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Exploiting the Flexibility of District Heating System
for Distribution System Operation: Set-Based
Characterization and Temporal Decomposition

Weitao Chen, Xiaojun Wang, Senior Member, IEEE, Wei Wei, Senior Member, IEEE,
Yin Xu, Senior Member, IEEE, Jianzhong Wu, Fellow, IEEE,

Abstract—The proliferation of distributed renewable resources
increases the uncertainty in distribution systems. Coupling the
distribution system and district heating system helps leverage the
flexibility of thermal storage and thus supports the operation of
the electrical grid. This paper proposes a method to characterize
flexibility from district heating system via polyhedral sets. First,
a recursive robust feasibility condition that ensures heat supply
adequacy under uncertain demand is established. Then, stagewise
robust feasible sets of thermal storage levels are calculated using
a customized projection algorithm. Finally, dynamic bounds of
electric heaters are computed by a further projection step.
With those dynamic bounds, the electric heaters behave like
reducible loads, and the demands in each period are decoupled
over time, although the dispatch of thermal storage units must
comply with inter-temporal constraints. The proposed method
allows the two coupled systems to be operated in a distributed
way without forecasts and extensive communications. Numerical
simulations on small and practically sized testing systems validate
the advantage of the proposed method. On average, the set
calculation takes about 8 minutes for the day-ahead problem
and 11 seconds for real-time dispatch on a portable laptop, and
the prediction-free operation policy has an average optimality
gap of 3.6% compared to the hindsight optimum.

Index Terms—Distribution system, heating system, polyhedral
projection, thermal energy storage, temporal decomposition.

I. INTRODUCTION

W ITH the increasing penetration of distributed renewable
energy resources into the demand side, the uncertainty

greatly challenges the operation of distribution network [1],
where controllable units such as large thermal power plant is
rare. Deploying battery storage is an option [2] to improve
operation flexibility. However, the cost is still relatively high
considering the lifetime of battery which is not very long.

In contrast, thermal energy storage (TES) is cheap and scal-
able. Meanwhile, electricity and heat are two main energy car-
riers on the demand side, but conventional boilers burn fossil
fuels and produce considerable carbon emissions. Electrifying
the heating system is beneficial to both critical infrastructures.
The distribution system gains additional flexibility and reduces
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renewable power curtailment through making use of TES units
in the heating system [3]; the heating system can reduce cost
and carbon emission by using inexpensive and clean renewable
energy at a lower contract price. Such a synergy makes electric
boiler [4] and heat pump [5] increasingly popular, creating
tight connections across the distribution system and the district
heating system. Existing researches on the operation of cou-
pled electricity and heating systems can be roughly categorized
into four classes, depending on the cooperation mode and the
way to cope with uncertainty.

The first class models both infrastructures in a centralized
manner. It integrates the energy flow equations of two systems
into a single deterministic problem. To investigate temperature
distribution in a heating system, a nodal method is developed
in [6]; it calculates the average temperature of all small water
masses passing through a node in a given time interval. A
hydraulic-thermal model for heating networks is proposed in
[7], accounting for the water mass flow rates in pipelines.
Combined heat and power dispatch of connected power and
heating networks is studied in [8]. It proposes to leverage the
thermal inertial of heating network as flexible demand and
thus helps the power system better utilize wind power.

The second class considers uncertain renewable power and
load demands in centralized dispatch. Robust optimization is
a popular method as it requires little information regarding
probability distributions. Robust scheduling of the integrated
electricity and heating system is considered in [9], aiming to
mitigate heating network uncertainties. An affinely adjustable
robust method is set forth in [10] to dispatch multi-energy
microgrids using piecewise linear decision rules. With the
presence of TES unit and inter-temporal constraint, the antic-
ipativity issue arises in some two-stage optimization methods.
The operation of heating system must consider future demands
because the thermal storage level is described by an inter-
temporal constraint, and heat demands in future periods must
be supplied to formulate the problem. As a result, the dispatch
action in the current period is inevitably affect by uncertain
parameters in the future, and hence may be suboptimal if the
forecasts have nonnegligible errors. Non-anticipativity means
that the dispatch action in the current period is independent of
unknown parameters. The simplest non-anticipative policy is
the greedy algorithm which can be myopic and also subopti-
mal. A good non-anticipative policy must be able to adaptively
determine a tradeoff between the instant cost and future cost,
which is a big challenge as exact forecast is not available.
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Non-anticipative methods for power system operation have
been proposed. Affine policy is the most widely used one,
such as that in [11]. It restricts the dispatch actions to be
affine or piecewise affine functions in the uncertain parameters
observed so far. Implicit policy [12] generates dynamic bounds
that restrict the operating range of system facilities to ensure
feasibility under uncertainty. A recent work in [13] reports
an envelope-based policy optimization method for multistage
robust dispatch of energy hubs, neglecting network constraints.
A multistage robust optimization method is proposed in [14]
for the integrated electric and heating system, ensuring the
non-anticipativity of dispatch. By default, above works assume
the system is managed by a dispatch center. This is true for
industrial park level energy hubs, but may not be the case if
the power and heating systems have larger sizes.

In general, city-sized distribution system and district heating
system are operated by different entities. Neither of them has
the data and models of the other system. With the deepened
integration of two systems, coordinated operation can benefit
both sides. To address this issue, the third class adopts a decen-
tralized (horizontal) framework, aiming to develop distributed
algorithms to help multiple agents which have similar size or
volume on a spatial scale to make decisions without revealing
private information. In [15], based on a marginal pricing-based
market scheme, a decentralized operation is proposed for the
interconnected power distribution network and district heating
network. A dedicated optimization model is set forth in [16] to
investigate the market impact of strategic providers and elastic
demands. In [17], to protect private data of the electrical grid
and the heating system, a decentralized algorithm based on
Benders decomposition is proposed. In [18], an optimal power
flow problem for the integrated electrical and heating systems
optimization problem is solved alternatively by the consensus-
based distributed algorithm. Ref. [19] establishes a transfer
payment policy for heating and power systems, ensuring
privacy, benefit, and mutual trust among each participant. In
ref. [20], by considering the heating system with variable mass
flow, a distributed dispatch method of integrated electricity-
heat systems is proposed to improve operational flexibility.
Robustness can be considered in decentralized method as well,
such as those in [21] and [22]. Nonetheless, non-anticipativity
of the dispatch policy remains an issue, and hyper parameters
in the distributed algorithm must be well chosen to obtain
good convergence performances.

The fourth class adopts a multi-layer (vertical) scheme,
aiming to develop hierarchial algorithms by aggregating small
distributed resources such as thermostatically controlled loads,
distributed renewable resources, and batteries to reduce the
complexity of analysis and computation. The work in [23] ag-
gregates thermostatically controlled loads based on Minkowski
sum method to provide a feasible operation set for the
electrical grid. Aggregation of small energy storage units is
considered in [24], the equivalent power and energy capacities
can be analytically determined, and an online disaggregation
control strategy is suggested. In [25], the flexibility of district
heating system is quantified by a three-stage method. In
[26], a thermal inertial aggregation model for district heating
network is provided to analyze the coupled energy systems.

