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Summary 
Freshwater ponds are small, lentic freshwater habitats. Composing an estimated 30 % of 

global standing water area, they are important reservoirs of freshwater biodiversity providing 

key ecosystem services. Environmental DNA (eDNA) metabarcoding is a novel method of 

sampling biodiversity, where an organism’s presence is inferred by sampling and identifying 

their DNA present in the environment. This method has advantages in terms of efficiency, 

scalability and identifying small and cryptic species. 

This PhD examines the use of eDNA metabarcoding to monitor freshwater ponds. Firstly, I 

developed new techniques, including using genetic markers never previously used in ponds 

or other freshwater environments (Chapter 2). This increased the taxonomic breadth of pond 

monitoring by targeting prokaryotic and eukaryotic microbes, fungi, microfauna and algae 

alongside the traditionally used macrophytes and macroinvertebrates.  

I examined seasonal dynamics of communities in pond water and sediment via eDNA 

metabarcoding (Chapter 3). I also used eDNA metabarcoding to test ecological hypotheses 

at the landscape level (Chapter 4), investigating environmental and spatial drivers of pond 

community composition. I compared community metrics derived from metabarcoding data 

with a traditional pond ecosystem assessment tool (the Habitat Suitability Index for Great 

Crested Newts).  

Pond communities in water and sediment were significantly dissimilar, and this difference 

was bigger for microbes than for larger organisms. Communities in pond water displayed 

significant seasonal turnover, but this was less pronounced in sediment communities. Higher 

plant eDNA sequence reads from water samples were over 70 % terrestrial in origin. 

Prokaryotic communities were structured by pond water chemistry and surrounding land use, 

and their composition differed in ponds of different HSI levels. Green plant and algal 

communities were spatially structured, and other eukaryotes showed no clear structuring 

pattern.  

These findings encourage a shift in eDNA surveying of ponds, demonstrating that bacteria 

communities in sediments are good bioindicators of overall pond ecosystem health.   
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Introduction  

  
Freshwater ponds are small, lentic freshwater habitats less than five metres in depth and five 

hectares in area (Richardson et al. 2022). Historically, ponds were not a primary focus of 

freshwater science and monitoring. Larger rivers, lakes, and wetlands took precedence, as 

they were presumed to play a more significant role in global biodiversity, carbon and nutrient 

cycles, water dynamics, and ecosystem services (Hill et al. 2018).  

 

The past decade has seen a surge of interest in ponds. Improvements in satellite imagery 

have allowed better estimates of pond numbers and area (around 30 % of global standing 

water area, Verpoorter et al. 2014, Holgerson & Raymond 2016), and a clearer definition of 

ponds as distinct from other freshwater habitats, based on ecosystem functioning 

(Richardson et al. 2022).   

 

In many areas, ponds are crucial for freshwater biodiversity, containing more species at a 

landscape level than rivers or lakes (Davies et al. 2008, Richardson et al. 2014, Bolgovics et 

al. 2019). The relevance of ponds for local, regional, and global methane emissions 

(Rosentreter et al. 2021), pollutant and nutrient reduction (Tournebize et al. 2016) and water 

storage and cycling (Golden et al. 2015) is actively being investigated, and ponds have been 

put forward as key nature-based solutions to biodiversity loss, flooding and drought and 

climate change (Cuenca-Cambronero et al. 2023).   

 

In light of the renewed recognition of the significance of these small habitats, the UK is 

currently working on developing new monitoring schemes for ponds (Natural England 2019, 

DEFRA 2022). This initiative aims to address previous shortcomings in the inconsistent and 

sporadic monitoring of ponds and the omission of ponds from regulatory frameworks for 

freshwater protection (Hill et al. 2018).  

 

Environmental DNA (eDNA) metabarcoding is a novel method of sampling biodiversity. 

Instead of visually counting or trapping individual organisms, as in traditional surveying 

methods, an organism’s presence is inferred by sampling and identifying their DNA which is 

present in the environment (Tablerlet et al. 2018), which may be water, soil, sediment or 

even air. In the past decade, the number of eDNA metabarcoding studies has rapidly 
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increased, aided by technological developments in next-generation sequencing which make 

it possible to determine the sequences of thousands of eDNA copies simultaneously.  

  

eDNA techniques are being progressively employed in regulatory biodiversity monitoring, 

e.g., for protected and invasive species, and as part of citizen science schemes (see 

Chapter 1, section 3). Over the past four years (the length of this PhD study), there have 

been significant developments in eDNA applications such as passive sampling (Bessey et al. 

2021), taxonomy-free metrics (Cordier et al. 2020) and machine-learning (Fruhe et al. 2021). 

eDNA metabarcoding is continually being applied in new environments and across various 

regions of the world.  

 

This PhD examines the use of eDNA metabarcoding for monitoring freshwater ponds in 

lowland England. During this PhD, I developed new techniques for monitoring ponds using 

eDNA metabarcoding, including using genetic markers never previously used in ponds or 

other freshwater environments. I increased the taxonomic breadth of pond monitoring by 

targeting bacteria, fungi, microfauna and algae alongside the macrophytes and 

macroinvertebrates traditionally used for ecosystem assessments of these environments. I 

examined the seasonal dynamics of communities in pond water and sediment using eDNA 

metabarcoding, expanding the temporal resolution of traditional pond surveying. Finally, I 

used eDNA metabarcoding to test ecological hypotheses at the landscape level.   

 

My two key study sites were Pinkhill Meadows, a five-hectare pond complex and nature 

reserve in Oxfordshire, and 31 ponds across a roughly 500 km 2 area of lowland central 

England (Oxfordshire, Buckinghamshire and Northamptonshire). Fieldwork for the Pinkhill 

Meadow studies (Chapters 2 and 3) was carried out from January to November 2020 

(inclusive). Fieldwork for the landscape study (Chapter 4) was carried out in June and July 

2022.         

 

This PhD opens with a literature review (Chapter 1), covering the ponds in the UK and 

internationally (their ecology, numbers, status and threats), the status of eDNA 

metabarcoding in freshwater environments, biodiversity monitoring and bioindicators and 

freshwater community assembly.  

 

In Chapter 2, I report on the results of an eDNA metabarcoding study using five different 

genetic markers across 20 ponds in Pinkhill Meadow, sampled on a single day in June 2020. 



   
 

3 
 

 
 

As well as detailing my taxonomic results, I also assess the benefits and drawbacks of 

various methods in field, in the laboratory and in silico, by comparing results from different 

genetic markers, from merged and separate water samples, and from using different 

bioinformatic processing techniques.    

 

Chapter 3 examines the seasonal dynamics of pond communities in the same 20 ponds but 

over five different days in 2020 (in January, March, July, September and November), via 

eDNA metabarcoding using three different genetic markers. I assess the differences in 

seasonal dynamics between microbes, multicellular organisms and plants, and between 

communities in pond water and sediment.    

 

Chapter 4 reports on results from a landscape-scale eDNA metabarcoding study of 31 

ponds. Again, three different genetic markers were used to target prokaryotic microbes, 

eukaryotes and green plants and algae. The impact of pond physio-chemistry, surrounding 

landscape and spatial effects on these three communities is assessed using variation 

partitioning and constrained ordination. The potential for eDNA metabarcoding to provide 

bioindicators of pond ecological quality is also explored, through indicator species analysis 

and comparing community composition with a traditional pond health metric, the Habitat 

Suitability Index for Great Crested Newts.  

 

Finally, I conclude by outlining the key findings of my work in the Conclusions chapter. I 

focus on my contribution to expanding knowledge of the taxonomic composition of pond 

environments, implications for biomonitoring of ponds using eDNA metabarcoding, and 

environmental and spatial drivers of pond community assembly.     
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Literature Review: Molecular insights 
into pond ecosystems: current 
applications and future prospects 
 

Abstract 

 

Global biodiversity is experiencing steep and alarming declines in species richness and 

abundance. Freshwater ecosystems and species are amongst the most threatened. Ponds 

(freshwater lentic habitats <5 ha and <5 m deep) and other smaller freshwater habitats are 

understudied and less well protected compared to other components of the freshwater 

environment, yet available evidence suggests their contribution to freshwater biodiversity 

outweighs their small size.  The first section of this literature review briefly describes the 

ecology, distribution, status and threats to ponds in the UK and internationally. The second 

describes molecular ecological approaches to studying ponds, and their current and future 

applications. Next, bioindicators of freshwater ecological quality are examined, and future 

research directions in both ponds and molecular ecology in general are recommended. The 

final section examines the literature surrounding freshwater community assembly and the 

importance of freshwater connectivity to biodiversity. 

 

Section 1: Pond ecology, status and conservation 

 

Introduction 

It is now widely accepted that we are in the midst of an anthropogenically-driven global 

biodiversity crisis: species extinctions are 100-1000 the background rate experienced over 

much of the Earth’s history, leading to assertions we are experiencing a “sixth mass 

extinction” of biological diversity (Chapin et al. 2000, Mace et al. 2005, Rockstrom et al. 

2009). A recent report showed that one million species – 11.5 % of the estimated global total 
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- are threatened with extinction, but this proportion varies for different groups e.g., an 

average of 25 % for well-studied groups (IPBES, 2019). 

Freshwater ecosystems are among the most threatened ecosystems worldwide. Despite 

lakes, reservoirs and rivers occupying 2.3 % of the Earth’s surface, freshwaters support an 

estimated 9.5 % of all described animal species (Reid et al. 2019). However, population 

declines in freshwater far outpace those in terrestrial and marine ecosystems: the Living 

Planet Index estimates a decline of 83 % since 1970, compared to 36 % and 38 % for land 

and sea respectively (WWF, 2018). Ponds conform to this wider pattern: despite constituting 

a relatively small proportion of total freshwater habitat worldwide, ponds support a high level 

of freshwater biodiversity (Biggs et al. 2017). They are also in decline (Smith et al. 2022) and 

many species they harbour are endangered (Hill et al. 2018). 

What is a pond? 

Many authors have struggled to define precisely what a pond is. Past attempts have focused 

on what features of ponds differentiate them from lakes, for instance a lack of thermal 

stratification (e.g., Macan and Worthington 1972), or shallow enough for light to penetrate to 

the bottom throughout (e.g., Fitter and Manuel 1986), although exceptions are found for 

both. There is no clear size boundary between ponds and puddles at the lower bound, and 

lakes at the upper bound: the Ramsar convention defines anything <8 ha as a pond (Ramsar 

2022), yet the state of Wisconsin considers waterbodies <0.1 ha lakes (Wisconsin DNR 

2009). The issue is muddled by the many English words for small, lentic freshwater habitats 

(e.g., prairie potholes, impoundments, small wetlands, vernal pools etc.)  

The lack of a clear definition has hampered research, and in many studies habitats which fit 

the above criteria are referred to as “small wetlands” or “shallow lakes”, or ponds are lumped 

together with lakes with an assumption that patterns of biodiversity and ecosystem function 

will be the same for both habitats (e.g., Macingo et al. 2019).  However, a recent paper found 

that many metrics of freshwater ecosystem function, such as water chemistry and gas 

fluxes, changed in a non-linear fashion with waterbody size, depth, and percentage cover of 

emergent vegetation. The authors put forward a definition of a pond as “a lentic waterbody 

which is less than five hectares in area, less than five meters deep and with less than 30 % 

emergent vegetation cover” (Richardson et al. 2022), with lakes being larger and deeper and 

wetlands having a greater proportion of vegetation cover.  

Ponds may be created naturally or manmade. It’s estimated that at the end of the last ice 

age, approximately 12,000 years before present, 25 % of Great Britain was a wetland of 
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some kind, and the density of water bodies was as much as 100-200 per km 2. Now it is 

around 2 per km 2, and most are manmade (Biggs & Williams 2024, see Fig 1). The Lowland 

Pond Survey in 1996 estimated only 2 % of ponds were formed by natural processes 

(Williams et al. 1998b). 

 

Figure 1.1: Historical extent of wetlands in England compared to extent of wetlands in 2008. 

From RSPB (2008) “A 50 Year Vision for Wetlands”. 

 

Natural pond creation in the past varied widely, occurring in natural hollows, dune slacks, 

beaver dams, tree falls, and river floodplains with meandering rivers leaving abandoned 

channels (Biggs & Williams, 2023 pp56-57). However, extensive land drainage, ploughing, 

tree felling, and channel modification have almost halted natural pond formation in Britain. 

Over centuries, ponds have been intentionally created by humans for diverse purposes, 

such as soil improvement (marling), water supply for various needs, aesthetic enjoyment 

(e.g., moats), industrial power (e.g., mill ponds), and as a by-product of mineral extraction 

(e.g., gravel ponds) (Biggs & Williams, 2023 pp78-96). 

