
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/17 2 5 4 7/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

S u n,  Yingyue,  Wei, Yu a n d  Wang,  Yizhi 2 0 2 4.  Do g r e e n  econo my s tocks  m a t t e r  for  t h e

c a r bo n  a n d  e n e r gy m a rk e t s?  Evid e nc e  of co n n e c t e d n e s s  effec t s  a n d  h e d gin g

s t r a t e gi e s.  Chin a  Fin a nc e  Review Int e r n a tion al  1 0.11 0 8/CFRI-0 5-2 0 2 4-0 2 2 9  

P u blish e r s  p a g e:  h t t p s://doi.o rg/10.11 0 8/CFRI-0 5-2 0 2 4-0 2 2 9  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



 

1 

 

Do green economy stocks matter for the carbon and energy 

markets? Evidence of connectedness effects and hedging strategies 

   

Abstract 

Purpose - We phrase our analysis around the connectedness effects and portfolio 

allocation in the “Carbon-Energy-Green economy” system.  

Design/methodology/approach - This paper utilizes the TVP-VAR method provided 

by Antonakakis et al. (2020) and Chatziantoniou et al. (2021), and portfolio back-

testing models, including bivariate portfolios and multivariate portfolios. 

Finding - Firstly, the connectedness within the “Carbon-Energy-Green economy” 

system is strong, and is mainly driven by short-term (weekly) connectedness. Notably, 

the COVID-19 pandemic leads to a vertical increase in the connectedness of this system. 

Secondly, in the “Carbon-Energy-Green economy” system, most of the sectors in the 

green economy stocks tend to be the transmitters of shocks to other markets 

(particularly the energy efficiency sector), while the carbon and energy markets are 

always the recipients of shocks from other markets (particularly the crude oil market). 

Thirdly, Green economy sector stocks have satisfactory hedging effects on the market 

risk of carbon and energy assets. Interestingly, hedging risks in relatively ‘dirty’ assets 

requires more green economy stocks than in relatively ‘clean’ assets. Finally, the results 

indicate that portfolios that include green economy stocks significantly outperform 

portfolios that do not contain green economy stocks, further demonstrating the crucial 

role of green economy stocks in this system. 

Originality/value - Understanding the interactions and portfolio allocation in the 

“Carbon-Energy-Green economy” system, especially identifying the role of the green 

economy performance in this system, is important for investors and policymakers. 

Keywords Green economy stocks, Carbon market, Energy market, Connectedness, 

Portfolio allocation 

Paper type Research paper  
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1. Introduction 

Increasingly severe extreme weather events and environmental hazards are posing serious 

challenges to global economic development. Countries are gradually reaching a consensus on 

a green transformation of their economies (Wang et al., 2023; Wei et al., 2023; Wei et al., 

2022b). Particularly, the outbreak of conflict between Russia and Ukraine, which triggered a 

global energy crisis in February 2022, has highlighted the importance of greening the economy 

and energy. The green economy is an emerging economic model that promotes low-carbon 

energy. It creates new market opportunities as a low-carbon, resource-efficient and socially 

inclusive economy. The results will not only markedly reduce environmental risks and improve 

human well-being and social equity, but will also stimulate the development of green 

investments (Amato and Korhonen, 2021; Pham, 2019). In fact, between 2011 and 2021, the 

total global investment in the low-carbon energy transition expanded from $264 billion to $755 

billion [1]. Arguably, global green investment and financing is continuing to grow. Among 

these, green economy stocks have become an attractive asset for investors’ portfolio allocation 

(Chen et al., 2023). Also, because of their special “green” qualities, it is not surprising to note 

that green economy stock assets comply with Environmental, Social and Governance (ESG) 

characteristics and are an essential tool for socially responsible investment (SRI). Admittedly, 

SRI may lead to additional costs, but since the growing public acceptance of cleaner production 

and sustainable consumption, the demand for SRI by investors has increased clearly (Ortas et 

al., 2013; Díaz et al., 2022). 

However, the development of socially responsible investments such as green economy 
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stocks is disruptive to traditional asset investment situations. Apparently, the incremental costs 

of socially responsible investing can influence the costs that would otherwise be incurred by 

individual and institutional investors managing asset portfolios, and thus green economy stocks 

may create a shock to other assets, including energy and carbon assets. Additionally, carbon 

and energy prices are the main drivers of investment and profitability of green economy 

projects, because they can affect the limited costs of companies, leading companies to 

constantly adjust their resource allocation, such as improving energy efficiency, using 

renewable energy sources (Reboredo et al., 2017). With all these in mind, there is a distinct 

transfer of risk between the carbon market, the energy market, and the green economy stocks 

(hereafter “Carbon-Energy-Green economy” system). Consequently, in the “Carbon-Energy-

Green economy” system, understanding the connectedness and exploring the portfolio 

strategies of assets is crucial for risk management, asset allocation, and decision-making.  

Furthermore, the literature on the carbon market, energy market, or green economy has 

recently attracted considerable attention. On the one hand, there have been a large number of 

studies that have explored the potential relationship between the carbon market and the energy 

market (Duan et al. 2021; Jiang and Chen, 2022a, b; Tian et al., 2022). Of these, Zheng et al. 

(2015) concluded that the carbon and energy markets are cross-correlated, and that there is a 

physical relationship between carbon emissions and energy production. The results of Dai et 

al. (2021) showed that the long-term spillover effect in the carbon and energy markets is strong, 

and demonstrated that carbon assets can hedge the risk of energy assets. On the other hand, as 

the green economy development strategy and the transition from the traditional economic 

development model to a green economy have become inevitable (Ali et al., 2021), the 

upgrading of the energy mix has become a priority for the economic development of countries, 
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which has pushed researchers to focus on the energy market and the green economy (Dutta et 

al. 2020a; Chen et al., 2023; Gao et al., 2021; Reboredo et al., 2020; Shahbaz et al., 2021; Wei 

et al., 2022a; Wei et al., 2017; Wei et al., 2019). Dutta et al. (2020b) confirmed that green 

economy investments are associated with oil price shocks. And Sharma et al. (2023) discovered 

that the green economy is very sensitive to price changes in the energy market. Moreover, it 

was not difficult to find that the carbon market is important for building a green economy, given 

the increasingly broad scope of decarbonization programs (Dunlap, 2023). So the 

characteristics of the connection between the green economy and the carbon market are also 

the topics of academic research (Jin et al., 2020; Shahbaz et al., 2021; Tian et al., 2022; Zheng 

et al., 2022). Castro et al. (2021) asserted that green technologies help to reduce carbon 

emissions. Li et al. (2022) contended that in the short and medium term, the green market has 

a positive impact on carbon prices. Conclusively, the existing literature confirmed the potential 

connection between the carbon market and the energy market, and the inevitable association of 

the energy market and the green economy, which is dependent on the carbon market for its 

development. Therefore, the effects of the carbon market, the energy market and green 

economy stocks are transmitted to each other, and there may exist a closed-loop interacting 

mechanism. Unequivocally, we believe that there may be a dynamic linkage in the “Carbon-

Energy-Green economy” system.  

