algorithm determines the changes in modularity (∆Q) for each
community Ci that vertex vi is connected to. Vertex vi is assigned to the community, which
results in the highest increase in modularity among all its neighbouring communities,
which is defined as communities that have at least one directed edge between vertices. If
no increase is possible, vertex vi stays in its original community (Dugué and Perez 2022).
The modularity Q is then updated for the new community structure until the maximum Q
is reached to ensure the network is well divided into communities.

3. Data

The Bloomberg United States Technology Large, Mid & Small Cap Price Return Index
covers 99% of the market capitalisation for the tech industry, with an overall value of USD
15.17 trillion. We selected the top 30 tech companies based on the average market cap
between 2021 and 2022 from this index. Large cap companies have greater liquidity and
can reflect the market information more rapidly than the mid cap and small cap companies.
The selected 30 tech companies serve as a representative sample of the US tech industry,
constituting around 60% of the index with a market cap of USD 8.98 trillion, which has a
significant influence on the entire industry. We collected daily high, low, open and closed
data from Yahoo! Finance. Our data are from 1 January 2019 to 1 December 2023, totalling
1238 trading days. Table 2 lists detailed information about the companies, including their
market capitalisations and GICS (Global Industry Classification Standard) codes. The
inclusion of the GICS code provides a standard framework for the tech companies to be
classified into their sub-categories. This code will provide insights into which sub-categories
transfer or receive risk the most in the shock contagion network, and it will also be used for
a subsequent community detection analysis to explore whether companies within the same
sub-categories are interconnected with each other. Additionally, the descriptive statistics of
the data are displayed in Table 3.

Table 2. List of technology companies, ticks, market capitalisation, and GICS code.

Companies Ticks Market Cap
(USD Billion) GICS Classification (Abbrv.)

Apple Inc. AAPL 2405.896 Technology Hardware (TH)
Microsoft Corp. MSFT 1976.938 Software (SW)
NVIDIA Corp. NVDA 447.193 Semiconductors (SC)
Visa Inc. V 360.405 Financial Services (FS)
Mastercard MA 343.510 Financial Services (FS)
Adobe Inc. ADBE 225.319 Software (SW)
PayPal Holding Inc. PYPL 220.261 Financial Services (FS)
Salesforce Inc. CRM 218.680 Software (SW)
Cisco System Inc. CSCO 209.983 Communications Equipment (CE)
Intel Corp. INTC 208.832 Semiconductors (SC)
Broadcom Inc. AVGO 208.626 Semiconductors (SC)
Oracle Corp. ORCL 206.621 Software (SW)
Accenture PLC ACN 197.559 IT Services (IT)
Advanced Micro Devices Inc. AMD 176.391 Semiconductors (SC)
Texas Instruments Inc. TXN 174.146 Semiconductors (SC)
QUALCOMM Inc. QCOM 143.234 Semiconductors (SC)
Intuit Inc. INTU 136.708 Software (SW)
ServiceNow Inc. NOW 129.568 Software (SW)
International Business Machines Corp. IBM 120.036 IT Services (IT)
S&P Global Inc. SPGI 113.735 Capital Markets (CM)
Applied Materials Inc. AMAT 98.8077 Semiconductors (SC)
Automatic Data Processing Inc. ADP 85.7765 Professional Services (PS)
Analog Devices Inc. ADI 82.4632 Semiconductors (SC)
Lam Research Corp. LRCX 75.7516 Semiconductors (SC)
Block Inc. SQ 75.0931 Financial Services (FS)
Micron Technology Inc. MU 72.746 Semiconductors (SC)
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Table 2. Cont.

Companies Ticks Market Cap
(USD Billion) GICS Classification (Abbrv.)

Moody’s Corp. MCO 71.5542 Capital Markets (CM)
Fiserv Inc. FI 67.4635 Financial Services (FS)
Fidelity National Information Services Inc. FIS 66.4723 Financial Services (FS)
Microchip Technology Inc. MCHP 63.2897 Semiconductors (SC)

Notes: This table provides information on the selected 30 tech companies, ranked by market capitalisation from
highest to lowest.