Research indicates no fundamental community differences between natural and manmade 

ponds. For example, the National Pond Survey in 1998 demonstrated that pond communities 
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could mainly be categorized by water acidity, with geological, depth, and permanence 

considerations outweighing the natural or manmade origin of the pond (Biggs et al., 2000; 

Biggs & Williams, 2023 p99). However, there is conflicting evidence: studies in southern 

Spain found significant differences in alpha and gamma diversity for zooplankton and 

macroinvertebrates between ponds with an artificial substratum (concrete or plastic) and 

ponds with a natural substratum (Fuentes-Rodrigues et al. 2013, Leon et al. 2008). Hill et al. 

(2017) compared hundreds of urban and non-urban ponds and found marked differences in 

community composition. Garden ponds also have lower biodiversity value than their ‘wild’ 

counterparts, due to their small size, frequent macrophyte removal and presence of fish and 

water features (Hill et al. 2021)    

Ponds are generally considered successional habitats, evolving from open water to swamp, 

fen, and woody vegetation over time (Tansley, 1939). This process is slowed by extensive 

livestock grazing, and in the prehistoric past by grazing by large wild herbivores. However, if 

sediment inputs and nutrients are both low, the pond may persist as a bog or fen (Walker 

1970). Alternatively, pond sediments may accumulate to the point where the water is so 

shallow it dries up for long periods. When sediments are exposed to the air, they oxidise and 

decompose much more quickly than in water. This may effectively halt the infilling process, 

allowing some temporary ponds to persist for thousands of years (Wood et al. 2003, 

Williams et al. 2001). 

Data from surveys suggests a continuum of pond types, ranging from permanent to seasonal 

ponds, with approximately 70 % being permanent, 25 % semi-permanent, and 5 % seasonal 

in the British lowlands (Biggs & Williams, 2023 p191). Temporary ponds, common in drier 

regions, have garnered significant research attention, with evidence suggesting they can 

persist for thousands of years (Wood et al., 2003; Williams et al., 2001). Paleoecological 

research suggests that lowland, floodplain ponds in a non-impacted human landscape 

persist between 2,000 and 3,000 years (Biggs & Williams 2024, p298). 

 

Numbers and area of ponds 

Estimates of pond number and area worldwide vary, partly due to a lack of agreement over 

the size boundaries of a ‘pond’. Current estimates are 100 - 300 million lentic waterbodies 

worldwide between 0.1 and 10 ha, accounting for around 30 % of global standing water 

area, or between 1 and 2 million km 2. (Downing et al. 2006, Verpoorter et al. 2014, 

Holgerson & Raymond 2016). These estimates all exclude large numbers of water bodies 

less than 0.1 ha, which may number 3.2 billion (Downing et al. 2006). The UK Countryside 
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Survey (2007) found that 70 % of water bodies were between 25 m2 and 400 m2 (Carey 

2008). Whatever the exact number, these small water bodies make up a significant 

proportion, in number and extent, of total surface freshwater.  

At the most recent count, there were an estimated 478,000 ponds in Great Britain between 

25 m2 and 2 ha (Carey 2008). This was a 38 % increase of ponds on the historic low 

recorded in 1990, although it is still a fraction of the 1.2 million ponds in 1880 (see Figure 

1.2). Additionally, Carey (2008) recorded a high rate of pond turnover (18,000 ponds lost and 

70,600 gained), so the current number is likely different. In a typical lowland British 

landscape (the Severn Vale), a recent study calculated that 58 % of ponds were lost 

between 1900 and 2019 (Clarke et al. 2022). It should be noted that these pond numbers do 

not include garden ponds, which are predicted to number between 2.5 and 3.5 million 

(Davies et al. 2009).  

 

Figure 1.2: Numbers of ponds in Great Britain (England, Wales and Scotland) over the past 

120 years. Adapted from Biggs et al. (2005) with data from the Countryside Survey 2007 

(Williams et al. 2010). 

Pond communities 

The margins of ponds share features with larger freshwater wetlands. These include 

saturated soils which create anaerobic conditions which the biota must adapt to, and the 

presence of macrophytes (Van der Valk 2012). These margins, which often vary in their 

dryness and extent at different times of the year, are often the richest part of the pond 
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community and interact extensively with the more purely aquatic environment (Biggs & 

Williams 2024 p249).   

Macroinvertebrates in ponds include water snails and bivalves (Mollusca), shrimps and 

water slaters (Crustacea), water beetles (Coleoptera) water bugs (Hemiptera), flatworms 

(Platyhelminths), mayflies (Ephemeroptera), caddisflies (Trichoptera) and dragonflies and 

damselflies (Odonata). The main differences in the invertebrate assemblages between 

ponds and other freshwaters are that ponds have a higher proportion of water beetles – 

between a third and a half of the macroinvertebrate species typically – as well as a greater 

proportion of water bugs and dragonflies and damselflies (Biggs & Williams 2024).  

431 species in these surveyed groups have been found in ponds (Biggs et al. 2005). Other 

invertebrates include true flies (Diptera) and segmented worms (Oligochaetes), which have 

not been surveyed to the species level in Britain but are expected to be diverse groups 

(Biggs & Williams 2024 p347). Microinvertebrates (invertebrates which are not visible to the 

naked eye and cannot be sampled with a net) have also not been surveyed to species level, 

but groups include water fleas (Cladocera), Copepoda and seed shrimps (Ostracoda), 

Rotifera, mites (Arachnida), Nematode worms and others such as Hydra and Gastrotricha.  

Many invertebrate species exist as adults in the aquatic environment (e.g., water snails), 

whereas many others live aquatically only at the larval (e.g., caddis flies) or nymph stage 

(e.g., Damselflies). Some breathe using gills, whereas others use air, for which there are 

many behavioural and morphological adaptations (e.g., breathing tubes, diving bubbles) to 

access. Different species or life stages of the same organism may inhabit the benthos, water 

column, submerged and emergent macrophytes, sediment or the water surface (Burton 

1977). 

Around 250 species of higher plants and ferns can be found in ponds in the UK. Large plants 

that live in water or flooded soils (macrophytes) may be divided into three broad groups: 

emergent plants (roots in flooded soil, leaves in air), submerged aquatic plants (roots in 

sediment, leaves under water) and floating leaved aquatic plants (roots in sediment or water, 

leaves on water surface). For all freshwater habitats in the UK, emergent plant species make 

up the greatest proportion of the plant community, at around 80 %. Floating-leaved plants 

are more common in turbid ponds, whereas submerged plants are an indicator of clean 

water ponds (Biggs & Williams 2024). 

There are seven native amphibian species in Britain, all of which breed in ponds. Some are 

common and widespread (e.g., Rana temporaria, Lissotriton vulgaris) whereas others are 
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vanishingly rare (e.g., Epidalea calamita). The Great Crested Newt (Triturus cristatus) is a 

strictly protected species and is a key focus of conservation schemes and research (Lewis et 

al. 2016). Around 15 species of freshwater fish inhabit British ponds and were present in 60 

% of ponds in the first national pond survey (Biggs & Williams 2024) Ponds are an important 

habitat for many bird and mammal species and the grass snake (Natrix helvetica). For 

instance, a recent study found that open canopy farmland ponds supported 18 times the 

abundance of emergent insects than overgrown ponds, which in turn was linked to a greater 

abundance and richness of bird species (Lewis-Philips et al. 2020). 

Algae are a large and diverse group of organisms in ponds, and highly important for 

ecosystem functioning. The term “algae” covers several branches of the phylogenetic tree of 

life and refers to any simple organism with a photosynthetic pigment. This includes the 

eukaryotic algae - green algae (Chlorophyta), diatoms (Bacillariophyta), golden-brown algae 

(Chrysophyceae), Dinoflagellates, Euglinida and others, but sometimes prokaryotic algae 

(Cyanobacteria) as well. They may be found suspended in the water column 

(phytoplankton), growing on surfaces such as macrophytes, rocks or sediment (periphyton), 

or in large mats (metaphyton). Large green algae such as the stoneworts (Charophyceae) 

and filamentous green algae such as Spirogyra and Oedogonium are also common in 

ponds.  

In wetland ecosystems, it is estimated algae make up around 20 % of net primary 

productivity (Van der Valk 2012), and they’re also an important food source for grazing 

invertebrates and detritivores. Due to their large diversity and small size, few studies attempt 

to identify this group to species level. However, research from the first half of the 20 th 

Century suggests around 100 species of algae can be found in a pond in Great Britain 

(Biggs & Williams 2024, p299), and more recent research found a similar number (although 

only counting phytoplankton, Smith et al. 2005).  

Other micro-organisms are so little studied in ponds that they are barely mentioned in Biggs 

& Williams 2024, the most recent monograph on UK ponds: in over 600 pages, “fungi” has 

12 mentions, “bacteria” 21 and “protozoa” 13. In wetland habitats in general, it is thought that 

most of the microbiota are shared with other aquatic habitats, whereas the macrobiota are 

more specialised (Van der Valk 2012 p45). Bacteria may be found free in the water column, 

or on surfaces and in the soil/sediment. Most are thought to be non-photosynthetic and 

probably saprophytic. Anaerobic bacteria and those which respire using methanogenesis are 

common in the anoxic environments of wetlands, such as the sediment, and are crucial for 

the cycling of carbon, nitrogen, and sulphur (Van der Valk 2012, Chapter 6). Fungi 
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associated with wetlands may be obligate aquatic, have an aquatic life stage, or may be 

terrestrial but tolerate flooding. Most are found attached to a surface, the only exceptions 

being yeasts and yeast-like fungi in the water column. Fungi are important decomposers but 

most often are aerobes, so are absent from anoxic areas of the wetland environment, which 

accounts for the low rates of decomposition in ponds (Van der Valk pp49-50).  

Biodiversity importance of ponds 

Temperate ponds support an impressive array of freshwater species. In fact, ponds may be 

the most biodiverse type of freshwater habitat in Great Britain and Europe (Williams et al. 

2004, Davies et al. 2008). An overall comparison between pond and river macroinvertebrate 

databases in Britain found that ponds supported 10 % more species than rivers despite 

representing three times fewer ponds than river sites (Biggs et al. 2005). Ponds in the UK 

also support significantly more rare species than streams, rivers, or ditches, as evidenced by 

the comparison of species rarity indices for the four habitats nationwide (Biggs et al. 2007).  

Williams et al. (2004) compared plant and macroinvertebrate diversity in rivers, streams, 

ponds, and ditches over an 80 km 2 lowland agricultural landscape in Oxfordshire. Ponds 

had lower alpha species richness than rivers, but over the entire landscape, ponds 

supported 71 % of all species and rivers 60 %, despite ponds covering the smallest area of 

the five different types of waterbodies. A similar pattern was found in a study incorporating 

other agricultural landscapes in Shropshire, France, Denmark, and Germany (Davies et al. 

2008); ponds had the highest gamma diversity for macrophytes in all five locations.  

Several smaller temperate waterbodies often have greater species richness than the 

equivalent area of a single larger waterbody. This configuration has been found in studies 

worldwide, for example, in Swiss ponds for six different groups of aquatic fauna and flora 

(Oertli et al. 2002), algae in Hungarian ponds (Bolgovics et al. 2019), littoral invertebrates in 

mountainous ponds in Spain (Martinez-Sans et al. 2012), and rare wetland plants in New 

Zealand (Richardson et al. 2014). There has been limited research on other habitats (e.g., 

the tropics).  

Therefore, ponds refute the ecological principle that a single large habitat patch holds more 

species than several small patches (also known as the “SLOSS” principal, Diamond 1975, 

Pfeiffer 2017). However, mounting evidence also contradicts this hypothesis in other 

habitats. Recent reviews have found that most studies report positive biodiversity responses 

in habitats with more fragmentation per se (76 % of studies, Fahrig 2017) and greater 
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species richness in several small patches than in a single large patch of the same area (52 

%, Fahrig 2020).  

Why do ponds exhibit this pattern? Biggs et al. (2005) and Davies et al. (2008) put forward a 

hypothesis based upon habitat heterogeneity: ponds have a smaller catchment size than 

rivers and lakes, and are strongly affected by local conditions, and so there is more variation 

between ponds’ physical and chemical parameters compared to larger waterbodies. Lakes 

and rivers have a larger catchment, and because of the mixing of water, the conditions 

across the catchment are averaged across the entire lake or river. The result is many ponds 

of varied condition compared to fewer large water bodies of similar conditions (Williams et al. 

2004, Angelibert et al. 2004). However, Scheffer et al. (2006) proposed a hypothesis based 

on species interactions: the absence or low abundance of fish in smaller European lakes has 

a positive effect on macrophyte, and in turn invertebrate and bird, abundance.  

