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A B S T R A C T

Natural materials, through the multiscale architected organisms they contain, can evolve and
control anisotropic properties to enhance their functionality and performance, thereby improv-
ing their adaptability to external environments. Similarly, recent studies have demonstrated
engineered porous materials with multiscale architected structures and tunable anisotropy can
achieve superior performance compared to commonly used isotropic porous materials. In this
work, by locally tessellating varied-shaped Voronoi structures with modified Riemannian metric,
we develop a novel bio-inspired design framework for multiscale porous structures, which
can possess tunable orientation, porosity and anisotropic property. The effective mechanical
properties of multiscale varied-shaped Voronoi tessellated (VSVT) porous structures are eval-
uated using a numerical homogenization technique, and finally expressed as a function of
design parameters, i.e., anisotropy ratio, relative density, and material direction. A gradient-
based, multi-scale, multi-component optimization workflow is applied to design and optimize
porous materials and structures that mimic natural patterns. Typical design cases, such as
Messerschmitt–Bölkow–Blohm beams with global or local volume constraints, have been carried
out to verify the proposed VSVT method. The obtained geometry models from the de-
homogenization procedure not only demonstrate high computational accuracy and improved
compliance performance, but also exhibit flexible biofunctional compatibility like tailored
specific surface area. This implies that the proposed VSVT design method for multiscale porous
materials and structures have strong potentials for engineering applications, such as, implants,
architecture, energy storage, and etc.

1. Introduction

Porous materials in nature, such as diatoms, feathers, shells, bones, rocks, and wood, often possess remarkable properties in spite
of their porosity and weak constituent compositions [1]. The outstanding features of natural materials, e.g., strong, tough, flexible,
and lightweight, typically attribute to their ingenious hierarchical architecture, spanning from nano/micro- to macroscales. These
materials with hierarchical or multiscale architecture frequently exhibit local anisotropy, wherein their properties vary depending
on the direction, resulting from the alignment of internal structures, such as fibers or pores, to meet specific functional demands.

Fig. 1 shows three different biological structures: a human bone, a water lily leaf vein, and a mushroom cap, covering basic
biological categories i.e. animals, plants, and fungi. Notably, all of these bio-materials share two key characteristics: multi-scale
and locally varying anisotropy. ‘‘Multi-scale’’ means that their structures are organized at multiple levels of hierarchies. At the
macro scale, the structure appears as a homogenized, continuous tissue with varying local densities, while at the micro scale,
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Fig. 1. Multiscale porous (cellular) materials and structures in nature. (a) Human femoral bone with trabecular branches; (b) Water lily with its veins; (c) Fungi
plant with undercover pattern. These structures are all multiscale, in which the microstructure exhibits strong anisotropy and spatially varying patterns. For
example, the microstructure of the trabecular bone as (a) is usually strongly aligned with the muscle force trajectories [11]. In clinical studies, an index called
‘degree of anisotropy’ (DA) is used to describe the degree of heterogeneity in trabecular geometry.

it reveals a porous micro-architecture. Thus, the final mechanical properties and functionality of the entire biological material
depend on the combined influence of these two levels. ‘‘Anisotropic’’ means that the porous micro-architecture varies in cell
shape, orientation, and porosity at different spatial locations, characterized by disorder, non-uniformity, and aperiodicity. These
microstructures are tailored with functionally graded properties, which thus enable the overall functionalities such as a high strength-
to-mass ratio, fluid transport, energy absorption, and thermal–mechanical response [2–4]. Inspired by this, several studies have
designed artificial materials using micro-scale lattices with anisotropic properties, achieving improved performance compared to
those using only isotropic lattices [5,6]. Moreover, studies such as Wolff’s Law for bone tissue have demonstrated that natural
structures often represent the optimal design for specific mechanical or biological functions. Consequently, numerous studies have
employed structural optimization as a strategy to develop bionic or bio-inspired engineering materials [7,8]. For instance, topology
optimization (TO) method has been used to replicate the human trabecular bone remodeling process with high realism, achieving
superior compliance performance and reduced stress shielding effects [9]. Shape optimization and evolution optimization techniques
have been utilized to mimic a dragonfly wing for designing robotic flapping wing scaffold that possesses advanced aeroelasticity [10].
However, despite the success in a few examples, it is widely accepted that integrating the diverse and complex features of natural
materials into a general optimization-based engineering design remains challenging, particularly when stochastic, anisotropic, and
multi-scale features are required to meet, simultaneously.

To mimic the ‘multi-scale’ features in natural materials, multi-scale topology optimization has gained significant interests in the
material design field over the past decade. This approach, leveraging multi-layer design mechanisms, offers a vast array of tailorable
physical and mechanical properties for both porous materials and metamaterials [8,12,13]. ‘Multi-scale’ mechanism allows materials
to possess with different micro-architectures and macro-spatial tessellations, thus achieving ‘unique properties of micro unit cells’
and ‘unique functions of global structures’ [14,15]. Generally, one of the key challenges in multi-scale topology optimization is
overcoming high computational cost associated with the micro-scale topological model. The fundamental methodology addressing
this issue is the ‘homogenization-based topology optimization’ proposed by Bendsøe [16], where an optimized material distribution
is determined using homogenized microstructure-material properties interpolated as a function of microstructure porosity and
orientation [17]. However, due to past limitations in manufacturability, this method was often sidelined in favor of other classical
topology methods such as the Solid Isotropic Material with Penalization (SIMP) method [18]. In recent years, advancements
in additive manufacturing techniques have overcome many traditional manufacturing limitations, making it more feasible the
fabrication of much complex porous structures [19]. Consequently, there have been several attempts to revive the homogenization-
based approach in multi-scale optimization. For a representative volume element (RVE) of general porous material, its elastic
modulus can usually be estimated using several classical analytical homogenization methods, such as the Gibson–Ashby model [20]
or Hashin–Shtrikman multiphase theory [21], when its relative density 𝜌 < 0.2. Additionally, for more complex and characteristic
RVE units, their elastic properties can be efficiently characterized through numerical homogenization methods [22].

However, designing porous materials with both ‘stochastic’ and ‘anisotropic’ properties within a multi-scale optimization
framework remains a significant challenge. Multi-scale design methods for porous materials are generally classified into two
categories: ‘seed-based methods’ and ‘lattice embedding methods’. Seed-based methods generate a set of sampling seeds within
the design domain and create topological pores at these seed locations to form the final porous structures. A notable example is
the Voronoi tessellation-based design method, which applies Voronoi tessellation to create porous scaffolds with highly regular
cell shapes and distributions [23–25]. Although Voronoi-based methods can achieve desirable ‘stochastic’ and ‘non-periodic’
characteristics by varying the seeding densities among different RVEs, the mechanical properties of a single RVE tend to be
isotropic, limiting their ability to achieve ‘anisotropic’ properties. On the other hand, lattice embedding methods can easily achieve
2 
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anisotropic multi-scale designs for porous structures [26–28]. These methods define the microarchitecture using typical lattice
layouts such as honeycomb, cross-truss, body-centered cubic (BCC), and Kagome [29,30], or other specifically optimized RVE
architectures [26,27,31], to attain specific local anisotropic properties. The overall functionality is then achieved by optimizing
the assembly of these RVEs. Although lattice embedding methods can effectively achieve the ‘anisotropic’ properties, they often
suffer from the ‘non-stochasticity’ and ‘connectivity’ issues. Ensuring smooth connectivity between RVE interfaces typically requires
additional material constraints at the boundaries, which can limit the design space and result in artificial porous patterns that lack
the stochastic nature and design complexity.

Recently, innovative approaches have been developed to tackle the technical challenges of mimicking natural structures that
imultaneously exhibit ‘stochastic’, ‘anisotropic’, and ‘multiscale’ features. Paulino et al. and Kumar et al. applied spinodal topologies
o design architected porous materials with tailorable anisotropy. In their works, the material microstructure, modeled through
pinodal decomposition theory with specific porosity and orientation, achieves tuned local anisotropy at the micro-level while
aintaining excellent connectivity and randomness over the entire design domain [5,32]. However, this method may generate

solated flaws in designed porous structures, and the final complex topological manifold due to its high-curved boundary surfaces
lso poses certain challenges for manufacturability. On the other hand, some researchers began to design porous structures through
odified Voronoi cells, which typically have relatively simple manufacturing requirements due to their ‘‘quasi-convex pores’’ or

‘truss-based structure’’ geometrical features. Ying et al. [6] pioneered an advanced approach for designing anisotropic porous
tructures using anisotropic centroidal Voronoi tessellation. With their approach, the standard Voronoi cell is transformed into
‘stretching’ form to present anisotropic properties. Liu et al. [33] further developed Ying’s work by applying a stress field leading
esign method to decide the shape and location of their Voronoi cells. This approach enhances the final performance of the tailored
orous architecture. However, the overall framework in the context remains at a qualitative design level rather than a numerical
tructural optimization, lacking precise compliance calculations or volume constraints. To make further progress in this field, there
emains a need to develop a comprehensive optimization framework for multiscale porous structures with tunable anisotropy.

In this work, we introduce a novel multi-scale structural optimization approach utilizing varied-shape Voronoi tessellation
VSVT) to design truss-based porous materials and structures, for which both local anisotropic micro-architecture and overall
ptimized functionality are allowed for the tunability. This proposed bio-inspired design method mimics several microstructural
haracteristics observed in nature, e.g., trabecular, coral skeleton and rock. As such, it not only can achieve a superior mechanical
erformance and lightweight features, but also has a good potential to promote other functionalities through its diverse porosity
nd micro-architecture tessellation. Specifically, a varied-shape Voronoi tessellation (VSVT) method is firstly proposed for designing
nisotropic porous micro-structures with respect to three predefined design variables, i.e., anisotropy ratio, relative density, and
ngle parameters. Then, the VSVT structure is numerical homogenized to derive its elasticity tensor function to the design
ariables. A multi-component VSVT design method using homogenized FE elements is employed to find the optimal solution for
orous structures with maximized mechanical performance. The resulting solutions demonstrate significantly superior compliance
erformance compared to existing isotropic porous designs. In addition, the de-homogenization process of obtaining target micro-
tructural architectures in the VSVT method is accurate and flexible. The proposed structural optimization exhibits excellent
eometry-tailoring capabilities and effectively adheres to local volume constraints. It is expected that this work will provide an
fficient tool for designing porous materials and structures in practical engineering applications, e.g., foam alloy, bone implant and
nergy storage devices, etc.

The section of this article is organized as follows: Section 2 introduces the design framework of porous structure by Varied-shape
oronoi Tessellation (VSVT) method and corresponding anisotropic material property; The corresponding optimization method and
e-homogenizing process is also introduced in this section. Section 3 introduces the numerical example for the VSVT structure to
erify the proposed method. The comprehensive discussions and conclusions are presented in Section 4.

. Methods

This section introduces the detailed optimization process of the proposed method for constructing a VSVT porous structure.
he entire workflow is divided into two stages: ‘modeling part’ and ‘optimization part’, as shown in Fig. 2. The related variables
nd parameters in the process are also marked in the flowchart. It is notable that, in this work, the design variables for the VSVT
tructures and the parameters for topology optimization are not completed equal but have a mapping relationship, as shown in
ig. 2. Numerical homogenization and de-homogenization techniques were used to complete above matching process.

.1. Porous materials design by varied-shape Voronoi tessellation (VSVT) method

Given a specific set of seeding points {𝐏𝑘}, Voronoi tessellation divides the spatial domain 𝛺 into several Voronoi cells, each of
which corresponds to a unique Voronoi seed. For each Voronoi cell 𝑅𝑘, its inner points are closest to its own Voronoi seed compared
to any other Voronoi seeds, as:

𝑅𝑘 = {𝐱 ∈ 𝛺|𝑑(𝐱,𝐏𝑘) ≤ 𝑑(𝐱,𝐏𝑗 )}, for all 𝑗 ≠ 𝑘 (1)

where 𝑗, 𝑘 are the indices of Voronoi seeds, 𝑑(𝐱, 𝑃𝑘) is the distance function of Voronoi tessellation. The standard Voronoi tessellation
is constructed based on Euclidean distance, as follows,

√

(𝑥 − 𝑥 )2 + (𝑦 − 𝑦 )2 (2)
𝑑(𝐱,𝐏𝑘) = ‖𝐱 − 𝐏𝑘‖2 = 𝑝𝑘 𝑝𝑘
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Fig. 2. The complete workflow demonstrating the design process of VSVT porous structure.

where 𝑥, 𝑦, 𝑥𝑝𝑘, 𝑦𝑝𝑘 are the corresponding spatial coordinates of point 𝐱 and Voronoi seed 𝐏𝑘, respectively. With this definition,
the pore shapes tend to exhibit a stochastic, quasi-pentagon or hexagon pattern once the Voronoi seeds are uniformly stochastic
distributed in the space, as depicted by Fig. 3(a). Previous studies have demonstrated that these porous structures constructed using
standard Voronoi tessellation exhibit overall isotropic mechanical properties after performing the homogenization process [23,24,
33].