Table 3. Descriptive statistics on volatilities for 30 tech companies.

Ticks Min Max Mean S.D. Skewness Kurtosis ADF Test

AAPL 6.834 125.488 25.854 14.4 2.05 6.67 −5.255 **
MSFT 4.30 160.93 24.29 14.15 2.63 13.01 −4.804 **
NVDA 11.06 175.76 43.18 22.21 1.72 4.85 −5.301 **

V 5.28 127.12 22.73 13.54 2.68 11.53 −4.776 **
MA 6.04 137.64 25.48 15.3 2.62 11.1 −4.907 **

ADBE 5.73 173.93 30.15 16.69 2.47 11.16 −5.559 **
PYPL 8.55 141.02 35.21 18.27 1.65 4.45 −5.113 **
CRM 6.75 167.65 31.01 16.97 2.39 10.29 −5.619 **
CSCO 6.00 152.08 21.82 13.36 3.79 23.61 −4.902 **
INTC 6.19 206.96 29.68 16.72 2.96 18.01 −5.689 **
AVGO 5.99 262.91 29.29 18.78 5.09 44.39 −6.242 **
ORCL 5.09 163.35 23.73 14.46 3.30 19.39 −6.147 **
ACN 4.66 184.81 22.51 14.70 3.95 29.61 −4.966 **
AMD 14.14 151.91 46.84 21.89 1.37 2.30 −5.784 **
TXN 5.82 142.06 25.88 13.69 2.76 13.91 −5.306 **

QCOM 6.01 246.77 33.05 18.36 3.09 20.59 −5.662 **
INTU 6.59 163.21 31.06 17.17 2.05 7.15 −4.825 **
NOW 9.51 181.83 37.20 20.18 1.88 5.66 −5.314 **
IBM 4.41 140.93 20.44 12.27 3.17 16.88 −4.899 **
SPGI 5.49 184.59 24.37 14.53 3.56 23.27 −5.526 **

AMAT 7.51 168.80 36.79 18.92 2.26 9.34 −5.888 **
ADP 6.29 198.64 22.56 14.80 4.05 29.05 −5.364 **
ADI 7.40 187.18 28.63 15.57 3.57 24.44 −5.549 **

LRCX 8.50 207.28 37.88 20.13 2.55 12.33 −5.482 **
SQ 10.94 302.58 54.58 30.79 2.14 8.72 −5.239 **
MU 9.58 184.56 38.73 18.58 2.12 8.12 −5.226 **

MCO 6.51 153.37 25.26 15.81 3.19 16.12 −4.640 **
FI 6.16 180.16 26.16 15.69 3.07 17.38 −5.894 **

FIS 5.90 218.12 28.38 17.32 3.44 22.92 −6.037 **
MCHP 10.68 195.89 35.14 17.75 2.69 14.8 −5.618 **

Notes: This table reports summary statistics of the 30 selected tech companies. *, **, and *** indicate significance
at the 5%, 1%, and 0.1% levels, respectively.

4. Empirical Results

The VAR model of the Diebold–Yilmaz connectedness approach assumes that the time
series data input is stationary. Therefore, we used the augmented Dickey–Fuller (ADF)
test to test the stationarity of our volatility time series. Table 3 presents the results of
the ADF test, showing that all the volatility series are stationary at the 1% significance
level, indicating they are ready for VAR estimation. Selecting the optimal lag length is
important to capture the dynamics of the VAR model. To determine the optimal lag length,
we choose to use Bayesian information criterion (BIC). Based on the BICs, we choose the
optimal lag for our VAR as one. Then, we proceed to compute both the static and dynamic
connectedness models for further analysis.
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4.1. Full Sample Static Connectedness