Despite differences in species richness, different freshwater habitats in the UK showed a 

significant overlap in their community composition. A comparison of nationwide invertebrate 

databases from rivers (RIVPACS, Wright et al. 1996) and ponds (National Pond Survey 

1996) found that 30 % of the species were found only in ponds, 23 % in rivers, and 43 % in 

both habitats (Biggs & Williams 2024 p101). In plants, the overlap is similar (Williams et al. 

2004; Biggs & Williams 2024 p99). The overlap is even greater with lakes, with 70 % of 

species found in both habitats (Wright et al. 1996)  

These findings highlight the importance of conserving all freshwater bodies in an area as an 

integrated network rather than focusing on individual freshwater habitat types in isolation. 

After all, freshwater species evolved in a wetland environment which was a “blur of 

interconnected lakes, rivers, ponds and swamps” (Sayer 2014). Similarly, the areas of land 

in between those freshwater areas, or the ‘matrix,’ are also highly important to conserve 

freshwater species, as I shall explore in more detail in section 3. 

Pond ecosystem services 

In addition to their high biodiversity value, ponds provide other important ecosystem 

services, such as small-scale water storage, pollution control and carbon cycling (Biggs et al. 

2017). There is extensive evidence from around the globe to show that natural and artificial 

ponds can retain nutrients and reduce pollution loads at a catchment level (Tournebize et al. 

2016). Ponds without surface water connections to other waterbodies can still impact 

downstream flow, buffering stream variation (Golden et al. 2015). Ponds are vital water 
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stores in deserts, plains, and areas of high agricultural impact (Bichsel et al. 2016), and a 

key biodiversity resource in urbanised landscapes (Hill et al. 2017). 

The impact of small waterbodies on the global carbon cycle is an area of active research. 

Downing (2008, 2010) suggested that given their ubiquity, their high levels of organic 

sediments and high biogeochemical activity, small lakes and ponds could bury more carbon 

than the oceans. The last decade has seen an increase in measuring carbon fluxes of 

ponds, with multiple evidence that they are a significant source of methane and carbon 

dioxide (Holgerson & Raymond 2016), particularly in boreal and arctic regions (Kuhn et al. 

2018). Aquatic ecosystems may account for half of all global methane emissions, with 37 % 

of “lake” emissions coming from small ponds <0.1 ha (Rosentrater et al. 2021). On the other 

hand, Taylor et al. (2019) calculated that small ponds have high carbon burial rates, over 20 

times that of woodlands or grasslands. 

Threats to ponds 

Ponds have experienced a significant decline in both numbers and quality. A study in the UK 

in 2007 revealed that 80 % of ponds were rated as poor or very poor in quality, with a 20 % 

reduction in plant species richness compared to 1996 levels (Williams et al., 2010). Even 

minimally impaired ponds, primarily located in nature reserves and managed for species 

conservation, demonstrated a decline in macrophyte species richness (Williams, 2018). 

A 2018 document listed a number of threats to ponds in the UK (see Table 1.1), which could 

be applied to ponds in other areas (Cereghino et al. 2007, Biggs et al. 2017). I will examine 

each of these in more detail below: 

 

Table 1.1: Broad threats to freshwater environments, from Dudgeon et al. (2006) and 

examples of their impact in ponds, from CaBA (2018) 

Threat category (from Dudgeon et al. 2006) Examples relevant to ponds (from CaBA 

2018) 

Water pollution Nutrient enrichment; air pollution; other 

pollutants such as pesticides or heavy 

metals 

Flow modification Drainage and infilling, groundwater 

abstraction or land drainage 
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Habitat degradation Terrrestrialisation, changes in land use 

practices 

Species invasion Invasive and non-native species 

Over-exploitation Use for recreation 

Climate change Climate change 

 

Of these threats, pollution, especially nutrient pollution (nitrogen and phosphorus), poses a 

significant risk to ponds, echoing concerns for freshwater habitats globally (Reid et al., 2019; 

Dudgeon et al., 2006; IPBES, 2019). High nutrient levels, fertiliser application and land use 

intensity were all associated with decreased macrophyte species richness in British lowland 

ponds (Biggs & Williams, 2023 p235). Eutrophication, linked to elevated nutrient levels, 

negatively impacts macrophyte and invertebrate richness in shallow lakes and ponds 

worldwide (Sondegaard et al., 2010; Philips et al., 2016; Stefanidis et al., 2019). 

Terrestrialisation, characterized by sediment infilling and woody plant encroachment, is 

another critical threat to ponds. It is accelerated by human activities leading to more 

sedimentation, and the disappearance of wild and domesticated large herbivores which keep 

ponds open (Robinson & Sutherland, 2002). The filling rate of ponds due to this process 

ranges from 1-3 cm per year (Williams et al., 1998), potentially leading to complete infilling 

within 40-120 years (Biggs & Williams, 2023). Shade negatively correlates with species 

richness, but its impact is confounded by land use intensity, as most shaded ponds in the 

countryside are within arable fields (Williams et al., 1998, 2010, 2018). Intensive grazing 

around ponds may lead to increased sediment load in the pond, and decreased vegetation 

complexity (Declerck et al. 2006). 

Invasive species, though a major threat to freshwater habitats, have a limited impact on 

ponds in the UK, with only 10 % of ponds hosting non-native species (Williams et al., 1998, 

2010). Over-use by people and dogs, and over-stocking with fish and ducks may have 

strong negative effects on the plant community, eliminating submerged macrophytes, 

although at a national level, these are thought not to have a significant effect (Williams et al. 

2010). 

Climate change is anticipated to affect ponds, altering hydrological regimes and species 

distributions due to changing temperatures and precipitation patterns (Reid et al., 2019). 

Ponds, due to their small size and catchment, may experience hydrological and thermal 

shifts more rapidly than larger water bodies (Matthews, 2010; Clarke, 2009), although effects 

may be buffered by pond species’ wide thermal tolerance (Riley et al. 2018).  
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One threat not listed in either paper is the lack of freshwater habitat connectivity. In a typical 

lowland landscape, pond density has declined from 7.5 per km 2 to 4.3 per km 2, and the 

average distance between ponds has increased by 25 m (Clarke et al. 2022). This may not 

sound like much, but it could be a significant threat to ponds, as the decrease in the number 

and density of water bodies in the landscape greatly reduces the chance of successful 

colonisation events. Alarmingly, the full effects of the loss of connectivity may not be seen 

yet due to extinction debt (Semlitsch et al. 2017). In a recent study of a Leicestershire 

farming area, 10 % of plant species were only present in one pond (Williams et al. 2020).  

There are indications that connectivity is important for pond biodiversity, although its relative 

importance compared to other variables is unclear. For instance, Oertli et al. (2002) found 

that connectivity (number of water bodies in a 1 km radius of the pond) accounted for 9 % of 

the variation in amphibian richness between ponds (as a comparison, shade accounted for 9 

% of the variation in Odonata richness, and eutrophication level 16 % of the variation in 

aquatic plant richness). The 2007 Countryside Survey found that close proximity to other 

freshwater (<100 m) was correlated with higher plant species richness (Williams 2010). 

Macrophyte richness in ponds in Northern Italy decreased significantly with increasing 

isolation, and, after pond area, was the most important explanatory variable for richness 

(Bolpagni et al. 2020). See section 3 for a more thorough examination of this topic. 

Pond conservation 

Traditionally, pond conservation has taken one of two approaches: pond creation or pond 

restoration. Pond creation aims to increase pond numbers and density in the landscape and 

to create ponds with high water quality by siting ponds in areas of semi-natural habitat or 

buffering anthropogenic impacts (Pond Conservation 2009). In addition, pond creation 

increases the number of early successional ponds but does not remove late-succession 

ponds (Biggs & Williams 2024, Chapter 12). As there are pond organisms adapted for 

different stages of succession, this should increase overall biodiversity (Hassall et al. 2012).  

Manmade ponds can be just as biodiverse as naturally created ponds. For instance, ponds 

in Pinkhill Meadow (a complex of 40 ponds, scrapes and pools created in 1990), have on 

average 40 wetland plant species and 47.5 invertebrate species (Biggs & Williams 2024, 

p632), much higher than the average richness in either wider countryside ponds (Williams et 

al. 2010) and minimally impaired ‘reference’ ponds (Williams 2018). Another recent study of 

Irish ponds found that created ponds in coastal agricultural grasslands had higher 

macroinvertebrate richness than natural ponds in nearby sand dunes (Reyne et al. 2021), 

despite artificial ponds being, on average, smaller.  
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Pond creation increases macrophyte diversity at the catchment level. Freshwater habitats 

(streams, ditches, and ponds) of three small lowland agricultural catchments were surveyed 

over nine years for macrophyte richness and rarity. The control catchment displayed a 1 % 

decline in macrophyte richness per year. Nature-based interventions (e.g., bunded streams) 

reversed this trend, but the creation of ponds increased macrophyte catchment richness by 

26 % and more than doubled the number of rare plant species (Williams et al. 2020).  

Pond restoration efforts include removing trees and shrubs from the pond margin and 

dredging sediment from the pond to revert the pond to an earlier successional stage (Sayer 

et al. 2012). There is evidence of this approach providing benefits to biodiversity: in a study 

of 40 managed and unmanaged farmland ponds in Norfolk, managed ponds had significantly 

higher macrophyte and invertebrate diversity, and this tended to peak 3-5 years after 

management (Sayer et al. 2012). Recent research on the same ponds found an 18-fold 

higher abundance of insects in managed ponds, which in turn supported a higher 

abundance of farmland birds (Lewis-Phillips et al. 2019, 2020). However, shade-adapted 

species should be considered when planning restorations (Natural England, 2016).  

Considering the conservation of ponds at the habitat-scale only may not be sufficient. For 

instance, Sawatasky et al. (2019) found that amphibian occupancy of ponds in agricultural 

landscapes was far more strongly controlled by natural habitat in the surrounding 1 km 

radius than the presence or absence of “buffer” strips around ponds. Landscape-scale 

approaches are required, such as the “catchment-based approach”, which considers all 

waterbodies in a catchment, and different users, and uses, of the land and water. There are 

currently over 100 catchment partnerships in the UK, which have brought social and 

economic benefits, but clear benefits to biodiversity are yet to be seen (CaBA 2018). Pond 

creation is promoted as a “nature-based solution” to both climate change and biodiversity 

loss (Cuenca-Cambronero et al. 2023), although the contribution of manmade ponds to 

carbon emissions is still unclear (see above).  

Section 2: eDNA metabarcoding in freshwater ponds 

 

An introduction to environmental DNA and metabarcoding 

a. A short history  

In the past five years, the use of the terms ‘environmental DNA’, ‘eDNA’ and ‘metabarcoding’ 

have exploded in scientific literature, and its use in the general media is rising (see Figure 
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1.3). eDNA has been hailed as a tool which is “transforming how we survey plant and animal 

communities” (Deiner et al. 2017) and as a “key component of the ecologists’ and 

environmental managers’ toolbox” (Taberlet et al. 2018).  

 

Figure 1.3: Number of papers published each year focussing on eDNA. Data returned from a 

search of Web of Science, Title = “eDNA” OR “environmental DNA” OR “metabarcoding”  

Environmental DNA, or eDNA is “a complex mixture of genomic DNA from many different 

organisms found in an environmental sample” (Taberlet et al. 2018). Environmental samples 

include water, soil, sediment, or even air (Taberlet et al. 2018, Harper et al. 2019a, Deiner et 

al. 2017). The DNA may be intracellular or extracellular in origin, and may have originated 

from skin cells, mucus, saliva, scales, gametes, pollen, deceased remains or many other 

sources (Harper et al. 2019, Ruppert et al. 2019). There is sometimes a distinction drawn 

between intracellular and extracellular eDNA, with some authors excluding the former from 

the definition of eDNA (Barnes & Turner 2016). However, this would rule out all microbial 

DNA in environmental samples, so I do not make this distinction in my research.  

Scientists have been aware of the ‘soup’ of DNA in the environment for many years, and 

eDNA from micro-organisms was sequenced as early as 1987, using cloning and Sanger 

sequencing (Ogram et al. 1987). The commercialisation of high throughput sequencing 

(HTS, also called next generation sequencing, NGS) in 2005 enabled researchers to 

sequence millions of DNA fragments simultaneously, and since then, there has been a rapid 

increase in studies using environmental DNA. Initially, microbial communities were 
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sequenced (Giovannoni et al. 1990), followed by ancient communities from sediment 

(Willerslev et al. 2003), and finally eDNA from macro-organisms (e.g., Ficetola et al. 2008).  

In the last decade, there has been a significant increase in the frequency and scope of eDNA 

studies. Techniques based on the analysis of eDNA have been used to detect single 

species, entire communities, and even genomes and functional genes of those communities. 

eDNA has been applied to early detections of invasive and rare species, biodiversity 

monitoring and diet analysis, amongst other things (for reviews, see Deiner et al. 2017, 

Ruppert et al. 2019, Cordier et al. 2020, Beng & Corlett 2020). Its ability to sample habitats 

in a non-invasive and non-destructive manner, and its speed, efficiency and scalability give it 

the potential to revolutionise how we understand the natural world (Baird & Hajibabaei 

2012). 

b. An introduction to the method 

No matter what the application, eDNA methods broadly follow the following steps: the eDNA 

is captured, extracted, amplified, sequenced, and then identified or assigned (Harper et al. 

