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Abstract. Within manufacturing there is a growing need for autonomous Tool 
Condition Monitoring (TCM) systems, with the ability to predict tool wear and failure. 
This need is increased, when using specialised tools such as Diamond-Coated Burrs 
(DCBs) for mill-grinding high strength ceramics or glass, in which the random nature 
of the tool, inconsistent manufacturing methods and high wear rates create large 
variance in tool life. This unpredictable nature leads to a significant fraction of a DCB 
tool’s life being underutilised due to premature replacement. Workpiece surface 
damage, increased grinding forces and large-scale diamond grain pullout could all be 
the result of high levels of runout and in-circularity common within electroplated 
DCBs. As such it is important to not only monitor the overall tool wear but also tool 
condition. Acoustic Emission (AE) presents as an indirect on-machine sensing 
method highly suited to grinding applications. The high frequency range of AE, >20 
kHz, prevents machine noise from dominating the acquired signals, isolating the 
microscale machining processes within noisy machine environments. AE resulting 
from the grinding process has the potential to monitor not only tool wear but also key 
performance indicators of a tools condition. A series of DCB mill-grinding tests have 
been conducted, each consisting of the continuous acquisition of AE during grinding. 
In addition a complimentary data set of frequent tool surface measurements was 
acquired to support AE analysis. Preliminary results demonstrate AE kurtosis can be 
seen as an indicator of each tool’s runout, representing the fraction of time the tool 
and workpiece are in contact during a revolution. As a result, an indirect monitoring 
system capable of monitoring wear and tool state with AE could be utilised within the 
manufacturing sector. 
Keywords: Acoustic Emission, Tool Condition Monitoring, Diamond Coated Burrs, 
Grinding 

Introduction  

The increasing demand for higher strength materials within mass-manufacturing has led to 
the dramatic increase in use of small diameter grinding tools. Of which, electroplated single-
layer Diamond-Coated Burrs (DCBs) are common-place, enabling small and complex, 
ceramic or glass components to be manufactured. This widespread use stems from the 
electroplating manufacturing method, allowing DCBs to take on any required geometric 
profile with little additional expense. However, the electroplating method is also the main 
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downside of these tools. Electroplated DCBs are mono-layer grinding tools, in which a single 
layer of diamond grains are plated onto the tool's core, with a nickel bond material. Fig. 1 
shows the circumferential cross-section of a ⌀ 1.3 mm #1000 (15 μm grain size) DCB, in 
which you can see the tool’s steel core and the diamond grains encased by the nickel 
plating. 

Fig. 1. Radial cross-section of a new ⌀ 1.3 mm #1000 DCB 

The random nature of electroplating results in defects on the tool surface, including 
nickel blisters, uneven grit density, flat spots, and high levels of runout/ovality. The outcome 
of these inconsistencies/defects are tools with inherently different Remaining Usable Life 
(RUL). With the current time based tool life management strategy, it is typical for only 50–
80% of a DCBs’ life to be utilised [1] before being replaced. Furthermore, 20% of a machine 
tool’s downtime is the direct result of tool failure [2]. 

Utilised as "mill-grinding" tools, DCBs exhibit similar characteristics of both 
grinding wheels and end mills. Grinding tool wear results from the cumulation of many 
individual rotational interactions between abrasive grains and the workpiece material [3]. 
The outcome of these interactions can be separated into three main mechanisms of wear: 
attritous wear, micro/macro grain fracture and bond fracture [4]. The monitoring of these 
tools however is lacking in comparison to other traditional machine processes, such as 
milling and turning. As such, a passive sensing process that could allow for on-machine real-
time monitoring would be highly beneficial, resulting in reducing tooling costs and machine 
downtime. 

Indirect Tool Condition Monitoring (TCM) methods whilst less precise than direct 
optical or physical measurements, are still beneficial within mass-manufacturing due to their 
uninterrupted nature [5]. In an attempt to fill this void, Acoustic Emission (AE) was utilised 
as an indirect sensing technique. AE is already deployed as a promising and widely used 
method for grinding process monitoring, including the dressing process [6, 7], wheel loading 
[8, 9] and grinding burn [10, 11]. Additionally, the ultrasonic nature of AE waveforms, >20 
kHz, prevents machine noise from dominating the acquired signals [12, 13]. This built-in 
filtering effect allows for a high signal/noise ratio and sensitivity at the micro scale 
encountered from extremely small depth of cuts [14, 15]. In order to prevent attenuation of 
the higher frequency components, AE sensors are typically mounted directly to the workpiece 
[16, 17], reducing the distance between the source and sensor face. Other studies have been 
carried out in attempt to remove this limitation, such as mounting to the work-holding device 
[11, 18], spindle head [19, 20] or through the coolant flow [21, 22]. 
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This paper presents the results from four mill-grinding tests, during each a DCB was 
worn systematically with frequent direct surface measurements. AE was collected during 
each grinding pass throughout the tool’s life, allowing for a TCM approach to be developed 
based solely on AE. A Renishaw NC4 system [23] was utilised to directly measure the tool’s 
surface from within the machine tool, from which the tool wear and condition could be 
monitored throughout. AE showed the ability to identify the grinding contact period and as 
a result automatic trigger points were determined, focusing AE features on this period. AE 
Kurtosis (AEkurt), a measure of a distribution’s peakedness and an indicator for fault diagnosis 
of rotating machinery [24], was identified as a useful feature to relate AE to the tool’s 
condition, seen by both runout and form error. Potentially, allowing future TCM models to 
predict a combination of both overall wear, tool radius, and grinding effectiveness, runout 
and form error. 