The full sample static connectedness reflects the average level of connectedness among
these 30 tech companies over a fixed period. We constructed the connectedness table
(Table 4) below using the previously mentioned method (see Table 1) to show the average
connectedness and identify the main risk receivers and transmitters. The average shock
spillover is at a level of 86.10% among the 30 tech companies. If Sg

•←i(H)− Sg
i←•(H) > 0

(hereafter referred to as net volatility connectedness), it means the company propagates
risk on others more than it is affected by them. Overall, we observe that 12 out of 30 tech
companies are major risk transmitters, where they spread more risk to all other companies
instead of being influenced by them. Additionally, software companies and semiconductor
companies are significant contributors to risk transmission, with a total net volatility con-
nectedness value of 19.78% and 13.7%, respectively. Similarly, professional services and
communication equipment companies are also risk spreaders. In contrast, financial services
companies tend to receive more risk from others, with a total net volatility connectedness
value of −40.33%. The same pattern is observed in IT services, capital market, and technol-
ogy hardware companies, where they also tend to absorb more risk from others rather than
transmitting it.

Furthermore, the results show that MSFT has the highest net volatility connectedness
value (28.34%), followed by TXN (25.26%) and ADI (22.92%), which means that these com-
panies mainly play as risk transmitters, whereas FIS, AMD, and SQ are more affected by the
average shocks in all other companies, with the lowest net volatility connectedness values
of −33.09%, −18.17%, and −17.2%, respectively. The full sample static connectedness
results provide a comparison baseline for the following analysis.

Table 4. Static connectedness table.

GICS Abbrv. Ticks Sg
i←•(H)

Sg
•←i(H)

Sg
•←i(H)

− Sg
i←•(H)

TH AAPL 85.22 80.79 −4.43

SW MSFT 89.00 117.34 28.34
SW ADBE 88.45 107.76 19.31
SW NOW 87.25 84.46 −2.79
SW INTU 86.66 82.72 −3.94
SW CRM 86.84 79.59 −7.25
SW ORCL 81.51 67.71 −13.80

SC TXN 89.31 114.57 25.26
SC ADI 87.85 110.76 22.92
SC AVGO 86.80 100.11 13.32
SC MCHP 88.22 100.72 12.49
SC AMAT 87.46 92.21 4.75
SC NVDA 86.52 83.91 −2.61
SC LRCX 88.13 83.10 −5.03
SC MU 84.67 76.04 −8.63
SC INTC 83.60 68.64 −14.96
SC QCOM 84.86 69.21 −15.64
SC AMD 81.94 63.76 −18.17

FS V 88.43 104.28 15.84
FS MA 88.44 100.56 12.12
FS PYPL 85.76 78.42 −7.34
FS FI 84.87 74.21 −10.66
FS SQ 84.51 67.31 −17.20
FS FIS 79.09 46.00 −33.09

IT ACN 88.62 101.10 12.47
IT IBM 84.24 68.91 −15.32
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Table 4. Cont.

GICS Abbrv. Ticks Sg
i←•(H)

Sg
•←i(H)

Sg
•←i(H)

− Sg
i←•(H)

CM SPGI 86.30 83.86 −2.44
CM MCO 85.56 80.67 −4.89

PS ADP 87.56 97.81 10.24

CE CSCO 85.37 96.49 11.11

TCI(H) 86.10
Notes: This table displays the full sample connectedness result of the 30 tech companies along with their GICS
abbreviations. The third column shows the volatility connectedness from other companies to company i. Conversely,
the fourth column presents the volatility connectedness from company i to other companies. The final column
provides the net volatility connectedness. A positive value indicates that the company is more likely to spread
risk to other companies, whereas a negative value suggests that it mainly receives risk from other companies.

4.2. Rolling Window Dynamic Connectedness

While the above full-sample connectedness analysis provides the average directional
and total connectedness, that does not account for the dynamic aspects of the connectedness.
Therefore, in order to capture how the connectedness changes over time, we then perform
a rolling window estimation analysis in this subsection. Dynamic connectedness measures
how the average connectedness changes over time. We compute the dynamic network
connectedness by estimating LASSO VAR over a specific rolling window.