TABLE I
LITERATURE REVIEW

Category
First Second Third Fourth Proposed

Dispatch
mode

Centralized ✓ ✓

Horizontal ✓ ✓

Vertical ✓

Optimization
method

Deterministic ✓ ✓ ✓

Two-stage ✓ ✓ ✓

Multistage ✓ ✓

By considering network reduction method for heating system
aggregation, a two-stage robust model in [27] is proposed
for integrated electricity-heat scheduling to handle electricity
and heat uncertainties. This class mainly addresses the multi-
scale feature and alleviates the dilemma between system-level
decision-making in which tractability is the primary concern
and device-level decision-making in which accuracy is the
main target.

The integration of heating and power systems creates both
opportunities and challenges in system operation. On the one
hand, generation and demand in the power grid must be
balanced in real time. With the help of large capacity TES,
electric heaters can act as adjustable power demands, so the
power grid has some freedom to maintain balance and network
constraints. On the other hand, the thermal storage level
dynamics create inter-temporal constraints, so the operation
problem comes down to a multi-period optimization which
requires renewable power and load forecasts. The challenges
are twofold: first, prediction is usually inaccurate, especially
for renewable power; second, the power and heating systems
are monitored by different entities; neither of them possesses
the data and model of the other system. To unleash the syn-
ergy, a thorough coordination is needed without complicated
communication. However, it is difficult to estiblish a whole op-
timization problem, regardless of how uncertainty is modeled
due to the lack of integral system data. Existing methods on the
dispatch of interdependent heat-power systems either address
uncertainty in a centralized scheme or develop distributed
dispatch algorithms while adopting simplified assumptions on
uncertainty. This paper addresses the above two challenges in
a holistic approach. The proposed method and four existing
approaches are compared in Table I which clearly shows their
different focuses.

This paper considers the operation of interdependent power
distribution network and district heating network. The two
systems have similar sizes and are connected through multiple
electric heaters. So we do not consider the aggregation prob-
lem in the last class, which happens at different spatial scales.
We assume the two systems have reached certain agreements,
such that the heating system would like to cooperate with
the electricity system and provide flexibility, but they do not
share private information. The only data exchange is the power
demand of electric heaters. The framework belongs to the third
class, but we consider multi-period dispatch and the policy is
non-anticipative and thus free of renewable power prediction.
The contributions of this paper are twofold:
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Fig. 1. Interdependent district heating and power distribution networks.

(1) Set-based characterization and quantification of the flex-
ibility from the district heating system. We identify two sets
of key variables: the thermal storage levels which bring inter-
temporal constraints and power demands of electric heaters
which couple the two systems. A recursive robust feasibility
condition is established for thermal storage levels, ensuring
heat supply adequacy under uncertain heat demand. Then, the
stagewise robust feasible sets of storage levels are calculated
using the polyhedral projection; we propose a customized
projection algorithm based on the online vertex enumeration,
which is particularly efficient because the dimension of storage
level is very low. Finally, dynamic bounds of electric heaters
are computed by a further projection step.

(2) An interactive framework for coordinated operation of
the integrated distribution system and district heating system.
With dynamic bounds of electric heaters that are decoupled
over time, the heating system behaves like a flexible de-
mand that can be adjusted in a certain range. This time-
decoupled feature allows the distribution system to be operated
in response to the real-time information of renewable power,
demand, and electricity price without using their forecasts.
Nonlinear alternating current power flow model is used in the
dispatch. On the contrary, many existing multistage approaches
can only handle linear power flow models because the solution
procedure involves duality transformation. Unlike distributed
algorithms whose efficiency is affected by the convergence
rate, in the proposed method, two systems exchange informa-
tion only once in one period, so there is no convergence issue.

The rest of this paper is organized as follows. The integrated
system and energy flow models are introduced in Section II.
The set-based formulation of the heating system flexibility and
the coordinated operation scheme are developed in Section III.
Case study is reported in Section IV. Finally, conclusions are
drawn in Section V.

II. SYSTEM MODEL

The architecture of the interconnected distribution system
and district heating system is introduced first, followed by the
energy flow models of respective networks and power-heat
conversion of electric heaters.

A. System Configuration

The typical structure of the interconnected system is shown
in Fig. 1. Such infrastructure differs from energy hub which is

a station-level equipment. In energy hubs, energy conversion
and load balancing are the main concerns, while the network
structure can be neglected as the system is usually small. In the
system shown in Fig. 1, the operation of distribution system
and district heating system must obey network constraints,
some of which are even nonlinear.

The distribution system connects to a transmission system at
a substation, which is the reference node. Electric demands are
supplied by the local wind and solar generation which are free
of charge. If the renewable power is insufficient, the additional
power is purchased from the transmission system at a real-
time price ρt and delivered from the substation. The value of
ρt is revealed at the beginning of each period t, and prices in
future periods are unknown in advance. Currently, we assume
there is no battery storage in the distribution system, so the
operation problem boils down to optimal power flow which is
naturally decoupled over time. Extensions for including battery
are discussed at the end of Section III.

We assume the heating system uses electric heaters, such
as electric boilers and heat pumps, although fossil fuel heaters
can be considered as well in case of need. Electric heaters
connect to different nodes of the distribution system. The heat-
ing system possesses several centralized TES units. Since the
heating system is willing to provide flexibility in cooperation
with the distribution system, we assume electric heaters can
use electricity at a constant contract price that is lower than the
average retail price. We do not use time-of-use price because it
is mainly designed for peak load reduction, while the flexibility
offered by the heating system is closer to spinning reserve,
whose role is different from peak reduction.
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Fig. 2. Pipeline network of the heating system.

B. Heating System Model

The heating system consists of a supply side and a return
side. Both sides share the same topology. Heat is supplied
by sources and consumed by loads through heat exchangers
between the supply side and the return side, as shown in Fig. 2.
The heating system is often controlled in the constant-flow
variable-temperature mode, under which the supply, demand
and nodal temperature obey the following relations [7]

cpm[·]

(
T in
[·]t − T out

[·]t

)
= Q[·]t, ∀[·] = h, s, d, ∀t (1a)

T out
bt = T a

t + e
− λL

cpmb

(
T in
bt − T a

t

)
, ∀b,∀t (1b)
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T in
b1t

= T out
b2t

= Tnht, ∀b1,2 ∈ N 1,2,∀nh,∀t (1c)

∑
b2∈N 2

mb2
T out
b2t

=

 ∑
b1∈N 1

mb1

T in
b1t

,∀t (1d)

Est = Est−1 +Qst∆t,∀s,∀t (1e)

Emin
s ≤ Est ≤ Emax

s ,∀s,∀t (1f)

Qmin
[·] ≤ Q[·]t ≤ Qmax

[·] , ∀[·] = h, s,∀t (1g)

Tmin
nh

≤ Tnht ≤ Tmax
nh

, ∀nh,∀t (1h)

where nh/nh is the index of nodes at the supply/return side,
h, s, d, and b are indices of electric heaters, TES units, loads
and pipelines, respectively, t is the index of the period, and ∆t

is the duration of period t. The mass flow rate, thermal energy
exchange, and temperature are represented by m[·], Q[·]t and
T[·]t, respectively, and the superscript in/out associates with
a pipeline denotes its inlet and outlet; T a

t is the ambient
temperature, cp is the specific heat capacity of water, λ and L
are the heat loss coefficient and the length of a pipeline. TES
unit is assumed to be lossless, and Est is its storage level.

