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Abstract
We model within the framework of finite elasticity two inherent instabilities observed in liquid crystal elastomers under
uniaxial tension. First is necking, which occurs when a material sample suddenly elongates more in a small region where
it appears narrower than the rest of the sample. Second is shear striping, which forms when the in-plane director rotates
gradually to realign and become parallel with the applied force. These phenomena are due to the liquid crystal molecules
rotating freely under mechanical loads. To capture necking, we assume that the uniaxial order parameter increases with tensile
stretch, as reported experimentally during polydomain-monodomain transition. To account for shear striping, we maintain the
uniaxial order parameter fixed, as suggested by experiments. Our finite element simulations capture well these phenomena.
As necking in liquid crystal elastomers has not been satisfactorily modelled before, our theoretical and numerical findings
related to this effect can be of wide interest. Shear striping has been well studied, yet our computed examples also show how
optimal stripe width increases with the nematic penetration depth measuring the competition between the Frank elasticity
of liquid crystals and polymer elasticity. Although known theoretically, this result has not been confirmed numerically by
previous nonlinear elastic models.

Keywords Nematic elastomers · Mathematical models · Large-strain deformation · Necking · Shear striping ·
Finite elements

1 Introduction

Liquid crystal elastomers (LCEs) are formed from cross-linked polymeric chains with embedded liquid crystal (LC)molecules
[49]. Due to this special architecture, they display both self-organisation under external stimuli, such as heating or illumination,
and large reversible deformations under mechanical loads. In modern laboratories, LCEs are being prepared through various
techniques. Typically, polydomain samples are obtained where the material contains multiple subdomains, with a different
nematic alignment. The unit vector for the localised direction of uniaxial nematic alignment is termed the director. Mon-
odomain LCEs can subsequently be achieved by applying electric or magnetic fields, or deforming the material mechanically
to induce a desired nematic orientation.

There has been a long-standing interest in the multi-physics characteristics of nematic elastomers and incorporating them
in muscle-like actuators and other advanced technologies [8, 22, 43, 50]. However, many fundamental questions concerning
these material remain open and require further theoretical investigation.
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Fig. 1 Schematics of nematic LCE developing necking under large stretch causing the initially disordered LC molecules to rotate until they align
with the applied force in the horizontal direction. Darker colour at the ends signifies opacity in the physical sample where the LC molecules are
randomly oriented, while the lighter colour in themiddle corresponds to the physical sample being translucent where the LCmolecules are uniformly
aligned

Generally, under mechanical loads, the nematic director tends to rotate in order to align with the largest principal stretch
[31, 38]. This rotation is not always uniform and can generate some interesting macroscopic effects. For example, when
subject to a large tensile force, some LCEs exhibit localised necking [5, 6]. This phenomenon occurs when there is a critical
extension ratio, such that the force required to extend the material beyond this critical value changes from increasing to
decreasing. In this case, the homogeneous deformation becomes unstable, and the material sample suddenly elongates more
in a small region than in the rest of the sample. Locally, the material appears much narrower than before the critical stretch was
reached, as illustrated schematically in Fig. 1. Experimental evidence of LCE necking has been reported in [20, 21, 27]. Also,
in [20], since necking could not be captured by the neoclassical LCE model based on the neo-Hookean strain-energy function
for rubber, it was suggested that a viscoelastic model would be required instead. A finite element modelling of instabilities
in viscoelastic nematic elastomers, including necking, is presented in [4]. However, within the theoretical framework of
elasticity, a satisfactory mathematical model for LCE necking is still to be achieved.

Certain stretch deformations of LCEs also result in a pattern of parallel stripe subdomains where equal and opposite shear
deformations occur in neighbouring stripes [18, 23]. The theoretical explanation for this phenomenon, which is depicted
schematically in Fig. 2, is that the energy depending isotropically on the macroscopic deformation through the relative strain
of the microstructure is minimised by a state of many homogeneously deformed parts. This is known as soft or semi-soft
elasticity, since it is usually accompanied by a much slower increase in the required stress compared to prior and subsequent
deformed states [3]. Shear stripes formation in elongated nematic LCEs [13, 21, 23, 24, 40, 41, 46, 52] has been extensively
analysed theoretically [1–3, 7, 10, 11, 15–17, 23, 31, 32, 34, 35, 37] or simulated numerically [30, 45], and it is therefore well
understood.