Figure 1 plots the total connectedness index among 30 tech companies using a 120-day
rolling window and a 5-day forecast horizon6. TCI (see Equation (7)) quantifies the average
shock spillover of a single variable on all others. This index can be interpreted as an
indicator of overall market risk. A large TCI suggests that the average transmission of a
shock from one variable to all others is substantial, indicating a high market contagion risk.
The graph features a highlighted red solid line, corresponding to 10 March 2023, the day
that the shares of SVB declined by 60% when the market opened. We highlighted the data
points for the beginning of each week across the time period from March 2022 to December
2023 to visualise a clear overall connectedness trend among tech companies before and
after the collapse of SVB. Clearly, there is a downward trend in connectedness from over
85% to below 60%, indicating that, after the event, the risk of contagion in the tech industry
decreases. This result is supported by the findings of (Ali et al. 2024), who conducted
an event study on high-tech firms in the US, Europe, and China and found that there
are insignificant abnormal returns for the high-tech companies on the event day. These
insignificant abnormal returns suggest that the tech industry’s reaction to the collapse of
SVB was relatively muted. The collapse of SVB did not cause significant reactions across
the tech industry, which perhaps prevented the risk contagion in the industry, supporting
the observed drop in the total connectedness index.

It is worth mentioning that three days after the collapse of SVB, regulatory intervention
by the FDIC and others stepped in on 13 March 2023 to mitigate the damage and enhance
market confidence. They addressed the safety of the banking system and stabilised the
market through the bridge bank. In addition, deposit insurance was put in place to protect
deposits belonging to tech companies banking with SVB. The regulators swiftly announced
that these deposits would be fully redeemable. Additionally, the Federal Reserve launched
a new lending facility, enabling banks to post high-quality assets, thus allowing commercial
entities to borrow at a generous rate. This ensured that credit remained available to tech
companies. The guarantee of retracing the “sunk” funds of the tech companies prevented
the contagion risk spread among the tech industry. Moreover, tech companies did not only
bank with SVB, which means they are robust with multiple funding sources. For example,
as reported by Economics Times7, Roku had 26% of its cash with SVB, and Roblox had 5% of
its cash held at SVB. The diversification of their banking relationships also helped reduce
the shock transmission arising from one single bank failure. To conclude, these actions
taken by regulators, together with the diverse banking of tech companies, suggested that
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SVB’s failure did not signal the contagion effect for the tech industry. Instead, we noticed a
decrease in the risk of contagion.

Figure 1. Total connectedness index. Notes: This figure shows the total connectedness trend among
30 tech companies using a 120-day rolling window and a 5-day forecast error horizon. The highlighted
red line indicates the day of the SVB collapse.

4.3. Impact of the SVB Collapse on Shock Contagion Network Dynamics
4.3.1. Network Properties: A Comparison on Pre- and Post-SVB Collapse

We further created the net pairwise directional connectedness network for the periods
before and after the SVB collapse, which allows us to observe the net risk transmission path
clearly and offers more detailed insights into the comparison of directional risk transmission
within the network of 30 tech companies. To accomplish this, we select two subsets of data
to analyse and compare several network metrics before and after the SVB bank collapse.
The first subset spans from 10 September 2022, to 10 March 2023, while the second covers
the period from 13 March 2023, to 10 September 2023.

This allows us to compare changes in network structure associated with the event.
Table 5 compares the net volatility connectedness changes for the individual companies.
Several companies experienced significant changes. For example, FIS became less central
in receiving risk from others, while MSFT shifted being a major risk transmitter to a
risk receiver.

To make this transformation clearer, Figures 2 and 3 visualise the average net pairwise
directional connectedness among 30 tech companies before and after the SVB collapse. The
net risk transmission is unidirectional, which better reflects each asset’s dominant position
in transferring the risk (Demirer et al. 2018). Red nodes indicate net transmitters and green
nodes indicate net receivers. The node size and edge width are adjusted based on the con-
nectedness strength to visually distinguish between more and less connectedness entities.