Notably, the distance function 𝑑(𝐱,𝐏𝑘) plays a critical role in deciding the partition pattern of a Voronoi tessellation. In view of
this, the distance function 𝑑(𝐱,𝐏𝑘) is able to be artificially modified to construct novel Voronoi cells, whose shapes can vary in desired
directions. For the sake of simplification, we mainly construct VSVT structures with quasi-orthogonal anisotropic characteristics in
this work, through a varied distance function 𝑑(𝐱,𝐏𝑘) defined as,

𝑅𝑘 = {𝐱 ∈ 𝛺|𝑑(𝐱,𝐏𝑘) ≤ 𝑑(𝐱,𝐏𝑗 )}, for all 𝑗 ≠ 𝑘 (3)

while

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑(𝐱,𝐏𝑘) = ‖𝐀𝑖𝑠𝑜𝐑(𝐱 − 𝐏𝑘)‖2
𝐱 =

(

𝑥, 𝑦
)𝑇

, 𝐏𝑘 =
(

𝑥𝑝𝑘, 𝑦𝑝𝑘
)𝑇

𝐑 =

[

cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼

]

, 𝐀𝑖𝑠𝑜 =

[

1 0
0 𝐴𝑖𝑠𝑜

]

where 𝐑 and 𝐀𝑖𝑠𝑜 named as the coordinate rotation matrix and the anisotropy matrix. 𝐴𝑖𝑠𝑜 is a predefined index, namely the
anisotropy ratio, which quantitatively represents the degree of anisotropy of a VSVT structure. Herein, the 𝑑(𝐱,𝐏𝑘) in Eq. (3) is
no longer a Euler distance but designed by specialized Riemannian metric. At this stage, the two spatial coordinates of the vector
𝐱 − 𝐏𝑘 along the 𝑥- and 𝑦-axes exert an unequally weighted influence on the final modified distance 𝑑 in Eq. (3) depending on its
value of 𝐴𝑖𝑠𝑜. Consequently, the Voronoi cells in the design domain finally exhibit a ‘stretching’ effect along a specific direction,
resulting in shapes that are more elongated rhomboids rather than regular hexagons or pentagons, as illustrated in Fig. 3(b) and
(c). This induces significantly different volume fractions of struts along the orthogonal axial directions 𝑥′, 𝑦′ in the spatial space,
thus, the new VSVT pattern is predictable to exhibit heterogeneous mechanical properties in both of directions. Furthermore, by
applying the rotation matrix 𝐑 with an angle parameter 𝛼, the principal direction of the VSVT material properties can be further
adjusted as shown in Fig. 3(c).

Given a specific seeding set, the vertex coordinates of each slender rod in VSVT Voronoi cells can be determined uniquely from
Eq. (3). As such, the scaffolds of the Voronoi cells are defined, and one can assign the thickness on them to completely generate a
2-D solid truss-based porous structure. Herein, we use a geometric mapping function (the level-set method) to describe the practical
material phase field of the VSVT porous model. The vertex coordinates of 𝑖th truss bar in VSVT structure as a {(𝑥 , 𝑦 ), (𝑥 , 𝑦 )}.
𝑖,1 𝑖,1 𝑖,2 𝑖,2
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Fig. 3. VSVT porous structures with respect to different design variables, i.e., anisotropy ratio 𝐴𝑖𝑠𝑜 and material principal direction 𝛼. (a) The isotropic porous
structure corresponds to the standard Euclidean distance function 𝑑(𝐱,𝐏𝑘) in Eq. (1). (b) and (c) represent a series of anisotropic porous structures corresponding
to modified distance function 𝑑(𝐱,𝐏𝑘), as given in Eq. (3). Notably, all of the VSVT structures in this figure share the same voronoi seed set {𝐏𝑘}.

The material phase of a typical VSVT structure, 𝛺 is stated as,

⎧

⎪

⎨

⎪

⎩

𝜙(𝐱) > 0, 𝐱 ∈ 𝛺
𝜙(𝐱) = 0, 𝐱 ∈ 𝜕𝛺
𝜙(𝐱) < 0, 𝐱 ∈ 𝑆𝐷 ⧵𝛺

, where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜙(𝐱) = max(𝜙𝑖,𝑟(𝑥, 𝑦, 𝑡), 𝜙𝑖,𝑐1(𝑥, 𝑦, 𝑡), 𝜙𝑖,𝑐2(𝑥, 𝑦, 𝑡))
𝜙𝑖,𝑟(𝑥, 𝑦, 𝑡) = min(𝜙𝑖,𝑟1(𝑥, 𝑦, 𝑡), 𝜙𝑖,𝑟2(𝑥, 𝑦, 𝑡))

𝜙𝑖,𝑟1(𝑥, 𝑦, 𝑡) = 1 − (− sin(𝜃)⋅(𝑥−𝑥𝑖,0)+cos(𝜃)⋅(𝑦−𝑦𝑖,0))2

(𝑡𝑖∕2)2

𝜙𝑖,𝑟2(𝑥, 𝑦, 𝑡) = 1 − (cos(𝜃)⋅(𝑥−𝑥𝑖,0)+sin(𝜃)⋅(𝑦−𝑦𝑖,0))2

(𝐿∕2)2

sin(𝜃) = 𝑦𝑖,2−𝑦𝑖,1
𝐿 , cos(𝜃) = 𝑥𝑖,2−𝑥𝑖,1

𝐿
𝑥𝑖,0 =

𝑥𝑖,1+𝑥𝑖,2
2 , 𝑦𝑖,0 =

𝑦𝑖,1+𝑦𝑖,2
2 ,

𝐿 =
√

(𝑥𝑖,2 − 𝑥𝑖,1)2 + (𝑦𝑖,2 − 𝑦𝑖,1)2

𝜙𝑖,𝑐1(𝑥, 𝑦, 𝑡) = 1 − (𝑥−𝑥𝑖,1)2+(𝑦−𝑦𝑖,1)2

(𝑡𝑖∕2)2
,

𝜙𝑖,𝑐2(𝑥, 𝑦, 𝑡) = 1 − (𝑥−𝑥𝑖,2)2+(𝑦−𝑦𝑖,2)2

(𝑡𝑖∕2)2

(4)

where 𝜕𝛺 is the boundary of the solid geometry of the VSVT structure. 𝑆𝐷 is the region of the total design space, and 𝐱 is the
coordinate vector of 𝑆𝐷. The default 2-D topological shape of the ith truss component contains a rectangular body and two circle
endpoints corresponding to function 𝜙𝑖,𝑟(𝑥, 𝑦, 𝑡), 𝜙𝑖,𝑐1(𝑥, 𝑦, 𝑡) and 𝜙𝑖,𝑐2(𝑥, 𝑦, 𝑡), respectively. 𝜃 is the angle of inclination of the truss body
with respect to the positive direction of the 𝑥 axis and its corresponding trigonometric values are expressed as ‘sin(𝜃)’ and ‘cos(𝜃)’
terms in the equation. 𝑡𝑖 is the given thickness value of the truss component. The complete VSVT structure is finally obtained through
a Boolean merging operation of the rectangular and circular regions of all truss components. This is accomplished using a ‘max’
operation on the terms 𝜙𝑖,∶ in Eq. (4).

In existing works, the uniform, homogeneous distribution for the seeding set in the design space (RVE) typically suggests an equal
seeding density across the area. This can be achieved using several sampling methods, including Poisson-Disk, Blue Noise, Halton
Sequence and Monte Carlo sampling. In this work, Bridson’s Poisson Disk sampling method [34,35] is applied to generate Voronoi
seeds with stochastic features, closely resembling natural structures. In doing so, it enhances the bio-similarity in the design of VSVT
structures. The detailed seeding process using the Poisson Disk sampling method is presented in Appendix A. For each RVE in a
normalized size of 1 × 1, a threshold range for the number of seeding points 𝑁𝑠 ∈ [60, 120] is set in the work to ensure the generation
of sufficiently dense Voronoi cells within the domain. In doing so, the influence of geometric randomness on the properties of the
RVE is significantly reduced. Consequently, the volume and elasticity tensor of the RVE can be accurately expressed as functions of
the design variables through homogenization computation.

2.2. Homogenization of VSVT micro-structures

Firstly, it is important to determine the effective Young’s modulus of the proposed VSVT micro-structure and study its anisotropic
effects. The macroscopic effective elasticity tensor, 𝐸𝐻

𝑝𝑞𝑟𝑠, of some typical VSVT micro-structures (RVEs) with respect to different
design variables is determined using a homogenization process. The aim of this subsection is to establish the matching relationship
between effective Young’s modulus (elasticity tensor) and the three design parameters of VSVT porous structures, i.e., anisotropy
ratio 𝐴𝑖𝑠𝑜, relative density 𝜌, and material principal direction 𝛼. For the sake of simplification, the default size of each RVE unit is set
as 1×1, and the Young’s modulus and Poisson’s ratio of the basic material are set as 𝐸𝑠 = 1 and 𝜈 = 0.3, respectively. Therefore, the
‘effective modulus’ of the material 𝐸𝐻∕𝐸𝑠 is simplified as 𝐸𝐻 . The normalized thickness 𝑡∕𝐿𝑅𝑉 𝐸 and the relative seeding density
𝑁∕𝑆 can also be directly equal to the thickness 𝑡 and the number of seeds 𝑁 .
𝑅𝑉 𝐸 𝑠
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Regarding a general cellular structure under the periodic boundary condition, the macroscopic effective elasticity tensor, 𝐸𝐻
𝑝𝑞𝑟𝑠,

of a single RVE is determined using a homogenization process, and expressed as [22,25],

𝐸𝐻
𝑝𝑞𝑟𝑠 =

1
𝑉 ∫𝛺𝑅𝑉 𝐸

𝐸𝑝𝑞𝑟𝑠

(

𝜀0(𝑝𝑞)𝑖𝑗 − 𝜀𝑝𝑞𝑖𝑗
)(

𝜀0(𝑝𝑞)𝑘𝑙 − 𝜀𝑝𝑞𝑘𝑙
)

𝑑𝑉 (5)

here 𝑉 is the volume of a RVE element and takes a normalized value 1. 𝜀0(𝑝𝑞)𝑖𝑗 is the prescribed macro-scale strain function and
𝑝𝑞
𝑖𝑗 is the local varying elasticity field. For the sake of simplification, we assume 𝜀0(𝑝𝑞)𝑖𝑗 equal unit strain boundary 𝜀0(11)𝑖𝑗 = {1, 0, 0}𝑇 ,
0(22)
𝑖𝑗 = {1, 0, 0}𝑇 , and 𝜀0(12)𝑖𝑗 = 𝜀0(21)𝑖𝑗 {1, 0, 0}𝑇 as the basic boundary conditions. In the meanwhile, the term 𝜀𝑝𝑞 is calculated through
detailed 2D FEM model of VSVT truss structures under a plane-stress state. By solving Eq. (5), the final homogenized elasticity

ensor 𝐸𝐻
𝑖𝑗𝑘𝑙 is obtained and expressed in form of a Voigt notation as,

𝐃𝐻 =
⎡

⎢

⎢

⎣

𝐷11 𝐷12 𝐷13
𝐷21 𝐷22 𝐷23
𝐷31 𝐷32 𝐷33

⎤

⎥

⎥

⎦

, while 𝐷𝐻
𝑖𝑗 = 𝐷𝐻

𝑗𝑖 (6)

here 𝐷𝐻 is a symmetric matrix which usually contains six independent elements for a general heterogeneous material. The
ubscripts 1, 2, 3 correspond 𝑥, 𝑦, 𝑧 axis direction in the Cartesian coordinate system, respectively. Specifically, if a RVE structure
ossess an orthotropic mechanical property, the number of independent terms in the elasticity tensor will decrease to be 4, as 𝐷11,
22, 𝐷12, 𝐷33, and 𝐷13 ≡ 0, 𝐷23 ≡ 0. Under a 2-D plane stress state, the effective Young’s modulus of the homogenized element is

valuated as 𝐸𝑥 = 1∕𝑆𝐻 (1, 1), 𝐸𝑦 = 1∕𝑆𝐻 (2, 2), which are the corresponding Young’s modulus along 𝑥, 𝑦-axis directions, respectively.
𝐻 is the flexibility matrix as the inverse of 𝐷𝐻 , i.e., 𝑆𝐻 = [𝐷𝐻 ]−1.

.3. Mechanical properties of VSVT RVE units

This section presents the mechanical properties of VSVT RVE units, e.g. relative density property, homogenized elasticity.
lthough VSVT is a typical stochastic porous material, its micro-architecture over a local domain possesses a strong regularity. This

eature allows us to design VSVT structures (RVEs) that possess tunable yet stable anisotropic mechanical properties. From a design
erspective, it is widely accepted that the stochastic influence of the micro-architecture of a porous material significantly decreases
nce the total number of pore cells surpasses a certain threshold in the design domain. At this point, the mechanical properties
r volume property of the RVE unit of a porous material are usually stable and strongly correlated with its design variables [36].
umerous isotropic Voronoi-based porous structures have validated this observation, explicitly determining the elasticity tensor or
oung’s modulus of RVE units as a polynomial or exponential function in terms of the relative density, 𝜌, in accordance with the
ibson–Ashby theory [36].