In this paper, first we introduce a class of theoretical models for LCEs (Section 2), then show how necking can be captured
under uniaxial tensile load (Section 3). We also revisit the modelling of LCE shear striping under uniaxial tension, providing
an analytical solution and estimating stripe periodicity [48] (Section 4). These models are further implemented in a finite
element code to simulate the respective effects (Section 5). Necking in LCEs has not been satisfactorily modelled before, so
both our theoretical and numerical findings related to this effect can be of wide interest. While shear striping has been well
studied, our numerical examples also show how optimal stripe width increases with the nematic penetration depth measuring
the competition between the Frank elasticity of LCs and polymer elasticity. This result, although known theoretically, has not
been captured numerically by previous nonlinear elastic models.

Fig. 2 Schematics of nematic LCE developing shear stripes under large stretch causing the initial director in the vertical direction to rotate until it
aligns with the applied force in the horizontal direction. Darker colour in the middle figure signifies opacity in the physical sample where the shear
stripes form, while lighter colour in the left- and right-hand figures corresponds to the physical sample being translucent where the LC molecules
are uniformly aligned
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2 Model function

To describe an incompressible nematic LCE, we consider the following strain-energy function [17]

W (lce) = μ(1)

2

(
λ21 + λ22 + λ23 − 3

)
+ μ(2)

2

(
α2
1 + α2

2 + α2
3 − 3

)
, (1)

where μ = μ(1) + μ(2) > 0 is the shear modulus at infinitesimal strain, with μ(1), μ(2) ≥ 0 constant material parameters,
{λ21, λ22, λ23} denote the eigenvalues of FFT , with F the deformation gradient from the reference cross-linking state, satisfying
det F = 1, and {α2

1, α
2
2, α

2
3} represent the eigenvalues of AAT , with A = G−1FG0 the local elastic deformation tensor

satisfying detA = 1, while G0 and G are the natural deformation tensors due to the nematic director in the reference and
current configuration, respectively.

Assuming that the LCE is intrinsically uniaxial, the natural deformation tensor takes the form

G = a−1/6I +
(
a1/3 − a−1/6

)
n ⊗ n, (2)

where n is the local nematic director, ⊗ denotes the tensor product of two vectors, I = diag(1, 1, 1) is the identity tensor, and

a = 1 + 2Q

1 − Q
(3)

represents the natural shape parameter, with Q the scalar uniaxial order parameter (Q = 1 corresponds to perfect nematic
order and Q = 0 to the case where mesogens are randomly oriented) [9]. For the reference configuration, G is replaced by
G0, with n0, a0 and Q0 instead of n, a and Q, respectively.

Note that, when μ(2) = 0, the phenomenological model in Eq. 1 reduces to the neo-Hookean model for rubber [47], and
when μ(1) = 0, it simplifies to the neoclassical model for LCEs [1, 2].

The nematic elastomer modelled by Eq. 1 is subject to the finite-strain deformation with macroscopic stretch ratios

λ1 = λ > 1, λ2 = λ3 = λ−1/2, (4)

while the tensile force is parallel to the nematic director in the current configuration, so that

G = diag

((
1 + 2Q

1 − Q

)1/3

,

(
1 − Q

1 + 2Q

)1/6

,

(
1 − Q

1 + 2Q

)1/6
)

. (5)

Taking G0 = I, we have

λ1 = α1

(
1 + 2Q

1 − Q

)1/3

= λ, λ2 = α2

(
1 − Q

1 + 2Q

)1/6

, λ3 = α3

(
1 − Q

1 + 2Q

)1/6

, (6)

and

α1 = λ

(
1 + 2Q

1 − Q

)−1/3

= α, α2 = α3 = λ−1/2
(

1 − Q

1 + 2Q

)−1/6

= α−1/2. (7)

For uniaxial tension, the principal components of the first Piola-Kirchhoff stress tensor are, respectively,

P1 = ∂W (lce)

∂λ1
− pλ−1

1 = P > 0, (8)

P2 = ∂W (lce)

∂λ2
− pλ−1

2 = 0, (9)

P3 = ∂W (lce)