We can notice that after SVB’s collapse, network (Figure 3) becomes more sparse than
before (Figure 2). We validate this by calculating the network density (see Equation (14)).
The greater the network density, the more connections between the nodes. The network
density shows a slight change, decreasing from 0.076 to 0.070. Furthermore, we consider
centrality measures to find the important players in the network. We analyse degree
centrality (see Equations (15) and (16)), which measures the number of edges connected
to a node. Nodes with a high degree of centrality are considered influential within the
network, indicating their importance in receiving or transmitting information flow.
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Table 5. Net volatility connectedness of 30 tech companies.

Ticks Net Volatility
Connectedness Before After Difference

(After− Before)

FIS −33.09 −43.10 −12.44 30.66
V 15.84 −10.25 12.29 22.54
MCO −4.89 −19.19 3.15 22.34
INTU −3.94 −13.39 8.49 21.88
NOW −2.79 −5.04 15.54 20.58
ADBE 19.31 −6.55 11.75 18.30
SPGI −2.44 −16.38 −1.21 15.17
FI −10.66 −4.67 7.83 12.50
LRCX −5.03 13.91 25.86 11.95
IBM −15.32 −24.92 −16.76 8.16
CRM −7.25 −22.03 −15.43 6.60
PYPL −7.34 −21.77 −16.16 5.61
ORCL −13.80 −13.92 −9.66 4.26
ACN 12.47 16.12 18.96 2.84
MA 12.12 16.98 19.64 2.66
NVDA −2.61 −3.78 −1.43 2.35
SQ −17.20 −15.04 −14.13 0.91
INTC −14.96 −6.32 −12.76 −6.44
AVGO 13.32 4.09 −4.15 −8.24
TXN 25.26 26.75 16.40 −10.35
CSCO 11.11 0.19 −12.04 −12.23
MU −8.63 −0.89 −14.38 −13.49
AMD −18.17 5.05 −8.63 −13.68
AAPL −4.43 −1.92 −15.84 −13.92
AMAT 4.75 23.06 8.98 −14.08
ADI 22.92 30.69 12.33 −18.36
QCOM −15.64 20.20 0.64 −19.56
MCHP 12.49 36.09 15.33 −20.76
ADP 10.24 5.29 −15.81 −21.10
MSFT 28.34 30.74 −6.37 −37.11

Notes: This table demonstrates the net volatility connectedness estimated across the whole sample period of
30 tech companies, as shown in the second column. The third and fourth columns present the net volatility
connectedness before and after the collapse of SVB. The last column calculates the difference between the values
before and after the collapse.

Figures 4 and 5 compare the weighted in-degree and out-degree distributions. The
weighted in-degree of a node is the sum of the weights of the edges leading into it, while
the weighted out-degree is the sum of the weights leading out from it. Prior to the failure of
SVB, most of the companies were distributed between a weighted in-degree and out-degree
of 0 and 5, while a few had high weighted degrees. MCHP, MSFT, and ADI played as
the main risk transmitters in the network, whereas FIS, IBM, and CRM acted as the major
risk receivers. Following the collapse of SVB, the network structure changed, with the
distribution becoming more dispersed and evenly spread across the nodes, leading to a
diversification of risk. ADP, MU, and AAPL became the main risk receivers, with LRCX,
CAN, and MA emerging as key risk transmitters.
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Figure 2. Network visualisation of net pairwise directional connectedness paths before SVB’s collapse.

Figure 3. Network visualisation of net pairwise directional connectedness paths after SVB’s collapse.
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Figure 4. Weighted in-degree distribution before and after SVB’s collapse.

Figure 5. Weighted out-degree distribution before and after SVB’s collapse.