At the same time, global crisis events have been prone to asset price instability in recent 

years, owing to modern technological advances that have broken down barriers to the flow of 

information across markets. As a result, portfolio allocation that includes carbon, energy and 

green economy assets becomes more complex and diversified given the risk correlation 

between carbon markets, energy markets and green economy (Asl et al., 2021; Chen et al., 
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2022; Dutta et al., 2020b; Ren and Lucey, 2022; Tiwari et al., 2022). Particularly, in the context 

of very severe environmental risks, socially responsible investment is gradually becoming 

more and more accepted as a mainstream investment product, despite the added expenses 

associated with such initiatives (Broadstock et al., 2020). As expected, the role and positioning 

of green economy stocks as one of the main instruments for socially responsible investment, in 

mainstream investment products is unclear. To this end, we first analyze the connectedness 

characteristics of the “Carbon-Energy-Green economy” system, and then discuss the portfolio 

performance under this system, especially the performance of the green economy.  

In conclusion, we make contributions on three fronts. Firstly, it is the first explicit 

consideration of the risk-linked characteristics and the roles of three markets in the “Carbon-

Energy-Green economy” system. In point of fact, most of the extant studies lack a 

comprehensive discussion of how these three types of markets are connected. Secondly, we 

shed light for the first time on the position of green economy stocks in the “Carbon-Energy-

Green economy” system and how various markets are hedged. Unequivocally, little evidence 

exists on the effect to which green economy stocks hedge carbon and energy assets. Thirdly, 

the major methods adopted in the above literature often rely on rolling window techniques at 

their core part (Jiang and Chen, 2022b; Sharma et al., 2023; Tian et al., 2022; Wei et al., 2022c; 

Zhang et al., 2019), and are prone to parameter instability (Chatziantoniou et al., 2021). In light 

of this, this paper utilizes the TVP-VAR method provided by Antonakakis et al. (2020) and 

Chatziantoniou et al. (2021) to test the connectedness performance of the “Carbon-Energy-

Green economy” system, and further to verify the robustness of the results. Additionally, we 

employ portfolio back-testing models, including bivariate portfolios and multivariate portfolios, 

which takes into account portfolio allocation in the system.  
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The remainder of the essay is structured as follows: Section 2 for the research 

methodology, Section 3 for the data employed, Section 4 for the empirical findings, and Section 

5 for the conclusions and suggests relevant counter-measures.  

2. Methodology 

This section consists of two main parts. First, we use the time-domain TVP-VAR model 

proposed by Antonakakis et al. (2020) to estimate the connectedness of the “Carbon-Energy-

Green economy” system and to analyze the role played by each of the three types of markets 

in this system. Further, we validate the robustness of this part of the results by employing the 

frequency domain TVP-VAR approach introduced by Chatziantoniou et al. (2021). Second, we 

apply the portfolio back-testing approach to investigate the investment performance of carbon, 

energy and green economy assets. In this context, we discuss the specific contribution of green 

economy stocks in the portfolios of the “Carbon-Energy-Green economy” system. 

2.1. TVP-VAR based time-varying and frequency connectedness approach 

To investigate the time-frequency relationships between the carbon, energy and green 

economy, we utilize the TVP-VAR frequency connectedness method recently established by 

Chatziantoniou et al. (2021). This method combines the TVP-VAR connectedness approach 

offered by Antonakakis et al. (2020) with the frequency connectedness approach proposed by 

Baruník and Křehlík (2018). Among these, the TVP-VAR connectedness method, was an 

integration of the work of Diebold and Yilmaz (2012) with Koop and Korobilis (2014). 

Following this, Chatziantoniou et al. (2021) used the spectral decomposition technique of 
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Stiassny (1996) to extend the dimensionality of connectedness exploration to different 

frequency domains.  

This approach is chosen not only because it has the same two main advantages as the 

TVP-VAR connectedness method: (i) it compensates for the problem of parameter instability 

due to the arbitrary choice of the rolling window size, and (ii) it avoids the problem of losing 

some valuable parameters, but it also broadens the observation perspective to be able to assess 

the connectedness in different frequency domains. We first estimate the TVP-VAR (p) model.  𝑦𝑡 = 𝛷𝑖𝑡𝑦𝑡−𝑖 + 𝜖𝑡                                              𝜖𝑡~(0, 𝛴𝑡),                             (1) 

where 𝑦𝑡 , 𝑦𝑡−1  and 𝜖𝑡  are all N × 1 dimensional vectors. 𝛷𝑖𝑡  and 𝛴𝑡  are N × N 

dimensional matrices, the former represents the time-varying coefficients of VAR for day t, and 

the latter is time-varying variance-covariance matrix. i stands for the value of the lag order p 

and accepts values in the range 𝑖 = 1, 2, ⋯ , 𝑝. Moreover, we let the N × N dimensional matrix 

lag polynomial Φ(𝐿) = [𝐼𝑁 − Φ𝑖𝑡𝐿𝑖], with 𝐼𝑁 denoting the identity matrix. Subsequently, we 

can write Eq. (1) as Φ(𝐿)𝑦𝑡 = 𝜖𝑡. If the TVP-VAR process is stable, we can apply the Wold 

representation theorem to convert it into the TVP-VMA (∞) form: 𝑦𝑡 = Ψ(𝐿)𝜖𝑡, Ψ(𝐿) is an 

infinite lag polynomial (i.e., coefficient), and it can be calculated recursively from Φ(𝐿) =[Ψ(𝐿)]−1 in the TVP-VMA (∞) form. And, Ψ(𝐿) can be represented by an approximation Ψℎ 

computed at the horizons of ℎ = 1, 2, ⋯ , 𝐻. Then, we calculate the generalized forecast error 

variance decomposition (GFEVD) using Ψℎ  (Koop et al., 1996; Pesaran and Shin, 1998; 

Wiesen et al., 2018).  