2019). The method will differ in detail depending on the environmental sample, the target 

and the research aim. For example, when sampling eDNA from freshwater, a water sample 

may be collected and subsequently filtered through a very fine membrane (<2 µm). The 

captured eDNA is then extracted from the filter papers, usually using a combination of 

physical and chemical extraction methods. On the other hand, eDNA does not need to be 

filtered from soil or sediment and can be extracted from these samples directly. The captured 

eDNA is then amplified, most often by using the polymerase chain reaction (PCR). The key 

tool in this process is the PCR primers: short, single-stranded pieces of DNA which bind to 

the denatured DNA in the sample, and to which, subsequently, nucleotides are added to 

elongate and so amplify (make many copies of) the DNA. Primers are targeted so they 

amplify a single region of DNA of interest. These copies of the DNA sequence of interest are 

called “amplicons” (for a more detailed description of the method, see Taberlet et al. 2018.) 

Two main approaches are the targeted approach using single-species primers, or a non-

targeted approach using universal primers.  

Single-species primers bind to and amplify a gene sequence which is highly conserved for 

every member of that species but not shared by any other species in that environment. If the 

target gene is present in the sample, PCR amplifies the gene and then quantitative 

approaches give a signal that it is present. From these results, the presence or absence, and 

even the abundance, of species in an environment can be inferred (Thomsen et al. 2012, 

Spear et al. 2020) 
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PCR approaches are simple and sensitive, but they require knowing which species are in 

your environment a priori. On the other hand, if you wish to be able to identify multiple 

unknown species or taxa within a community, universal primers are often used. These 

primers are (ideally) designed so they bind to two conserved regions of the genome, shared 

by all target taxa, which flank a variable region which is different for every individual taxon of 

interest (see fig 2, below). The variable region is called a ‘metabarcode’, and the process of 

identifying multiple taxa within a sample ‘metabarcoding’. It is carried out using a 

combination of PCR to amplify sequences, and then high-throughput sequencing (HTS) of 

the amplicons. HTS can sequence millions of different DNA amplicons within a single 

sequencing ‘run’, allowing the identification of multiple taxa within a sample, and between 

samples, simultaneously. 

 

 

Figure 1.4: An example of a primer pair and variable metabarcode region, in this case 

targeting suborder Lumbricina (earthworms). The height of the nucleotide indicates how 

conserved it is at that position. From Taberlet et al. 2018. 

The primers used for metabarcoding are always less specific than those used for species 

identification, but they may vary in their specificity; for instance, they may be designed to 

amplify entire domains of life (e.g., Bacteria or Eukaryota) or lower phylogenetic levels (e.g., 

copepods, diatoms, or fish) (see Taberlet et al. 2018, Appendix 1 for examples). Typical 

genes targeted by metabarcoding primers include 16S rRNA for bacteria, 18S rRNA for 

eukaryotes and mitochondrial Cytochrome Oxidase I for animals. It is a challenge (and 

perhaps impossible) to design a primer pair which equally amplifies all the species in the 

target taxon (breadth) to a level of detail which can distinguish between species (resolution). 

Often, a given primer pair provides a compromise between taxonomic breadth and resolution 

(Deagle et al. 2014). 

The raw data from HTS requires extensive bioinformatic processing to reduce noise and turn 

the output into something which can be used for taxonomic classification. This can involve 
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many steps, including ‘cleaning’ data to remove sequencing errors, aligning forward and 

reverse reads, clustering and de-replicating data. Many tools or ‘pipelines’ can be used for 

these steps, such as QIIME 2 (Bolyen et al. 2019) or DADA2 (Callahan et al. 2016). Finally, 

the clustered sequences are compared to reference databases to assign taxonomy. There 

are many reference databases (Taberlet et al. 2018, Chapter 3), which vary in their 

geographic and taxonomic coverage, completeness, curation and how often they are 

updated.    

c. Current challenges 

There are many sources of bias that determine whether eDNA analysis will detect a specific 

taxon in a certain environment. Firstly, there is the ecology of the eDNA itself: differences in 

its origin, state, transport and degradation rate will influence how much of the eDNA is 

collected and captured (Barnes & Turner 2016). Secondly, there are the field methods 

deployed, such as the sampling regime for collecting the DNA, and any anti-contamination 

protocols (Dickie et al. 2018). Thirdly, laboratory methods will have an effect: some eDNA 

extraction methods may perform better than others, and some taxa are preferentially 

amplified by primers over others (“primer bias”) (Bradley et al. 2016, Lear et al. 2018). 

Finally, there are in silico methods, such as the post-sequencing processing of the data 

(“bioinformatic pipeline”) and the reference databases used (Tapolczai et al. 2019).  

There have been calls to move away from purely technical eDNA studies towards clear 

hypothesis testing (Prosser 2020), and it’s generally agreed that more standardisation 

amongst eDNA studies is needed (Lear et al. 2018). Many reference databases are 

incomplete and biased in their taxonomic and geographic coverage (Hestetun et al. 2020, 

Willerlev & Thomson 2015), which can significantly influence the results of biodiversity 

assessments using eDNA (Schenekar et al. 2020). Some have gone as far as to say some 

environmental DNA studies are unscientific, suffering from poor experimental design with low 

reproducibility and repeats (Zinger et al. 2019). To date, there is a poor representation of 

eDNA studies in the tropics compared to temperate regions, but terrestrial, freshwater and 

marine environments are all relatively equally represented (McGee et al. 2019). 

d. Future applications  

There are many and various potential future uses of eDNA. Emerging areas of research 

include air and water quality monitoring (Ahmed et al. 2019, Banchi et al. 2018), disease 

detection (Miaud et al. 2019) and plant-pollinator interactions (Oliver et al. 2021). A 

fundamental issue is how eDNA metabarcoding can be used as an ecosystem and 
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biodiversity monitoring tool, either replacing traditional taxonomic monitoring or by providing 

additional insights and metrics (Baird & Hajibabaei 2012, Deiner et al. 2017, Pawlowski et al. 

2018, Ruppert et al. 2019, Cordier et al. 2020). This is explored in more detail in section 3.   

Another avenue of study is employing multiple different primer pairs on eDNA collected from 

the same sample to monitor entire communities, for instance, bacteria, eukaryotic microbes, 

metazoans and vertebrates simultaneously (e.g., Zhang et al. 2020). An active research 

question is whether eDNA “read abundance” in metabarcoding can be used to infer the 

abundance of the taxon or taxa in the environment (Machler et al. 2020), with current 

thinking that there is a weak positive relationship between biomass and read abundance 

(Lamb et al. 2018)  

Moving away from simple detection and “who lives where” studies (Prosser 2020), eDNA 

metabarcoding has the potential to test almost any ecological hypothesis that requires 

sampling of communities. For instance, it may be used to construct food webs and other 

ecological networks, which can subsequently be used to investigate the effects of 

disturbance on ecosystem resilience (e.g., Evans et al. 2016), or for determining assembly 

rules of communities (e.g., Stoof-Leichensring et al. 2020).  

In the following sections I shall review the use of this technology in freshwater ecosystems 

and specifically ponds.  

eDNA studies in freshwater environments 

Freshwater has been a very productive area for eDNA research, although challenges 

remain. 

a. Singe species detection: rare, invasive & commercial species. 

Detection of rare and invasive vertebrates using eDNA in freshwater was one of the first 

applications of the method. Ficetola et al. (2008) used the method to detect the invasive 

American bullfrog in aquaria and natural wetlands in France, proving that false positives and 

negatives could be discriminated. More recently, it’s been used to detect rare amphibian 

species in tropical environments and swamps (e.g., Eiler et al. 2018 and Goldberg et al. 

2018), with suggestions that in some cases it may be more effective than traditional 

monitoring. An eDNA assay was developed to detect Great Crested Newts, a protected 

species in the UK for which monitoring is legislated (Biggs et al. 2015) and is now used for 

nationwide monitoring by governmental bodies (Natural England 2019). 
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Single species detection was quickly expanded from amphibians to invasive fish species 

such as the Asian carp (Jerde et al. 2011). Now, there are ubiquitous studies on numerous 

continents using eDNA to detect rare or invasive fish species: recent examples include the 

detection of a non-native salmon in Patagonia (Chalde et al. 2019), endangered native fish 

in Japan (Jo et al. 2020), and to assess the success of fish reintroduction in Germany (Riaz 

et al. 2020). 

Reptile and mammal species have been successfully detected, such as the invasive 

Burmese python in Florida (Piaggio et al. 2014) and North American river otters (Padgett-

Stewart et al. 2016). The method has been expanded to some invertebrate species, such as 

the signal crayfish (Robinson et al. 2018), invasive mosquito species across water bodies in 

Europe (Schneider et al. 2016), and zebra mussels in the Great Lakes (Gingera et al. 2016). 

Plant detection came a little later, with assays developed in 2015 (Scriver et al. 2015) and 

used to detect invasive Egeria densa in Japan (Fujiwara et al. 2016). Current research is in a 

similar vein, for instance, detecting invasive Canadian pondweed in Norwegian lakes and 

streams (Angles d’Auriac et al. 2019). 

When detecting single species using qPCR, multiple studies have now found that the 

concentration of eDNA is linked to the biomass and therefore the abundance of the species 

of interest e.g., plants (Matsuhashi et al. 2016), and fish (De Muri et al. 2020) Due to this 

relationship, eDNA has been suggested as a tool to monitor populations and abundance, for 

instance of commercial fish species (e.g., Lacoursiere-Roussel et al. 2016a).  

b.  Whole communities 

i. Vertebrates, macroinvertebrates and plants 

Thomsen et al. (2012) carried out the first whole-community ‘metabarcoding’ study on 

macro-organisms, targeting two amphibian species, otter, spined loach, a dragonfly species 

and a crustacean in ponds. However, this study used specially adapted primers for each 

species and qPCR, so properly is several single-species assays combined rather than ‘true’ 

metabarcoding. 

Characterising species composition, richness and abundance of macroinvertebrates in 

freshwater using eDNA metabarcoding is an attractive prospect because this group is 

frequently used as a measure of water quality, for instance under the European Union Water 

Framework Directive (Davy-Bowker et al. 2006). Studies have focussed on developing 

primers which reliably amplify across macroinvertebrate taxa (Hajibabaei et al. 2011, 

Elbrecht & Leese 2017), assessing whether the relative abundance of taxa can be assessed 



   
 

23 
 

 
 

(Elbrecht & Leese 2015), and directly comparing the morphological and metabarcoding 

approaches (many, e.g., Elbrecht et al. 2017, Deiner et al. 2016, Fernandez et al. 2018, 

Serrana et al. 2019). The relevance of these studies to biomonitoring is covered in section 3. 

Vertebrate metabarcoding is a rapidly expanding field of study. It appears that fish 

communities can be detected equally well by metabarcoding as traditional methods such as 

electrofishing or netting, both in lentic (Hanfling et al. 2016, Evans et al. 2017, Civade et al. 

2016) and lotic (Olds et al. 2016, Shaw et al. 2016, Nakagawa et al. 2018) ecosystems. 

Expanding from single amphibian species, several studies have used the metabarcoding 

approach to detect multiple amphibian species (e.g., Lopes et al. 2017), or even both fish 

and amphibian species simultaneously (Valentini et al. 2016).  

Excitingly, eDNA from water has shown the potential to detect mammal species, not only 

aquatic species but also terrestrial species which interact with that water source. For 

instance, Ishige et al. (2017) detected six endangered species from salt-lick water in 

Bornean rainforest, and mammal species have also been detected from Namibian watering 

holes (Seeber et al. 2019) and upland streams in the UK (Sales et al. 2019).  

Metabarcoding studies have seen a comparative lag in focus on plants, partly due to lack of 

agreement over a universal barcode for plants: a selection of genes targeted by primers 

include ITS2, matk, rbcL and the trnL P6 (Fahner et al. 2016, Dormontt et al. 2018). Studies 

tend to focus on eDNA in sediment rather than in the water column, and its predominant use 

has been to reconstruct ancient plant communities from lake sediment, often alongside 

pollen analysis, and often in high latitude regions (e.g., Jorgensen et al. 2012, Parducci et al. 

2018, Willerslerv et al. 2014), but there are some studies in tropical regions (e.g., 

Boessenkool et al. 2014).  

Studies attempting to sample the contemporary plant community are rare, but this has been 

attempted in lakes, from surface sediments (Alsos et al. 2018), and water (Drummond et al. 