Constraint (1a) describes the heat exchange in sources, loads
and TES units, where m[·] is constant; constraint (1b) reflects
the energy loss in pipelines; at the supply side, taking Fig. 2
for an example, fluid in red pipelines diverges at a node and
flows into downstream pipelines and a heat exchanger; the
temperature does not change at the diverging point as in (1c),
where N 1/N 2 is the set of pipelines whose inlet/outlet con-
nects to the node nh; by the conservation law, mass flow rates
at a diverging point must satisfy

∑
b1∈N 1

mb1
= mb2

; at the
return side, fluid in blue pipelines with different temperatures
meets at some nodes, the temperature at the junction node
is given in (1d) according to energy conservation law, where
N 1/N 2 is the set of pipelines whose inlet/outlet connects to
the node nh, and the mass flow rates at a junction point satisfy
mb1

=
∑

b2∈N 2
mb2

; in the heat exchanger (represented by
the vertical line with demand Qdt), mb1

= mb2
= md; the

dynamic of thermal storage level is stipulated in (1e); thermal
storage level, heat consumption and nodal temperature bounds
are summarized in (1f), (1g) and (1h), respectively. The heat
load Qdt is a constant here, but will become uncertain in the
subsequent section.

C. Distribution System Model

Distribution networks are often operated under radial topol-
ogy, and the branch flow model in [28] is adopted to formulate
power flow equations

Plijt − rlijIlijt + pin
jt =

∑
k∈δ(j)

Pljkt (2a)

Qlijt − xlijIlijt + qin
jt =

∑
k∈δ(j)

Qljkt (2b)

vjt = vit − 2(rlijPlijt + xlijQlijt) + Ilijtz
2
lij (2c)∥∥∥∥∥∥

2Plijt

2Qlijt

Ilijt − vit

∥∥∥∥∥∥
2

≤ Ilijt + vit (2d)

pmin
jt ≤ pin

jt ≤ pmax
jt , qmin

jt ≤ qin
jt ≤ qmax

jt (2e)

vmin
j ≤ vjt ≤ vmax

j (2f)

where lij is the index of the distribution line from bus i to
bus j; δ(j) is the set of nodes which connect to the node j
through some line; rlij/xlij denotes resistance/reactance of a
line, and z2lij = r2lij + x2

lij
; Plijt/Qlijt is the active/reactive

power in a line; Ilijt and vit are the squared line current and
the bus voltage; pin

jt = pgjt − pdjt − phjt (q
in
jt = qgjt − qdjt) is the

net active (reactive) power injection at the node j, which is
equal to generation minus demand.

In the nodal-wise power balancing condition (2a)-(2b), if
there is no generation and load at the node j, then pin

jt =
qin
jt = 0 is imposed. For conventional units, active power
pgjt and reactive power qgjt are decision variables subject to
capacity limits; for renewable generation, the upper bound
of pgjt depends on the time-varying weather condition and is
observed at the beginning of period t, while its lower bound is
0 which means renewable curtailment is allowed. Behind-the-
meter resources add uncertainty to the active/reactive power
demand pdjt/q

d
jt, which is also revealed before dispatch action

is deployed. For the demand phjt of electric heaters, the feasible
set reflects the flexibility of the heating system and will be
discussed in the next section. Fossil fuel generators can also be
included in (2), whose minimum/maximum output is constant.

For the remaining constraints, voltage drop along a distri-
bution line is expressed in (2c); the apparent power injection
at the head node of a line satisfies Ilijtvit = P 2

lijt
+ Q2

lijt

which defines a non-convex set; it is known that replacing this
equality with an inequality Ilijtvit ≥ P 2

lijt
+ Q2

lijt
, which is

called the second-order cone relaxation as applied in (2d), does
not influence the optimal solution under mild conditions [29];
constraints (2e)-(2f) limits the active/reactive power injection
as well as the squared nodal voltage.

D. Electric Heaters

Electric heaters are modeled through a power-heat conver-
sion equality

Qhjt = κhp
h
jt (3)

On the righthand side of (3), phjt is the power demand of heater
appeared in the power balance condition; on the lefthand side
of (3), Qhjt is the output of the heater connect to node j in the
distribution system; κh is the conversion efficiency of electric
heaters h. For electric boilers, κh is close to 1 [30]; for heat
pumps, κh is known as the coefficient of performance, which
is 3-4 for the air-source type [31] and 4-5 for the ground-
source type [32].

Energy conversion from heat to electricity is not considered,
because the district heating system is used for room heating,
and the heat transfer fluid is hot water at a temperature of 90-
100 centigrade. The low-temperature heat is not suitable for
electricity generation due to the low Carnot efficiency.

III. PROPOSED METHOD

The basic theory and computational implementation of the
proposed method are presented in three subsections. In the last
subsection, the coordinated dispatch method is developed.
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A. Recursive Robust Feasibility Condition

The network models in Section II are static; the only inter-
temporal constraint originates from the storage level dynamic
equation (1e). As the capacity of the TES unit is finite, the
current dispatch of TES unit affects how it can be used in the
future. The key component to ensure supply adequacy in the
heating system under the uncertain heat demand is to monitor
the thermal storage level.

The uncertainty of heat demand is caused by many factors,
such as outdoor temperature and user comfortable preference.
We assume Qdt may vary in a certain interval, so the uncer-
tainty set Ut of heat demands Q[d]t = [Qdt],∀d in the period
t is a hypercube

Ut =
{
Q[d]t

∣∣∣Q
dt

≤ Qdt ≤ Qdt,∀d
}

∀t (4)

Next, heating system constraints in (1) are cast in a compact
form. To shorten symbols in theoretical development, variables
are divided into three categories: (a) the state variable xt =
[Est],∀s includes thermal storage level which produces inter-
temporal constraints; (b) the uncertain parameter Q[d]t; (c) the
non-state variable yt includes all other variables in the period
t. Under a constant-flow control mode, the mass flow rate
m[·] is fixed, and constraints in (1) are linear. With the above
notations, the feasible set defined by (1) can be rewritten as

Ft =

{
(xt−1, xt, yt, Q[d]t)

∣∣∣∣∣Axt−1 +Bxt

+ Cyt +DQ[d]t ≤ at

}
(5)

where A,B,C,D, at are constants corresponding to the co-
efficients in (1). At the beginning of period t, the values of
storage level xt−1 and heat demand Q[d]t become apparent,
and the feasible set of (xt, yt) is

Ft(xt−1, Q[d]t) =

{
(xt, yt)

∣∣∣∣∣Bxt + Cyt ≤
at −Axt−1 −DQ[d]t

}
(6)

Considering the uncertainty of heat demand, the state variable
xt in every period must be carefully chosen in order to fulfill a
feasible operation of the heating system. The difficulty arises
from the time-coupling feature of the constraint (1e). We must
quantify how xt affects the feasibility of future stages.

Consider the problem backward. In the period t, a necessary
and sufficient condition to warrant the robust feasibility under
the heat demand uncertainty Q[d]t ∈ Ut is to select xt−1 in a
one-step lookahead manner such that

∀Q[d]t ∈ Ut : Ft(xt−1, Q[d]t) ̸= ∅ (7)

The condition (7) guarantees the existence of some dispatch
actions (xt, yt) satisfying all constraints in (1), regardless of
the value of Q[d]t as long as it remains in Ut. However, the
condition (7) cannot ensure feasibility in period t+1 and later.
Nevertheless, this condition provides some insights:

(a) The impact of the uncertainty can be taken into account
by investigating all possible outcomes;

(b) The condition (7) actually imposes additional constraints
on the state variable in period t−1. Though the condition
in (7), we obtain higher robustness in the period t
through sacrificing the flexibility in the period t− 1.