1. Methodology 

This section outlines the experimental procedure for the grinding procedure and AE 
acquisition. For a more detailed description of the methodology the reader is referred to a 
previous publication on this work [25]. 

Four tool life tests were carried out, all of which utilised the same procedure, grinding 
parameters, data acquisition setup and tool specification. Each test started with an un-used 
Genentech ⌀ 1.3mm #1000 (15 μm average grain size) DCB, and was used to grind a silicon 
carbide workpiece until tool failure. 

A MISTRAS Wideband Differential (WD) sensor was used in conjunction with a 
MISTRAS 2/4/6 pre-amplifier, set to a gain of 20 dB. The WD sensor was coupled directly 
to the top surface of the workpiece, with a setting silicon based sealant to prevent water 
ingress and act as a couplant between the two surfaces. A National Instruments PXI-5922 
oscilloscope was used to record the AE signals at 2 MHz.  

To wear the DCBs a single side-grinding pass was repeated until tool failure, deemed 
by a reduction of >0.5 mm in the tool’s length, grinding parameters can be found in detail in 
[25]. After each grinding pass the DCB’s surface was measured halfway up the axial depth 
of cut (2.5 mm) with a Renishaw NC4+ blue optical tool setter. Fig. 2 shows the experimental 
layout and equipment within the machine tool.  

2. Results 

The series of mill-grinding tests resulted in four datasets with a large range in total usable 
tool life and final DCB wear state. Table 1 shows an overview of the initial and final wear 
states of each DCB. Due to all parameters being constant between tests, the variance seen in 
DCB life is the direct result of tool variation or defects. 

Table 1. DCB mill-grinding test overviews 

Test No. 
No. of 

grinding 
passes 

Material 
removed 
(mm3) 

DCB mean radius 

Initial (mm) Final (mm) Wear (%) 
1 213 6.39 0.676 0.636 5.91 
2 163 4.89 0.662 0.635 4.08 
3 176 5.28 0.674 0.610 9.50 
4 158 4.74 0.665 0.610 8.27 
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Fig. 2. Labelled experimental layout within machine tool 

 

2.1 DCB Wear Data 

After each test, the NC4 surface scans were aligned to show the degradation of the tool’s 
surface during each mill-grinding test. Fig. 3 shows the DCB circumferential surface 
measurements throughout Test 4. A large crater can be seen forming in Fig. 3, this crater 
slowly widens until it encompasses two thirds of the circumference. 

Fig. 3. DCB circumferential surface measurements during Test 4, every fourth measurement shown 
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To be used as an objective for the AE monitoring procedure, the NC4 tool scans were 
processed into representative features. Four features were used as the basis for implying the 
tool’s condition, namely; mean radius, peak radius, runout and form error. Mean radius is 
seen as a generic metric for the DCB’s RUL, based solely on the remaining thickness of the 
abrasive layer. The other three metrics, peak radius, runout and form error, were all utilised 
as tool condition and effectiveness measurements.  

Form error is calculated as the range of each NC4 surface measurement, 𝑦𝑦𝑖𝑖, seen in 
equation 1. As a result it indicates the difference in height between the peaks and troughs 
present on the tool’s surface. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 = max(𝑦𝑦𝑖𝑖) − min(𝑦𝑦𝑖𝑖)   (1) 
Runout is a measure of the geometric deviation of the measured surface, from the 

theoretical rotation axis of the spindle. Multiple sources of runout exist between components 
within the machine tool, i.e. the machine spindle, tool holder, collet, tool shaft and mean 
grain surface. Runout is prevalent in all forms of machining, but becomes crucial when using 
smaller diameter tools making small depth of cuts. Runout is calculated by taking the centre 
coordinates, (𝑥𝑥0, 𝑦𝑦0), of a least squares fitted circle to the measured surface plot, and then 
finding the distance between the fitted centre and theoretical centre. Equation 2 shows the 
calculation of total runout from the centre of each tool’s fitted centre. 

𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑅𝑅𝑡𝑡𝑖𝑖 = 2 ×  �𝑥𝑥0
2 + 𝑦𝑦0

2    (2) 

Fig. 4 shows the extracted DCB wear features for each of the four tests. Both the 
mean and peak radius measurements follow the expected three phase wear cycle of grinding 
tool wear. Runout and form error are both identifiers of surface crater formation, represented 
by large increases in the measurements after inflection points. 