2021), and in floodplain wetlands (Shackleton et al. 2019). Work is ongoing to develop 

specific aquatic plant primer sets (Coghlan et al. 2020), including for specific taxa such as 

Potamogeton (pondweeds, Kuzmina et al. 2018)   

ii. Microbes, microfauna, algae & fungi  

Metabarcoding provides a valuable tool for studying smaller organisms which are more 

costly and time-consuming to survey in freshwater ecosystems, including microorganisms 

(prokaryotic and eukaryotic), algae, fungi, and micro- and meiofauna. eDNA metabarcoding 

has been used extensively to study these organisms in lakes, rivers, and wetlands, ponds 
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have been relatively overlooked due to a general scientific neglect of smaller habitat patches 

and exclusion from legal frameworks (Riva & Fahrig 2022, Biggs et al. 2017). 

Before high-throughput sequencing, bacterial community characterization began with 

molecular techniques. The first metabarcoding studies targeted bacteria in aquatic 

environments (Giovanni et al., 1990; Ward et al., 1990). HTS revolutionized sequencing 

rates, but the immense diversity of prokaryotes still challenges practical diversity calculation 

(Shafi et al., 2017). The Earth Microbiome Project (EMP) initiated in 2010 aimed to 

sequence microbial communities across all major biomes, including freshwaters (Gilbert et 

al., 2010). 

In river water samples, the bacterial phyla Proteobacteria, Bacteroidetes, Actinobacteria and, 

to a lesser extent, Verrucomicrobia are the most abundant (Cruaud et al. 2020, Li et al. 

2020, Gweon et al. 2019, Doherty et al. 2017, Read et al. 2015). In river sediment samples, 

Proteobacteria and Bacteroidetes were still abundant, but there are greater proportions of 

Acidobacteria, Chloroflexi and Firmicutes (Yuan et al. 2023, Liu et al. 2022, Wu et al. 2019, 

Liu et al. 2018). (Lv et al. 2014). A similar pattern in water and sediment is found in lakes 

(Jiao et al. 2021, Liu et al. 2020, Nakatsu et al. 2019, Ruuskanen et al. 2018, Zhang et al. 

2019) and in wetland sediments (Lv et al. 2014).  

Although prokaryotic compositions are similar at the phyla level, compositions can still alter 

with finer-scale changes in the freshwater environment e.g., with increasing dendritic 

distance in a river system (Read et al. 2015), and within 30cm of lake sediment (Wurzbacher 

et al. 2017a). On an even smaller scale, bacteria have exhibited community turnover within 

30 m in a small freshwater pond (Lear et al. 2014). Bacteria functions are thought to be 

phylogenetically conserved (Isobe et al. 2019), making taxa good indicators of different 

ecosystem functions (Urakawa & Bernhard 2017), although freshwater bacteria lineages 

within a single genus can also have very different ecological preferences (Nuy et al. 2020). 

Compared to bacteria and archaea, studies of small eukaryotes using the 18S rRNA gene 

region yield less consistent results. Lake water samples reveal a wide range of dominant 

taxa: Ochrophyta, Dinoflagellata, Chlorophyta, Ciliophora and Cryptophyta were commonly 

reported, alongside Arthropoda (Debroas et al. 2017, Mikhailov et al. 2018, Banjeri et al. 

2018, Macingo et al. 2019, Zheng et al. 2020, Sadeghi et al. 2021).  

Metabarcoding studies of recent lake sediments have also produced mixed results: in Lake 

Baikal, Siberia, Yi et al. (2017) found the same four top taxa in both sediment and water 

samples – Chrysophyceae, Ciliophora, Metazoa and Cercozoa. However, in a study of 296 
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lakes across New Zealand, Dinophyceae emerged as the most abundant class in sediments, 

followed by Chlorophyceae (Pearman et al. 2023). Fungi, Ochrophyta and Ciliophora are 

also commonly reported in lake sediments (Capo et al. 2016, Wilden et al. 2021, Mitsi et al. 

2023).        

In rivers, studies sequencing communities from water samples found abundant Cryptophyta, 

Ochrophyta, Ciliophora and Fungi (Cruard et al. 2019, Cruard et al. 2020, Li et al. 2020, Lu 

et al. 2020, Xu et al. 2020, Yang et al. 2022), whilst sediment studies often highlight 

Ciliophora, Arthropoda, Ochrophyta and Bacillariophyceae (Xie et al. 2016, Hindshaw et al. 

2017, Yang et al. 2022). 

Diatoms (Bacillariophyta) have been one of the most extensively studied classes of algae 

and are well known as bioindicator organisms, included in many monitoring programmes 

under the Water Framework Directive. Zimmerman et al. (2014) found that metabarcoding 

retrieved over twice as many taxa as traditional light microscopy methods in river water 

samples, with a high degree of overlap between the two methods. Further Diatom 

metabarcoding studies are covered in section 3. 

Research into aquatic fungi has not been nearly as extensive as those in other 

environments, such as soil, marine and air (Ruppert et al. 2019, Grossart et al. 2019). 

However, there have been some studies, particularly in lake ecosystems. For instance, 

Wurzbacher et al. (2016) found that fungal communities in lakes displayed significant 

turnover between littoral and pelagic habitats and between different substrates but noted that 

many taxa couldn’t be identified to below order level due to the lack of completeness of 

reference databases. eDNA metabarcoding has shown that riverine fungal assemblages are 

structured by dendritic distance (Matsuoka et al. 2019). Metabarcoding has also been pivotal 

in detecting the pathogenic chytrid fungus (Batrachochytrium dendrobatidis) and sequencing 

the microbiome of amphibian species, critical for understanding and combating global 

amphibian population declines and extinctions (Kamoroff & Goldberg, 2017; Kueneman et 

al., 2017). 

eDNA and metabarcoding in ponds 

To date, eDNA metabarcoding of ponds has been used to study many of the taxa, and for 

many of the applications, listed above, but there are still large gaps in its application to the 

pond environment.  

For example, much eDNA research in ponds and other small, lentic water bodies has 

focussed on the detection of amphibian species (Ficetola et al. 2008, Thomsen et al. 2012, 
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Goldberg et al. 2018, Eiler et al. 2018). In the UK, there has been a particular focus on the 

Great Crested Newt Triturus cristatus (Biggs et al. 2014, Rees et al. 2017, Buxton et al., 

2018). Currently, a single-species eDNA assay is used to survey distribution across England. 

It comprises of publicly available records from over 5,000 ponds across England making it 

one of the largest eDNA survey in the world. Harper et al. (2018) found near-equivalence of 

T. cristatus detection from targeted PCR and metabarcoding methods, raising the potential 

for these samples to be metabarcoded with other primer pairs to survey other pond taxa (see 

Harper et al. 2019b).  

Single-species and metabarcoding approaches in ponds have focused on detecting rare, 

endangered, commercially important, and invasive species. Examples include fish (for 

example, Turner et al. 2014, Doi et al. 2015, Robson et al. 2016, Evans et al. 2017, Li et al. 

2018), reptile (Davy et al. 2015) and bird species (Ushio et al. 2018) for vertebrates, to 

crustacean and dragonfly species (Thomsen et al. 2012, Mauvisseau et al. 2018) for 

invertebrates. Studies of plant eDNA in ponds are rare, with the only example I could find 

being the detection of an endangered species (Newton et al. 2016.)  

Like other freshwater environments and laboratory studies, metabarcoding of pond 

invertebrate communities using COI primers yields little overlap with morphological ID 

methods (Harper et al. 2021). An exciting potential use for eDNA ponds is to detect terrestrial 

or semi-aquatic species that use the pond or its catchment (Sales et al. 2019, Ishige et al., 

2017), although so far, it has also shown little consistency with traditional visual survey 

methods.  

eDNA is starting to be used to test ecological hypotheses. Harper et al. (2019b) used eDNA 

metabarcoding to determine of T. cristatus presence at a landscape level; for instance, there 

was a negative correlation with mammal species richness (as generated by metabarcoding). 

Ionescu et al. (2022) used 16S and 18S eDNA metabarcoding to examine the effect of land 

cover on pond communities in lowland Germany.  

There are several challenges in using eDNA in pond environments and many unknowns 

(reviewed in Harper et al. 2019a). First, the origin of the eDNA: being small waterbodies, 

ponds have a high proportion of edge to core area, so a high proportion of eDNA may be 

transferred into the pond from the surrounding area. Birds, amphibians, waterfowl and 

herbivores may also transfer eDNA into ponds from further afield through feeding and 

bathing. Second, owing to low flow and lack of wind mixing, eDNA in ponds is likely to be 

patchily distributed both horizontally and vertically, and studies have found that eDNA 
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detection probabilities decrease dramatically within tens of metres of a source (Dunker et al. 

2016).  

Third, ponds vary significantly in their environmental conditions, such as temperature, 

nutrient levels, pH and light levels, which in turn will influence rates of eDNA degradation 

(Barnes & Turner 2016). Therefore, species detection via eDNA metabarcoding may be 

confounded by the successional state of the pond, its management (e.g., open canopy vs. 

closed canopy ponds), and surrounding land use. On the other hand, pond water and 

sediments can be highly anoxic (Sayer et al. 2013), which may slow eDNA degradation rates 

(Mejbel et al. 2022). Consequently, eDNA has been found to degrade within hours to days in 

water but persists for months to years in aquatic sediments (Barnes & Turner 2016, Turner et 

al., 2015).  

Pond water can contain suspended solids, which make filtration difficult and lead to PCR 

inhibition (Harper et al., 2019). Finally, there are practical challenges in monitoring ponds 

that are common to all sampling methods: difficulty of access, changing water levels 

throughout the year, and deep sediments. However, some of the features that challenge 

eDNA metabarcoding in ponds also provide unique potential for this method in these 

environments. For instance, high interactivity with the surrounding landscape means that 

ponds could be “passive samplers” of terrestrial biodiversity. eDNA metabarcoding could 

also be used to investigate questions of connectivity and dispersal between ponds which 

have intrigued researchers for decades (see Section 4). The sheer numbers and varied 

conditions of ponds also make them excellent model systems (De Meester et al. 2005); for 

instance, comparing rates of eDNA degradation under different conditions.  

Large research gaps exist in ponds, which create exciting prospects. Entire communities of 

bacteria, fungi, zooplankton, meiofauna, algae and eukaryotic micro-organisms have never 

been sequenced via metabarcoding from  ponds. These taxa are the same as those that are 

understudied in ponds using traditional methods (see Sections 1 and 3). There is huge 

potential for research in this area; for instance, the role of pond microbes in biogeochemical 

cycles is unclear (Potvin et al., 2022), and microbial assemblages may be important 

bioindicators of pond ecological quality and anthropogenic impacts (see Sections 3 and 

Chapter 4).  

Aquatic plants and other macrophytes have rarely been surveyed using eDNA 

metabarcoding in freshwater habitats, particularly in ponds. This is an area ripe for 

investigation, as macrophytes are key traditional freshwater bioindicators, yet require 

extensive time and expertise to survey (Pond Action, 2002). Areas of interest include rates of 
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plant eDNA shedding and persistence, detection overlap between eDNA and traditional 

methods (see Chapters 2 and 3), and ecological questions (dispersal, community assembly, 

see Section 4).  

A new approach to eDNA metabarcoding in ponds is to move away from single-species 

detection towards characterising whole communities using multiple universal primers 

(Ionescu et al. 2022, Chapters 2, 3 and 4). This could provide a more complete picture of the 

biodiversity of these environments and reveal hitherto unknown ecological patterns and 

networks. 

 

Section 3: Bioindicators in freshwaters, ponds and using 
eDNA. 
 

Freshwater bioindicators: past and present 

Bioindicators are biological processes, species, or communities that serve as tools to 

evaluate environmental quality and its change over time, with a particular emphasis on 

responses to human-induced pressures (Holt & Miller, 2010). They have been widely used 

since the 1960s and have been progressively developed to cover most habitat types 

worldwide. Bioindicators have the advantage of reflecting long term trends in environmental 

variables which spot samples, for example, of water chemistry measurements, may miss 

(Jones et al. 2016).  

Simple bioindicators may be the presence of a single species or trait, or measures of 

community diversity and abundance of different taxa. However, more complex bioindicators 

are now standard use in freshwater environments. Biotic indices combine taxa abundances 

with sensitivity to different types of pollution to give a single biotic index or score for the 

sample site. Multimetric indices extend this by combining multiple measurements (e.g., taxa 

abundance, community diversity, functional feeding groups, abundance of pollution sensitive 

groups) into a single score (Li et al. 2010). Finally, multivariate approaches compare the 

sampled community to the "expected" community if no anthropogenic stress was present (Li 

et al. 2010, Ndatimana et al. 2023).  