In the optimization process, the effective Young’s modulus 𝐸𝐻 of a RVE unit is usually evaluated in terms of its relative density
𝜌’, as discussed in Section 2.1. Here, the relative density 𝜌 is defined as the ratio of the inner solid material volume to the total
olume of a single RVE unit. Obviously, the value of 𝜌 will be determined by 𝑁𝑆 and 𝑡, jointly. To derive the accurate mapping
elationship between the relative density 𝜌 and 𝑁𝑆 , 𝑡, a database of VSVT RVE units was constructed through the combinatorial
onfigurations by varying 𝑁𝑠 from 10 to 200, 𝑡 from 0.01 to 0.1 and 𝐴𝑖𝑠𝑜 from 1 to 5, respectively. For each set of design parameters
e.g., 𝑁𝑠 = 10 and 𝑡 = 0.05 under 𝐴𝑖𝑠𝑜 = 1), 10 repetitive VSVT models are generated, and their corresponding material properties
re determined. Subsequently, by performing the statistic analysis of each dataset, the influence of the stochasticity of the VSVT
tructure on its elastic properties is quantitatively analyzed.

The variations of the relative density 𝜌 with respect to 𝑁𝑆 and 𝑡 are derived and depicted in Fig. 4(a) and (b), which corresponding
he cases of 𝐴𝑖𝑠𝑜 = 1 and 𝐴𝑖𝑠𝑜 = 5, respectively. It is observed that 𝜌 approximately follows a quasi-exponential function with respect
o 𝑁𝑠 or 𝑡. The dispersion error of 𝜌 rapidly decreases as the number of seeds 𝑁𝑠 increases. The maximum ‘Deviation Rate’ for 𝜌 is

of 19.6% and 15.0% for cases (a) and (b), respectively, both of which occur at the data curve of 𝑁𝑠 = 10, 𝑡 = 0.05. When 𝑁 rises to
60, the ‘Deviation Rate’ rapidly decreases to 3.9% and 2.3% for cases (a) and (b), respectively. The standard variation is 0.0278 and
0.04 for cases (a) and (b), respectively, when 𝑁 = 10. In comparison, these values decrease to 0.007 and 0.004 when 𝑁 increase to
60. Based on this preliminary validation, we conclude that an implicit function 𝜌(𝑁𝑠, 𝑡) that can accurately map the relative density
(𝜌) to the design parameters (𝑁𝑠, 𝑡) exists for VSVT structures, when 𝑁𝑠 is in the interval of [60, 200].

Considering the manufacturability and practical applications, this study mainly focuses on the design variables within the ranges
of 𝜌 ∈ [0.2, 1] and 𝑁𝑠 ∈ [60, 120] in subsequent sections. A small-scale double-layer feed-forward network (DFN) rather than the
polynomial fitting function is used to explore the implicit mapping function 𝜌(𝑁𝑠, 𝑡). 𝑁𝑠 and 𝑡 are defined as the basic input of
DFN, while 𝜌 is set as the output. The hidden layer amount and training-validation split ratio is respectively set as 5 and 75%:25%.
The training process was completed using MATLAB neural network fitting toolbox (version 23, Mathworks.co., Ltd). The method
yielded a curved interpolation surface with high efficiency and accuracy as depicted in Fig. 4(c) and (d). The training process on a
400-sample database was completed within 2 s and the mean squared error (MSE) for the curve fitting is less than 1e-5. This trained
DFN and the generated data will be used for the de-homogenization process of this work.

To further study the mechanical properties of VSVT RVE units, in particular their anisotropic effects, we analyze the effective
oung’s modulus of VSVT RVE units with different configurations that are extracted from the database. The curve fitting results
learly demonstrate the mapping relationship between the effective modulus and the design variables, i.e., 𝐴𝑖𝑠𝑜, 𝜌 and 𝛼. Fig. 5(a)
illustrates the variations of effective Young’s modulus 𝐸𝑥 and 𝐸𝑦 with respect to the relative density 𝜌 under different values of 𝐴𝑖𝑠𝑜.
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Fig. 4. The mapping relationship of 𝜌 with respect to seed amount 𝑁𝑠 and truss thickness 𝑡 for various VSVT structures (RVEs). (a) and (b) present data
curves with 𝑁𝑠 ∈ [10, 200] under 𝐴𝑖𝑠𝑜 = 1 and 5, respectively. (c),(d) presents the predicted neural network function as blue-white surface for 𝑁𝑠 ∈ [60, 120] and
𝜌 ∈ [0.2, 1] 𝐴𝑖𝑠𝑜 = 1 and 5, respectively. The average error of the predictions for both cases is under 1%.

Fig. 5. The demonstration of effective modulus for VSVT RVEs with different configurations. (a) shows the Young’s modulus of the RVE in X- and Y- direction
(as Fig. 3) while 𝐴𝑖𝑠𝑜 = 1, 2, 3, 4, 5 and 𝜌 ∈ [0.2, 1]. The curve 𝐴𝑖𝑠𝑜 = 1 represent a isotropic material state. This data is closed with ones by Lu’s study [23] which
is illustrated as the green ‘o’ curve. (b) presents polarized plots of effective modulus for four typical VSVT RVE. The corresponding shows clear isotropic or
orthotropic characteristic. The fourth RVE is set as 𝛼 = 0◦, while others 𝛼 = 0◦.

It shows that the effective modulus 𝐸𝑥 or 𝐸𝑦 both exhibit a clear power function relationship with respect to the relative density
𝜌 under the same 𝐴𝑖𝑠𝑜. When 𝐴𝑖𝑠𝑜 = 1, the VSVT method, which corresponds to a normal Euclidean distance function, results in a
standard Voronoi-tessellated porous architecture. In this case, it leads to the RVE unit to possess an approximate isotropic elasticity
tensor, for which the Young’s modulus curves of ‘𝐸𝑥’ and ‘𝐸𝑦’ are almost the same, as shown in Fig. 5(a). This finding is consistent
with the results for Voronoi-based isotropic porous materials by Lu et al. [23], depicted by the green curve in the image.

As 𝐴𝑖𝑠𝑜 gradually increases from 1 to 5, the geometry of the VSVT cellular structure exhibits a strong stretching effect along the 𝑥-
axis. This architecture results in a nonequivalent material distribution in the 𝑥 and 𝑦 directions, which well explains why 𝐸𝑥 increases
significantly while 𝐸𝑦 decreases to some extent in Fig. 5(a). Fig. 5(b) illustrates the polar plots of the elasticity tensor for four VSVT
RVE units with different configurations as, 𝐴𝑖𝑠𝑜, 𝜌, 𝛼 = (1, 0.5, 0◦), (2, 0.5, 0◦), (3, 0.5, 0◦), (3, 0.5, 45◦). The corresponding modulus
values align with the aforementioned statements. Furthermore, the VSVT RVE units with 𝐴𝑖𝑠𝑜 = 1 or 𝐴𝑖𝑠𝑜 = 2, 3 (with 𝛼 = 0◦) exhibit
a strong isotropic or orthotropic characteristic, respectively. While, the VSVT structure with 𝛼 = 45◦ exhibits a strong anisotropic
7 
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Fig. 6. The demonstration of homogenized Young’s modulus 𝐸𝐻 with respect to the anisotropy ratio 𝐴𝑖𝑠𝑜 = 1, 3, 5, 10, 15, 20. As 𝐴𝑖𝑠𝑜 increases, the pattern of VSVT
porous structure will gradually transform into parallel strip architecture, while its material strength exceeds the H–S (Hashin–Shtrikman) bound and approaches
the Voigt bound. For the sake of clarity, the actual seed amount 𝑁𝑠 of the right side RVE decreases from 60 to 45, 30, and 10 for the cases of 𝐴iso = 10, 15,
and 20, respectively.

effect. Note, 𝐴𝑖𝑠𝑜 is not necessary to be an integer and can be a continuous variable, even the above analysis only focuses on the
integer values of 𝐴𝑖𝑠𝑜.

Fig. 6 further demonstrates the numerical range of the effective Young’s modulus(𝐸𝐻
𝑥 ) of VSVT structures with different design

configurations (𝐴𝑖𝑠𝑜). These modulus variations for VSVT RVEs are compared to the variational bounds for effective moduli of
composite materials, such as the Hashin–Shtrikman bound and the Voigt upper limit. It can be seen that as 𝐴𝑖𝑠𝑜 increases, the
VSVT design method can generate high-stiffness metamaterial RVE units for porous materials. The Young’s modulus of these VSVT
RVE units typically exceeds the Hashin–Shtrikman upper bound 𝐸𝐻 = 𝜌∕(3 − 2𝜌), while gradually approaching the Voigt limit
𝐸𝐻 = 𝜌 [21,37].

As the VSVT structure with 𝐴iso = 3 exceeds the Hashin–Shtrikman upper bound, we can claim that the designed VSVT structures
with 𝐴iso = 1 ∼ 3 exhibits sufficient advanced stiffness property over the most common isotropic porous materials in nature. In fact,
as 𝐴iso significantly increases towards the positive infinity, the VSVT geometry tend to transform into a typical ‘horizontal parallel
strip pattern’ rather than a ‘regular porous topology’ in the 2D plane, as illustrated by the cases of 𝐴𝑖𝑠𝑜 = 15, 20 in Fig. 6. This
maximizes stiffness along the 𝑥-direction while providing almost no support in the 𝑦-direction. Consequently, the corresponding
modulus of the RVE will ultimately reach the upper Voigt limit of strength [20,38]. These results imply the potential to achieve
excellent axial strength by designing VSVT structures with tunable anisotropy.

However, it should also be noted that merely increasing 𝐴𝑖𝑠𝑜 is not always an effective means to infinitely improve overall
compliance performance due to the ‘Voigt bound’ strength. Fig. 6 clearly indicates that the rate of increase in 𝐸𝐻

𝑥 rapidly diminishes
as 𝐴𝑖𝑠𝑜 increases. In summary, due to reliability considerations such as multi-directional loading capability, the 3D printing contact
angle [39], and smooth connectivity, we believe that an upper limit of 𝐴𝑖𝑠𝑜 = 3 is both reasonable and advantageous for constructing
VSVT structures for practical applications.

Finally, the elasticity terms of VSVT structures 𝐷𝑖𝑗 , varying with respect to the relative density 𝜌, are predicted by the DFN and
plotted in Fig. 7. The DFN is set up with a two-hidden-layer structure, and the training time is less than 5 s. In Appendix B, an
explicit polynomial fitting function is provided and the corresponding coefficients are given in Table B.1. To avoid complete solid
RVE in the optimization process, we reduce the upper bound of 𝜌 from 1 to 0.8 and simultaneously delete out-of-range data in the
training process. In overview, these results further approve the above discussions presented in this section. Due to the orthotropic
mechanical properties (as 𝛼 = 0), the terms 𝐷13, 𝐷23 are almost equal to 0, while 𝐷11, 𝐷22 present huge difference. Additionally, a
new curve for 𝐴𝑖𝑠𝑜 = 1.5 is added to the figure to represent an intermediate value, considering the large gap in mechanical properties
between 𝐴𝑖𝑠𝑜 = 1 and 𝐴𝑖𝑠𝑜 = 2.

2.4. Multi-scale porous materials optimization with VSVT

Structural optimization provides an efficient method for imitating the characteristics of natural materials. In this section, a two-
step multi-scale optimization method is developed to design VSVT structures. The optimization objective is to achieve the maximum
stiffness for VSVT structures. The basic design domain is firstly divided into a number of homogenized quadratic macro-elements.
For each macro-element, three design parameters, namely 𝐴𝑖𝑠𝑜, 𝜌, and 𝛼, are assigned, and its elasticity tensor is determined using
an implicit function 𝐷𝐻 (𝐴 , 𝜌, 𝛼). In the first-step, a parametric optimization is performed on the macro-scale FE model with
𝑖𝑠𝑜
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Fig. 7. The matching relationship of homogenized elasticity tensor with respect to relative density 𝜌. The subscript of 𝐷𝑖𝑗 corresponds 𝑖th row, 𝑗th column term
of 𝐷𝐻 .

homogenized elements to determine a set of optimal design parameters, 𝐴𝑖𝑠𝑜, 𝜌, and 𝛼, in line with the optimization objectives.
Subsequently, the optimal solutions obtained from the first-step procedure are transferred into actual VSVT architectures at the
micro-scale through a de-homogenization process.