∂λ3
− pλ−1

3 = 0, (10)

where p is the Lagrange multiplier for the incompressibility constraint, also known as the arbitrary hydrostatic pressure [31].
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3 Necking

To study necking, we denote by w(λ) the strain-energy function given by Eq. 1 with the stretch ratio λ given in Eq. 4 as the
only variable. The first derivative of this function is equal to the applied tensile stress, i.e.,

w′(λ) =
(
P1 + pλ−1

1

) ∂λ1

∂λ
+ pλ−1

2
∂λ2

∂λ
+ pλ−1

3
∂λ3

∂λ
= P, (11)

and necking forms when the applied stress P first increases, then decreases, then increases again as λ increases [31]. It can
be shown that, when Q is constant, w′′(λ) > 0, therefore necking cannot occur if Q is independent of deformation. A more
general result is proved in Appendix A of this paper.

We let Q depend on the deformation through the following constitutive relation obtained by calibration to experimental
data of [14] (see Fig. 3(a) and also Appendix B of this paper):

Q = 0.35

[
e16(λ−1.45) − 1

e16(λ−1.45) + 1
− e16 − 1

e16 + 1
+ 2

]
, for λ ≥ 1. (12)

It remains to verify numerically that the second derivativew′′(λ) ofw(λ)will change sign for some λ ∈ (1, 2). For different
values of η = μ(1)/μ(2), the nondimensionalised functionw(λ) (i.e., the function divided byμ(2)) and its first two derivatives
are plotted in Fig. 3(b)-(d), respectively. These plots suggest that, as η increases, the necking interval (i.e., the interval where
w′′(λ) < 0) decreases, and there is a critical value ηcrt ≈ 4.55 above which necking does not form. For example, when η = 3,

Fig. 3 (a) The uniaxial order parameter Q given by Eq. 12 and the associated experimental data [14]; (b) The nondimensionalised strain-energy
function w(λ), for different values of η = μ(1)/μ(2); (c) The applied tensile stress P = w′(λ); (d) The second derivative w′′(λ) of the strain-energy
function w(λ)
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w′′(λ) changes from positive to negative at λ∗ ≈ 1.28, then from negative to positive at λ∗ ≈ 1.37. In this case, necking
occurs for 1.28 < λ < 0.37. When η → ∞, the model reduces to the neo-Hookean model for rubber, which does not exhibit
necking.

4 Shear striping

Next, we analyse shear striping under uniaxial stress. In this case, we assume that the nematic director only rotates in the
biaxial plane while the uniaxial order parameter Q remains constant. This assumption about the order parameter is consistent
with experimental observations showing relatively small variations before, during and after stripe formation [21, 23, 46, 52].

In aCartesian systemof coordinates,wedefine the nematic director in the reference and stretched configuration, respectively,
as

n0 =
⎡
⎣
1
0
0

⎤
⎦ , n =

⎡
⎣
cos θ

sin θ

0

⎤
⎦ , (13)

where θ ∈ [0, π/2] is the angle between n and n0. The associated natural deformation tensors take the form, respectively,

G0 =
⎡
⎣
a1/3 0 0
0 a−1/6 0
0 0 a−1/6

⎤
⎦ (14)

and

G =
⎡
⎣
a−1/6 + (

a1/3 − a−1/6
)
cos2 θ

(
a1/3 − a−1/6

)
sin θ cos θ 0(

a1/3 − a−1/6
)
sin θ cos θ a−1/6 + (

a1/3 − a−1/6
)
sin2 θ 0

0 0 a−1/6

⎤
⎦ , (15)

where a is defined in terms of Q by Eq. 3, and we emphasise that now Q, and therefore a, is fixed.
It is standard procedure in any analytical study of elastic instabilities to consider small perturbations around an equilibrium

deformation of interest [19, 32, 34, 35]. To demonstrate shear striping, we take the following perturbed deformation gradient

F =
⎡
⎣

λ−1/2 0 0
ε λ 0
0 0 λ−1/2

⎤
⎦ , (16)

where λ > 1 is the finite stretch ratio in the tensile direction and 0 < ε 
 1 is the small shear perturbation. The corresponding
elastic deformation tensor is equal to

A =
⎡
⎣

λ−1/2
(
a1/2 sin2 θ + cos2 θ

)
λ

(
a−1/2 − 1

)
sin θ cos θ 0

λ−1/2
(
1 − a1/2

)
sin θ cos θ λ

(
a−1/2 sin2 θ + cos2 θ

)
0

0 0 λ−1/2

⎤
⎦

+ ε

⎡
⎣

(
1 − a1/2

)
sin θ cos θ 0 0(

sin2 θ + a1/2 cos2 θ
)
0 0

0 0 0

⎤
⎦ .