In rivers, the most common bioindicator groups are fish, benthic macroinvertebrates and 

periphyton (algae growing on surfaces) (Li et al. 2010), and in lakes these taxa are also 
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frequently used (Ndatimana et al. 2023, Liu & Stevenson 2017), with the addition of 

macrophytes and phytoplankton (Lyche-Solheim et al. 2013). Often multiple taxa are 

combined for the assessment of a site (e.g., phytoplankton, zooplankton, benthos and fish, 

US EPA 2019). 

Benthic macroinvertebrates, particularly aquatic insects, are considered excellent 

bioindicators for freshwater environments as they are abundant, relatively easy to sample 

and identify by eye, and community composition is sensitive to changing physiochemical 

conditions in water (Li et al. 2010). Macroinvertebrates have been used as bioindicators of 

riverine ecosystems worldwide, forming part of governmental monitoring schemes in 

Western nations (e.g., the European Union, USA, Australia), and have been widely applied 

in the Global South (Eriksen et al. 2018). Macroinvertebrate indices commonly rely on 

identification to at least family level. UK rivers and lakes are monitored using 

macroinvertebrate assemblages, using a biotic index (the BMWP score) and a multivariate 

method (RIVPACS).   

Diatoms (Bacillariophyta) are also common bioindicator organisms, and their use is 

recommended under the European Water Framework Directive, although different countries 

have developed varying approaches (Kelly et al. 2008). Sedimentary diatoms are also used 

as bioindicators of lake condition in the USA (US EPA 2017). Again, multiple measurements 

are often combined into a biotic index (Coste et al. 2008, Liu & Stevenson 2017) which 

require identification to family or species level using microscopy. 

Fish, being both ecologically significant and economically and culturally important, serve as 

common bioindicators in freshwater environments. Their extended life cycles and diverse 

feeding strategies, along with varying pollution tolerances within this group, make them 

effective indicators of anthropogenic pressures (Li et al. 2010). Multimetric indices were 

developed in the 1980s (Karr et al. 1986) and multivariate approaches have been developed 

more recently (Joy & Death 2002).  

Macrophytes (aquatic plants and algae growing in or near water) are more commonly used 

as bioindicators in lakes or wetlands than in rivers (Lyche-Solheim et al. 2013). Their use 

most often involves simple measures of abundance or diversity of different taxonomic groups 

or growth forms (such as in ecological classification of UK lakes, JNCC 2015), but 

sometimes more complex indices are used (e.g., Szoszkiewicz et al. 2020). There is a long 

history of using phytoplankton to assess trophic status of lakes, and most European Union 

countries monitor it regularly, although using different measurements or indices 
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(Pasztaleniec 2016). However, zooplankton is not included under the Water Framework 

Directive and so has received less attention in Europe (Pinto et al. 2023). 

Microbes (bacteria, archaea and protists) are rarely used as bioindicators in legislative 

monitoring, save for those which have a direct impact on human health, and are cultivable 

(e.g., culturing Escherischa coli under the EU Bathing Waters Directive) (Sagova-Mareckova 

et al. 2021).     

Freshwater bioindicators: future directions 

The sampling, sorting and visual identification of specimens for conventional biomonitoring is 

costly, labour-intensive, destructive, and requires expertise and training. In the past decade, 

there has been considerable research effort into replacing these steps of freshwater 

biomonitoring with eDNA methods, which are thought to provide a greater amount of 

information with less time and effort (Stein et al. 2014). Consequently, many studies have 

been produced which compare the results of traditional, morphological identification methods 

with molecular-based methods for the same samples. Governmental regulators and 

scientists are actively working together to incorporate eDNA methods into legislative 

biomonitoring, for example STREAM in Canada (stream-dna.com) and DNAqua-net in 

Europe (Leese et al. 2016).  

 

Studies of eDNA from freshwater macroinvertebrates have found varying degrees of overlap 

between the taxa identified from molecular and morphological methods, e.g., the proportion 

of morphologically identified taxa identified with eDNA varied between 24.4 % (Serrana et al. 

2019), 67.5 % (Elbrecht et al. 2017a), and 73 % (Bush et al. 2019). There has been more 

success with community DNA from bulk samples (a sample containing whole organisms of 

study), or from preservative ethanol, and from sediment (Nichols et al. 2019, Hajibabeai et 

al. 2019). However, some methods still rely on hand sorting before sequencing, which would 

cancel out some the advantages of the molecular method in terms of speed (Carew et al. 

2018). Although the taxonomic overlap is not perfect, studies have shown congruence 

between biotic indices calculated from molecular and morphological data for freshwater 

macroinvertebrates (Elbrecht et al. 2017, Brantschen et al. 2021).  

 

The overlap between morphological and molecular detection methods for fish in freshwater 

environments is near 100 %, with eDNA often detecting additional species missed in 

traditional surveys (Olds et al. 2016, Hanfling et al. 2016, Shaw et al. 2016). Additionally, a 

recent meta-analysis found that 90 % of eDNA studies on fish found a positive relationship 
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between eDNA read count and fish abundance or biomass (Rourke et al. 2021). By contrast, 

low levels of taxonomic overlap have been reported for diatoms e.g., 13 % (Vasselon et al. 

2017), 15.7 % (Rivera et al. 2017) and 28 % (Visco et al. 2015). However, despite these 

differences in species composition, the biotic indices and ecological quality assessments are 

often correlated for both approaches (Visco et al. 2015, Vasselon et al. 2017), although 

Rivera et al. (2018) found that they differed, most likely due to incomplete reference 

databases. There have been few studies comparing methods for plant communities, other 

than in lakes: Alsos et al. (2018) found a 30 % overlap in species detected by eDNA from 

lake sediments and visual surveys, whereas Drummond et al. (2021) found a 13 % overlap 

between eDNA from lake water and species lists. 

 

Despite these successes, eDNA has not yet been adopted for wide scale legislative 

monitoring of freshwater ecosystems. There are several reasons for this: primer bias 

preferentially amplifies some taxa more than others, (Elbrecht & Leese 2017), reference 

databases are incomplete, (Pawlowski et al. 2018), and there is inconsistency between biotic 

indices used by different states and in different geographic areas (e.g., some rely on 

abundance of individuals), so an eDNA assay which provides the correct information in some 

areas may not be sufficient in others (Bush et a 2019). 

 

Recently, there has been a movement towards alternative, innovative approaches. Instead of 

attempting to match morphological identification like-for-like, eDNA metabarcoding can be 

used to identify new bioindicators, such as bacteria, protists, fungi and micro- and meio- 

fauna, which are readily sequenced from environmental samples. Alternatively, taxonomic 

assignment is bypassed altogether, the so-called "taxonomy-free" approach. These 

sequenced community profiles can be compared and calibrated against known biotic indices 

or gradients of anthropogenic disturbance (reviewed in Cordier et al. 2020 and Pawlowski et 

al. 2018).   

 

This approach has shown considerable promise, for instance in taxonomy-free approaches 

to assessing ecological quality of streams through diatom metabarcoding (Vasselon et al. 

2017, Apothelez-Perret-Gentil et al. 2017), and assessing the impacts of salmon aquaculture 

via metabarcoding bacteria and ciliates in marine sediments (Cordier et al. 2018). 

 

A clear future application of eDNA metabarcoding is the integration of microbes into routine 

freshwater biological monitoring. Microbes are sensitive bioindicators (Sagova-Mareckova et 
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al. 2021). Freshwaters are highly fluctuating ecosystems, and microbes respond rapidly to 

changes in the environment. Furthermore, they are intricately linked to many ecosystem 

functions, such as carbon, sulphur and nitrogen cycling. (Sagova-Mareckova et al. 2021, 

Cordier et al. 2020). Environmental genomic methods may be used to characterise entire 

microbial communities, or specific species or even genes which may indicate specific 

pollution (e.g., heavy metal resistance, Roosa et al. 2014).  

 

eDNA Metabarcoding studies have successfully demonstrated the sensitivity of freshwater 

bacterial communities to mining waste (Staebe et al. 2018), agricultural pollutants in rivers 

(Xie et al. 2016, Chen et al. 2018), nano-pollution (Binh et al. 2014), pesticides (Pascault et 

al. 2014) and untreated wastewater (Martinez-Santos et al. 2018). High-throughput 

sequencing also has the potential to trace specific pathogens in water, such as those from 

faecal pollution (e.g., Vadde et al. 2019). Protist communities other than diatoms are less 

well-studied, but some taxa such as ciliates have shown responses to changing 

environmental conditions (Kulas et al. 2021).  New biotic indices based upon bacteria taxa 

are being developed (e.g., Ji et al. 2019), and a recent study found a significant correlation 

between a taxonomy-free index based upon eDNA metabarcoding of both bacteria and 

microbial eukaryotes, and traditional water quality indices (Li et al. 2023). The next step for 

this area is to repeat the proof-of-concept studies over wider geographic areas.  

 

All of this brings us back to the question of whether eDNA monitoring methods are in fact 

cheaper and faster than traditional methods. Estimates differ from the eDNA method being 

more expensive (Fernandez et al. 2018) to the two being roughly equivalent (Stein et al. 

2014). Conversely, a recent meta-analysis concluded that molecular methods detect more 

species and were cheaper than morphological methods (Fediajevaite et al. 2021). 

 

Pond monitoring past and present 

 

Worldwide, there is a gap in the monitoring and protection of small waterbodies such as 

ponds, but also small lakes, headwater streams, springs and ditches (Biggs et al. 2017). In 

many areas, ponds are excluded from legal protection frameworks (Hill et al. 2018). For 

example, under the European Union Water Framework Directive (2000/60/EC; WFD) only 

lakes >50 ha and rivers with >10 km 2 catchment are monitored. In the UK, there are some 

protections for individual pond sites under the EU Habitats Directive and the UK Priority 

Habitats and Priority Species designations (Hill et al. 2018), but legislation does not require 



   
 

33 
 

 
 

regular nationwide monitoring and reporting on pond ecological condition. This may be set to 

change soon with the upcoming Natural Capital and Ecosystem Assessment (DEFRA 2022). 

However, as well as being impractical due to the sheer number of ponds (see above), 

inclusion in the WFD would not guarantee ponds’ protection: in 2020, only 36 % of surveyed 

waterbodies in the UK and 16 % in England were in ‘good’ or better status, compared to the 

European average of 40 % (JNCC 2020, EEA 2021). 

Despite this, nationwide pond monitoring in the UK has been carried out by charities, 

primarily the Freshwater Habitats Trust (formerly Pond Action), and scientific organisations 

since 1990. These have included a National Pond Survey of high-quality and impacted 

ponds in 1990-1993, the UK-wide Countryside Survey in 1996 and 2007, and resurveys of 

the high-quality ponds in 2016-2017 (Biggs et al. 2005, Freshwater Habitats Trust 2018). 

Together, these surveys provide a robust dataset of the changes in number and quality of 

ponds, with methods directly comparable to those used under the Water Framework 

Directive.  

The monitoring of freshwater ponds has focussed on macrophytes, macroinvertebrates and 

amphibians. The standard method of surveying a pond in the UK is the PondNet method 

(described in detail in Biggs et al. 1998). This extensive method collects several different 

forms of data. This includes identification to species level of all macrophytes and 

macroinvertebrates, with macroinvertebrates sampled for four minutes in (ideally) three 

seasons. Additional data on pond water chemistry, physical attributes, macrophyte 

vegetation structure, the presence/absence of amphibians, waterfowl and fish, the 

surrounding landscape and pond management are also recorded.  

As the method is lengthy and requires extensive expertise, many pond surveys have only 

collected data on macrophyte communities (e.g., Countryside Survey 2007, Williams et al. 

2010). Recent data has supported the use of macrophytes as the primary bioindicator in 

ponds (but not lakes), finding that macrophyte morpho-diversity was an accurate predictor of 

macroinvertebrate diversity (Law et al. 2019). Data collected during the summer survey 

period can be used to calculate a multivariate index of pond quality (PSYM, comparable to 

RIVPACS, Pond Action 2002) 

The Great Crested Newt (T. cristatus) is a protected species at the European and UK level 

(Conservation of Habitats and Species Regulations 2017) and as such, extensive monitoring 

effort have been directed towards this species, which lives primarily in ponds. In addition to 

the nationwide eDNA survey for GCN presence (see Sections 1 and 2, above), ponds are 

surveyed for their suitability for newts using the GCN "Habitat Suitability Index" (GCN HSI). 
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This index, developed by Oldham et al. (2000), is a composite index of ten different factors 

known to affect this species, such as pond area, macrophyte cover, shade, fish presence 

and water quality. The ten scores are combined to give an overall HSI score between 0 and 

1, which can then be categorised into one of five categories from Poor to Excellent (ARG 

2010, see Chapter 4 for more details). These scores have been calculated for thousands of 

ponds across England (Natural England 2019). 