To develop a prediction-free operation method for the
coupled systems, two problems need further investigations.
First, the condition (7) contains infinitely many constraints
as it entails an enumeration over Ut. How can we reduce this
condition to a tractable one? Second, although condition (7)
is responsible for the feasibility in the period t, it overlooks
the feasibility in period t+1 and later. How can we extend it
to a multistage optimization problem?

For the first problem, because Ut is a convex set, we can
replace Ut with its vertex set vert(Ut) = {Qv1

[d]t, · · · , Q
vK
[d]t}. To

see this, let (xv1
t , yv1t ), · · · , (xvK

t , yvKt ) be the corresponding
feasible solutions, which means that

Axt−1 +Bxv1
t + Cyv1t +DQv1

[d]t ≤ at

...
Axt−1 +BxvK

t + CyvKt +DQvK
[d]t ≤ at

Any Q[d]t ∈ Ut can be expressed via the convex combination

Q[d]t = λ1Q
v1
[d]t + · · ·+ λKQvK

[d]t

where λ1, · · · , λK ≥ 0 and
∑K

i=1 λi = 1. Multiplying both
sides of the above K linear inequalities by the K weights and
then adding them together, we have

Axt−1 +B

K∑
i=1

λix
vi
t + C

K∑
i=1

λiy
vi
t +DQ[d]t ≤ at

This means that (
∑K

i=1 λix
vi
t ,

∑K
i=1 λiy

vi
t ) ∈ Ft(xt−1, Q[d]t),

so Ft(xt−1, Q[d]t) ̸= ∅, and the condition in (7) is satisfied.
Hence, the enumeration over Ut and vert(Ut) has the same
effect, but the latter one is a finite set.

For the second problem, from the observation in item (b),
we know robustness can be obtained by adding constraints on
state variables. Assume we have obtained the analytical form
of these robustification constraints, denoted by Xt, then we
can extend the condition (7) in a recursive way:

Xt−1 =

xt−1

∣∣∣∣∣∣∣
∀Q[d]t ∈ vert(Ut)

∃(xt ∈ Xt, yt) :

Ft(xt−1, Q[d]t) ̸= ∅

 , t = 2 : T (8)

where Xt, t = 1 : T are called stagewise robust feasible sets
of thermal storage level. If we have XT in the last period,
we can find XT−1, then XT−2, and finally X1 based on the
condition (8). The calculation of sets X1, · · · XT−1 depends
on their polyhedral property and is left to the next subsection.

B. Computation of Stagewise Robust Feasible Sets

A fundamental concept used in the following discussion is
polyhedral projection. Consider a bounded polyhedron

P = {(x, y) | Ax+By ≤ b}

where x ∈ Rl and y ∈ Rn are variables, and matrices A,B
and vector b have compatible dimensions for multiplication.
The projection of P onto the subspace spanned by the first l
dimensions is denoted by

Proj[1:l](P) = {x | ∃y : By ≤ b−Ax} (9)
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The definition in (9) can be viewed as the dimension reduction
via eliminating the variable y. It is proven in [33] that the
projected set can be expressed as

Proj[1:l](P) =
{
x
∣∣ u⊤Ax ≥ u⊤b, ∀u ∈ vert(U)

}
(10)

where vert(U) represents all the vertices of polytope

U =
{
u
∣∣ B⊤u = 0, −1 ≤ u ≤ 0

}
From (10) we can see that the projected set Proj[1:l](P) in (9)
remains a polyhedron since vert(U) has finite elements.

Typically, projection can be calculated by Fourier-Motzkin
elimination. For a dense system with ℓ linear inequalities,
Fourier-Motzkin elimination method introduces ℓ2/4 new lin-
ear inequalities after eliminating one variable in the worst case,
and most of them are redundant. For the problem considered in
this paper, the majority of variables are to be eliminated, and
only a few variables are left. In other words, the dimension
l of the target space is low, and n ≫ l. For such kind of
problem, we propose a customized projection algorithm based
on formula (10). However, because B is a high dimensional
matrix, vertex enumeration is not viable. We only need to find
out those vertices that define the boundary of Xt−1.

To this end, we consider a problem: given a polytope X ,
certify X ⊆ Proj[1:l](P) or find some x ∈ X but x is not an
element of Proj[1:l](P), which is called a separation oracle.
According to (10), if X ⊆ Proj[1:l](P) is true, there must be

u⊤Ax ≥ u⊤b, ∀u ∈ U, ∀x ∈ X

Because (10) is an exact expression, if ∃x /∈ Proj[1:l](P), there
must be some vertices u⋆ ∈ U such that (u⋆)⊤Ax < (u⋆)⊤b,
so the hyperplane

(u⋆)
⊤
Ax ≥ (u⋆)

⊤
b (11)

strictly separates x from Proj[1:l](P), and this constraint will
not remove any point inside Proj[1:l](P) because of (10).

Given the above analysis, the strategy for computing the
projected set is to firstly create a large enough initial set X
that contains the projected set, and then gradually remove
the unqualified region by creating cutting planes, until the
separation oracle gives a positive certification, which entails
solving the following bilinear program:

R = max u⊤(b−Ax)

s.t. u ∈ U, x ∈ X
(12)

Since u = 0 is always feasible in U , the optimal value R must
be non-negative. If R = 0, then (10) is certified and the current
set X is the projection set. Otherwise, if R > 0, a cutting plane
(11) is generated using the current optimal solution u⋆.

However, the problem (12) is non-convex. To find the global
optimum, it is transformed into a mixed-integer linear program
in [33]. Here we propose a linear programming based method
to solve problem (12) much more efficiently. An important
property of the problem (12) is that its optimal solution must
be found at a pair of vertices of U and X [34]. Based on
this property, if the vertex set vert(X ) =

{
x1, · · · , xK

}
is

available, then we solve K linear programs

Rk = max
{
u⊤(b−Axk) : u ∈ U

}
, k = 1 : K (13)

and R = maxk {Rk}. Because dim(X ) = l which is usually
no larger than 10, the vertex enumeration for X is easy.
Actually, in each step, only one hyperplane in form of (11)
is added into X . It removes some old vertices and intersects
with some edges of X and thus generates some new vertices.
We just need to track the change in a small fraction of
elements in the vertex set, which is implemented by the online
vertex enumeration algorithm in [35]. Therefore, only a few
linear programs are solved in each iteration. The flowchart of
computing the set Proj[1:l](P) is provided in Algorithm 1.

Algorithm 1 : Customized Polyhedral Projection

1: Initiate X B =
{
xt | Emin

s ≤ Est ≤ Emax
s ,∀s

}
and set an

error tolerance δ > 0;
2: Solve the problem (12) through linear programs corre-

sponding to those vertices of the current X B. The optimal
solution is (u⋆, x⋆), and the optimal value is R.

3: If R ≤ δ, terminate and report the current X B as the
projection set; otherwise, add a cutting plane (11) to X B.

4: Update X B and its vertex set using the online vertex
generation method in [35]. Return to step 2.