The GFEVD expresses the impact of shocks in sequence b on the predicted error variance 

of sequence a, it can be stated as follows:  
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𝛾𝑎𝑏𝑡(𝐻) = (Σ𝑡)𝑏𝑏−1 ∑ ((ΨℎΣ𝑡)𝑎𝑏𝑡)2𝐻ℎ=0∑ (ΨℎΣ𝑡Ψℎ′ )𝑎𝑎𝐻ℎ=0 ,                                               (2) 

𝛾̃𝑎𝑏𝑡(𝐻) = 𝛾𝑎𝑏𝑡(𝐻)∑ 𝛾𝑎𝑏𝑡(𝐻)𝑁𝑘=1 ,                                                       (3) 

where H denotes the prediction horizon, and we normalize Eq. (3) to obtain the following 

equations: ∑ 𝛾̃𝑎𝑏𝑡(𝐻) = 1𝑁𝑎=1   and ∑ ∑ 𝛾𝑎𝑏𝑡(𝐻) = 𝑁𝑁𝑎=1𝑁𝑏=1  . Then, we will measure different 

connectedness, respectively. First, the total directional connectedness to others (i.e., TO), 𝑇𝑂𝑎𝑡(𝐻) = ∑ 𝛾̃𝑏𝑎𝑡(𝐻).𝑁𝑎=1,𝑎≠𝑏                                                   (4) 

Eq. (4) expresses the effect of shocks in variable a on all others b. Second, the total directional 

connectedness from others (i.e., FROM). 𝐹𝑅𝑂𝑀𝑎𝑡(𝐻) = ∑ 𝛾̃𝑎𝑏𝑡(𝐻).𝑁𝑏=1,𝑎≠𝑏                                                (5) 

Eq. (5) means the effect of shocks of variable a from all other variables b. Next, based on 

Eq. (4) and Eq. (5), the net total directional connectedness (i.e., NET) as follows:  𝑁𝐸𝑇𝑎𝑡(𝐻) = 𝑇𝑂𝑎𝑡(𝐻) − 𝐹𝑅𝑂𝑀𝑎𝑡(𝐻).                                          (6) 

Eq. (6) is interpreted as the effect of shocks of variable a on the connectedness of the system. 

If 𝑁𝐸𝑇𝑎𝑡 > 0, it signifies that variable a has a stronger impact on all other variables than any 

others have on it., i.e., variable a acts as a net transmitter in the whole connectedness network. 

If 𝑁𝐸𝑇𝑎𝑡 < 0, the result is the opposite. The net pairwise directional connectedness index (i.e., 

NPDC) of two sequences:  𝑁𝑃𝐷𝐶𝑎𝑏𝑡(𝐻) = 𝛾̃𝑎𝑏𝑡(𝐻) − 𝛾̃𝑏𝑎𝑡(𝐻).                                          (7) 

Eq. (7) is interpreted as the net pairwise connectedness between variable a and variable b. If 𝑁𝑃𝐷𝐶𝑎𝑏𝑡 > 0, it means that variable a has more influence on variable b, that is, variable a 

dominates variable b. If 𝑁𝑃𝐷𝐶𝑎𝑏𝑡 < 0 implies the inverse result. Finally, we quantify the total 

connectedness index (i.e., TCI) to gauge the degree of association and the level of risk in the 
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system: 𝑇𝐶𝐼𝑡(𝐻) = 𝑁−1 ∑ 𝑇𝑂𝑎𝑡(𝐻) = 𝑁−1 ∑ 𝐹𝑅𝑂𝑀𝑎𝑡(𝐻).𝑁𝑎=1𝑁𝑎=1                            (8) 

All of the above are connectedness measures in the time domain, and to develop the 

connectedness analysis in the frequency domain, Chatziantoniou et al. (2021) considered the 

frequency response function according to the spectral analysis method of Stiassny (1996): Ψ(𝑒−𝑎𝜔) = ∑ 𝑒−𝑎𝜔ℎ∞ℎ=0 Ψℎ.                                                  (9) 

In Eq. (9), 𝜔 denotes the spectral density of 𝑦𝑡 at frequency 𝜔, which can be defined as the 

Fourier transform of TVP-VMA (∞): 𝑆𝑦(𝜔) = ∑ 𝐸(𝑦𝑡𝑦𝑡−ℎ′ )∞ℎ=−∞ 𝑒−𝑎𝜔ℎ = Ψ(𝑒−𝑎𝜔ℎ)Σ𝑡Ψ′(𝑒+𝑎𝜔ℎ).                      (10) 

The combination of spectral density and GFEVD is called frequency GFEVD, and we 

normalize the frequency GFEVD as follows:  𝛾𝑎𝑏𝑡(𝜔) = (Σ𝑡)𝑏𝑏−1| ∑ (Ψ(𝑒−𝑎𝜔ℎ)Σ𝑡)𝑎𝑏𝑡|2∞ℎ=0∑ (Ψ(𝑒−𝑖𝜔ℎ)Σ𝑡Ψ(𝑒𝑖𝜔ℎ))𝑖𝑖∞ℎ=0 ,                                          (11) 

𝛾̃𝑎𝑏𝑡(𝜔) = 𝛾𝑎𝑏𝑡(𝜔)∑ 𝛾𝑎𝑏𝑡(𝜔)𝑁𝑘=1 ,                                                     (12) 

where Eq. (12) is a within-frequency indicator, meaning that, for a given frequency ω, the effect 

of the spectral part of the ath variable can be attributed to a shock in the bth variable. However, 

the frequency 𝜔 in Eq. (11) and Eq. (12) is single, and the calculated connectedness is based 

on a single frequency only. In order to evaluate the connectedness in different frequency cases, 