Theoretically, the design parameters in 𝐷𝐻 (𝐴𝑖𝑠𝑜, 𝜌, 𝛼) are all continuous variables. However, from Fig. 7, we can see that the
stiffness terms (𝐷𝑖𝑗) given by a series of discrete values of 𝐴𝑖𝑠𝑜 can cover the majority of the design domain. Therefore, only
a few discrete values for 𝐴𝑖𝑠𝑜 = 1, 1.5 (or 2), 3 are used for the structural topology optimization in this work. VSVT structures
with different discrete values of 𝐴𝑖𝑠𝑜 can be considered as distinct types of structural components (materials). This allows us to
perform a corresponding multi-component topology optimization, analogous to the ‘multi-material’ design in [40]. The stiffness
terms 𝐷𝐻 (𝐴𝑖𝑠𝑜, 𝜌, 𝛼) varying with respect to the continuous variable 𝐴𝑖𝑠𝑜 are presented in Fig. B.1, which further demonstrates the
feasibility of applying discrete values of 𝐴𝑖𝑠𝑜 in the design of VSVT micro-architectures. In this work, we introduce a new design
variable, namely the anisotropy index 𝐙, which is a continuous design variable yet only represents a few discrete anisotropic states
for VSVT structures, to replace 𝐴𝑖𝑠𝑜 in the optimization process. This is a similar technology of void-solid formations using 0 or 1
densities in SIMP method [23]. In this way, a typical compliance optimization process for the design of VSVT structures can be
stated as,

find 𝐙,𝝆,𝜶
min
𝐙,𝝆,𝜶

𝐶 = 𝐅𝑇𝐔

s.t. 𝑉 (𝐙,𝝆) =
∑

𝛺 𝑣𝑙
𝑁𝑒 =

∑𝑁𝑒

𝑙=1
∑𝑚

𝑖=1 𝑧𝑙𝑖𝜌𝑙
𝑁𝑒 ≤ 𝑉𝑓𝑟𝑎𝑐

𝐊(𝐙,𝝆,𝜶)𝐔(𝐙,𝝆,𝜶) = 𝐅

(7)

In Eq. (7), the objective function C in the optimization process is the compliance of the whole structure under an external
loading vector 𝐅. 𝑉 is the volume fraction of the total VSVT material over the entire design domain, constrained by an upper
bound threshold 𝑉𝑓𝑟𝑎𝑐 . Global stiffness matrix 𝐊 and nodal displacement vector 𝐔 are expressed as the functions of three sets of
design variables, 𝐙, 𝝆, 𝜶. As introduced above, 𝐙 is the anisotropy index, defined by a matrix as 𝐙 =

[

𝑧𝑙𝑖
]

𝑁𝑒×𝑚. For its subscripts
in element 𝑧𝑙𝑖, the row index 𝑙 = 1,… , 𝑁𝑒 denotes the 𝑙th macro-element in the discretized design domain 𝛺, and 𝑁𝑒 is the total
number of macro-elements. The column subscript 𝑖 = 1,… , 𝑚 indicates the 𝑖th candidate heterogeneous VSVT architecture (a VSVT
component), and 𝑚 is the total number of VSVT candidate components expected to used in the optimization process. Therefore, the
value of 𝑧𝑙𝑖 ∈ [0, 1] represents the presence percentage of 𝑖th candidate heterogeneous VSVT component at 𝑙th macro-element. Each
element 𝜌𝑙 in the relative density design vector 𝝆 =

[

𝜌𝑙
]𝑁𝑒

𝑙=1 represents the local solid volume fraction of VSVT materials in the 𝑙th
macro-element, and 𝜌𝑙 ∈ [0, 1]. The design variable 𝛼𝑙 in the vector 𝜶 =

[

𝛼𝑙
]𝑁𝑒

𝑙=1 represents the rotation angle of the principal direction
of the VSVT component at the 𝑙th macro-element with respect to the positive 𝑥 axis, and 𝛼 ∈ (−𝜋∕2, 𝜋∕2]. The terms 𝑣𝑙𝑖 = 𝑧𝑙𝑖 ⋅ 𝜌𝑙 is
the actual volume fraction of 𝑖th candidate VSVT structure at 𝑙th element.
9 
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It is evident that the mixing status of m types of VSVT structures in the 𝑙th macro-element can be fully described by the row
vector {𝐳𝑖}𝑙. Taking into account the challenges of the de-homogenization process, different VSVT components are not allowed to
mix within a single macro-element in this work. Consequently, after optimization, the element should either be completely empty
or contain only one candidate VSVT component. As a result, the convergent {𝐳𝑖}𝑙 should remain in the form specified by Eq. (8), in

hich a non-zero value of 𝑧𝑙𝑖 = 1 indicates the 𝑖th anisotropic VSVT component in the 𝑙th element.

{𝐳𝑖}𝑙 =
⎧

⎪

⎨

⎪

⎩

𝟎, No solid material in 𝑙th element

{𝑧𝑙𝑖 = 1, 𝑧𝑙𝑗 = 0}, where 𝑗 = 1, 2...𝑚 & 𝑗 ≠ 𝑖

(8)

To enforce well-posedness and avoid ‘checkboard’ phenomenon in the macro-scale optimization process [5,41], a ‘density filter’
technique is applied on the anisotropy index 𝐙, relative density 𝝆, and principal direction 𝜶. Take the anisotropy index 𝐙 as an
example,

⎧

⎪

⎨

⎪

⎩

�̃� = 𝐏𝐙
𝑃𝑖𝑗 =

ℎ𝑖𝑗
∑𝑁𝑒

𝑘=1 ℎ𝑖𝑘
, ℎ𝑖𝑗 = max(𝑅 − ‖𝑥𝑖 − 𝑥𝑗‖2, 0)

(9)

here 𝑃𝑖𝑗 is a term of the regularization mapping matrix 𝐏. Matrix �̃� represents the anisotropy index field after density filtering
rocessing. ‖𝑥𝑖 − 𝑥𝑗‖2 is the Euclidean norm between the centers of 𝑖th and 𝑗th elements, 𝑅 is the filter radius.

Subsequently, a Heaviside projection is utilized to process �̃� to further increase the topology optimization quality in the vicinity
f structural boundary by penalizing the intermediate values of 𝑧𝑙𝑖 between 0, 1 with a filter scheme. The penalized elemental
nisotropy field �̄� is obtained using the Heaviside projection method [42] as,

�̄�𝑙𝑖 = 𝐻(�̃�𝑙𝑖) =
tanh(𝛽𝜂) + tanh(𝛽(�̃�𝑙𝑖 − 𝜂))
tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))

(10)

where 𝛽 and 𝜂 are the ‘threshold’ and ‘sharpness’ parameters of the Heaviside projection, respectively.
As discussed above, 𝑧𝑙𝑖 = 1 or 0 implies the presence or absence of a VSVT structure with the 𝑖th anisotropy index (𝐴iso) at the

𝑙th macro-element. Intermediate values of 𝑧𝑙𝑖 within the range [0, 1], which would indicate a mixture of different VSVT components,
are not considered in this work. Therefore, a modified field 𝐖 = {𝑤𝑙1, 𝑤𝑙2,… , 𝑤𝑙𝑚}𝑁

𝑒

𝑙=1 is defined through a SIMP penalizing process
based on the projection variable field �̄� = {�̄�𝑙1, �̄�𝑙2,… , �̄�𝑙𝑚}𝑁

𝑒

𝑙=1, to further penalize intermediate values of 𝐙. Each term in the matrix
𝐖 is defined as 𝑤𝑙𝑖 = �̄�𝑝𝑙𝑖 with a penalty factor 𝑝 > 1. This ensures that 𝐖 provides precise, well-posed topological information in
he multiscale optimization and subsequent de-homogenization processes.

In Eq. (7), the global stiffness matrix 𝐊, is assembled from the element stiffness matrices 𝐊𝐞𝑙 as:

𝐊 =
𝑁𝑒
∑

𝑙=1
𝐊𝐞𝑙 =

𝑁𝑒
∑

𝑙=1
(∫𝛺𝑙

𝐁𝑇
𝑗 𝐃𝑙(𝐙𝑙 , 𝜌𝑙 , 𝛼𝑙)𝐁𝑘𝑑𝐱), (11)

here 𝐁 is the strain–displacement matrix of the shape function derivatives, 𝐃𝑙 is the elasticity tensor of element 𝑙. Considering
n element with different VSVT candidate components, its 𝐃𝑙 can be expressed via the following interpolation function, which is

analogous to the ones in multi-material topology method as in [43],

𝐃𝑙 =
𝑚
∑

𝑖=1
𝑤𝑙𝑖

𝑚
∏

𝑗=1
𝑗≠𝑖

(1 − 𝛾𝑤𝑙𝑗 )𝐌(𝛼𝑙)𝐃𝐻
𝑖 (𝜌𝑙)𝐌𝑇 (𝛼𝑙), 𝑙 = 1,… , 𝑁𝑒. (12)

Eq. (12) penalizes mixing between candidate VSVT components (materials) through mixing parameter 𝛾 ∈ [0, 1][5]. 𝐃𝐻
𝑖 (𝜌𝑙) is the

homogenized elasticity tensor of a candidate VSVT structure with 𝑖th anisotropic index in element l, whose internal terms (𝐃𝐻
𝑖 )𝑗𝑘

are expressed as a fitting function (𝑖(𝜌𝑙))𝑗𝑘 as shown in Fig. 7. 𝐌 is a standard tensor transformation matrix for adjusting material
orientation, as defined in Eq. (20).

The optimization problem can be solved by a typical iterative gradient based algorithm, e.g., the ‘Method of Moving Asymptotes’
(MMA) algorithm. As the objective function 𝑓 is the structural compliance 𝐶, the derivatives of the compliance 𝐶 with respect to
each design variable are given by,

𝜕𝑓
𝜕𝐳𝑖

=
𝜕�̃�𝑖
𝜕𝐳𝑖

𝜕�̄�𝑖
𝜕�̃�𝑖

𝜕𝐰𝑖
𝜕�̄�𝑖

𝜕𝑓
𝜕𝐰𝑖

(13)

𝜕𝑓
𝜕𝑤𝑙𝑖

= −𝐔𝑇 𝜕𝐊
𝜕𝑤𝑙𝑖

𝐔 = −𝐔𝑇 𝜕
∑𝑁𝑒

1 𝐊𝐞𝑙

𝜕𝑤𝑙𝑖
𝐔 (14)

𝜕𝑓
𝜕𝜌𝑙

= −𝐔𝑇 𝜕𝐊
𝜕𝜌𝑙

𝐔 = −𝐔𝑇 𝜕
∑𝑁𝑒

1 𝐊𝐞𝑙

𝜕𝜌𝑙
𝐔 (15)

𝜕𝑓
= −𝐔𝑇 𝜕𝐊𝐔 = −𝐔𝑇 𝜕

∑𝑁𝑒

1 𝐊𝐞𝑙
𝐔 (16)
𝜕𝛼𝑙 𝜕𝛼𝑙 𝜕𝛼𝑙

10 
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Considering Eqs. (9) and (10), the terms in Eq. (13) can be further simplified as,
[

𝜕�̃�𝑖
𝜕𝐳𝑖

]

= 𝐏𝑇

[

𝜕�̄�𝑖
𝜕�̃�𝑖

]

=
𝜕�̄�𝑘𝑗
𝜕�̃�𝑙𝑖

=

⎧

⎪

⎨

⎪

⎩

𝛽(1−tanh2(𝛽(�̃�𝑙𝑖−𝜂)))
tanh(𝛽𝜂)+tanh(𝛽(1−𝜂)) , if 𝑙 = 𝑘 and 𝑗 = 1

0, otherwise

[

𝜕𝐰𝑖
𝜕�̄�𝑖

]

=
𝜕𝐰𝑘𝑗

𝜕�̄�𝑙𝑖
=

{

𝑝�̄�𝑝−1𝑙𝑖 , if 𝑙 = 𝑘 and 𝑗 = 1
0, otherwise

(17)

For the derivatives of the local stiffness matrix with respect to 𝐖, it can be expressed with a standard FEM model as,

𝜕
∑𝑁𝑒

1 𝐊𝐞𝑙

𝜕𝑤𝑙𝑖
= ∫𝛺𝑙

𝐁′
𝑒
𝜕𝐃𝑘
𝑤𝑙𝑖

𝐁𝑒𝑑𝑥𝑑𝑦. (18)

𝑥, 𝑦) and 𝐁𝑒 are the coordinates and strain–displacement matrix over the domain of element 𝑙. The inner terms are stated as,

𝜕𝐃𝑘
𝑤𝑙𝑖

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚
∏

𝑗=1
𝑗≠𝑖

(1 − 𝛾𝑤𝑙𝑗 )[𝐃𝐻
𝑙𝑖 ]

𝛼 −
𝑚
∑

𝑝=1
𝑝≠𝑖

𝛾𝑤𝑙𝑝

𝑚
∏

𝑟=1
𝑟≠𝑖
𝑟≠𝑝

(1 − 𝛾𝑤𝑙𝑟)[𝐃𝐻
𝑙𝑝 ]

𝛼 , if 𝑙 = 𝑘

0, otherwise

(19)

where [𝐃𝐻
𝑘𝑖 ]

𝛼 is the simplified notation of elasticity tensor omitting the Rotation matrix terms, and given by,

[𝐃𝐻
𝑙𝑖 ]

𝛼 = 𝐌(𝛼𝑙)𝐃𝐻
𝑖 (𝜌𝑙)𝐌𝑇 (𝛼𝑙)