(17)

We study these perturbations around two equilibrium solutions where λ is finite and fixed and (ε, θ) = (0, 0) or (ε, θ) =
(0, π/2), corresponding to the director being perpendicular (when in the reference state) or parallel (when fully rotated) to
the applied tensile force, respectively.

We denote by w(λ, ε, θ) the strain-energy function described by Eq. 1, depending only on λ, ε and θ , which takes the
following form,

w(λ, ε, θ) = μ(1)

2

(
λ2 + 2λ−1 + ε2 − 3

)

+μ(2)

2

{[
λ−1/2

(
a1/2 sin2 θ + cos2 θ

)
+ ε

(
1 − a1/2

)
sin θ cos θ

]2
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+
[
λ−1/2

(
1 − a1/2

)
sin θ cos θ + ε

(
sin2 θ + a1/2 cos2 θ

)]2
(18)

+
[
λ

(
a−1/2 − 1

)
sin θ cos θ

]2 +
[
λ

(
a−1/2 sin2 θ + cos2 θ

)]2 + λ−1 − 3

}
.

When the finite stretch ratio λ is specified, the equilibrium solution satisfies the following simultaneous equations for
energy minimisation,

∂w(λ, ε, θ)

∂ε
= 0 and

∂w(λ, ε, θ)

∂θ
= 0. (19)

Differentiating the function described by Eq. 18 with respect to ε and θ , respectively, gives

∂w(λ, ε, θ)

∂ε
= μ(1)ε + μ(2)

{[
λ−1/2

(
a1/2 sin2 θ + cos2 θ

)
+ ε

(
1 − a1/2

)
sin θ cos θ

] (
1 − a1/2

)
sin θ cos θ

+
[
λ−1/2

(
1 − a1/2

)
sin θ cos θ + ε

(
sin2 θ + a1/2 cos2 θ

)] (
sin2 θ + a1/2 cos2 θ

)} (20)

and
∂w(λ, ε, θ)

∂θ
= μ(2)

{(
a1/2 − 1

) [
2λ−1/2 sin θ cos θ + ε

(
sin2 θ − cos2 θ

)]

·
[
λ−1/2

(
a1/2 sin2 θ + cos2 θ

)
+ ε

(
1 − a1/2

)
sin θ cos θ

]

+
(
a1/2 − 1

) [
λ−1/2

(
sin2 θ − cos2 θ

)
− 2ε sin θ cos θ

]

·
[
λ−1/2

(
1 − a1/2

)
sin θ cos θ + ε

(
sin2 θ + a1/2 cos2 θ

)]

+λ2
(
a−1 − 1

)
sin θ cos θ

}
.

(21)

At ε = 0 and θ = 0, the partial derivatives defined by Eqs. 20-21 are equal to zero, i.e., this solution is always an equilibrium
state. For sufficiently small values of ε and θ , we can write the second order approximation

w(λ, ε, θ) ≈ w(λ, 0, 0) + 1

2

(
ε2

∂2w

∂ε2
(λ, 0, 0) + 2εθ

∂2w

∂ε∂θ
(λ, 0, 0) + θ2

∂2w

∂θ2
(λ, 0, 0)

)
, (22)

where

∂2w

∂ε2
(λ, 0, 0) = μ(1) + μ(2)a, (23)

∂2w

∂ε∂θ
(λ, 0, 0) = μ(2)λ−1/2 (1 − a) , (24)

∂2w

∂θ2
(λ, 0, 0) = μ(2)

(
λ2 − λ−1a

) (
a−1 − 1

)
. (25)

First, we find the equilibrium value θ0 for θ as a function of ε by solving the second equation in Eq. 19. By the approximation
(22), the corresponding equation takes the form