4.3.2. Impact of the SVB Collapse on Community Structures

To have a deeper understanding of the network structure, community detection for
the directed graph is used to identify groups of nodes within the network that are more
densely connected to each other than other nodes in the network. Specifically, the directed
Louvain’s algorithm (see Section 2.2.2) is applied to maximise modularity to partition the
network. There are four communities detected before and after SVB’s collapse; the detailed
components of one community are shown in Table 6.

It is noteworthy that Visa, Mastercard, Paypal holdings, S&P global, Fiserv, and
Fidelity National Information, categorised as financial services companies by the GICS, are
detected within a community after the SVB collapse. This shows that the financial services
companies have stronger connections with each other than with companies categorised in
different subcategories. There is more risk spillover within the financial service companies
themselves than in other tech companies, suggesting that the financial institutions are
affected by similar financial pressures, such as regulatory changes, as previously addressed.
This clustering of the financial services companies demonstrates that the bank failure was
attributed to the swift contagion risk that extended from SVB to Signature and Silvergate, as
well as affecting the broader banking sector. Additionally, it supports the literature that the
financial institutions are largely affected by the failure of SVB’s collapse (Akhtaruzzaman
et al. 2023; Banerjee et al. 2024).
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Table 6. Communities before and after collapse.

Before

Community 1: AAPL (TH), MSFT(SW), ADBE(SW), INTU(SW), AMD(SC),QCOM(SC), MU(SC),
FI(FS), FIS(FS), ACN(IT), ADP(CE)

Community 2: ORCL(SW), NVDA(SC), INTC(SC), TXN(SC), AMAT(SC), ADI(SC), MCHP(SC),
PYPL(FS), SQ(FS), SPGI(CM), MCO(CM)

Community 3: LRCX(SC), V(FS), MA(FS), IBM(IT, CSCO(CE)
Community 4: CRM(SW), NOW(SW), AVGO(SC)

After

Community 1: AAPL (TH), AVGO(SC), QCOM(SC), MCHP(SC), SQ(FS), MCO(CM), ACN(IT),
IBM(IT)

Community 2: MSFT(SW), ORCL(SW), NVDA(SC), TXN(SC), AMAT(SC), ADI(SC), LRCX(SC),
MU(SC), CSCO(CE)

Community 3: V(FS), MA(FS), PYPL(FS), FI(FS), FIS(FS), SPGI(CM), ADP(PS)
Community 4: ADBE(SW), CRM(SW), INTU(SW), NOW(SW), INTC(SC), AMD(SC)

Notes: This table displays the companies grouped into different communities before and after the collapse of SVB.
The abbreviations in brackets represent the subcategories classified according the GICS classification.

In addition, we also observe evident clustering communities within other subcate-
gories of companies. For instance, semiconductor companies, NVIDIA, Texas Instruments,
and Applied Materials are grouped in Community 2. These companies play a crucial role
in the global tech landscape, leading frontier technologies like AI and cloud computing.
Similarly, we notice that a few software companies, including Adobe and Salesforce, are
part of Community 4. Although Intel and Advanced Micro Devices are semiconductor
companies, their products are essential for software applications, which explains their
common reactions to market shocks. This suggests that following the SVB failure and the
government’s intervention, the market not only cut off the link between financial service
companies and other tech companies but also signalled that investors view semiconductors
and software companies as resilient and essential parts of the tech ecosystem.

Furthermore, we discovered there is a change in the number of companies within
each community. Before SVB’s collapse, the companies were more centralised with more
companies grouped in community 1 and community 2. We observe a more even distribution
across the communities for post-collapse. The change in the number of companies within
the communities suggests a diversification and dispersion among those tech companies,
which explains their similar reaction to the challenges.

To conclude, we observe a clear drop in network connectedness immediately following
the event, as indicated by a rolling window analysis. Hence, we believe the network
structure must be affected by the failure of SVB. By further comparing different network
properties using methods such as community detection before and after the failure of SVB,
we observe that several companies belonging to specific sub-categories, such as financial
services companies, are classified into one community after the SVB collapse. These results
provide valuable insights for the investors and regulators, helping guide market regulation
in the event of such failures. They also suggest that future regulatory frameworks should
focus on isolating risk in troubled sectors to mitigate the domino effect.