𝐌(𝛼𝑙) =
⎡

⎢

⎢

⎣

cos2(𝛼𝑙) sin2(𝛼𝑙) −2 cos(𝛼𝑙) sin(𝛼𝑙)
sin2(𝛼𝑙) cos2(𝛼𝑙) 2 cos(𝛼𝑙) sin(𝛼𝑙)

cos(𝛼𝑙) sin(𝛼𝑙) − cos(𝛼𝑙) sin(𝛼𝑙) cos(2𝛼𝑙)

⎤

⎥

⎥

⎦

(20)

Similarly, Eqs. (15) and (16) can be expressed as,

𝜕𝐃𝑘
𝜕𝜌𝑙

=
𝑚
∑

𝑖=1
𝑤𝑙𝑖

𝑚
∏

𝑗=1
𝑗≠𝑖

(1 − 𝛾𝑤𝑙𝑗 )
𝜕[𝐃𝐻

𝑘𝑖 ]
𝛼

𝜕𝜌𝑙
,

𝜕[𝐃𝐻
𝑘𝑖 ]

𝛼

𝜕𝜌𝑙
= 𝐌(𝛼𝑘)

𝜕𝐃𝐻
𝑖 (𝜌𝑘)
𝜕𝜌𝑙

𝐌(𝛼𝑘)𝑇

𝜕(𝐃𝐻
𝑖 (𝜌𝑘))𝑝𝑞
𝜕𝜌𝑙

=

⎧

⎪

⎨

⎪

⎩

𝜕(𝑖)𝑝𝑞
𝜕𝜌𝑙

, if 𝑙 = 𝑘

0, otherwise
term index 𝑝𝑞 = 11, 12,… , 33 for 𝐃𝐻

𝑖

(21)

and

𝜕[𝐃𝐻
𝑘𝑖 ]

𝛼

𝜕𝛼𝑙
=

⎧

⎪

⎨

⎪

⎩

𝜕𝐌(𝛼𝑘)
𝛼𝑙

𝐃𝐻
𝑖 𝑀(𝛼𝑘)𝑇 +𝑀(𝛼𝑘)𝐃𝐻

𝑖
𝜕𝐌𝑇 (𝛼𝑘)

𝛼𝑙
, if 𝑙 = 𝑘

0, otherwise
(22)

For the global volume constraint and its corresponding derivative functions in Eq. (7), given by,

𝑔 =
∑

𝑣𝑙𝑖
𝑁𝑒 − 𝑉𝑓𝑟𝑎𝑐 =

∑

�̄�𝑙𝑖𝜌𝑙
𝑁𝑒 − 𝑉𝑓𝑟𝑎𝑐 , 𝑙 = 1...𝑁𝑒, 𝑖 = 1,… , 𝑚

𝜕𝑔
𝜕𝐳𝑖

=
𝜕�̃�𝑖
𝜕𝐳𝑖

𝜕�̄�𝑖
𝜕�̃�𝑖

𝜕𝑔
𝜕�̄�𝑖

=
𝜕�̃�𝑖
𝜕𝐳𝑖

𝜕�̄�𝑖
𝜕�̃�𝑖

𝜌𝑙
𝑁𝑒

𝜕𝑔
𝜕𝜌𝑙

=
𝑚
∑

𝑖=1

�̄�𝑙𝑖
𝑁𝑒 ,

𝜕𝑔
𝜕𝛼𝑙

= 0

(23)

where its terms are identical to those in Eqs. (7) and (17). For the sake of clarity, we simplified the density filter expression of
design variables 𝝆 and 𝜶 as in Eqs. (20) to (23). Similar with Eq. (9), these design variables should all be substituted by �̃� = 𝐏 ⋅ 𝝆
and �̃� = 𝐏 ⋅ 𝜶 in the practical program implementation.

To avoid undesirable local optima, five continuation steps with the material interpolation parameters, i.e., 𝑝 = [1, 2, 3, 3, 3]
and 𝛾 = [0, 0.25, 0.5, 0.75, 1] are performed in the optimization process. Each continuation step is considered to have converged
after reaching the maximum number of iterations, as defined the maximum of iterations ‘MaxIter’ = [50, 50, 50, 50, 200], or when
the variable change is less than the convergence tolerance tol = 0.01. To avoid the ‘gradient vanishing’ problem, the sharpness
parameter 𝛽 for Heaviside projection is kept as 1 in early stages of the optimization process. After the convergence of 𝑝 and 𝛾 in the
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Fig. 8. The demonstration for the natural connectivity of VSVT porous structures. (a) The anisotropy ratio field of four RVE elements, with initial ‘𝐴𝑖𝑠𝑜 = 1, 2, 3’.
The white dots denote the Voronoi seeds of the VSVT structure. (b) The detailed linear-interpolation meshgrid for anisotropy ratio field. (c) The VSVT structure
generated using the updated anisotropy ratio field. Different color blocks represent individual Voronoi cells. (d) The final VSVT structure with smooth connectivity
in the design domain that the original RVE boundaries, denoted by the dashed lines, are almost unrecognizable by the naked eye.

last continuation step, 𝛽 is increased by 1 every 5 iterations until it reaches a maximum value of 25. Additionally, the Heaviside
threshold parameter 𝜂 is kept at 0.5 throughout the entire optimization process. To avoid local minimum problems commonly
encountered in angle optimization, we run 20 extra sub-iterations solely for optimizing 𝛼 every 30 main iterations. Although the
penalty factor 𝑝 in Eq. (17) and the interpolation coefficient 𝛾 in Eq. (19) can penalize material mixing, slight mixing may still occur
at interfaces among different VSVT candidate components in the optimal solutions, especially when density filter matrix 𝐏 uses a
big filter radius. For these cases, we adopt an extra post-processing step, as referenced in [43], to achieve sharp boundaries. For
detailed information on the algorithm and post-processing code, please refer to Appendix C.

2.5. De-homogenization and connectivity

After obtaining the optimal design solution for each macro-element, the corresponding VSVT architecture is determined through
a de-homogenization process based on the target design parameters, 𝐴𝑖𝑠𝑜 (𝐙), 𝜌 and 𝛼. Firstly, the relative density 𝜌 of each macro-
element is converted into the number of Voronoi seeds 𝑁𝑠 and truss thickness 𝑡 by solving the 𝜌(𝑁𝑠, 𝑡) function using MATLAB’s ‘fmin-
con’ function. Subsequently, a varied-shape Voronoi tessellated (VSVT) wireframe over the entire design domain is generated within
a single step based on the optimal design parameters of each macro-element, i.e., the number of Voronoi seeds 𝑁𝑠, anisotropy index
𝐴𝑖𝑠𝑜 and material principal direction 𝛼. Finally, the VSVT wireframe is further reinforced according to the thickness information 𝑡.

It had been widely recognized that the ‘connectivity’ between adjacent elements is a crucial issue in the design of multiscale
materials and structures. Since VSVT uses a ‘seeding’ based technology to construct multiscale lattice structures, the Voronoi
tessellation is only performed once on the entire design domain in a single step, rather than on individual elements during the
de-homogenization process. Consequently, the VSVT design method is capable to generate a relatively smooth and natural material
connection, automatically, between neighboring macro-elements [23], without the need of the predefined ‘fixed boundary material
interfaces’, as used in many other works [26,27,44].

On the other hand, one of the main aims of this proposed VSVT method is to enable the design of multiscale materials and
structures with tunable anisotropy. The advantages of the nature connectivity provided by the VSVT method remain valid in theory
even when highly anisotropic elements are considered. However, from a view of practical manufacturability, it is better to introduce
an additional operation to ensure smooth, gradual transitions of the anisotropic Voronoi lattice shapes between macro-elements. An
example, shown in Fig. 8, illustrates both the advantageous connectivity and the smoothing operation of a VSVT structure, in which
each macro-element possesses distinct different anistropy ratios, namely 𝐴𝑖𝑠𝑜. Fig. 8(a) shows a VSVT design domain containing four
macro-elements, each with different anisotropy ratios as, 𝐴𝑖𝑠𝑜 = 1, 1, 2, 3. The Voronoi seeds are marked as white dots in the image.
To ensure smooth transitions of anisotropic Voronoi lattice shapes between the boundaries of macro-elements, a linear interpolation
operation is applied to the anisotropy ratio field 𝐴𝑖𝑠𝑜. Fig. 8(b) illustrates the boundary regions where the anisotropy ratios of the
Voronoi seeds are adjusted to intermediate values through this linear interpolation operation. Those regions are divided into three
different types, indicated by white, grey and blue colors in Fig. 8(b). In the white region, the anisotropy ratios of the Voronoi seeds
remain unchanged. In contrast, the anisotropy ratios in the grey and blue regions are adjusted to intermediate values between the
initial 𝐴𝑖𝑠𝑜 values of two or four macro-elements, respectively. With the updated anisotropy ratios 𝐴𝑖𝑠𝑜 for Voronoi seeds in the
boundary regions, the VSVT structure across the entire design domain is generated using Eq. (3), as illustrated in Fig. 8(c). The
final VSVT wireframe model, abstracted from Fig. 8(c), is shown in Fig. 8(d). After removing the color marks, no obvious dividing
lines are observed in the design domain, which demonstrates the VSVT’s capability in designing multiscale materials with natural
material-like connectivity. In summary, the final VSVT design embodies the ‘stochastic’, ‘anisotropic’, and ‘multi-scale’ characteristics
mentioned in the introduction. Additionally, the corresponding micro-porous cells exhibit disorder, non-uniformity, and aperiodicity.
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Fig. 9. The optimal VSVT porous structure for the unidirectional compression case. Different stages of the optimization step are noted in the convergence history.
The boundary condition and final solution of 𝐴𝑖𝑠𝑜 , 𝜌 and 𝛼 are shown as captures. For this case, the VSVT materials are all optimized to 𝐴𝑖𝑠𝑜 = 3 configuration
due to specific loading condition.

3. Numerical examples

3.1. Uni-directional compression example

A typical and simple ‘uni-directional loading’ example is demonstrated here to verify the effectiveness of VSVT structures with
tunable anisotropy in topology optimization. A 80 mm × 80 mm design domain is discretized into a 40 × 40 meshgrid layout for the
‘minimum compliance performance’ objective. An external force 𝐹 = 1 𝑁 is uniformly distributed along the domain’s upper edge,
while the boundary edges are fixed in all degrees of freedom, as depicted in Fig. 9. The normalized Young’s modulus, Poisson’s ratio
and volume fraction constraint are set as 𝐸𝑠 = 1 MPa, 𝜈 = 0.3 and 𝑉𝑓𝑟𝑎𝑐 = 0.3, respectively.

Regarding the anisotropy index 𝐙, we choose 𝑚 = 3, namely that three values of 𝐴𝑖𝑠𝑜 = 1, 1.5, 3 are used for the candidate VSVT
structures in this example. The use of VSVT structures with 𝐴𝑖𝑠𝑜 = 1.5 instead of 𝐴𝑖𝑠𝑜 = 2 can avoid the significant jump in mechanical
properties between the VSVT structures with 𝐴𝑖𝑠𝑜 = 1 and 𝐴𝑖𝑠𝑜 = 2. For VSVT structures with 𝐴𝑖𝑠𝑜 = 3, its stiffness along 𝑥-direction
is approximately the same as that of VSVT structures with 𝐴𝑖𝑠𝑜 = 4 or 5, but the stiffness along the 𝑦-direction is significantly higher.
For the 𝐴𝑖𝑠𝑜 > 5 VSVT structure, their corresponding topology is relatively closer to strip struts rather than to closed-cell pores, and
are therefore not considered in this work. In view of above considerations, we believe that the VSVT structures with 𝐴𝑖𝑠𝑜 = 1, 1.5, 3
will cover the majority of the design space and achieve superior design performance through the optimization process.

According to the principle of mechanics, the principal stress field of this ‘uni-directional loading’ problem, given in Fig. 9, is
oriented along the vertical direction. Therefore, it is expected that the optimal design of the lattice structures for this problem
should predominantly contain anisotropic elements, with their moduli aligned with the vertical direction. The convergence curves
of the optimization process and the final optimal solutions in terms of 𝐴𝑖𝑠𝑜, 𝜌, 𝛼 are presented in Fig. 9. The compliance ultimately
decreases to 5.05, and the volume fraction precisely converges to 0.3, as specified by the constraint. Consistent with the prediction
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Fig. 10. The VSVT optima of MBB case by topology optimization. The boundary condition and final solution of 𝐴𝑖𝑠𝑜 , 𝜌 and 𝛼 are illustrated as captures under
the convergence history.

from the principle of mechanics, the final design for this problem is predominantly occupied with VSVT units with 𝐴𝑖𝑠𝑜 = 3, while no
units with 𝐴𝑖𝑠𝑜 = 1 or 1.5 are present. The material principal direction 𝛼 of each VSVT unit is 90◦, which ensures that the principal
modulus direction of the optimal structure aligns with the vertical direction. Furthermore, in this optimal VSVT configuration, the
corresponding de-homogenized geometry model closely resembles the optimal topology obtained by the SIMP method, in which the
majority of material gathers around the top edge and forms a ‘tree branch’ pattern [45].