Pond monitoring: future directions  

To ensure ponds' inclusion in the regulatory frameworks and nature-based solutions of the 

future, simpler, more rapid methods of monitoring need to be deployed, and eDNA 

metabarcoding is an obvious candidate. The ubiquity of ponds and their important 

biodiversity role in human-dominated landscapes also makes them prime candidates for 

monitoring via citizen science (Kelly-Quinn et al. 2022). The enormous potential for this kind 

of monitoring is demonstrated by a current citizen science programme which uses eDNA 

metabarcoding to examine taxonomic composition in urban ponds in England ("GenePools", 

Natural England 2023). Nonetheless, to integrate eDNA fully into pond monitoring, new 

methods must be scientifically robust, usable in ponds of different conditions and ideally, 

compatible with prior datasets. 

 

Using eDNA analysis of ponds to discover new bioindicator taxa and/or to develop 

"taxonomy-free" methods of monitoring is an exciting prospect. Large-scale pond datasets, 

such as the HSI, PSYM and PondNet values, could be used to calibrate the communities 

sequenced from eDNA against known gradients of pond quality and create new biotic indices 

for ponds. This new sampling effort need not compromise current monitoring: Harper et al. 

(2019) found that detection of Great Crested Newt eDNA via eDNA metabarcoding was only 

slightly lower than with single-species qPCR. This opens up the prospect for whole pond 

communities to be surveyed alongside T. cristatus with a single sampling visit. However, the 

current protocol for GCN eDNA monitoring is a precipitation method, whereas studies have 

found filtration to be the optimum method for eDNA capture for metabarcoding (Deiner et al. 

2015). 

 

In summary, eDNA metabarcoding provides the opportunities to describe the microbial, algal, 

fungal and microfaunal communities of ponds which, until now, have been little studied and 

then only in a handful of sites, and provides an opportunity to survey pond communities 

year-round.   
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Section 4: Community assembly and eDNA 

 

Humankind has drastically altered the face of planet Earth, with estimates of the proportion 

of altered land ranging between 75 % to 95 % (IPBES 2019, Kennedy et al. 2019). The 

oceans fare a little better, with 66 % human-impacted (IPBES 2019) whereas wetlands (both 

inland and coastal) have lost 86 % of their historic extent (IPBES 2019, Global Wetland 

Outlook 2018). The annual rate of loss of natural wetlands is calculated at –0.78 % a year 

(over three times the rate of loss of forests, Global Wetland Outlook 2018). 

In the UK only 10 % of the historic extent of wetlands remains (Wetland Vision 2008). For 

ponds there has been an approximately 75 % reduction on historic extent and an 

accelerating loss in the past 100 years. Despite increased monitoring and advocacy efforts, 

conservation schemes and pond creation, ponds and freshwater habitats generally are 

undergoing alarming declines in biodiversity (see Section 1), and ponds in the UK are habitat 

for 10 % of “priority species” (Biodiversity Action Plan 1994). 

How do we halt and reverse this decline? Do we need a pond in the corner of every farmed 

field or back garden? Or should we focus on preserving fewer, but larger, wetland areas 

(Freshwater Habitats Trust 2023)? Both combined is probably optimal for freshwater life, but 

not socially or economically feasible. This so called “land-sparing vs land sharing” debate is 

crucial in efforts to balance biodiversity conservation with other global needs, such as food 

production (Phalan et al. 2011). Globally, the trend is towards greater protection for large 

habitat patches over smaller habitat patches (Fahrig et al. 2017) e.g., the Lawton Review in 

the UK which recommended spaces for nature should be “more, bigger, better and joined” 

(Lawton et al. 2010). As we have seen previously, this strategy may not work for ponds. 

Many small ponds often have a greater biodiversity value than a single larger waterbody 

(see Section 1), and hydrological connectivity to other waterbodies may result in more pond 

pollution (Sayer 2014). To ascertain the threshold density of ponds in the landscape to 

maintain metacommunities, we need to gain a deeper understanding of the structuring of 

pond ecosystems. eDNA metabarcoding can play a pivotal role in providing answers to this 

important question. 

Freshwater connectivity does appear to have an impact on pond biodiversity: greater 

species richness in ponds, and mitigation of species declines, has been linked to increased 

proximity to other waterbodies, location in semi-natural land and within large nature 

reserves. Proximity to urban areas or being located on the edge of reserves is linked with 
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increased declines (Oertli et al. 2002, Declerk et al. 2006, Williams et al. 2010, Williams et 

al. 2018). Hovarth et al. (2019) surveyed (temporary, saline) ponds in Austrian farmland. 

Between 1957 and 2010, 55 ponds had reduced to 30, and 17 zooplankton/rotifer species 

had been lost. This loss was far above that expected from loss of habitat alone (four species, 

calculated through species-accumulation curves).   

However, it is difficult to disentangle connectivity from habitat quality: Hovarth et al. (2019) 

also found an increase in pond salinity in the same period, whereas the other studies 

mentioned above found significant effects of other variables linked to habitat quality, such as 

shade, shoreline development, water quality and grazing.  

Connectivity is a broad term which can be applied to a range of, often quite different, 

concepts. In this section, I shall examine two broad approaches to investigating connectivity: 

habitat fragmentation and landscape connectivity, and their application to lentic freshwater 

environments. I shall look at two approaches to researching community assembly: bottom-up 

and top-down, or landscape scale, approaches. Finally, I will discuss the prospects for eDNA 

metabarcoding to examine hypotheses at the landscape scale. 

Landscape connectivity 

One conception of connectivity is that a connected landscape is one which is more “joined 

up”, with fewer, larger patches of habitat, compared to a fragmented landscape which has 

more, but smaller, patches of habitat. Structural connectivity is simply a description of the 

arrangement of habitat patches in a landscape and the linkages between them, such as 

corridors or inter-patch distances (Taylor, Fahrig & With 2006). It can be measured with 

several approaches which require the use of GIS or other landscape analytical tools 

(reviewed in With 2019, Chapter 5). 

This conception owes much to the Theory of Island Biogeography (MacArthur and Wilson 

1967). This seminal theory proposes that larger islands support more species than smaller 

islands due to lower extinction rates, and islands closer to the mainland can support more 

species than islands further away due to higher colonisation rates. Elegantly simple, the 

predictions were found to hold true empirically (Simberloff & Wilson 1970). The original 

authors suggested that the theory could be applied to human-fragmented landscapes, and in 

the ensuing decades fragmentation studies have often used patch size and isolation as a 

proxy for fragmentation (With 2019). 

The effects of habitat loss and fragmentation on biodiversity have been extensively studied 

and reviewed. The species-area relationship (species richness increases as the habitat area 
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increases) has been found to hold true in terrestrial, freshwater, and marine ecosystems 

across the globe, and for organisms ranging from microbes to plants to mammals (Dakare et 

al. 2005). Habitat loss is the single largest driver of species extinctions and declines in 

abundance in terrestrial and freshwater ecosystems worldwide (IPBES 2019). Populations of 

species are predicted to experience a lagged response to habitat loss, and the full effects 

may not be seen for decades to centuries, termed “extinction debt” (Tilman 1994, Halley et 

al. 2016).  

Whilst the effects of habitat loss are established, the effects of fragmentation on biodiversity 

are more equivocal. This is partly because habitat fragmentation and loss are often 

confounded, and many studies measure fragmentation at an individual patch level, when it 

should be measured at the landscape scale (Fahrig 2003). Fahrig (2017) states that 

fragmentation should be considered as a feature of a landscape rather than a process, that 

“for a given amount of habitat, a more fragmented landscape has more, smaller habitat 

patches and contains a greater total length of habitat edge”, calling this definition 

“fragmentation per se” (Fahrig 2017). 

In ponds and many other habitats, current evidence does not confirm that a patchier or more 

fragmented landscape has a detrimental impact on species richness; instead, several 

smaller ponds hold a greater species richness than the equivalent area of a single large 

pond or lake (see Section 1).  

There are other limitations to this approach. Fragmentation is often conceived of as a 

human-induced process, rather than a natural state of ecosystems. Additionally, the 

fragmentation paradigm, being based on the Island Theory, assumes that the intervening 

matrix between habitat patches is totally inhospitable for the target species. This is obviously 

untrue for many pond species, such as amphibians and Odonata, which feed in the 

surrounding terrestrial landscape and breed in ponds. The permeability of the matrix will alter 

drastically between wet and dry seasons and years, as may the size and arrangement of 

habitat “islands”.  

Alternative approaches expand the definition of connectivity. Whilst landscape structural 

connectivity or fragmentation only accounts for the size and arrangement of habitat patches. 

landscape functional connectivity incorporates the response of an organism to a landscape. 

It is defined as “the degree to which the landscape facilitates or impedes movement among 

resource patches” (Taylor et al. 1993, Taylor et al. 2006, With 2019). Whereas structural 

connectivity remains the same across a landscape no matter what taxa are being studied, 

functional connectivity differs depending on the taxon (Taylor et al. 2006).  
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Aquatic connectivity can be expanded further to include flows of matter and energy, such as 

nutrients, carbon, or sediments between ecosystems (Jones et al. 2019). The transfer of 

matter and energy via water is referred to specifically as “hydrological connectivity” 

(Ormerod et al. 2011). Biological connectivity may occur with or without hydrological 

connectivity: compare a river flood event depositing sediment and allowing a fish species to 

colonise a pond, with the dispersal of a water beetle species via the air from one pond to 

another. Connectivity may even be extended temporally as well as spatially (e.g., tolerance 

of communities to drying events), and between land, sediment, surface water and 

groundwater as well as between surface water bodies (Ormerod et al. 2011, Mushet et al. 

2019).  

As with other concepts in freshwater research, aquatic connectivity has been less frequently 

applied to ponds than other waterbodies. Below I shall outline two major methods of studying 

biotic connectivity between ponds, and research to date; the direct dispersal approach and 

the metacommunities approach; and a brief overview of other methods. 

Bottom-up approaches: dispersal, genetics, and occupancy modelling 

The ability of aquatic species to locate and colonise new waterbodies within days of their 

creation has astonished naturalists for over 150 years (Darwin 1859, Darwin 1882, Talling 

1951, McGuire 1963). A year after the creation of a new pond complex at Pinkhill Meadow, 

Oxfordshire, 37 species of wetland plant and 57 species of macroinvertebrates had 

colonised the four monitored ponds, and after seven years, the ponds held 20 % of all UK 

wetland plant and macroinvertebrate species (Biggs & Williams 2024, Williams et al. 2007). 

Direct dispersal studies are one method of estimating the biological connectivity of a 

landscape. Dispersal refers to the movement of organisms or propagules from a source 

location (birth or breeding site) to another location where establishment and reproduction 

may occur (Nathan & Shohami 2016). Dispersal movements have potential consequences 

for gene flow between populations, whereas smaller movements within the home range 

(diurnal, stochastic or itinerant movements) do not.   

Dispersal mechanisms for freshwater organisms may be active, facilitated by the organism 

itself, or passive, facilitated by some vector (for reviews of freshwater dispersal, see Bilton et 

al. 2001, Ormerod et al. 2011, Incagnone et al. 2015, Mushet et al. 2019). Active dispersal 

may be via water, overland, or via the air. Passive dispersal includes dispersal by animal, 

water (surface and potentially groundwater), wind, and sediment vectors. Many species can 

produce seeds, propagules or resting stages that can survive desiccation, sometimes for 
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tens to hundreds of years enabling re-colonisation of new water bodies from a sediment 

‘bank’. However, there are still entire groups of organisms for which dispersal mechanisms 

are unknown (Heino et al. 2015). 

See the table below for examples of taxa which employ each dispersal mechanism. 

 

Table 1.2: Modes of dispersal between freshwater bodies and examples of taxa which 

deploy them. Adapted from Mushet et al. (2019). 

Type of dispersal Example taxa 

Active, water Fish; lotic insects and crustaceans; some 

mammals, amphibians, and birds 

Active, overland Many amphibian, reptile and mammal 

species, some flightless insects, and other 

invertebrates (e.g., beetles, molluscs), some 

crustaceans 

Active, air Many aquatic insects that have a terrestrial 

adult stage; some fully aquatic diving beetles 

(Dytiscidae), water boatmen (Corixidae) and 

backswimmers (Notonectidae) 

Passive, water Most riverine plants, some freshwater 

molluscs and crustaceans, many others 

Passive, overland (inc. animal vectors) Microalgae, zoochorous plants, many 

invertebrates e.g., molluscs, leeches, micro-

crustaceans, bryozoans 

Passive, air Microbes, anemochorous plants, weakly 

flying small insects, some zooplankton 

Passive, sediment Bacteria, fungi 

 

Dispersal mechanisms and distances have been deciphered through a variety of methods, 

for instance: observations of eggs or seeds attached to larger organisms (e.g., 

Vanschoenwinkel et al. 2008), tests of viability of seeds or propagules after passage through 

digestive tracts (e.g., Darwin 1859), capture of aquatic insects in traps (e.g., Didham et al. 