With the above knowledge, we can show the polyhedral
property of X1, · · · ,XT and calculate their hyperplane repre-
sentations using the backward induction. In the last stage T ,
there is no future period, and XT is the physical bound of
thermal storage level, which is a hypercube

XT =
{
xT | Emin

s ≤ EsT ≤ Emax
s ,∀s

}
Assume in the period t, the stagewise feasible set Xt of the
state variable xt can be calculated and remains a polyhedral
set, then in the period t− 1, by the condition in (8) we have

Xt−1 =

{
xt−1

∣∣∣∣∣∀Q
vi

[d]t ∈ vert(Ut), ∃(xvi
t ∈ Xt, y

vi
t ) :

Bxvi
t + Cyvit +DQvi

[d]t ≤ at−Axt−1

}
(14)

Because vert(Ut) has finite elements, Xt is polyhedral, and the
number of inequality constraints in (14) is finite, the set

Pt−1(Ut) =

{[
xt−1

(xvi
t , yvi

t ),∀vi

]∣∣∣∣∣Axt−1 +Bxvi
t + Cyvit ≤

at −DQvi
[d]t, x

vi
t ∈ Xt,∀vi

}
depending on Ut is a polytope, where vi is the index of vertices
in vert(Ut). Assume the dimension of state variable is m, by
definition (9), Xt−1 can be expressed via projection as

Xt−1 = Proj[1:m](Pt−1(Ut)) (15)

According to the property of the projection operator, the output
Xt−1 remains a polyhedron [36]. Finally, by the principle of
induction, X1, · · · ,XT are all polyhedral sets.

The above discussions not only demonstrate the polyhedral
structure of stagewise robust feasible sets X1, · · · ,XT , but also
construct their hyperplane expressions. With sets X1:T at hand,
the heating system can make online decisions without demand
forecast. In period t, thermal storage level xt−1 and current
heat demand Q[d]t are received; the action set is

At =
{
(xt, yt) | (xt, yt) ∈ Ft(xt−1, Q[d]t), xt ∈ Xt

}
(16)

where Ft originates from operating constraints of the heating
system, and Xt accounts for the feasibility of future stages.
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C. Flexibility From the Heating System
At the distribution system side, electric heaters act as power

demands, and thermal storage levels are not observable. The
power demand from the heating system is flexible because the
power consumption of electric heaters has some freedom to
be adjusted as long as (xt, yt) ∈ At.

To characterize the flexibility from heating system, the non-
state variable yt is further divided into the boundary variable
y[h]t = [Qht], ∀h including outputs of electric heaters and the
non-boundary variable yin

t containing all remaining variables
in yt such as the charging and discharging power of TES units.
Flexibility refers to the set in which yt can be adjusted without
sacrificing heat supply adequacy of the heating system.

To quantify the flexibility, we work on the action set At.
Under the help of the stagewise robust feasible set for state
variables, At in each stage is decoupled over time with newly
observed (xt−1, Q[d]t) being the input. Let yt = [y[h]t, y

in
t ], re-

call the definition in (16) and the expression of Ft(xt−1, Q[d]t)
in (6), the action set can be written as

At(xt−1, Q[d]t) =


y[h]tyin

t

xt


∣∣∣∣∣∣∣
Bxt + Chy[h]t + C inyin

t

≤ at −Axt−1 −DQ[d]t

xt ∈ Xt


(17)

where C = [Ch, C in]. The flexibility is given by the feasible
set B†

t of y[h]t such that At(xt−1, Q[d]t) ̸= ∅. By the definition
of projection, we have

B†
t =

{
y[h]t

∣∣∃(xt, y
in
t ) : (y[h]t, y

in
t , xt) ∈ At(xt−1, Q[d]t)

}
Let dim(y[h]t) = m′, then

B†
t = Proj[1:m′](At(xt−1, Q[d]t))

The projection can be calculated by Algorithm 1. Finally, the
output y[h]t of heaters is converted to a power demand p

[h]
t via

coefficient κ[h], and the flexible loadability set is defined as

Bt =
{
p
[h]
t

∣∣∣κD
[h]p

[h]
t ∈ B†

t

}
(18)

where p
[h]
t = [pht ],∀h collects power demands of heaters, and

κD
[h] is a diagonal matrix whose diagonal elements are κh,∀h.

The product κD
[h]p

[h]
t is equivalent to let yht = κhp

h
t for each

heater and then define a vector y[h]t = [yht],∀h.
To obtain Bt, each dimension of B†

t is divided by a factor of
κh. As Xt is taken into account in Bt, the operation feasibility
of the heating system in the future is guaranteed regardless of
the variation of heat demands in the uncertainty set. From the
electricity system side, the power consumption p

[h]
t of heaters

has more freedom and can be adjusted in a polyhedral set Bt.
In this regard, heating system can provide flexibility without
sacrificing security.

Remark: The increased complexity is a common difficulty
of all projection algorithms, because the numbers of vertices
and facets grow rapidly in the dimensionality, regardless of
how they are computed. In the heating system, the dimension
of Xt/Bt is equal to the number of large TES units/electric
heaters, which is less than 10. User-side distributed devices
are combined into heat demand. Consequently, Algorithm 1
remains efficient for practically sized systems.

D. Coordinated Operation of the Interdependent Systems

Now we are ready to present the coordinated operation
scheme for the interconnected systems. In the day-ahead stage,
the heating system procures the uncertainty set of heat demand
U = U1 × · · · × UT , and then calculates the stagewise robust
feasible sets X1, · · · ,XT .

In the real-time operation, at the beginning of the period t,
the heating system operator receives the value of (xt−1, Q[d]t),
then it calculates the flexible loadability set Bt and submits it
to the distribution system. While receiving Bt, the distribution
system operator solves an optimal power flow problem

min ρt
∑

j∈δ(0)
P0j

s.t. branch flow model (2)

p
[h]
t ∈ Bt

(19)

where ρt is the electricity price at node 0; δ(0) is the set of
child nodes of the reference node 0; P0j denotes the active
power flow in distribution lines connect to node 0; so the
objective function is the cost paid to the transmission system;
if gas-fired plant is taken into account, its fuel cost is also
added in the objective function; power flow in the distribution
system obeys branch flow model in (2); the flexible range of
electric heaters are highlighted in the last constraint.

There is no renewable curtailment penalty in the objective
function because the waste of solar and wind power is caused
by the lack of demand and storage capacity. The optimal
dispatch naturally prioritizes the use of free renewable power
and is not affected by the penalty, although the objective value
would be higher if curtailment is inevitable. The proposed
method improves the use of renewable power for two reasons:

(1) The demand of electric heaters are adjustable within the
set Bt, so the power grid has some freedom to meet
power balance and maintain network constraints.

(2) The thermal storage level are strategically scheduled
to circumvent a myopic decision, which is the main
shortcoming of greedy policy.