3.2. MBB example

In this section, the VSVT method is applied to design an MBB beam. A 40 × 30 grid mesh is used to discretize the 160 mm
× 120 mm design domain. Given that the strength-to-volume ratio is a key focus in porous material design, we aim to optimize
the compliance performance of the VSVT structure. The relative density threshold (porosity threshold) remains consistent with
Section 3.1, specifically 0.2 ≤ 𝜌 ≤ 0.8, with a global volume fraction of 𝑉𝑓𝑟𝑎𝑐 = 0.3.

The optimization process for this MBB beam example is illustrated in Fig. 10, which shows that the compliance value has
converged to 78.7. The final optimal solution in terms of the design variables 𝐴𝑖𝑠𝑜, 𝜌, and 𝛼 is depicted below the convergence
curve. From the relative density 𝜌 distribution, as shown in Fig. 10, we observe that the material is concentrated into a narrow path
to support the external force, as indicated by the black shadow region in the image. In the main slender areas, i.e., the diagonal
and bottom horizontal rods, the local maximum principal stress aligns with the direction of the material-concentrated path and is
significantly higher than the stress component in other directions. As a result, the local strain field approximates a uni-directional
compressive or tensile status. In view of this, these regions are assigned materials with high anisotropic properties (𝐴𝑖𝑠𝑜 = 3) by
the optimization process, with the principal material direction parallel to the path direction at −36.5◦ or 0◦, as shown in Fig. 10.
These features contribute to increased structural stiffness. On the other hand, local regions at top-left corner, bottom-right corner
and the most part of the inner short slender, as shown in the 𝐴𝑖𝑠𝑜 image of Fig. 10, are assigned VSVT materials (components)
with low anisotropic ratios (𝐴𝑖𝑠𝑜 = 1 or 1.5). This is because the principal stress directions in these locations vary significantly
and rapidly across the their neighboring areas. The VSVT structures (components) with low anisotropic ratios possess relatively
isotropic property, thereby providing enhanced load carrying capacity from various directions for those regions. In summary, this
MBB example demonstrates that the proposed VSVT approach offers tunable anisotropy design flexibility, enabling the optimization
of structural performance under complex loading conditions.

3.3. Design flexibility from de-homogenization

The optimal multiscale porous structure for this MBB example is obtained using a de-homogenization process and is shown
in Fig. 11(a). As expected, the Voronoi cells in different macro-elements exhibit distinct relative density and anisotropy ratios.
Furthermore, as discussed in Section 2.2, when the seed amount 𝑁 is within the designed range, a VSVT RVE unit demonstrates
𝑠
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Fig. 11. The detailed VSVT porous structure for the MBB case by de-homogenization process. (a) present an overview of the whole VSVT structure in domain,
while its three captures present several typical elements in isotropic or anisotropic mode. The alignment of truss in capture varied identical to the stress direction.
(a), (b), (c) compared different VSVT model with respect to de-homogenized rules as ‘same 𝑁𝑠 = 65’,‘same 𝑁𝑠 = 95’ and ‘same 𝑡 = 0.16mm’ for elements among the
design domain. Notably, 𝑡 indicates the true thickness of trusses rather than the normalized value. The compliance value and volume fraction of the corresponding
model are computed using ABAQUS FE model and are also noted in the images.

strong statistical stability in its mechanical properties. Therefore, the same optimal solution for a particular problem can be de-
homogenized into many different VSVT architectures, which possess almost the same mechanical performance yet have distinct
microscale configurations. This feature allows us to perform the optimization design with additional or multidisciplinary objectives.

In Fig. 11, another two different topological architectures as shown in (b) and (c) that have almost the same optimal mechanical
performance as (a) are demonstrated. Since the macroscale views are all similar, we only plot the configurations for (b) and (c)
that are in the same region as Fig. 11(a). The de-homogenization rules for the cases shown in Fig. 11(a), (b), and (c) are presented
as follows, ‘VSVT elements with 𝑁𝑠 = 65’, ‘VSVT elements with 𝑁𝑠 = 95’ and ‘VSVT elements with 𝑡 = 0.16 mm, respectively.
The corresponding compliance and volume fraction computed by the detailed FEM model are also presented in Fig. 11, as 𝐶𝐹𝐸𝑀
and 𝑉𝐹𝐸𝑀 . These results show discrepancies of less than 5% compared to those obtained using the standard TO (SIMP) method,
which further confirms the high accuracy of our homogenization process for the VSVT structures, as discussed in Section 2.2. Since
all configurations achieve very similar FE results, with differences within 2.8%, it is evident that the geometrical stochasticity of
the VSVT material, generated by Poisson Disk Sampling method in Section 2.1 or through the additional connectivity processing
in Section 2.5, has almost negligible influence on the compliance. This highlights the numerical stability of the proposed VSVT
approach. For more detailed information regarding the FEM model and the computation process, please refer to Appendix C.

In practical applications, the design flexibility offered by the VSVT method can be utilized to develop additional functionalities or
physical properties while maintaining optimal mechanical performance. For many industrial manufacturing processes, such as those
involving battery reactors or heat exchangers, this flexibility enables adjustable reaction efficiency due to the tailorable Specific
Surface Area (SSA). Similarly, in clinical applications, the VSVT method allows for the customization of porous femoral implants,
ensuring a specific range of pore amounts 𝑁𝑠 to promote quick vessel growth and nutrient transmission in vivo [46]. Additionally,
varying the truss thickness 𝑡 enables VSVT structures to tune local stress distribution under body loading [47], which can be used
to eliminate stress shielding problems for bone implants.

To further illustrate the advantages of design flexibility of the VSVT method, we present a ‘mechanical-thermal clock’ example,
as shown in Fig. 12. This example demonstrates several VSVT structures with similar optimal mechanical performance, such as
compliance, while exhibiting distinct adjustable heat dissipation characteristics. This type of metamaterial possesses both high
stiffness and the ability to pre-engineer thermal differences, thereby generating thermal stress under specific temperature conditions.
These characteristics make them advantageous for applications such as thermoelectric generators, thermal sensors, and heat
exchangers [48,49].

The loading and boundary conditions for this example are the same as those in the uni-compression case presented in Section 3.1.
The design range of the relative density is 𝜌 ∈ [0.2, 0.5], and the global volume fraction is set to be 0.5, as depicted in Fig. 12(a). The
mesh grid size is modified to be 20 × 20. After the first step of compliance optimization, the optimal solutions of marco-elements
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Fig. 12. The VSVT thermal ‘mechanical clock’ design for Uni-compressive bounding by de-homogenization process. (a) present the loading boundary for
compliance optimization. (b) present the boundary setting for Heat dissipation FE model, which simulates typical working environment of electronic component’s
supporting plate. (c) demonstrate the geometry model and FEM-computed compliance values for four different de-homogenization set-ups. The four cases show
similar apparent architecture and compliance, but difference in detail as captures shows. (d) is the temperature distribution of four cases after heat transferring
for 2s (in a form of differences in value from initial 100 ◦C). The tuned elements present a ‘VSVT’ word-symbol refer to our design. Herein, two ‘V’ characters are
different due to their distinct size and angle in the draft. The simulation is completed by ABAQUS with a material property of middle-carbon steel, i.e. density
7.85 × 103 Kg/m3, thermal conductivity 43.0 W/m K, specific heat capacity 477 J/kg K.

all converge to 𝜌 = 0.5, 𝐴𝑖𝑠𝑜 = 3, 𝛼 = 90◦, which is then de-homogenized into four different plates, as shown in Fig. 12(c). During the
de-homogenization process, the truss thickness 𝑡 of the macro-elements in each plate is decreased by 25% in certain regions, from
0.12 mm to 0.09 mm. The corresponding borders of these regions have been marked as blue dash line in Fig. 12(c) close-ups for
identification. This reduction results in a 23.5% decrease in the specific surface area (SSA) of the macro-elements in those regions,
leading to reduced heat convection efficiency. Consequently, the temperature difference ratio for the two type elements (the original
elements and the elements with reduced SSA) is predictable and almost proportional to the ratio of SSA. This relationship is given by,

𝛥𝑇𝑟𝑒𝑑
𝛥𝑇𝑏𝑙𝑢𝑒

= −13∕ − 17 = 0.76

≈1 − 𝛥𝑆𝑆𝐴
𝑆𝑆𝐴

≈ 1 − 𝛥𝑡
𝑡

= 0.75
(24)

To test their thermal performance, all four plates are initially pre-heated to 100◦C and subjected to a natural air heat transfer
boundary, as shown in Fig. 12(b), simulating a CPU motherboard work environment. Subsequently, the temperature field rapidly
decreases towards room temperature, resulting in the four plates clearly displaying the four letters ‘V’, ‘S’, ‘V’, ‘T’, respectively,
as illustrated in Fig. 12(d). This occurs because the lattice structural elements in the regions of these letters possess reduced heat
convection efficiency, as explained in above. In summary, while the proposed VSVT structure with an SSA adjusting mechanism is
only used for temperature distribution control in this example, it also shows high potential for use as a substrate plate in various
biological, chemical, or electrical reactions to achieve a tuned reaction rate.
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Table 1
The improvement on compliance performance of the VSVT structure.

Mesh grid 𝜌 bounds 𝐶𝑉 𝑆𝑉 𝑇
a 𝐶𝐹𝐸𝑀 𝐶𝐼𝑠𝑜 𝐶𝐼𝑠𝑜𝐹𝐸𝑀 TO Errorb 𝐈𝐦𝐩𝐫𝐨𝐯𝐞𝐦𝐞𝐧𝐭c

48 × 36 0.2–0.8 79.2 75.5 98.0 105.7 4.7% 23.7%
40 × 30 0.2–0.8 78.7 82.8 98.1 106.9 5.2% 24.7%
32 × 24 0.2–0.8 81.7 87.9 97.7 103.6 7.6% 19.6%

48 × 36 0.2–0.5 153.4 155.3 200.3 202.5 1.2% 30.6%
40 × 30 0.2–0.5 150.4 140.1 198.8 206.6 −6.9% 32.2%
32 × 24 0.2–0.5 149.5 138.5 195.8 190.7 −7.3% 31.4%

a 𝐶𝑉 𝑆𝑉 𝑇 and 𝐶𝐹𝐸𝑀 are the compliance values computed by TO method and FE model. 𝐶𝐼𝑠𝑜 and 𝐶𝐼𝑠𝑜𝐹𝐸𝑀 are the compliance
results for the isotropic porous material.
b Topology optimization error equals (𝐶𝐹𝐸𝑀 − 𝐶𝑉 𝑆𝑉 𝑇 )∕𝐶𝑉 𝑆𝑉 𝑇 .
c The improvement is calculated as (𝐶𝐼𝑠𝑜 − 𝐶𝑉 𝑆𝑉 𝑇 )∕𝐶𝐼𝑠𝑜.

Table 2
The comparison of compliance performance between VSVT structure and optimized solid structure.

Cases VSVT-1 Isotropic porous structure Optimized solid structure VSVT-2

Relative density 0.2–0.8 0.2–0.8 0–1 0.2–1
Compliance 78.7 98.1 65.1 56.8

3.4. The advantages of VSVT structures with tunable anisotropy over isotropic structures

In this section, we further verify the advantages of applying VSVT structures with tunable anisotropy in design. Specifically,
e compare the optimal compliance performance of VSVT structures with that of typical isotropic lattice structures. The isotropic
esigns are obtained by only considering 𝐴𝑖𝑠𝑜 = 1 in the above VSVT (multi-component) optimization process.

The optimization results for ‘MBB’ beams under different meshgrid sizes and relative density bounds 𝜌 are presented in Table 1.
This table provides a comparison between the optimal results of anisotropic VSVT structures and isotropic structures, which are also
validated through detailed FEM analysis. The optimization results provided by the 40 × 30 meshgrid for this ‘MBB’ example can be
onsidered convergent solutions, as the compliance values exhibit only 4% to 5% variations when the meshgrid density is decreased
0% (32 × 24) or increased 120% (48 × 36). The average compliance error between the FE and TO models is approximately 6%,
s shown in Table 1. Given this minor error, we believe that our numerical homogenization method presented in Section 2.2 is
ufficiently accurate. The detailed FE model is illustrated in Appendix D.

It can be seen that the average compliance values of VSVT structures are 20% ∼ 30% lower than those of isotropic porous
tructures, indicating a significant stiffness improvement as shown in the last column of Table 1. Further, the VSVT structures with
nisotropy features show higher relatively stiffness improvement over the isotropic structures when the upper bound of the relative
ensity 𝜌𝑚𝑎𝑥 changes from 0.8 to 0.5. Refer to Fig. 7, the difference of the principal elasticity (𝐷11) between anisotropic VSVT
tructures (𝐴𝑖𝑠𝑜 = 3) and isotropic structures (𝐴𝑖𝑠𝑜 = 1) is more pronounced when the relative density 𝜌 decrease from 0.8 to 0.5.
n this way, since the relative density will converge to its 𝜌𝑚𝑎𝑥 for most macro-elements in the final optimal solution, thus a lower
𝑚𝑎𝑥 in set-up will finally lead to a larger stiffness improvement for VSVT design.