5. Conclusions

In previous studies, Akhtaruzzaman et al. (2023) found that banks played a dominant
role in transmitting risk, with contagion primarily being limited to the banking sector and
having little effect on other industries. Similarly, Ali et al. (2024) discovered that the banking
sector has a substantial negative return, while tech companies were mostly unaffected
on the day of SVB collapse. However, our study extends these findings by exploring the
changes in the volatility risk contagion among the top 30 large-cap technology companies
in the US following the collapse of SVB failure by using Diebold–Yilmaz connectedness
approach and several network analyses. We observe a decreased total connectedness index
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among these companies after the SVB collapse, indicating a decrease in risk contagion in
the tech companies. This suggests that the government’s rapid intervention to protect tech
companies deposits was partially effective in preventing the risk spillover from the banking
crisis to the broader market. The visualisations of the net shock contagion paths, along
with the in-/out-degree distribution, highlight the key players in the network, providing
valuable information to the stakeholders.

These observations, as noted by previous studies, suggest that although the conta-
gion effect is mainly in the banking sector, the tech companies show a more interesting
market reaction. In particular, we find that financial service companies among these tech
companies are detected in one community after the SVB bank collapse, which shows how
closely interconnected these institutions became following the failure of SVB and how
risk contagion separate these financial services companies from other tech companies.
Similarly, we observe that several software companies are grouped into one community, as
are semiconductor companies. This highlights a noteworthy market reaction to the failure
of SVB.

Despite these findings, we acknowledge several limitations in our current study.
First, we selected solid companies which may have stronger risk management strategies,
limiting the ripple effect originating from the failure of SVB. Additionally, we notice that
these companies started to diversify risk, as evidenced by the community detection result.
Therefore, future studies can look into high-growth tech, mid-cap tech, and small-cap tech
companies, where the risk contagion may appear sharply. Furthermore, it will be valuable
to explore and compare the contagion effect among FinTech companies and different
subcategories companies. Moreover, it is also worthwhile to conduct a broader comparison
study on different financial shocks, such as the global financial crisis and COVID-19, which
would provide comprehensive insights into how contagion spreads across sectors under
distinct economic conditions.

Lastly, our analysis relied on daily data, which may not pick up the short-term rapid
responses. Future research could use high-frequency data to capture additional short-
term information.
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Notes
1 https://www.cbsnews.com/news/first-republic-bank-fdic-jpmorgan-chase-control/ (accessed on 5 September 2023 ).
2 SVB’s review at https://www.federalreserve.gov/publications/files/svb-review-20230428.pdf (accessed on 5 September 2023).
3 The Federal Reserve System of the United States has taken actions to increase the interest rate from 0–0.25% to 4.5–4.75% between

2020 and 2023, which has heavily exposed the tech sector and firms to interest rate risk.
4 Reuters-global-firms-with-exposure-collapsed-svb (accessed on 5 September 2023).
5 We apply a multiplier of ×100 to all connectedness measures for the presentation of results.
6 Within a week after SVB collapse, the regulator stepped in to stabilise market confidence. Thus, we chose a 5-day forecast

horizon. Moreover, when deciding on the rolling window size, we tested a 360-day rolling window. The TCI shows a consistent
but smoother trend compared with a 120-day rolling window. Considering that the model estimation requires estimating
930 parameters, we decided not to further reduce the window size to maintain model efficiency.

7 Economics Times News (accessed on 5 September 2023).

https://www.cbsnews.com/news/first-republic-bank-fdic-jpmorgan-chase-control/
https://www.federalreserve.gov/publications/files/svb-review-20230428.pdf
https://www.reuters.com/business/finance/global-firms-with-exposure-collapsed-svb-2023-03-13/
https://economictimes.indiatimes.com/news/how-to/which-companies-are-affected-by-silicon-valley-bank-collapse/articleshow/98659058.cms?from=mdr
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