After solving problem (19), the power consumption p
[h]
t of

electric heaters is sent to the heating system, and then the
pipeline network loss is minimized, yielding

min
xt,yin

t

∑
b

(
T in
bt − T out

bt

)
s.t. (y[h]t, y

in
t , xt) ∈ At(xt−1, Q[d]t)

heater model (3)

(20)

The procedure repeats until the last period T .
The reason of not using a cost as the objective function in

(20) is explained as follows. Under a constant pricing scheme,
as we have assumed, the daily cost is influenced by the sum of
total energy demand and network losses in this day. The former
is beyond the control of the heating system operator, and the
latter is minimized in (20). Although fixing p

[h]
t sacrifices

some degree of freedom, considering the fact that loss only
accounts for a small fraction of energy, cooperating with the
electricity system and thus obtaining a lower electricity price is
worthwhile. In summary, the flowchart of the online operation
scheme is give in Algorithm 2.
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Algorithm 2 : Coordinated Operation Scheme
1: Day-ahead stage: initiating uncertainty set U = U1×· · ·×

UT . Let XT =
{
xT | Emin

s ≤ EsT ≤ Emax
s ,∀s

}
For t = T − 1 : 1

Compute Xt according to (15) based on Algorithm 1.
End

2: Real-time stage:
For t = 1 : T

- Heating system observes (xt−1, Q[d]t), calculates Bt

in (18) based on Algorithm 1, then submits Bt to the
distribution system;

- Distribution system receives Bt and solves problem
(19), and then sends p

[h]
t to the heating system;

- Heating system receives p
[h]
t and then solves problem

(20). Proceed to the next period.
End

E. Extensions for the Inclusion of Battery Storage

If battery storage is deployed in the distribution system, the
proposed method can also be applied. Two situations are con-
sidered depending on the rated charging time TB

r = Emax
B /pmax

B
of the battery, where Emax

B is the energy capacity in MWh; pmax
B

is the maximum charging power in MW.
(1) If TB

r ≤ 2 hours, applying greedy policy amounts to
adding bound constraints

0 ≤ pch
t ≤ min

{
Emax

B − EB
t−1

ηB
ch∆t

, pmax
B

}
(21a)

0 ≤ pdc
t ≤ min

{
(EB

t−1 − Emin
B )ηB

dc

∆t
, pmax

B

}
(21b)

to the OPF problem (19), where EB
t−1 is the battery storage

level at the end of period t − 1, which is a known constant
at the beginning of period t; ηB

ch/η
B
dc is charging/discharging

efficiency; pch
t /p

dc
t is battery charging/discharging power,

bounded by pmax
B . At the end of period t, the battery storage

level is changed to

EB
t = EB

t−1 + ηB
chp

ch
t ∆t − pdc

t ∆t/η
B
dc

The constraint Emin
B ≤ EB

t ≤ Emax
B is always warranted by

the constraints in (21), so battery storage level EB
t and its

dynamic equation are omitted. In a cost minimization problem,
pch
t and pdc

t at the optimal solution is complementary, because
simultaneous charging and discharging incur losses and thus
not optimal [37].

(2) If TB
r > 2 hours or it is comparable to the rated charging

time of TES, the proposed method for heating system can be
applied again to the distribution system, and then the inter-
temporal constraints of battery storage are decomposed. In
this case, the day-ahead problem adopts a linear power flow
model, such as the linearized distflow model in [38], because
Algorithm 1 must be performed with linear constraints. If
a nonlinear power flow model is preferred, the polyhedral
approximation method in [39] can be applied. Therefore, to
include battery storage, the accuracy of power flow model
in the day-ahead stage is slightly sacrificed, but we can still
use the nonlinear power flow model in the real-time stage. It

is known that the linearized distflow model has satisfactory
accuracy, so the discrepancy would not be significant.

F. Connection with Multistage Robust Optimization

The classic multistage robust optimization belongs to the
category of centralized optimization, which is often solved by
the dynamic programming type algorithms. However, because
the heating and power systems are monitored by different
entities and there lacks a holistic model, a centralized approach
is difficult to implement. Algorithm 2 can be regarded as a
distributed scheme to a special multistage robust optimization
problem. However, there are three significant differences.

1) We develop a set-based decomposition algorithm to break
the temporal dependency brought by thermal storage dynam-
ics. The dynamic programming method based on Bellman’s
Principle of Optimality constructs optimal value functions in
each period recursively, while the proposed method offers
feasible sets in each stage; the recursive equation (8) plays the
similar role as Bellman’s equation, but from the perspective of
feasibility instead of optimality. The economic issue is taken
into account in the real-time stage via optimal power flow. This
paradigm is suitable in power system operation where cost is
to be minimized subject to mandatory security constraints.

2) The stagewise robust feasible set of state variables breaks
the temporal dependency brought by thermal storage dynam-
ics; the flexible loadability set of coupling variables breaks the
interdependency across the two systems and allow them to be
operated in a distributed manner. Both sets have clear physical
meanings. The existing multistage robust optimization requires
a centralized model, which encounters difficulties in practice
as neither of the two systems have complete model and data
of the integral network.

3) To develop computationally tractable algorithms, existing
multistage robust optimization usually relies on linear math-
ematical models. In contrast, with the flexible loadability set
from the heating system, the power system operation can be
optimized according to the AC power flow model, which is
more accurate than the linearized power flow models and
hence preferred in practical usage.

IV. CASE STUDY

The performance of the proposed method is examined on
two testing systems of different scales. The small system is
comprised of a 33-bus distribution network and a 14-node
heating network. The large one consists of a modified 123-
bus distribution system and a 45-node heating system. The
algorithms are coded in Julia environment, optimization prob-
lems are solved by Gurobi. All numerical tests are conducted
on a laptop with Intel i7-10710U CPU and 16GB RAM.

A. Results for the Small System

The structure of this system is shown in Fig. 3. In the 33-
bus distribution system, 4 wind turbines and 3 solar plants are
connected. The 14-node heating network possesses 2 electric
boilers, 1 heat pump and 3 TES units. Complete system data
can be found in [40]. The day-ahead interval forecasts of heat
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demands are plotted in Fig. 4, which serves as the uncertainty
set. The observed trajectory of heat demands is also shown in
Fig. 4. The dispatch interval is ∆t = 1 hour.
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Fig. 3. Topology of the small testing system.

1) Sets Visualization: In this case, the dimension of xt is 3,
so we can visualize X1:24 in R3. The most popular projection
algorithm is Fourier-Motzkin elimination. It fails to offer a
result in one hour. For Algorithm 1, the polytope resides in
R3, so the vertex update in step 4 is very efficient, and the
bilinear program (12) can be easily solved. In consequence,
Algorithm 1 takes only 470 seconds to calculate all stagewise
robust feasible sets X1:24 which are plotted in Fig. 5. Because
the heat demand is high during periods 5-13, some part around
the corner corresponding to the minimum storage level in
X4:12 is cut off in periods 4-12, which is one period earlier
than the peak demand arrives, to maintain thermal storage at
the sufficiently high level. Due to the charging power capacity
of the TES, the minimum storage level cannot be reached
immediately in period 4, so the TES is charged in advance
during periods 2-3. In remaining periods, Xt = X24.

Dynamic bounds B1:24 of electric heaters are calculated,
consuming 39 seconds. They are drawn in Fig. 6. Take B2

in the period 2 for example, it consists of 30 vertices and
17 facets. As the thermal storages level in the period 1 is
sufficiently high to provide flexibility and the heat demand in
the period 3 is moderate, there is no need to maintain a very
high storage level in the period 2. As a result, X2 and B2 are
relatively large compared to those in periods 3-12.

2) Operation Methods for Comparison: The proposed
method is compared with three competitors. The details can
be found in the appendix.