ε
∂2w

∂ε∂θ
(λ, 0, 0) + θ

∂2w

∂θ2
(λ, 0, 0) = 0, (26)

implying

θ0(ε) = −ε
∂2w

∂ε∂θ
(λ, 0, 0)/

∂2w

∂θ2
(λ, 0, 0). (27)

Next, substituting θ = θ0(ε) in Eq. 22 yields the following function in ε,

w(λ, ε, θ0(ε)) − w(λ, 0, 0) ≈ ε2

2

[
∂2w

∂ε2
(λ, 0, 0) −

(
∂2w

∂ε∂θ
(λ, 0, 0)

)2

/
∂2w

∂θ2
(λ, 0, 0)

]
. (28)
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Depending on whether the expression on the right-hand side is negative, zero, or positive, the respective equilibrium state
is unstable, neutrally stable, or stable. We deduce that the equilibrium state with ε = 0 and θ = 0 is unstable if

a1/3
(

η + 1

η + a

)1/3

< λ < a1/3, (29)

where η = μ(1)/μ(2).
Similarly, at ε = 0 and θ = π/2, both the partial derivatives defined by Eqs. 20-21 are equal to zero, and

∂2w

∂ε2
(λ, 0, π/2) = μ(1) + μ(2), (30)

∂2w

∂ε∂θ
(λ, 0, π/2) = μ(2)λ−1/2 (a − 1) , (31)

∂2w

∂θ2
(λ, 0, π/2) = μ(2)

(
λ2 − λ−1a

) (
1 − a−1

)
. (32)

Thus the equilibrium state with ε = 0 and θ = π/2 is unstable if

a1/3 < λ < a1/3
(

η + a

η + 1

)1/3

. (33)

Therefore, shear stripes can form when λ satisfies (see also partial results in the Appendix of [32])

a1/3
(

η + 1

η + a

)1/3

< λ < a1/3
(

η + a

η + 1

)1/3

. (34)

For the corresponding equilibrium solution, the shear parameter and director angle take the following explicit form,
respectively:

ε0 = ±
√[

λ3 (η + a) − a (η + 1)
] [
a (η + a) − λ3 (η + 1)

]

aλ1/2 (2η + a + 1)
, (35)

θ0 = ± arctan

√
λ3 (η + a) − a (η + 1)

a (η + a) − λ3 (η + 1)
. (36)

The gradient tensors for alternating shear deformations in two adjacent stripe subdomains are F± with ε = ±ε0, respec-
tively. These two deformations are geometrically compatible in the sense that F+ and F− are rank-one connected, i.e.,
rank (F+ − F−) = 1 [36].

The nondimensionalised strain-energy function w(λ, ε, θ) (i.e., the function divided by μ(2)) described by Eq. 18, with
η = μ(1)/μ(2) = 1, is illustrated in Fig. 4. For λ with values between the lower and upper bounds given by Eq. 34, the
minimum energy is attained for (ε, θ) = (ε0, θ0) provided by Eqs. 35-36. Figure 5 depicts the positive values of the shear
parameter ε0 and director angle θ0 described by Eqs. 35 and 36, respectively, for different parameter ratios η. When η = 0,
corresponding to the neoclassical form, shear stripes form for λ ∈ (

1, a2/3
)
. When η → ∞, there is no shear striping since

the material is practically purely elastic.

4.1 Optimal stripe width

For shear striping, thewidth of each subdomain depends on thematerial properties, sample geometry and boundary conditions.
Dirichlet conditions fixing the director at both ends of the LCE sample in its initial orientation, i.e., perpendicular to the
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Fig. 4 The nondimensionalised
strain-energy function w(λ, ε, θ)

given by Eq. 18, for (ε, θ) = (0, 0),
(ε, θ) = (ε0, θ0), and
(ε, θ) = (0, π/2), when a = 4 and
η = 1 (i.e., μ(1) = μ(2)). The two
vertical lines correspond to the lower
and upper bounds on λ. Between
these bounds, the second solution,
with (ε, θ) = (ε0, θ0), minimises the
energy

longitudinal direction, known as strong anchoring, play an important role in numerically capturing this property. To estimate
the stripe width, we add the Frank energy density to our model function, as follows,