Chatziantoniou et al. (2021) aggregated the frequencies to a specific range such that 𝜃 =(𝑗, 𝑘): 𝑗 < 𝑘, 𝑗, 𝑘 ∈ (−𝜋, 𝜋) . This led to the calculation of the connectedness at different 

frequencies as follows: 𝛾̃𝑎𝑏𝑡(𝜃) = ∫ 𝛾̃𝑎𝑏𝑡(𝜔)𝑑𝜔.𝑘𝑗                                                    (13) 
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According to Eq. (13), we can calculate the connectedness measures for a certain 

frequency range 𝜃. Thus, all the connectedness of Eq. (4) to (8) can be expressed in different 

frequency cases:  𝑇𝑂𝑎𝑡(𝜃) = ∑ 𝛾̃𝑏𝑎𝑡(𝜃)𝑁𝑎=1,𝑎≠𝑏 ,                                                 (14) 𝐹𝑅𝑂𝑀𝑎𝑡(𝜃) = ∑ 𝛾̃𝑎𝑏𝑡(𝜃),𝑁𝑏=1,𝑎≠𝑏                                               (15) 𝑁𝐸𝑇𝑎𝑡(𝜃) = 𝑇𝑂𝑎𝑡(𝜃) − 𝐹𝑅𝑂𝑀𝑎𝑡(𝜃),                                          (16) 𝑁𝑃𝐷𝐶𝑎𝑏𝑡(𝜃) = 𝛾̃𝑎𝑏𝑡(𝜃) − 𝛾̃𝑏𝑎𝑡(𝜃),                                          (17) 𝑇𝐶𝐼𝑡(𝜃) = 𝑁−1 ∑ 𝑇𝑂𝑎𝑡(𝜃) = 𝑁−1 ∑ 𝐹𝑅𝑂𝑀𝑎𝑡(𝜃).𝑁𝑎=1𝑁𝑎=1                            (18) 

Eq. (14) to (18) show some connectedness measures for a specific frequency range. Baruník 

and Křehlík (2018) argued that the degree of connectedness contribution within each frequency 

band needs to be weighted with respect to all connectedness contributions of the whole system 

by Ξ(𝜃) = ∑ 𝛾̃𝑏𝑎𝑡(𝜃)𝑁𝑎,𝑏=1𝑁 . Based on this weighting, Eq. (14) to (18) are transformed into: 𝑇𝑂𝑎𝑡̃(𝜃) = Ξ(𝜃) ∙ 𝑇𝑂𝑎𝑡(𝜃),                                                  (19) 𝐹𝑅𝑂𝑀𝑎𝑡̃ (𝜃) = Ξ(𝜃) ∙ 𝐹𝑅𝑂𝑀𝑎𝑡(𝜃),                                            (20) 𝑁𝐸𝑇𝑎𝑡(𝜃)̃ = Ξ(𝜃) ∙ 𝑁𝐸𝑇𝑎𝑡(𝜃),                                                (21) 𝑁𝑃𝐷𝐶𝑎𝑏𝑡(𝜃)̃ = Ξ(𝜃) ∙ 𝑁𝑃𝐷𝐶𝑎𝑏𝑡(𝜃),                                                (22) 𝑇𝐶𝐼𝑡(𝜃)̃ = Ξ(𝜃) ∙ 𝑇𝐶𝐼𝑡(𝜃).                                                  (23) 

Finally, we compare the frequency-domain connectedness and the time-domain 

connectedness, as follows: 𝑇𝑂𝑎𝑡(𝐻) = ∑ 𝑇𝑂𝑎𝑡(𝜃),𝜃                                                      (24) 𝐹𝑅𝑂𝑀𝑎𝑡(𝐻) = ∑ 𝐹𝑅𝑂𝑀𝑎𝑡(𝜃)𝜃 ,                                               (25) 𝑁𝐸𝑇𝑎𝑡(𝐻) = ∑ 𝑁𝐸𝑇𝑎𝑡(𝜃),𝜃                                                   (26) 
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𝑁𝑃𝐷𝐶𝑎𝑏𝑡(𝐻) = ∑ 𝑁𝑃𝐷𝐶𝑎𝑏𝑡(𝜃),𝜃                                                   (27) 𝑇𝐶𝐼𝑡(𝐻) = ∑ 𝑇𝐶𝐼𝑎𝑡(𝜃).𝜃                                                     (28) 

In the following, the TVP-VAR time-varying connectedness method is referred to as the 

TVP-VAR-DY method, and the TVP-VAR frequency connectedness method is referred to as 

the TVP-VAR-BK method.  

2.2. Portfolio back-testing models 

To identify the hedging potential between markets in the “Carbon-Energy-Green economy” 

system and to test the financial implications of the findings, we utilize portfolio back-testing to 

review the investment performance of carbon, energy, and green economy assets. On the one 

hand, we observe bivariate portfolios and assess the hedging effectiveness of green economy 

stocks on energy and carbon assets. On the flip side, to study the multivariate portfolio 

performance among carbon assets, energy assets and green economy stocks assets, we consider 

three approaches (MVP, MCP, MCoP) to constructing multivariate portfolios. Our analysis 

requires some assumptions. For instance, i) investors are only interested in investing in assets 

in the “Carbon-Energy-Green economy” system. ii) investors can directly purchase the indices 

in the system. iii) investors are open to investing in assets that include carbon, energy and green 

economy assets.  

The reason for selecting these methods is directly correlated to the research objectives of 

this paper. Not only is it feasible to recognize the performance of green economy stocks as a 

hedge against assets of different “clean” nature (carbon and energy assets), but it is also 

possible to explore the risk diversification effects of green economy stocks in the “Carbon-

Energy-Green economy” system. We begin by looking at the bivariate portfolios. 
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2.2.1. Bilateral hedge ratios and portfolio weights 

To evaluate the performance of bivariate portfolios, we compute the hedge ratio of Kroner 

and Sultan (1993) and the optimal portfolio weights of Kroner and Ng (1998). First, the hedge 

ratio is given by the following equation: 

𝛽𝑎𝑏,𝑡 = ℎ𝑎𝑏,𝑡 ℎ𝑏𝑏,𝑡⁄ ,                                                    (29) 

where ℎ𝑎𝑏,𝑡  is the conditional covariance of series a and b at moment t, and ℎ𝑏𝑏,𝑡  is the 

conditional covariance of series b at moment t. Second, the optimal bilateral portfolio weights, 

which are the results that this paper will discuss. And the optimal bilateral portfolio weights 

between sequences a and b are calculated as: 𝑤𝑎𝑏,𝑡 = ℎ𝑎𝑎,𝑡−ℎ𝑎𝑏,𝑡ℎ𝑎𝑎,𝑡−2ℎ𝑎𝑏,𝑡+ℎ𝑏𝑏,𝑡,                                              (30) 

with 

𝑤𝑎𝑏,𝑡 = { 0          𝑖𝑓 𝑤𝑎𝑏,𝑡 < 0𝑤𝑎𝑏,𝑡     𝑖𝑓 0 < 𝑤𝑎𝑏,𝑡 < 11          𝑖𝑓 𝑤𝑎𝑏,𝑡 > 1 ,                                   (31) 

where 𝑤𝑎𝑏,𝑡  is the weight of sequence a in a 1$ combination of sequences a and b. In the 

1$ combination of sequence a and b, the weight of sequence b is denoted as 1 − 𝑤𝑎𝑏,𝑡. Then, 

the three portfolio approaches we use are described below. 