Hindsight optimum: Assume the coupled systems is cen-
trally operated. At the end of a day, the heat demand data is
known exactly. The hindsight optimum refers to the optimal
value of a deterministic problem with known heat demand
trajectory. Although the ideal hindsight optimum cannot be
acheived in practice, it offers a baseline to quantify the
optimality performance of other online policies.

Centralized greedy method: Still in a centralized scheme,
the greedy policy πG makes a decision based on the current
observation of the uncertainty and thermal storage levels.

Hierarchical MPC: In this scheme, the heating system pre-
dicts heat demands in the next 24 hours and solves a minimum
loss problem, then submits power demands of heaters in the
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Fig. 4. Interval forecasts and observed values of heat demands.

current period to the distribution system. The dispatch actions
can be retrieved from the optimal power flow solution. This
policy is denoted by πM .

3) Overall Performance Comparison: The proposed policy
in Algorithm 2, denoted by πOL, is compared with πG and
πM over a period of 4 months from November to February,
covering the heating period in most areas of northern China.
Results are shown in Table II.

Given exact heat demands in the next day, the hindsight
problem (22) (see appendix) in each day of four months is
solved, and the minimum cost is f∗ = 4.87× 105$. All other
policies incur higher costs compared to this benchmark. In the
hierarchical MPC policy, using exact heat demand forecasts,
the heating system solves the minimum loss problem (24)
and submits demands of electric heaters to the distribution
system. Since there is no forecast error, such a strategy is
ideally optimal to the heating system. Then, the distribution
system executes dispatch according to the optimal power flow
problem (25). Unlike problem (19) where the power demand
p
[h]
t is adjustable in the set Bt, p

[h]
t is fixed in problem (25),

making the dispatch of distribution system less flexible. As a
result, πM incurs a total cost of 5.39×105$, which is 10.68%
higher than f∗.

The proposed method does not rely on exact heat demand
forecasts. Instead, it uses interval forecasts in the day-ahead
stage to construct robust feasible sets and flexible loadability
sets. Taking industrial experiences into account, the day-ahead
forecast error is assumed to be 10%, and the resulting X1:24

and B1:24 in a typical day have been shown in Figs. 5-6.
In the real-time stage, the optimal power flow problem (19)
is a second-order conic program, and the optimal thermal
flow problem (20) is a linear program. Both of them can
be solved in less than a second, so the computation time
can be neglected. In the heat supply period of 4 months, the
proposed policy πOL receives a total cost of 4.98 × 105$,
which is 2.26% higher than the ideal optimum f∗ but much
better than that of πM . One reason can be seen from the
last column: renewable energy curtailment rate under πOL

is lower compared to that under πM , so less electricity is
purchased from the transmission system, leading to a lower
total cost. The relative power procurement, which is equal to
the import power under some policy π minus that under the
hindsight optimal solution, is shown in Fig. 7. Because TES
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Fig. 5. Stagewise robust feasible sets of thermal storage level.
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Fig. 6. Flexible loadability sets of electric heaters.

is nearly lossless, shifting the heat demand does not alter the
total energy consumption in the heating system, the cost of
heating system barely changes. In most periods, the power
purchase under πM is larger than that under πOL and the
hindsight optimum. This result emphasizes the importance of
cross-system coordination.

In the greedy policy πG, although system operation is

coordinated, the dispatch strategy is myopic because its future
impact is overlooked. Specifically, to save cost in the current
period, πG prioritizes the use of TES, which causes heat
supply inadequacy when the stored energy is used up and
renewable power is scarce at the same time. In such circum-
stances, delivering power from the substation to heaters is the
only option, which could be infeasible due to line flow and bus
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TABLE II
COMPARISON OF DIFFERENT POLICIES IN THE SMALL TESTING SYSTEM

Policy
Infeasible Cost Optimality Renewable energy

days (105$) gap curtailment

f∗ 0 4.87 baseline 10.81%

πOL 0 4.98 2.26% 11.05%

πG 68 5.09 4.52% 10.88%

πM 0 5.39 10.68% 13.29%
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Fig. 7. Relative power purchase under different policies.

voltage limits, triggering heat load shedding. During the four
months, load shedding occurs in 68 days with a total amount of
64.78MWh. Assuming the load shedding cost is 341$/MWh,
the total cost under the greedy policy πG is 5.09×105$, which
is 4.52% higher than f∗. This result highlights the importance
of strategic use of energy storage when the system is facing
significant uncertainty.

Interestingly, from Table II we have noticed that exact
forecast is not indispensable because the policy πOL which
involves interval forecasts can achieve fairly good perfor-
mances, and furthermore, the results of πG and πM indicate
that implementing coordination without foresight can be better
than exploiting forecasts but neglecting coordination.

4) Performance in Typical Days: To show the performance
of the proposed method in typical days with different renew-
able and demand variation patterns, we select four typical days
based on the total renewable generation (high: > 100MWh;
low: < 87MWh) and total power and heat demand (high:
> 137MWh; low: < 93MWh).

Day-1: high renewable generation and high demand.
Day-2: high renewable generation and low demand.
Day-3: low renewable generation and high demand.
Day-4: low renewable generation and low demand.
Results are given in Table III. Among four typical days,

πOL outperforms πM in terms of the cost and renewable
energy curtailment rate due to the exploitation of flexibility
from the heating system. The greedy policy πG is fairly good
except in Day-3, because whenever no heat load is shed, using
TES with high priority is naturally a good strategy, then there
is plenty of capacity to store renewable energy in case of
need. If heat load shedding occurs, πG may face penalty,
as in Day-3, but greedy policy cannot identify potential load
shedding due to the lack of forecasts. Nonetheless, over a long
period of 4 months, the cumulative cost under πG is even
slightly lower than that of πM , as in Table II. This might
be surprising because πG uses no forecast information while
πM knows the exact information of uncertainty. The reason
is that by our definition, coordination takes place in πG but

TABLE III
COMPARISON RESULTS IN FOUR TYPICAL DAYS

Day Policy
Daily Optimality Renewable energy Heat load
cost gap curtailment shedding(MWh)

1

f∗ $1933 baseline 9.83% 0

πOL $1973 2.07% 10.30% 0

πG $1940 0.36% 10.81% 0

πM $2285 18.21% 12.23% 0

2

f∗ $601 baseline 29.68% 0

πOL $716 19.13% 29.70% 0

πG $601 0.00% 29.89% 0

πM $1011 68.22% 30.91% 0

3

f∗ $5916 baseline 1.86% 0

πOL $5997 1.37% 1.86% 0

πG $6131 3.63% 1.86% 1.32

πM $6299 6.47% 3.16% 0

4

f∗ $3853 baseline 7.98% 0

πOL $3859 0.16% 8.36% 0

πG $3853 0.00% 8.27% 0

πM $4190 8.75% 11.04% 0

not in πM . Hence, exploiting the synergetic potential of heat-
power integration appears to be more important than pursuing
more accurate forecasts in multi-energy systems, at least in
the particular scenario considered in this paper.

B. Results for the Large System

This system is used to validate the computational efficiency.
At the electric side, there are 5 wind turbines and 3 solar
plants in the modified 123-bus distribution network. The 45-
node district heating network includes 4 electric boilers, 2 heat
pumps and 6 thermal storage units, as shown in Fig. 8. In real
distribution systems, there could be more behind-the-meter
resources such as distributed photovoltaic panels, which can
be combined into nodal power demand. Because the operation
of distribution system is adaptive to the real-time demands and
involves no forecasts, behind-the-meter resources do not affect
the implementation of the proposed method.