W (nlce) = W (lce) + k

2

∣∣∣FTGrad n
∣∣∣
2
, (37)

where W (lce) is as defined in Eq. 1 and k is the Frank constant [9, 49].
We denote by L1, L2, L3 the size of the undeformed LCE sample in the extension direction (which is perpendicular to the

director orientation in the undeformed state), the width direction (which is parallel to the initial director), and the thickness
direction, respectively. Provided that Dirichlet boundary conditions are imposed at the ends, the width h of a strip band
forming parallel to the initial director at each of these ends must be of the same order of magnitude as that of a shear stripe
[48] (see also [49, Appendix C]). For geometric compatibility, the displacement in such a strip band must be equal to γ h,
where γ = λ12(x1, x2) denotes the shear strain in a shear stripe, so that

dλ12
dx2

= dλ22
dx1

, (38)

with λ22 ≈ h representing the stretch ratio in the direction of the stripe width.

Fig. 5 The positive values of the (a) shear parameter ε0 and (b) director angle θ0 given by Eqs. 35-36, for different values of the parameter ratio
η = μ(1)/μ(2) when a = 4
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Due to the infinitesimal scale of the strip band width, the linear elastic framework is suitable to analyse their deformation.
The corresponding elastic energy is then approximately

Eend ≈ 1

2
μγ 2

(
2L3h

2
) L2

h
= μγ 2L2L3h, (39)

where L3h2 is the volume of one end region for a single shear stripe and L2/h is the number of stripes. This elastic energy
decreases as h decreases.

There is additional elastic energy at the narrow interface between adjacent stripes with opposite shear deformation and
director rotation. Since the director angle θ ∈ (−θ0, θ0) varies from one side of the interface to the other, so that it takes the
value zero in the middle of the interval, this energy is approximately

Eint ≈ L1L3
√

μk

(
L2

h
− 1

)
, (40)

where
√

μk is the effective surface tension, L1L3 is the area of a single interface, and L2/h − 1 is the number of interfaces.
This energy tends to decrease when h increases.

The problem is then to find the optimal stripe width h that minimises the total energy

Estripe = Eend + Eint . (41)

Differentiating the above function with respect to h and solving for the critical value, we obtain

h ≈
(
L

√
k

μ

)1/2

, (42)

Fig. 6 Finite element simulation of necking in a nematic LCE described by Eq. 1 when η = μ(1)/μ(2) = 3. Top image shows the reference
configuration, middle image shows the deformed state with the director orientation, and bottom plot is for the vertical displacement in the middle
and near the left end of the top horizontal boundary
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i.e., the stripe width increases with sample initial length L1 = L and nematic penetration depth
√
k/μ ≈ 10−8 m, which

measures the competition between polymer and Frank elasticity. A typical value for the stripe width is h ≈ 10−5 m.

5 Numerical simulations

We illustrate numerically the stretch deformation causing necking and the periodic shear striping for nematic LCEs.
For the computed examples, we build on existing procedures for three-dimensional finite elasticity of the open-source

software Finite Elements for Biomechanics (FEBio) [29], to account also for macroscopic nematic effects in continuum LCE
models [28]. Under uniaxial stretch [49], we impose Dirichlet boundary conditions on each side parallel to the Y -directions,
where the displacement in all directions is prescribed and the nematic director is fixed, and treat all the other boundaries as
free.

Figure 6 presents a finite element simulation of neckingwhere themodel function is given byEq. 1with 3μ(1) = μ(2) = 104

Pa. In this figure, the deformed configuration appears narrower near the ends than in the middle. This is confirmed by the
plots showing the corresponding vertical displacements as stretching increases. The darker colour at the ends of the deformed
state further suggest that the director is less aligned with the tensile direction compared to the middle section.

Figures 7-8 show finite element representations of shear striping in a nematic LCE described by Eq. 37 withμ(1) = μ(2) =
5 · 104 Pa and k = 10−11 N. In Fig. 7, for two samples with different aspect ratios, the number of stripes reduces almost
by half when the initial length L increases 4 times. In Fig. 8, the number of stripes reduces by ≈ 3 when Frank constant k
increases 100 times, and by ≈ 5 when this constant increases 1,000 times. This is in agreement with our Eq. 42.

Our numerical implementations are openly available at the web address indicated in the data statement of this paper.