Furthermore, a more comprehensive comparison between VSVT porous structure and a typical TO optimized solid structure is
erformed and shown in Table 2. According to the practical requirements of porous structure [5,24], the work in Section 2 and
ection 3.3 sets the range of the relative density 𝜌 between 0.2 to 0.8. The corresponding optimized VSVT structure under 40 × 30
esh grid, named ‘VSVT-1’, has a compliance value of 78.7. In comparison, a typical solid structure optimization (where 𝜌 bounds

re [0, 1]), such as the SIMP method, can achieve better stiffness performance than the above case, with a computed compliance
alue of 65.1 (under a 40 × 30 mesh grid). This difference mainly arises from the distinct design domains for the two methods in 𝜌.
iven this situation, we expanded the parameter threshold of 𝜌 in Section 2.2 to [0.2, 1] and then performed a VSVT optimization
sing the same configuration, named ‘VSVT-2’. As a result, the new optimal solution can obtain a solid-porous hybrid structure,
hich results in a further improved compliance performance of 56.8. These results show consistency with the conclusion drawn
y [5], clearly demonstrating the benefits of introducing tunable anisotropy in structural topology optimization.

.5. ‘Full-domain’ porous structure design via local volume constraints in VSVT

Local volume constraints are crucial for the optimal design of cellular structures. For example, it is essential to prevent any
ompletely empty regions within the design domain when constructing porous materials for dental fillings. In this scenario, a ‘full-
omain’ porous structure design should be used instead of the ‘porous-void hybrid structure’, as discussed in the introduction. To
eet the above requirement, a global P-norm volume constraint is introduced into our VSVT multi-component optimization in this

ection, controlling the local material volume ∑

𝑖 𝜌𝑙𝑖𝑧𝑙𝑖 > 0 for each element. The additional constraint, named as 𝑔2, is defined as
q. (7):

(25)
𝑔2 ∶ ‖{𝑧1, 𝑧2,… , 𝑧𝑙 ,… , 𝑧𝑁𝑒}‖𝑛 ≥ 0.99
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Fig. 13. The VSVT structure design for the MBB case with local volume constraint using the P-norm technique. (a) presents an overview of the final optima for
the VSVT structures. (b) present the detailed geometric model for the design. The elements that were completely empty in the original example in Section 3.2,
are now filled by the materials with the relative density 𝜌 at least 0.2.

where 𝑛 is the P-norm parameter, and set to −16 in the work. {𝑧1, 𝑧2,… , 𝑧𝑙 ,… , 𝑧𝑁𝑒} is a 𝑁𝑒×1 column vector with terms 𝑧𝑙 =
∑𝑚

𝑖=1 𝑧𝑙𝑖.
With this new constraint, the VSVT structure is compelled to include at least one type of VSVT material in each macro-element during
the optimization process, thereby excluding the void macro-element where 𝑍𝑙 = 𝟎 as defined in Eq. (8). The final corresponding
solutions and structure are shown as Fig. 13.

In overview, the local material volume is determined during the VSVT multi-component optimization process by both the
anisotropy index ‘𝐙’ and relative density ‘𝜌’, rather than solely by 𝜌 as in other topology optimization studies. This implies that
the approach decouples the existence of materials in the macroscale element from its relative density variable 𝜌 (or porosity 𝑝 = 1 -
𝜌). By doing so, the non-existent material regions can be expressed using other variables i.e. 𝐙, and thus avoiding the discontinuity
problems due to the sensitivity function of 𝜌 when 𝜌 = [0, 𝜌𝑚𝑖𝑛]. This approach allows for more flexible and straightforward setting
of local volume constraints (either zero or non-zero) in the design domain, enabling the achievement of both ‘pores-void hybrid
structures’ and ‘pure porous structures’.

4. Discussions and conclusions

Recently, the Voronoi tessellation technique has been widely used in the design of porous materials and structures to create
topological units with isotropic mechanic property and good connectivity, e.g., [10,24,25,50]. In contrast to these research
works based on Voronoi tessellation [5,8,32,40], the VSVT method proposed in this work achieves the programmable anisotropy
design of topological units through varying Voronoi shapes. This approach allows for the optimization of mechanical properties,
particularly stiffness, in multiscale design. Related to other research works on the anisotropy design through typical lattice
embedding model [17,26,27], this proposed VSVT approach maintains the smooth connectivity, and produces the topological
patterns that closely resemble natural porous materials, such as coral or trabecular bone. In contrast to recent study on anisotropic
Voronoi tessellation, which mainly rely on an experimental design approach [33], the VSVT method allows for complete design of
porous materials and structures through parametric parameters and provides an efficient optimization framework. Furthermore, the
numerical homogenization process offers a thorough and diverse investigation of the mechanical properties of anisotropic Voronoi
tessellated structures. The VSVT method and its optimization framework enable the precise design of multiscale porous structures
under specific volume constraints.

To achieve an affordable computational cost for the full-scale FEM verification of numerical cases, we only use relative coarse
mesh grid of topological units in the optimization. These may induce a relative obvious ‘square jagged edges’ in the final geometry
model. In practical applications, a boundary post-process method following the work [24] is introduced in Appendix C, which allow
us to quickly achieve curved boundary. To address this issue completely, an refined, unstructured mesh configuration [40,43] or
level-set based implicit boundary representation [26] can be incorporated into the existing VSVT optimization workflow.
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In this work, we relax the periodic boundary condition typically used during the homogenization, which is similar to the
pproach described in [5]. Different from a standard periodic boundary condition (PBC), which requires strict symmetry in material
istribution at the boundaries of RVE units [25], our approach aims to maintain high computational accuracy while allowing for
atural connectivity and increased design freedom at the topology unit interfaces. The standard PBC method generally imposes
ymmetrical material distribution and corresponding symmetry of finite element method (FEM) nodes at the RVE boundaries to
nsure a consistent strain boundary condition during homogenization. However, in the VSVT method, we do not impose this
onstraint across RVE boundaries. Instead, as a compensation, we define a lower bound for Voronoi seeds 𝑁𝑠 within the RVE

domain and employ uniform Poisson disk sampling to ensure a dense and uniformly porous structure within the RVE interior. In
doing so, a significant separation of the scale between the micro-Voronoi pores and the macro-RVE is achieved, allowing the global
deformation of the VSVT RVE units to adhere to continuity and small deformation mechanics assumptions. As a result, our numerical
homogenization errors remain within a narrow, acceptable range. The close agreement between the compliance results of the final
realistic FEM model and the homogenized model, as presented in Sections 3.2 and 3.4, demonstrates the accuracy and effectiveness
of the VSVT homogenization process, even when the periodic boundary condition is relaxed.

The proposed method is highly accurate and efficient in computation. Regarding the numerical homogenization, the average
compliance and volume error between the homogenized model and the detailed FEM model are approximately 6.0% and 1.5%,
respectively. This relatively high accuracy is achieved through the appropriately stipulated parameter window of seed amount 𝑁𝑠.
A tuned specific surface area distribution example and P-norm local volume constraint example are respectively demonstrated in the
paper to support the statements. The de-homogenization process provides extensive design flexibility in VSVT micro-architectures,
making the VSVT method suitable for many practical engineering applications, such as energy conversion and storage, thermal
management, femoral implants, desalination, and biosensors.

In summary, this work proposes a novel design method for stochastic yet stable porous structures with tunable anisotropy,
namely, varied-shape Voronoi tessellation (VSVT). A specialized multi-scale topology optimization framework is implemented to
perform the optimal design of bio-inspired advanced materials using the VSVT method. The VSVT method, which applies the
modified Riemannian metric in Voronoi construction, is capable of generating porous materials and structures with high natural
similarity. Benefiting from the tunable and programmable local anisotropy of VSVT RVE units, the optimization designs of porous
structures exhibit superior mechanical performance compared to the isotropic porous structures.
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Appendix A. Poisson disk sampling

A Poisson disk sampling pattern is a uniform seed distribution where the points are no closer than a specified distance, 𝑟𝑚𝑖𝑛. In
this work, 𝑟𝑚𝑖𝑛 has been used as a parameter in codes that control the number of seeds, 𝑁𝑠, in the RVE domain. The most typical
Poisson disk sampling method has been applied in many studies is the one proposed by Bridson sampling method [34], for its high
efficiency. However, the method is based on a constant minimum distance value 𝑟𝑚𝑖𝑛, which may be inadequate for achieving a
more flexible de-homogenization when considering that the number of seeds, 𝑁𝑠, may vary across different macro-elements in the
design domain (see example in Section 3.3). Fig. A.1(a) indicates the presence of a boundary coincidence problem in the sequential
seeding of each RVE by Bridson’s method. In this context, the ‘variable-density Poisson disk sampling’ method proposed by Nicholas
et al. [35] is employed in this paper to circumvent the above drawbacks and achieve a smoothly varying boundary between the two
RVEs, as shown in Fig. A.1 (b). The method employs the local Poisson disk parameter 𝑟𝑖 instead of the constant 𝑟𝑚𝑖𝑛 to define the
minimum distance between seed pairs. This allows the seeding process to be completed throughout the design domain in a single
iteration, circumventing the issue of ‘boundary coincidence’. A packaged open-source Matlab codes ‘Dworklib’ can be utilized to

complete above operation in practical application.
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Fig. A.1. The demonstration of two different Poisson disk sampling algorithms and the error in seed amounts during the seeding process. (a), (b) is the seeding
pattern of two adjacent RVE elements by ‘constant Poisson disk sampling’ and ‘variable-density Poisson disk sampling’ method, respectively. The RVE elements
is both in a normalized size while 𝑁𝑠 = 120 or 150. A typical points overlapping phenomenon is observed at RVEs’ interface in (a) but disappear in (b). Image
(c) suggested the errors between actual seed amount 𝑁𝑠

′ and expected 𝑁𝑠. 𝑁𝑠
′ is obtained from the ‘dworklib’ open source codes, where its input 𝑟𝑖 is computed

by substituting 𝑁𝑠 into empirical equation Eq. (A.1). For each error bar, 10 repetitions were performed under identical sampling conditions. The 𝑁 ′
𝑠 finally

presents good matching relationship to the expected seed amount 𝑁𝑠.

For the sake of clarity and intuition, we used seed amount 𝑁𝑠 to describe the seeding density in the manuscript. However,
it should be noted that the seed amount 𝑁𝑠 cannot be used directly as an input for the ‘variable-density Poisson disk sampling’
algorithm. Insteadly, it must be transformed into a corresponding input, 𝑟𝑖, within the program. Calculating the mapping function
between 𝑁𝑠 and 𝑟𝑖 is analogous to solving a ‘circles packaging’ problem. Herein, we provide an estimated equation based on
experience to rapidly determine 𝑟𝑖 with respect to the expected 𝑁𝑠, as follows,

𝑟𝑖 =
𝐿

√

2 ⋅
√

𝜋
4 ⋅𝑁𝑠

(A.1)

where 𝐿 and 𝑁𝑠 are the actual length and seed density parameter of 𝑖th element, respectively. For each expected 𝑁𝑠, we calculated
corresponding 𝑟𝑖 by Eq. (A.1) and substituted it into ‘Dworklib’ codes to obtain final Voronoi seeding distribution. The final actual
seed amount 𝑁𝑠

′ may present an error to the expected 𝑁𝑠 due to the seeding stochasticity as shown in the Fig. A.1 (c). It can be
seen that error is relative small and stay in an acceptable window.

Appendix B. Elasticity of VSVT RVE

The Elasticity tensor function terms 𝐃𝐻 (𝐴𝑖𝑠𝑜, 𝜌) is shown in Fig. B.1. 𝐷11 shows a smooth increasing trend as 𝜌 or 𝐴𝑖𝑠𝑜 increases,
while 𝐷12, 𝐷22, 𝐷33 show increasing trends as 𝜌 increase or 𝐴𝑖𝑠𝑜 decreases. The smoothness of function in the image ensures the
feasibility of common gradient-based optimization with the continuous function 𝐃𝐻 (𝐴𝑖𝑠𝑜, 𝜌). However, it should be noted that the
gradient of the function in regions where 𝐴𝑖𝑠𝑜 ∈ [3, 5] & 𝜌 ≤ 0.3 are quite close to 0 and may cause a ‘gradient vanishing’ problem
in the optimization process. Besides, the discussed common method may also show a decreased convergence speed and efficiency
compared to the multi-component optimization method used in the manuscript. The abandonment of variable 𝐙 in optimization
process also presents a challenge for the method in achieving a ‘void-pores hybrid structure’ in the design domain, as discussed in
Section 3.5. More detailed study of these issues is looking forward in the future.

For the sake of comparison and application, a polynomial fitting function of the homogenized elasticity tensor 𝐷𝐻 is also
provided here. The coefficient values of the 4th order polynomial fitting function, as 𝐷𝑖𝑗 = 𝑐1𝜌4 + 𝑐2𝜌3 + 𝑐3𝜌2 + 𝑐4𝜌+ 𝑐5, are listed in
Table B.1. It is notable that the 𝐷22, 𝐷33, 𝐷12 is expressed as piecewise functions for a high accuracy. The approximate-zero terms
i.e. 𝐷13, 𝐷23, 𝐷31, 𝐷32 are omitted in the table. The total error between this polynomial function and original database is controlled
in a level less than 5%.