Substation

Wind turbine

Solar plant

Electric line

Electric boilerThermal storage

Heat pump Heat pipeline
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TS

TSTS
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HP
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Fig. 8. Topology of the large testing system.
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1) Computational Performance: The calculation times of
Xt and Bt in the individual period during four months are
shown in Figs. 9-10. In the day-ahead stage, Algorithm 1 takes
504 seconds on average to calculate sets X1:24 in a day. In a
few periods with high heat demands, the computation is much
slower. For example, at period 10 on January 13th, it takes 508
seconds to calculate X10, so the day-ahead stage consumes 18
minutes in that day. Nevertheless, there are only 4 days in
which the total computation times of the day-ahead problems
exceed 15 minutes, among which the longest is 19 minutes.
All these days appear in January due to the high demand of
heat. The time is less than 10 minutes in 90% of the days
during 4 months, as shown in the last block of Fig. 9. Such
a performance is satisfactory because sets X1:24 are prepared
day-ahead and time is not a tight constraint.
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Fig. 9. Time consumption for calculating stagewise robust feasible set.

In the real-time stage, once Q[d]t is received at the beginning
of period t, the flexible loadability set Bt is procured from
Algorithm 1. The average (maximum) computation time of
set Bt is 11 (54) seconds. This is still acceptable since the
time is less than one minute even in the worst case, and for
90% of the 2880 periods, the time is less than 20 seconds.

2) Overall Performance Comparison: The proposed policy
is compared with πG and πM over a period of 4 months in
this large system. The results are shown in Table IV. The
hindsight problem over four months results in a minimum
cost of 1.085 million dollars. The hierarchical MPC policy
πM , using exact forecasts, incurs a cost of 1.223 million
dollars, which is 12.7% higher due to the lack of sufficient
coordination between two networks. The proposed method
πOL achieves a cost of 1.124 million dollars, only 3.6% higher
than the hindsight optimum. For the greedy policy πG, the
operation cost is 1.144 million dollars, slightly worse than
πOL, because the myopic decision fails to charge TES before
the peak heat demand arrives, the limited capacity of heaters
triggers load shedding in the heating system.
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Fig. 10. Time consumption for calculating flexible loadability set.

TABLE IV
COMPARISON OF DIFFERENT POLICIES IN THE LARGE TESTING SYSTEM

Policy
Infeasible Cost Optimality Renewable energy

days (106$) gap curtailment

f∗ 0 1.085 baseline 4.0%

πOL 0 1.124 3.6% 4.6%

πG 32 1.144 5.4% 4.1%

πM 0 1.223 12.7% 6.5%

V. CONCLUSION

This paper proposes an interactive operation method for
interdependent distribution system and district heating system
based on a polyhedral characterization of the heat system
flexibility. It is advantageous in three aspects: first, it adopts
a decentralized framework that requires least information
exchange between two systems; unlike existing distributed
optimization techniques which often require many iterations
and fine parameter tuning, the proposed method is parameter-
free and has no convergence issue. Second, it does not rely
on high-quality forecasts and is adaptive to the fluctuations of
renewable power and demands. Third, the distribution system
is described by the nonlinear power flow model which is more
accurate than linearized power flow models used in the existing
works. Simulation results show that

(1) The heating system can provide considerable flexi-
bility by submitting adjustable demands of electric heaters,
contributing to a better use of renewable energy. The set
calculation takes less than a minute on average, which is
sufficiently fast for practical usage. Without battery storage,
renewable power forecast is unnecessary, and the system-level
coordination is important in cost reduction.

(2) In any circumstance, the proposed method is no inferior
compared to its competitors. On average, it reduces the cost
by 1.8% (8.8%) compared to the centralized greedy policy
(hierarchical MPC policy), and achieves an average optimality
gap of 3.6% compared to the hindsight optimum.

The proposed framework is quite general and can be easily
extended to other applications, such as operating a microgrid
and multiple virtual power plants. The ongoing work is to de-
velop robust data-driven methods that better exploits historical
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data, forecast information and operation experiences, aiming to
circumvent the subjectivity and conservativeness in selecting
the demand uncertainty set, while achieving a proper tradeoff
between cost and potential risk.
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APPENDIX

Detailed models of the three competitors are listed below.
Hindsight optimum: Assume the coupled systems is cen-

trally operated. At the end of a day, the heat demand data is
known exactly. So the ideal minimum cost f∗ can be obtained
by solving a deterministic optimization problem

f∗ = min
∑
t∈T

∑
j∈δ(0)

ρtP0j,t

s.t. heating system model (1)
branch flow model (2)
heater model (3)

(22)
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The hindsight optimum f∗ cannot be achieved in practice. It is
a baseline that quantifies the optimality gap of a given policy
π. Let f(π) is the actual cost under policy π, the optimality
gap is v∗ = (f(π)− f∗)/f∗. Clearly, for any policy that does
not use exact prediction, we have v∗ > 0.

Centralized greedy method: Still in a centralized frame-
work, the greedy policy πG makes a decision based on the
current observation of the uncertainty, yielding

min ρt
∑

j∈δ(0)
P0j

s.t. heating system model (1)
branch flow model (2)
heater model (3)

(23)

Unlike (22) which optimizes actions across the day, problem
(23) pertains to a single period t. Parameters ρt, Q[d]t and
xt−1 are revealed at the beginning of this period, and no
predictive information is needed. Since the future impact of the
current action is neglected, πG is myopic and thus suboptimal,
especially when the heating system is heavily loaded.

Hierarchical MPC: Assume the distribution system and
the heating system make decisions individually. In particular,
the heating system predicts heat demands in the next 24 hours
and solves a minimum loss problem, then submits the power
demand of heaters in the current period to the distribution
system. The dispatch actions can be retrieved from optimal
power flow. The flowchart of the hierarchical model predictive
control (MPC) policy πM is provided in Algorithm 3.

Algorithm 3 : Hierarchical MPC
1: District heating system: observe (xt−1, Q[d]t), predict

heat demands in the next n periods. Solve the following
lookahead dispatch problem

min
xτ ,yin

τ ,y[h]τ

t+n∑
τ=t

∑
b

(
T in
bτ − T out

bτ

)
s.t. (y[h]τ , y

in
τ , xτ ) ∈ Fτ (xτ−1, Q[d]τ ),∀τ

heater model (3)

(24)

and submit heater power demands p
[h]
t to the distribution

system.
2: Distribution system: receive heater power demands p

[h]
t ,

observe the renewable power and nodal loads in the
current period, solve the following optimal power flow
problem

min ρt
∑

j∈δ(0)
P0j

s.t. branch flow model (2)
(25)

Then proceed to the next period.

In our tests, we assume the prediction of heat load Q[d]t

is exact, which is favored by MPC. In practice, the perfor-
mance of MPC can be inferior due to forecast errors. In this
method, the heating system submits fixed demands of electric
heaters which are restrictive lack flexibility. In contrast, in
the proposed method, the heating system submits a set Bt of
admissible demands which allows a more flexible dispatch and

encourages coordination between the distribution network and
the district heating network.
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