2.2.2. Minimum variance portfolio (MVP) 

The minimum variance portfolio (MVP) method developed by Markowitz (1959) is one 

of the commonly used methods in constructing portfolios, which attempts to construct a 

portfolio based on the lowest volatility of multiple assets with the following formula for the 

weights:  



 

13 

 

𝑤𝐻𝑡 = 𝐻𝑡−1𝐼𝐼𝐻𝑡−1𝐼,                                                      (32) 

where 𝑤𝐻𝑡  is an 𝑛 × 1 dimensional portfolio weight vector, 𝐻𝑡 denotes the 𝑛 × 𝑛 dimensional 

conditional variance-covariance matrix for period t, and I is an n-dimensional vector. 

2.2.3. Minimum correlation portfolio (MCP) 

In addition, Christoffersen et al. (2014) introduced a minimum correlation portfolio 

(MCP). The MCP approach seeks to frame portfolios according to the minimized conditional 

correlation of multiple assets rather than volatility. The investment weights are calculated as 

follows:  𝐶𝑡 = 𝑑𝑖𝑎𝑔(𝐻𝑡)−0.5𝐻𝑡𝑑𝑖𝑎𝑔(𝐻𝑡)−0.5,                                      (33) 

where 𝐶𝑡 is an 𝑛 × 𝑛 dimensional matrix, based on which the weights of the MCP method are: 𝑤𝐶𝑡 = 𝐶𝑡−1𝐼𝐼𝐶𝑡−1𝐼.                                                       (34) 

2.2.4. Minimum connectedness portfolio (MCoP) 

Recently Broadstock et al. (2020) have identified a minimum connectedness portfolio 

approach (MCoP1), where weights are calculated by minimizing pairwise connectedness rather 

than correlation or volatility. The MCoP1 approach aims to reduce interconnectedness and 

spillover effects between variables, providing a portfolio that is not heavily influenced by 

network shocks. Therefore, assets that have less influence on others and are less influenced by 

others will be given higher weights in the portfolio, as shown below,  𝑤𝑃𝐶𝐼𝑡 = 𝑃𝐶𝐼𝑡−1𝐼𝐼𝑃𝐶𝐼𝑡−1𝐼,                                                       (35) 

where 𝑃𝐶𝐼𝑡 is the pairwise connectedness index matrix, and I is the identity matrix. Besides, 

we apply a new minimum connectedness portfolio approach (MCoP2) from Chen et al. (2023), 
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which differs from the MCoP1 approach in that the weights of MCoP2 are calculated by 

minimizing net pairwise connectedness rather than pairwise connectedness. 𝑤𝑁𝑃𝐷𝐶𝑡 = 𝑁𝑃𝐷𝐶𝑡−1𝐼𝐼𝑁𝑃𝐷𝐶𝑡−1𝐼,                                            (36) 

where 𝑁𝑃𝐷𝐶𝑡 is the net pairwise connectedness index matrix. 

2.2.5. Portfolio evaluation 

To capture the performance of the three portfolios, we calculate the Sharpe ratio (Sharpe, 

1998) and the hedge effectiveness (Ederington, 1979). One is hedge effectiveness (HE), which 

is defined as follows:  

𝐻𝐸 = 1 − 𝑣𝑎𝑟(𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜)𝑣𝑎𝑟(𝑟𝑎) .                                                     (37) 

The formula means the percentage reduction in the variance of the unhedged position. The 

larger the 𝐻𝐸, the greater the risk reduction and the more effective the portfolio is at hedging. 

where 𝑣𝑎𝑟(𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) denotes the variance of the portfolio and 𝑣𝑎𝑟(𝑟𝑎) denotes the variance 

of the unhedged assets. 

As for the Sharpe ratio,  𝑆𝑅 = 𝑟̅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜√𝑣𝑎𝑟(𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜).                                                    (38) 

The risk-free rate is assumed to be zero, where 𝑟𝑝 denotes the returns of the portfolio. A 

higher 𝑆𝑅 value indicates that there is a higher return relative to the level of risk in the portfolio. 

Worded differently, the higher the 𝑆𝑅 value, the more advantageous the portfolio is. 

3. Data 

In this paper, we focus on discussing the connectedness of the “Carbon-Energy-Green 
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economy” system and analyze the portfolio allocation of this system. To do so, we will take 

three asset prices that reflect the carbon market, the energy market and the green economy 

stocks respectively: carbon futures prices, energy prices and green economy stock prices.  

In terms of the carbon market, referring to the existing literature (Ji et al., 2018), we use 

the EUA carbon futures price of the European Climate Exchange (EUA) [2]. In terms of the 

energy market, we collect Brent crude oil futures prices (OIL), Rotterdam coal futures prices 

(hereafter COAL), and UK natural gas futures prices (GAS) to represent three main energy 

markets (Duan et al., 2021) [2]. In terms of the green economy stocks, we utilize the NASDAQ 

OMX Green Economy Sector stock indexes to track the performance of the green economy 

across the major sectors (Chen et al., 2023; Pham, 2019; Ren and Lucey, 2022) [3]. Currently, 

there are 12 primary sector indices, namely NASDAQ OMX Advanced Materials Index 

(GRNAM) representing the advanced materials sector, NASDAQ OMX Bio/Clean Fuels Index 

(GRNBIO) representing the bio/clean fuels sector, NASDAQ OMX Energy Efficiency Index 

(GRNENEF) representing the energy efficiency sector. NASDAQ OMX Green Building Index 

(GRNGB) for the green building sector. NASDAQ OMX Healthy Living Index (GRNHL) for 

the healthy living sector, and NASDAQ OMX Lighting Index (GRNLIGHT) for the lighting 

sector. NASDAQ OMX Natural Resources Index (GRNNR) for the natural resources sector. 