Fig. 4. DCB measurements extracted from NC4 scans during each mill-grinding test 

2.2 AE Data 

Fig. 5(a) shows a typical AE signal collected during a grinding cut. To ensure reliable capture 
of the entire AE waveform, an adequate acquisition buffer is added to either side of the 
grinding. The period of grinding can clearly be identified within the continuous AE signal by 
sharp increase in amplitude over the 21 s period. To prevent the external noise during these 
buffer periods impacting the extracted AE features, each signal was trimmed between two 
trigger points, marked by red dashed lines in figure Fig. 5(a). 
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Fig. 5(b) shows the same AE signal zoomed into a section lasting 50 ms, better 
showing the interrupted nature of the grinding process.  

To calculate the trigger points for each AE signal automatically, a process based on 
the gradient of the instantaneous analytical signal from the Hilbert transform was utilised, 
Fig. 6 shows the process. To further speed up computation time and reliability, the enveloped 
signal was only computed over the first 5 s in order to determine the trigger start and voltage 
values. Fig. 7 shows the output of this process for the AE signal shown in Fig. 5. 

Fig. 5. (a) AE signal from the 10th cut of Test 1, with trigger points shown by red dashed line. (b) Zoomed 
section showing individual AE peaks 

Fig. 6. Flowchart of trigger point determination process 

Fig. 7. Filtered and enveloped AE signal with trigger points shown, of the 10th cut of Test 1 

Utilising these trigger points, AE features could be extracted relating solely to the 
period of grinding. Of the time domain features the AE kurtosis (AEkurt) showed the most 
promise to enable tool state characterisation.  

The AEkurt of each signal appeared to be intrinsically linked to the DCB form error 
and runout. The kurtosis of a signal describes the tailedness of a distribution, which in this 
application of continuous noise, indicates the proportion of the signal having been measured 
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at zero voltage. If the grinding tool is assumed to be perfectly circular and have zero runout, 
it should produce a constant uninterrupted AE signal. However, as can be seen in Fig. 5(b) 
this is not the case, with the AE amplitude fluctuating at a frequency equal to the spindle 
speed, 24000 rpm. Suggesting that the tool is only grinding on one section of its 
circumference, as a result of uneven grit distribution or loss of contact with the workpiece. 
As such the AEkurt can be seen as a measure of the amount of grinding contact the tool has 
with the workpiece over one rotation, i.e. an increase in AEkurt implies a loss of contact. 
Interrupted contact can be the combined result of both DCB runout and form error as well as 
the overall total wear of the tool. 

Fig. 8 shows the corresponding AEkurt and DCB tool errors throughout each of the 
four mill-grinding tests, in which changes in runout and form error are often accompanied by 
changes in AEkurt. Examples of this can be seen within all four tests shown in Fig. 8. In Test 
1 however, the AEkurt inflection point occurs at cut 60, roughly 20 cuts prior to it being 
detected within the DCB runout or form error measurements. This example shows a 
limitation of this experimental method, as the NC4 tool measurements occur only at one 
circumferential height up the tools contact surface. As a result it is possible, that outside of 
the measurement region the tool has experienced a change in runout or form error, causing 
the change in AEkurt. These tests indicate the suitability of AEkurt for the identification of 
surface crater formation. With this added information relating to each tool’s condition, more 
sophisticated TCM approaches can be developed. Approaches that not only predict tool 
failure, thus extending each DCB’s RUL, but also prevent the usage of a tool that is 
ineffective and damaging to the workpiece’s surface. 

Fig. 8. AEkurt throughout each mill-grinding test with corresponding DCB runout and form error 

Looking forward, this work will investigate the effect of tool wear on the workpiece, 
particularly the effect of surface craters and high runout levels. With the aim of extracting 
tool wear limits based not solely on tool radius, but also on workpiece tolerances and surface 
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quality. Additionally, a method of visualising the entire tool’s contact surface would give 
better representation of the tool to relate to the AE signals. 

4. Conclusion 

This study details the experimental and post-processing methodology for the acquisition of 
both continuous AE data and in-machine tool wear measurements, during a DCB mill-
grinding test. Four full length mill-grinding tests were conducted with constant grinding 
parameters, in which a ⌀ 1.3mm #1000 DCB was used from new to failure. In situ tool wear 
measurements with a Renishaw NC4+ blue, showed the DCBs follow a traditional three 
phase wear cycle. They also identified the formation of surface craters in each test, resulting 
in sharp increases in both tool runout and form error. AE feature extraction was aided by the 
inclusion of trigger points, identifying both the start and end of grinding contact within 
continuous AE signals. AEkurt presents as a metric for the proportion of circumferential 
contact between the DCB and workpiece. In turn enabling the identification of surface crater 
formation on the tools, shown by a correlation between changes in AEkurt and DCB runout 
and form error. This relationship could enable more traditional overall wear prediction 
models, commonly based on AE amplitude and frequency partial powers, to better 
understand the tool’s condition and grinding effectiveness. 
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