Appendix C. Post-processing for optimization

A density filtering method with high filtering radius cannot avoid the material overlapping phenomenon in a multi-material
optimization process, such as the ‘grey elements’ in the black circle in Fig. C.1(a). By applying an additional Heaviside projection to
20 
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Fig. B.1. The demonstration of Elasticity tensor 𝐃𝐻 with respect to the continuous density variables 𝜌 and 𝐴𝑖𝑠𝑜. The specific terms approaching zero i.e. 𝐷13 , 𝐷23,
are omitted in the figure.

Table B.1
The piecewise polynomial fitting function of the homogenized elasticity tensor 𝐷𝐻 with respect to 𝜌.
𝐷11 𝐷22

𝐴𝑖𝑠𝑜 𝜌 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝐴𝑖𝑠𝑜 𝜌 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5
1 0.2–0.9 5.0791 −9.7672 7.4556 −1.9437 0.2168 1 0.2–0.6 −2.9339 5.4647 −2.8275 0.9600 −0.0665

0.6–0.9 −5.7444 24.7264 −33.5769 19.6209 −3.9910
1.5 0.2–0.9 3.5070 −7.1077 5.9462 −1.4027 0.1527 1.5 0.2–0.6 −1.3674 4.0279 −2.4867 0.7737 −0.0727

0.6–0.9 30.3912 −82.9658 86.1375 −39.0837 6.6117
2 0.2–0.9 1.9262 −3.4763 2.8256 −0.2045 0.0193 2 0.2–0.6 0.5643 0.4657 −0.4132 0.1981 −0.0216

0.6–0.9 49.9647 −140.0186 148.8563 −70.0330 12.3239
3 0.2–0.9 2.9880 −6.2857 5.2663 −1.0005 0.1205 3 0.2–0.6 1.1529 −0.9365 0.3752 −0.0377 0.0001

0.6–0.9 81.1213 −229.0232 243.9038 −115.3065 20.3968
4 0.2–0.9 1.9565 −3.8121 3.1859 −0.2794 0.0380 4 0.2–0.7 1.6051 −1.9316 0.9562 −0.1933 0.0141

0.7–0.9 168.2154 −506.0367 573.5441 −289.4525 54.8331
5 0.2–0.9 1.7100 −3.1146 2.4432 0.0505 −0.0005 5 0.2–0.7 2.8005 −3.5055 1.3816 −0.1303 −0.0073

0.7–0.9 198.1927 −594.4142 669.7490 −335.3312 62.9017

𝐷33 𝐷12 = 𝐷21

𝐴𝑖𝑠𝑜 𝜌 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝐴𝑖𝑠𝑜 𝜌 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

1 0.2–0.6 0.5568 −0.8668 0.8545 −0.2303 0.0309 1 0.2–0.6 −0.4733 1.1036 −0.8702 0.5067 −0.0531
0.6–0.9 4.6797 −12.6869 13.4843 −6.1958 1.0824 0.6–0.9 5.9893 −15.5484 15.2748 −6.4710 1.0806

1.5 0.2–0.6 −0.0100 0.4438 −0.0941 0.0288 −0.0031 1.5 0.2–0.6 −1.3214 2.3708 −1.4201 0.5346 −0.0478
0.6–0.9 4.1999 −11.0364 11.4664 −5.0839 0.8369 0.6–0.9 7.4317 −19.3858 19.0532 −8.0995 1.3273

2 0.2–0.6 0.3493 −0.2573 0.3444 −0.0889 0.0081 2 0.2–0.6 −0.1010 0.6952 −0.7129 0.4171 −0.0478
0.6–0.9 6.7012 −18.5812 20.0412 −9.4445 1.6656 0.6–0.9 13.9475 −38.6970 40.4699 −18.6434 3.2510

3 0.2–0.6 0.2281 0.1045 −0.0676 0.0506 −0.0069 3 0.2–0.6 0.2272 −0.2363 0.1473 0.0389 −0.0056
0.6–0.9 10.4834 −28.6383 30.0519 −13.9342 2.4205 0.6–0.9 23.1216 −64.8966 68.4573 −31.9505 5.5966

4 0.2–0.7 −0.0153 0.8046 −0.7688 0.2941 −0.0347 4 0.2–0.7 −0.6467 1.4833 −1.0505 0.3486 −0.0357
0.7–0.9 1.2611 3.5567 −11.2487 9.1978 −2.3830 0.7–0.9 40.8905 −120.8625 134.4113 −66.4431 12.3339

5 0.2–0.7 0.4677 −0.2464 −0.0392 0.0761 −0.0127 5 0.2–0.7 0.5850 −0.8209 0.4343 −0.0579 0.0021
0.7–0.9 12.6241 −32.5440 31.8940 −13.8065 2.2171 0.7–0.9 59.8363 −182.2707 208.8693 −106.4869 20.3806

he anisotropy index 𝐙 in the optimization, most of the grey elements at the interface of VSVT materials can be largely eliminated.
owever, even with this, a few optimized 𝐙 may still remain in an intermediate state rather than a convergent 0-1 solution as

hown in Eq. (8). For example, a 𝑧𝑙 = [0.3, 0.3, 0.45] and 𝑧𝑙𝑖 = [0.55, 0, 0] in final optima may be probably transformed into a ‘blank
lement’ 𝑧𝑙 = [0, 0, 0] or a ‘grey element’ 𝑧𝑙 = [1, 0, 0] after Heaviside projection, as shown in Fig. C.1(b). To address the above issues,
post-processing step sometimes may be needed to attain more precise solution like Fig. C.1(c). The detailed workflow is shown

s Matlab pseudo code as Algorithm 1: First, we set the converged solutions as a new initial guess and re-run 25 iterations of the
ptimization process solely for 𝐙 with a decreased filter radius 𝑅 = 1.1. This approach eliminates most of ‘grey elements’ caused
y the filter can be eliminated. Next, we replace the Heaviside projection with a direct manual projection to adjust 𝐙, converging
owards a precise 0-1 solution. Finally, a further sub-optimization of 25 iterations for the sole 𝝆 variable is conducted to achieve an
ptimal material distribution that adapts to the updated 𝐙 under the given volume constraint.

Notably, we canceled Heaviside projection (reset 𝛽 =1) in this post-processing step to avoid the ‘gradient vanishing’ problem.
ost-processing is not necessary for most examples, however for the ‘full-domain ’ example in Section 3.5, as its amount of ‘grey
lements’ are usually more than that of ‘Void-pores hybrid’ example, and so the post processing are relative important. Further, as
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Fig. C.1. The effect of Heaviside projection and post-processing operation in the optimization. It can be seen the material mixing or non-convergence problems
are effectively solved by the proposed method. The solid circle notes the problem addressed by ‘Heaviside projection’, while the dashed one corresponds to that
by ‘Post-processing’.

the blank macro-element is non-allowed in the final solution in the case, the ‘0’ in Algorithm 1 - 11th row should be correspondingly
modified into one type of VSVT material candidate possessing maximum composition in local designated elements.
Algorithm 1 Persuade code for post-processing

1: Input: Initialize MMA optimization parameter and load optimized solution 𝝆 and 𝐙.
2: Update density filtering matrix 𝐏 with 𝑅 = 1.1; Set 𝛽 = 1, loops = 1;
3: while 𝑙𝑜𝑜𝑝𝑠 ≤ 25 do
4: Sub-optimization for 𝐙 ;
5: loops=loops+1.
6: end while
7: Do the manual projection:
8: [𝐌, 𝐢𝐝𝐤] = Sum(𝐙,2) → Abstract the Maximum value 𝐌 and index 𝐢𝐝𝐤 of row vector
9: 𝑍𝑙 = [𝑧𝑙1, 𝑧𝑙2, ..., 𝑧𝑙𝑖, ..., 𝑧𝑙𝑚]. 𝐌,𝐢𝐝𝐤 are both 𝐍𝐞 × 1 size column vectors.

10: 𝐙 = 0*𝐙; 𝐙(:,𝐢𝐝𝐤)=1; → 𝑧𝑙𝑖 terms in 𝐙𝑙 are projected to strict 0-1 solution.
11: 𝐙(𝐌 ≤ 0.5,:)=𝟎 → Elements that 𝐙𝑙 close to 0 are set as empty.
12: loops=0
13: while 𝑙𝑜𝑜𝑝𝑠 ≤ 25 do
14: Sub-optimization for 𝝆; → The updated 𝐙 causes the material volume constraint g to be changed. By further

optimizing the 𝝆, the VSVT structure will strictly converges to the predefined volume fraction 𝑉𝑓𝑟𝑎𝑐 .
15: loops=loops+1.
16: end while
17: Output: 𝐳,𝝆.

In this work, we used a relatively coarse mesh grid configuration to design VSVT porous structures for cases presented in
Section.3, for the purpose of maintaining affordable computation costs of the FEM model during verification process. However,
this may cause a ‘‘square jagged edges’’ issue in the final solution as shown in Fig. C.2 (a), affecting on the practical applications.
On one hand, this problem can be addressed by incorporating an advanced level-set boundary representation technique into the
proposed VSVT topology framework, following the work in [26]. On the other hand, a simple geometry post-processing technique
using Boolean cutting, as described in [24], can also solve this issue, effectively. Firstly, the original optimal solutions with jagged
boundaries such as 𝐴𝑖𝑠𝑜 shown in Fig. C.2 (a) are manually modified by a typical Path-Smoothing method, achieving curved outer
boundary as shown in Fig. C.2 (b). A few local empty region will be filled with solutions from its neighbor units during this process.
Then, the cutting domain 𝜙𝐵 and modified geometric mapping function 𝜙′(𝐱) are defined as follows:

{

𝜙𝐵(𝐱) = 1, 𝐱 ∈ 𝐵𝑑

𝜙𝐵(𝐱) = 0, 𝐱 ∉ 𝐵𝑑
(C.1)

𝜙′(𝐱) = 𝜙𝐵(𝐱) ⋅ 𝜙(𝐱) (C.2)

where 𝜙(𝐱) is the original VSVT geometric mapping function as defined in Eq. (4), the final VSVT geometry domain is defined as
𝛺′ = {𝐱|𝜙′(𝐱) > 0}. After de-homogenization process, the final tailored geometry model under MBB-𝑉𝑓𝑟𝑎𝑐 = 0.3 configuration is
shown in Fig. C.2(c). The ‘‘jagged egdes’’ issue shows effective resolution, and the practical compliance value slightly increase from
original 82.7 to 87.5.
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Fig. C.2. The demonstration for boundary post-process by Boolean cutting. (a) the original optimal solution for 𝐴𝑖𝑠𝑜 with jagged boundary. (b) the modified
solution for 𝐴𝑖𝑠𝑜 with curved boundary. (c) the new geometry model based on (b). The close-up suggests a disappearance of jagged edges at boundary.

Fig. D.1. The FE model of VSVT porous structure. (a) the illustration of mesh density in one RVE region; (b) the computed result of de-homogenized MBB
example with ‘𝑁𝑠 ’ = 50. (c) an example for ‘local heavy distortion’ problem of loading element.

Appendix D. FEM computation for de-homogenized VSVT structure

The detailed FEM analysis for the VSVT porous structures are carried out in ABAQUS to verify the compliance values obtained
by TO optimization in Section 3.4. The meshed model of VSVT structures is achieved by ‘Im2mesh’ toolbox in Matlab and refined
by ‘Materialise magic’ software (ver. 20). The mesh type is ‘CPS3’ TRI mesh with refined average size of 0.1 mm, as depicted by
Fig. D.1 (a). The total elements of numerical examples in Section 3 is about 1 to 5 millions per case. Note, almost all FEM-computed
compliance values show an obvious increasing trend as meshing size becoming refiner in this work. In fact, since we are transforming
a typical multi-scale problem into a single-scale one, even using the 0.1 mm mesh density cannot always be small enough to obtain
an absolutely accurate result according to our test, especially for the uni-compression loading cases. However, this accuracy has
reached the upper limitation of our computing equipment (AMD Ryzen 5795WX-32 cores, RAM 64G). Considering the error by
0.1 mm is already in a relatively small range (FEM result variation is about [−2%, 4%] when 0.1 mm decreases to 0.075 mm), we
consider the FEM results given by the 0.1 mm mesh size are accurate enough in this work.

For the equivalent comparison with optimization result, the compliance value for FE model is computed as 𝐶𝐹𝐸𝑀 = 𝑢𝑙 ⋅𝑓𝑙, where
𝑢𝑙 is the displacement of the loading node, 𝑓𝑙 is the value of external loading. Fig. D.1 (b) shows the displacement contour of MBB
case in Fig. 11. In addition, a heavy elemental distortion problem may occur at the loading region for partial VSVT geometry models
if the truss thickness is relatively thin, as depicted in Fig. D.1 (c). For these cases, an average displacement value of neighboring
nodes (within 2 mm radius range of loading node in this work) are calculated as 𝑢𝑙 for more accurate and fair comparison with
homogenized TO model.

Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2024.117378.
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