NASDAQ OMX Pollution Mitigation Index (GRNPOL) for the pollution mitigation sector. 

NASDAQ OMX Recycling Index (GRNREC) for the recycling sector. NASDAQ OMX 

Renewable Energy Generation Index (GRNREG) for the renewable energy generation sector. 

NASDAQ OMX Transportation Index (GRNTRN) for the transportation sector. NASDAQ 

OMX Water Index (GRNWATER) for the water resources sector. Table 1 contains the precise 

definitions of the various indexes.  
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[Insert Table 1 about here] 

Since the NASDAQ OMX Green Economy Index can only be traced back to the end of 

2010 at the earliest, we choose 14th October 2010 to 29th February 2024 as the sample period, 

and calculate the log returns to describe the changes in the markets. Descriptive statistics for 

all variables are presented in Table 2. 

[Insert Table 2 about here] 

Table 2 reveals that, with the exception of the crude oil and bio/clean fuels sectors, which 

have a weak negative mean case, all other returns have positive mean values, indicating an 

overall upward trend in the asset prices of carbon, energy and green economy stocks. Moreover, 

the variance of carbon and energy returns is markedly larger than the variance of green 

economy stock returns. This implies that the carbon and energy markets are more volatile than 

the green economy stocks market. In addition, looking at the kurtosis and skewness values, we 

can see that all variables are kurtosis and fat-tailed. From the normality test, the J-B statistic 

discloses the non-normal distribution of all variables. From the stationarity test, the ERS 

statistic displays that all variables are stationary time series. Finally, the Ljung-Box test 

statistics demonstrate the existence of autocorrelation. In summary, we can construct 

econometric models based on the above data. 

4. Empirical results 

In this study, we first measure the connectedness of the “Carbon-Energy-Green economy” 

system and ensure the robustness of the results by applying time-frequency domain parameter 

vector autoregressions (TVP-VAR-DY and TVP-VAR-BK). Then, we discuss the performance 



 

17 

 

of portfolio returns and risks within the “Carbon-Energy-Green economy” system by using a 

portfolio back-testing approach. 

4.1. Averaged dynamic connectedness analyses 

In this section, we present the static findings derived from the TVP-VAR-DY approach to 

assess the transmission mechanisms in the “Carbon-Energy-Green economy” system. And we 

further verify the reliability of the results in this paper by using the TVP-VAR-BK method. We 

start by reporting the average connectedness listed in Table 3 and Table 4. 

[Insert Table 3 about here] 

[Insert Table 4 about here] 

Table 3 and Table 4 provide the findings of the TVP-VAR-DY and the TVP-VAR-BK 

methods. Table 3 and Table 4 state that, for the “Carbon-Energy-Green Economy” system, the 

average value of the Total Connectedness Index (TCI) is 67.91%. These discoveries suggest 

that an average of 67.91% of the forecast error variance in the “Carbon-Energy-Green economy” 

system can be attributed to the system itself, implying that 67.91% of the connectedness is due 

to the diffusion of shocks in the system across markets, and that there is strong connectedness 

in the system. Also, it is necessary to stress that the total connectedness (TCI) over the sample 

period is mainly driven by short-term connectedness (i.e., the high-frequency component, 

55.00%), followed by medium-term connectedness (i.e., the medium-frequency component, 

10.78%) and the long-term connectedness (i.e., the low-frequency component, 2.73%).  

From the diagonal elements in Table 3, in the case of the carbon market, only 32.23% of 

the index fluctuations are attributable to network connectedness, with intra-index shocks 

accounting for 67.77% of the index evolution. In the case of the energy market, we can see that 
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50.58% of the crude oil market, 71.83% of the coal market, and 76.44% of the natural gas 

market are driven by intra-index shocks, while 49.42% of the crude oil market, 28.17% of the 

coal market and 23.56% of the natural gas market have index movements caused by network 

connectedness. The features of carbon and energy markets described above are similar to the 

results of (Tan et al., 2020), who found that more than 65% of the movements in the carbon 

and other energy markets, except for the crude oil market, are self-induced. Actually, the share 

of crude oil consumption in total energy consumption has been between 40% and 50%, far 

exceeding the consumption of coal and natural gas [4], so the crude oil market may be more 

susceptible to shocks from other factors and behave more sensitively. In the case of the green 

economy stocks, only 15-30% of the evolution of the index is explained by intra-index shocks. 

It follows that in the “Carbon-Energy-Green economy” system, the crude oil sector and green 

economy stocks are relatively more tightly associated with other market shocks. This finding 

is also confirmed by the frequency connectedness results in Table 4. 

Turning to the “NET” values of each market in the “Carbon-Energy-Green economy” 

system, it is also clear from Table 3 that the energy efficiency sector in the green economy 

stocks represents the largest net sender to this network (28.41%), followed by water sector 

(25.51%) and recycling sector (19.66%). And carbon (−14.83%), crude oil (−23.86%), coal 

(−12.58%) and natural gas (−9.24%) sectors are all the net recipients. On a parallel note, the 

results of the TVP-VAR-BK approach (Table 4) support this observation, which illustrates the 

robustness of the paper’s conclusions. It is worth pointing out that the net shocks received by 

the carbon and energy markets are substantially more pronounced than those received by the 

sectors in the green economy market (except for the bio/clean fuels sector, which also performs 

the role of the primary net recipient of shocks). In effect, Pham (2019) argued that biofuels and 
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oil price movements are closely related since biofuels are often perceived as a closer alternative 

to fossil fuels. Similarly, we contend that there should be a highly correlated relationship 

between biofuels and energy markets. Given that prices and demand move in the same direction 

among substitutes, the bio/clean fuels sector performs analogously to the energy market. In 

summary, in terms of the “Carbon-Energy-Green economy” system, the carbon and energy 

markets are inevitably exposed to shocks of different sectors, while the majority of green 

economy sector stocks tend to dominate other markets. For simplicity, Figure 1 visualizes the 

net pairwise connectedness in the “Carbon-Energy-Green economy” system through a chord 

diagram based on the interrelationship between the carbon market, energy market, and green 

economy stocks variables based on the results in Tables 3 and 4. 