Fig. 7 Finite element simulation of nematic LCEs described by Eq. 37, with η = μ(1)/μ(2) = 1, where stripe width increases with the sample
initial length L . Both the reference and deformed configurations are shown
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Fig. 8 Finite element simulation of nematic LCEs described by Eq. 37, with η = μ(1)/μ(2) = 1, where stripe width increases with the nematic
penetration depth

√
k/μ (μ = μ(1) + μ(2)). Both the reference and deformed configurations are shown

6 Conclusion

We have demonstrate theoretically and numerically deformation localisation through necking and shear striping in nematic
elastomer models. These two instability mechanisms appear in certain nematics LCEs when subject to uniaxial tensile stress.
For necking, the scalar uniaxial order parameter varies, reflecting the polydomain-monodomain transition under mechanical
stretch. For shear striping, the order parameter is fixed, as reported by experimental studies. Our finite element simulations
capture well both of these phenomena. Themodelling approaches adopted here can further be extended to include probabilistic
model parameters [31] and strain rate effects [4, 51].

A Nematic elastomer models where necking cannot form

In this appendix, we consider the following strain-energy functions describing a nematic LCE,

W (nc)(F,n) = W (A), (A.1)

where F represents the macroscopic deformation gradient from the cross-linking state, n is the nematic director in the present
configuration, and W (A) is the strain-energy density of the isotropic polymer network, depending only on the (local) elastic
deformation tensor A = G−1FG0, with G0 and G the natural deformation tensors due to the liquid crystal director in the
reference and current configuration, respectively.

The LCE is subject to the finite-strain deformation with λ1 = λ > 1 and λ2 = λ3 = λ−1/2, while the tensile force is
parallel to the nematic director. Let G0 = I, so that

α1 = λ

(
1 + 2Q

1 − Q

)−1/3

= α, α2 = α3 = λ−1/2
(

1 − Q

1 + 2Q

)−1/6

= α−1/2, (A.2)

where Q ∈ (0, 1) is the scalar uniaxial order parameter in the current configuration.
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For hyperelastic materials where the force-extension curve does not have a maximum, the homogeneous deformation is
the only absolute minimiser of the elastic energy, hence necking cannot occur [44]. Here, we show that, if Q is constant and
the hyperelastic model described by W (A) does not exhibit necking, then the LCE model W (nc)(F) does not present necking
either.

To prove this, we denote by w(λ) the strain-energy functionW (nc)(F) given by Eq. A.1, depending only on λ, and by w̃(α)

the strain-energy functionW (A) for the underlying polymeric network, depending only on α. Calculating the first and second
derivatives, we obtain

dw(λ)

dλ
= dw̃(α)

dα

dα

dλ
= dw̃(α)

dα

(
1 + 2Q

1 − Q

)−1/3

(A.3)

and
d2w(λ)

dλ2
= d2w̃(α)

dα2

dα

dλ

(
1 + 2Q

1 − Q

)−1/3

= d2w̃(α)

dα2

(
1 + 2Q

1 − Q

)−2/3

> 0. (A.4)

The last inequality holds since, by assumption, there is no necking for the polymeric network, hence d2w̃/dα2 > 0. It
follows that d2w/dλ2 > 0, i.e., for the LCE described by Eq. A.1, necking will not form.

In particular, since incompressible neo-Hookean [47] and Mooney-Rivlin [39, 42] hyperelastic models do not exhibit
necking, this property is inherited by the associated LCE models of the form given by Eq. A.1 (see also [35] for alternative
modelling).

B Experimental data

We present in this appendix the experimental data for scalar uniaxial order parameter used to calibrate the function given in
Eq. 12 (see also [33]). These data are plotted in Fig. 3(a).

Table 1 Experimental data [14]
λ Q
longitudinal stretch uniaxial order parameter

1.7853 0.6881

1.7658 0.6860

1.7476 0.6838

1.7281 0.6808

1.7061 0.6772

1.6840 0.6727

1.6606 0.6669

1.6164 0.6514

1.5891 0.6365

1.5526 0.6050

1.5227 0.5595

1.4836 0.4378

1.3989 0.3059

1.3037 0.1000

1.2359 0

1.1955 0

1.1512 0

1.1121 0

1.0743 0

1.0443 0

1.0274 0

1.0091 0
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