[Insert Figure 1 about here] 

In Figure 1, these variables are arranged radially along a circle and connected by arcs. The 

contribution of each variable to the overall system is represented by the width of the node for 

that variable. In this case, there are two kinds of arcs under the same node, with arcs close to 

the node indicating shocks that the variable delivers to other variables, and arcs not close to the 

node expressing shocks that the variable receives from other variables. Consider subfigure (a) 

as an example, at one end of the spectrum, it is convenient to notice from the width of each 

node that the crude oil sector and the energy efficiency sector have a large effect on the system. 

From the opposite end of the spectrum, it can be seen from the two types of arcs under the same 

node that the three sectors with the largest net contribution are the energy efficiency sector, the 

water sector, and the recycling sector in the green economy stocks, while the carbon and energy 

markets have virtually no shocks to the rest of the system and are obvious shock recipients. 

This implies that green economy stocks are the emitters of shocks and risks in the system, while 
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carbon and energy markets are the receivers of shocks and risks. As expected, the above results 

are also confirmed in subfigures (b), (c) and (d). 

Although Tables 3, 4 and Figure 1 can show static information of the “Carbon-Energy-

Green Economy” system connectedness, it fails to capture the heterogeneous performance of 

the system’s connectedness over time. Thus, we direct our attention toward dynamic 

connectedness.  

4.2. Dynamic connectedness analyses 

In this sub-section, we investigate dynamic connectedness in the “Carbon-Energy-Green 

economy” system. Figure 2 depicts the dynamics of the connectedness of this system for the 

period from 2010 to 2024 for different time and frequency scenarios. 

[Insert Figure 2 about here] 

According to Figure 2, we find that the total connectedness mainly fluctuates between 50% 

and 90% of the “Carbon-Energy-Green economy” system, and the connectedness is constantly 

changing over time. This is similar to the study by Tan et al. (2020), who suggested that the 

features of information spillovers in carbon, energy and financial markets are different over 

time. Indeed, it is widely perceived that market uncertainty, financial crises, policy changes 

and catastrophic events lead to compromised correlations between markets (Antonakakis et al., 

2018; Bai et al., 2021; Chatziantoniou et al., 2022; Li et al., 2021; Li and Wei, 2018; Liu et al., 

2022), and this perception is also reflected in Figure 2. 

Comparing the four turbulent periods of rising connectedness (2011, 2014-2015, 2017, 

2020), we observe that the growth in connectedness induced by the COVID-19 event in 2020 

is more dramatic and larger than in 2011, 2014-2015 and 2017. This assertion is supported by 
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the graph, which shows a vertical spike in 2020, from 62% to around 82%. In contrast, 

connectedness rises from 72% to about 82% in 2011 during the nuclear leak in Fukushima, 

Japan, increased from 65% to ~78% during the 2014-2015 oil crisis and grew from 52% to 

roughly 65% after the announcement of the U.S. withdrawal from the Paris Agreement in 2017. 

Interestingly enough, after COVID-19 pandemic, the gradual decline in the connectedness of 

the “Carbon-Energy-Green economy” system. This may be owing to the economic and 

financial distress following the COVID-19 pandemic, countries adopted expansionary 

monetary and fiscal policies to energize capital markets and the real economy, thus reducing 

the volatility of the “Carbon-Energy-Green economy” system (Antonakakis et al., 2023; 

Chadha et al., 2021).  

Notably, Figure 2 also depicts the connectedness trend of the TVP-VAR-BK approach. 

The trend of connectedness at different frequencies is in consonance with the evolution of the 

total connectedness in TVP-VAR-DY method. It proves the robustness of our findings. 

Moreover, Figure 3 visualizes the time-varying net shocks for the carbon, energy, and green 

economy stocks over the sample period, clarifying the transmitter and recipient role of shocks 

switching in each market at different periods. 

[Insert Figure 3 about here] 

Figure 3 displays that in the “Carbon-Energy-Green economy” system, the carbon market 

and the energy market are consistently net recipients of shocks for the vast majority of the time, 

although there are brief instances of transmission. Rather, the energy efficiency, water 

resources and recycling sectors of the green economy stocks also act as net transmitters of 

shocks most of the time, especially the energy efficiency sector. This is in accordance with the 

results in Table 3, Table 4 and Figure 1, and similar to the conclusions of (Pham, 2019) and 
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(Chen et al., 2023). In light of the aforementioned, we think there may be a linkage in green 

economy stocks, carbon and energy assets that could serve as a risk-hedging mechanism. 

Therefore, we can initiate a discussion of portfolio management for the system. 

4.3. Portfolio and hedging strategies analysis 

[Insert Table 5 about here] 

Table 5 provides the investment weights and hedging effectiveness (HE) of bivariate 

portfolios of carbon and energy assets for 12 green economy sector stocks. Firstly, we perceive 

that the weights of green economy stocks against coal and crude oil assets (21%-42%,13%-

35%) are much larger than those against natural gas and carbon assets (9%-19%, and 7%-26%) 

in bivariate portfolios. To be more explicit, the hedging risk in more ‘dirty’ assets (coal and oil) 

requires more investment in green economy stocks than hedging exposure to more ‘clean’ 

assets (carbon and natural gas). Secondly, the weighting and hedging effects vary substantially 

across the different green economy sectors. For instance, in a bivariate portfolio of carbon 

assets, the average weight of water sector stocks (GRNWATER) is only 7%, while the average 

weight of biofuel sector stocks (GRNBIO) is as high as 26%. Likewise, in a bivariate portfolio 

of coal assets, the HE value of the COAL/GRNWATER portfolio is 90%, while the HE value 

of the COAL/GRNBIO portfolio is only 76%. 

Finally, the HE values reveal that the green economy sector stocks can generate the highest 

hedging effect in the natural gas market (i.e., around 90% to 96%), followed by the carbon 

market (i.e., around 76% to 90%). In contrast, green economy stocks have lower hedging 

effects in the crude oil and coal markets (i.e., approximately 48% to 80% and 75% to 90%). 

Notwithstanding this, we cannot deny the hedging ability of green economy stocks in each 
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bivariate portfolio. This also proves that green economy stocks are effective in hedging the 

market risk in the “Carbon-Energy-Green economy” system. Next, we will explain the 

portfolio performance in the “Carbon-Energy-Green economy” system using diversified 

portfolios, including minimum variance portfolios (MVP), minimum correlation portfolios 

(MCP), and minimum connectedness portfolios (MCoP1, MCoP2). The relative performance 

of the four types of portfolios is also evaluated by employing the Sharpe ratio.  

[Insert Figure 4 about here] 

Figure 4 draws the cumulative returns based on the diversified portfolios, MVP, MCP, 

MCoP1 and MCoP2. As can be seen in Figure 4, the cumulative returns of the MCoP2 approach 

have a distinct superiority, the cumulative returns of the MCoP1 and MCP approaches perform 

essentially the same, while the cumulative returns based on the MVP approach perform quite 

clearly different from the cumulative returns based on the MCP, MCoP1 and MCoP2 

approaches. Furthermore, we continue to compare the Sharpe ratios of the four portfolio 

methods. To identify the importance of various markets in the “Carbon-Energy-Green economy” 

system, we report Sharpe ratios for different portfolios constructed from a mix of three assets 

(16 sectors). It is necessary to mention that among the green economy sector stocks, the 

advanced materials sector, the bio/fuel sector, the energy efficiency sector and the renewable 

energy generation sector make up the clean energy stock index. We regard the four clean energy 

sector stocks as a separate category, i.e., the clean energy stocks category (Pham, 2019), when 

discussing the different portfolios of the “Carbon-Energy-Green economy” system. In the 

following discussion, in order to ensure the robustness of the conclusions in this paper, apart 

from the Sharpe ratio, we also use two ratios, the sortino ratio and the omega sharpe ratio, to 

observe the performance of the diversified portfolios under the four methodologies (MVP, MCP, 



 

24 

 

MCoP1, MCoP2). 

[Insert Table 6 about here] 

As depicted in figure 6, first, we illustrate that the different methods have a high 

heterogeneity across the portfolios. And more concretely, there is no very clear dominant 

performance of any method in the “EUA” base portfolios in Panel A. But in the Panels B and 

C, MVP and MCoP2 perform best. Then, each portfolio has a different Sharpe ratio. For 

instance, the Sharpe ratio of the “EUA+OIL+COAL+GAS” portfolio is 0.0093 and the Sharpe 

ratio of the “EUA+OIL+COAL+GAS+GREEN” portfolio is 0.307. This means that various 

portfolios are differentiated in yield and risk.  

On a final note, the Sharpe ratio values demonstrate that the portfolios with added green 

economy stocks are able to beat all the portfolios without added green economy stocks. 

Particularly, the “EUA+GREEN”, “GAS+GREEN” and “EUA+OIL+COAL+GAS+GREEN” 

portfolios have a significant advantage, with Sharpe ratio values of 0.0351, 0.0310 and 0.0307, 

respectively. This indicates the importance of green economy stocks in hedging the carbon and 

energy market risks. On a parallel note, we opine that cleaner portfolios have notably larger 

Sharpe ratio values when looking only at portfolios with green economy stock assets added.  

By way of example, “EUA+GREEN” is 0.0351 and “GAS+GREEN” is 0.0310, while 

“OIL+GREEN” is 0.0269 and “COAL+GREEN” is 0.0252. This finding is also confirmed in 

the sornito ratio and omega sharpe ratio, meaning that the outcome of this paper is robust. And 

our observations are consistent with Pham (2019), which argued that clean energy stocks in 

different sectors can hedge against oil prices, and Chen et al. (2023), which thought that green 

economy stocks are a vital asset for hedging against the natural gas market risk. This result not 

only re-emphasizes the role of green economy stocks, but also provides investors with a new 
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way of thinking about “sectoralizing” investments in green economy stocks. It is therefore 

important for investors to move away from the past practice of only investing in carbon and 

energy assets, and to add green economy stocks to hedge against market risk.  

5. Conclusions 

This paper examines the connectedness and portfolio management based on the 

framework of the “Carbon-Energy-Green economy” system, and set out to further examine the 

effect of green economy stocks on the carbon and energy markets. On the one hand, there is a 

high degree of connectedness inside the “Carbon-Energy-Green economy” system, and it is 

noteworthy that the COVID-19 pandemic produced an increase vertically in the connectedness 

of this system. Besides, the carbon and energy markets are invariably sensitive to shocks from 

others. Most sectors in the green economy stocks tend to dominate others. On the flip side, 

green economy stocks provide a satisfactory hedge against market risk in carbon and energy 

futures. It’s worth stating early on that hedging risk in more ‘dirty’ assets requires more 

investment in green economy stocks than hedging exposure to more ‘clean’ assets. What is 

more, portfolios that do not include green economy stocks are significantly less advantageous 

than portfolios that contain green economy sector stocks. This emphasizes the positive impact 

of green economy stocks in the system on portfolio returns.  

Our research has profound implications for investors and decision-makers. For investors, 

apparently, green economy stocks should be allocated more to ‘dirty’ assets than to ‘clean’ 

assets when considering the use of green economy stocks to hedge the risk of only one asset in 

the system. To put differently, in a bivariate portfolio, more green economy stock assets are 
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needed to hedge the risk of crude oil assets and coal assets, and fewer green economy stock 

assets are in demand to hedge exposure to carbon and natural gas assets. Along a similar vein, 

when taking into account both carbon, energy and green economy assets, investors can use 

green economy sector stocks to hedge the market risk of carbon and energy assets, or they can 

solely utilize the clean energy category of green economy stocks to hedge their risk and avoid 

investing only in the carbon and energy markets to get higher returns and lower risk. For 

decision-makers, on a parallel note, can treat carbon, energy and green economy assets as 

interconnected assets in their policy frameworks, in light of the fact that the carbon and energy 

markets have been deeply influenced by the green economy market. And they should continue 

to support green economy markets.  

Notes 

1. Specific data can be found in the “Energy transition investment trends 2022: Tracking 

global investment in the low-carbon energy transition” published by Bloomberg New 

Energy Finance. 

2. See https://www.wind.com.cn/. 

3. See Quandl and https://indexes.nasdaqomx.com/Index/Directory/Green. 

4. Related reports and data can be found on the official website of the International Energy 

Agency (IEA): https://www.iea.org/subscribe-to-data-services/world-energy-balances-

and-statistics. 

https://www.wind.com.cn/
https://indexes.nasdaqomx.com/Index/Directory/Green
https://www.iea.org/subscribe-to-data-services/world-energy-balances-and-statistics
https://www.iea.org/subscribe-to-data-services/world-energy-balances-and-statistics
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