2012) and anecdotal evidence (for a more thorough review, see Figure 1 and Table 1 in 

Bilton et al. 2001). 
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The quantities of dispersing organisms or propagules at any one time may be vast: Soon et 

al. (2016) estimate that 500 million viable seeds are dispersed by dabbling ducks daily in 

Europe, whereas Csabai et al. (2006) recorded over 45,000 individual aquatic insect species 

attracted to black plastic sheets over six summer months (many actively dispersing aquatic 

insect species can detect polarised light indicative of a reflective water surface). 

A widely accepted hypothesis posits that dispersal ability in passive organisms is negatively 

correlated with body size, whereas in active organisms, it is positively correlated with body 

size (Jenkins et al. 2007). Their extensive review of over 700 studies confirmed this 

relationship for active dispersers, but data for passive dispersers, especially small ones like 

microbes, was lacking. The question of whether microbial species have inherent dispersal 

limits remains a subject of debate (Nemergut et al. 2013, Van der Gast 2015). De Bie et al. 

(2012) provided supportive evidence for this hypothesis, as discussed in the following 

section. 

The dispersal method influences species persistence. Research by Ozinga et al. (2009) 

revealed that plant species relying on water or mammal fur for dispersal, or lacking a 

persistent seedbank had a higher proportion of declining species compared to those relying 

on wind, birds, or having a persistent seedbank. This suggests that the loss of freshwater 

habitat, hydrological connectivity and wild megafauna in today's landscapes are contributing 

to species declines. Moreover, some species may experience declines only after their 

seedbanks are depleted. 

Population genetics provides an indirect method of studying dispersal by quantifying gene 

flow between different populations. This method works via sequencing certain genetic 

markers in different individuals and populations across the study area and estimating genetic 

similarity and difference within and between populations. It’s assumed that high genetic 

divergence between populations is a result of low gene flow due to low dispersal, although 

differences may also be the result of selection and drift. Additionally, different rates on 

mutation between genetic markers will give different estimates of gene flow (With 2019 

chapter 9).  

Population genetic methods have often revealed strong genetic differentiation between 

relatively geographically close populations, even for small aquatic organisms with high rates 

of dispersal such as zooplankton and phytoplankton (Haileselaise et al. 2017, Rengefors et 

al. 2017). De Meester et al. (2002) reported evidence of high dispersal rates but low gene 

flow for passively dispersing organisms inhabiting lakes and ponds and hypothesised that 

this is due to strong founder effects (the “Monopolisation Hypothesis”). A combination of 
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landscape connectivity measures with genetic population methods have revealed isolation 

by landscape resistance rather than simply distance: for example, Ruggeri et al. (2019) 

found genetic structuring of bryozoan populations based on hydrological connectivity. 

A third “bottom-up” approach is occupancy analysis, which compares potential species 

occupancy of sites in a landscape with actual occupancy (MacKenzie 2006). This method 

has been used to assess the effects of functional connectivity on amphibians (e.g., 

Cosentino et al. 2014, Swatasky et al. 2019). Niggebrugge et al. (2007) applied this 

approach to 20 gastropod species inhabiting marshes in the South-East of the UK, finding 

that all species only occupied a proportion of their potential habitat (21 – 87 %), and species 

occupancy decreased significantly as distance to nearest suitable habitat increased.  

Top-down approaches: metacommunities approach 

Determining the connectivity of habitats by quantifying the dispersal abilities of each 

individual species in that habitat, and how they interact with the landscape, is an arduous 

task. Besides, the distribution of species in patches of habitat is not only determined by 

dispersal at the landscape scale, but also by environmental constraints, biotic interactions 

and priority effects at the local scale, and speciation and extinction at broader scales.  

Extending the previous metapopulation model of Hanksi (1998) and others, Leibold et al. 

(2004) formulated the metacommunity concept, which has since had a substantial effect on 

ecology. They defined a metacommunity as “a set of local communities that are linked by 

dispersal of multiple potentially interacting species” (Leibold et al. 2004). In this model, the 

composition of a community in a habitat patch (a pond, for instance) is dependent on the 

environmental conditions of the patch, the dispersal/colonisation ability of species, and the 

competitive ability of species, in varying amounts depending on the model used.  

Leibold et al. (2004) put forward four models of metacommunity assembly, although it has 

since been recognised that not all metacommunities will adhere to one of these types 

(Brown et al. 2017). These are: neutral model, species sorting, patch dynamics and mass 

effects. In the neutral model, community structure is solely determined by random 

immigration, emigration, speciation and extinction. Species sorting assumes there is no 

dispersal limitation, and species’ presence is determined by suitable environmental 

conditions. Patch dynamics focusses on colonisation vs competition abilities of species, with 

colonisers dominating in isolated locations, and mass effects assumes dispersal abilities and 

environmental conditions are both significant. 
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Several researchers have suggested simplifying these four models to only focus on the 

relative effects of environmental filtering and dispersal limitation on communities, as these 

are the two fundamental processes at play (e.g., Heino et al. 2015). Usually, metacommunity 

studies examine whether there is a distance-decay pattern in community similarity along a 

spatial or environmental gradient, or both. This is typically computed using variance 

partitioning (see Brown et al. 2017 for more detail), or novel methods such as 

metacommunity assembly models (MAMs) (Brown et al. 2018). 

One potential reason why meta-analyses of freshwater metacommunities have arrived at few 

generalisations, is because the studies compared are often over wildly different spatial 

extents (De Bie et al. 2012, Heino et al. 2015). For instance, Van de Meutter et al. (2007) 

studied macroinvertebrate communities in farmland ponds in Belgium over 300 ha and found 

no environmental or spatial structuring for active dispersers, and very limited evidence of 

spatial structuring for passive dispersers. By contrast, Fuentes-Rodrigues et al. (2013) 

examined macroinvertebrate communities of farmland ponds in southern Spain over 90,000  

km 2, and found environmental variation alone explained 4 % of the variation between 

communities, spatial variation around 15 %, and both variables also around 4 %.    

Heino et al. (2015) in their review of freshwater metacommunities hypothesised a U-shaped 

relationship between spatial extent and spatial control of metacommunities: at very small 

extents, high dispersal will override environmental tracking. At large extents, dispersal 

limitation will inhibit species from tracking environmental changes. Intermediate extents are 

where the most environmental control (species sorting) is evident (Heino et al. 2015). 

Caution should be exercised over covering a very large extent as species may be structured 

phylogenetically, reflecting evolutionary events such as speciation.  

Their second hypothesis is that the spatial control of metacommunities is expected to be 

greater for species with poorer dispersal ability, and vice versa. An important contribution 

comes from De Bie et al. (2012), who studied 99 Belgian farmland ponds over 30,500 km 2. 

They surveyed these ponds for 12 different groups of varying body size, from bacteria to 

fish. Passive dispersers (bacteria, phytoplankton, rotifers, cladocerans, diatoms, 

macrophytes and molluscs) showed a clear relationship between increased body size and 

spatial limitation (r=0.85, p=0.013). By contrast, active dispersers by air (coleopterans, 

heteropterans and chironomids) showed lower spatial control and higher environmental 

control, than passive dispersers of the same size. Active dispersers overland or water (fish 

and amphibians) displayed high spatial control.   
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Soininen et al. (2011) found a similar result, with spatial structuring of communities across 

100 Finnish lakes stronger for zooplankton than for phytoplankton and bacteria, and stronger 

at larger spatial scales than small. However, not all studies support these hypotheses. 

Garcia-Girón et al. (2019) used the MAM method to study community assembly of 

macrophyte species across 51 ponds in Northern Iberia, finding that wind-dispersed species 

showed a stronger signal of spatial limitation than other dispersal modes. Tornero et al. 

(2018) surveyed active and passively dispersing invertebrates and macrophytes across two 

different Mediterranean pondscapes, one of smaller (1.4 km) and one of larger extent (5.3 

km), finding environmental control was significant for all three groups in both networks, but 

spatial control was only significant for active dispersers in the small network.  

Whereas community assembly models for macro-organisms have been thoroughly studied, 

community assembly processes for micro-organisms are far less well understood. 

Throughout the twentieth century, it was commonly assumed that microbes had unlimited 

dispersal ability and were only ‘selected’ in a habitat by environmental factors (O’Malley 

2008).  In more recent times there has been growing evidence that microbial communities 

can also be spatially structured and follow similar community assembly rules to macro-

organisms (Green and Bohannan 2006, Soininen 2012, Hansen et al. 2012). Much more 

research needs to be done to understand this area, particularly looking at different spatial 

extents and grains (Ladau & Eloe-Fadrosh 2019).   

Therefore, the relative importance of environmental filtering and dispersal limitation on 

community assembly depends on the size of the organism studied, the dispersal method and 

ability of the organism, the spatial extent, and the features of the habitat itself.  

Future approaches 

eDNA metabarcoding provides a fantastic opportunity to study dispersal, reducing the labour 

of traditional mark-recapture studies, and clarifying dispersal distances for understudied 

biota. For instance, a time series sampling of eDNA in a newly created pond, coupled with 

sampling of freshwater habitats in the surrounding landscape, could elucidate dispersal 

distances, times, and origins of colonising organisms. This approach has been used to study 

the dispersal of single invasive species (e.g., Vimercati et al. 2018), and the colonisation of 

entire communities following glacier retreat (Rosero et al. 2021) but has yet to be applied to 

ponds to my knowledge.  eDNA also has shown promise as a population genetics tool 

(Adams et al. 2019), both in aquaria and mesocosms (Andres et al. 2021, Marshall et al. 

2019) and in wild aquatic habitats (Sigsgaard et al. 2017). 
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eDNA metabarcoding is already being used to investigate species occupancy at a landscape 

scale: Harper et al. (2019b) used 12S rRNA gene eDNA metabarcoding to sequence 

vertebrate communities across over 500 UK ponds. They found that GCN presence or 

absence was associated with the presence of other vertebrate species, and with abiotic 

variables.   

eDNA metabarcoding also has a great potential to be used in landscape-scale community 

assembly models, particularly using multiple, universal primers to sample taxa of different 

body sizes (micro-organisms to macro-organisms) in the same environment and over the 

same spatial extent, permitting comparisons in community assembly rules between different 

taxa. For a recent example of this approach applied for coastal eukaryotic plankton, see Yan 

et al. 2023, and for ponds, see Chapter 4.  

Another exciting prospect is combining the landscape connectivity, dispersal, and 

metacommunities approaches for ponds. Boothby (1997) used the term “pondscape” to 

delineate a network of ponds and the intervening terrestrial matrix, using GIS to estimate 

density and arrangement of ponds, and character of the matrix. Mushet et al. (2019) have 

recently expanded this concept to all freshwater bodies in a landscape with their concept of 

a “Freshwater Ecosystem Mosacic” (FEM), defined as “a collection of aquatic and wetland 

habitats in an inland landscape, and their occurrence within a terrestrial matrix”. 

They hypothesise that a FEM landscape acts as a ‘filter’ on the species present, depending 

on dispersal mechanism. For instance, FEMs with a high density of lotic and lentic 

waterbodies, wet climate and semi-natural matrix are predicted to support species with the 

broadest range of dispersal traits, whereas decreasing connectivity progressively filters out 

species. For instance, FEMs with a low number of lotic bodies may not support water 

dispersed species, or FEMs in a dry climate may filter out overland dispersing species. 

Similarly, FEMs with a low density of waterbodies may not support short-distance dispersing 

species. 

A potential future study could compare two pondscapes or FEMs of similar spatial extents, 

but with different characteristics (e.g., upland vs lowland, tropical vs temperate, high density 

vs low density), and use eDNA metabarcoding to sample either a single taxon or a range of 

taxa to compare community structuring and assembly.  
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Conclusion 
 

Freshwater biodiversity loss is an accelerating global crisis. Ponds are relatively overlooked 

aspects of the freshwater environment, with little specific monitoring or protection, yet 

available evidence suggests their biodiversity importance outweighs their small size. They 

may be particularly crucial habitats for freshwater diversity in highly human-impacted 

landscapes such as agricultural and urban environments, and as such have the potential to 

be “nature-based solutions” to freshwater biodiversity loss.  

Environmental DNA (eDNA) metabarcoding is a cutting-edge approach that has gained 

immense prominence in the scientific community and the broader media landscape in recent 

years. It has been applied to detect single species, entire communities, and even genomes 

and functional genes of those communities. Its non-invasive and non-destructive sampling 

methods, coupled with speed and scalability, hold the potential to redefine our understanding 

of the natural world. New applications for eDNA metabarcoding are emerging all the time. 

In the context of ponds, eDNA metabarcoding has been used to detect a wide range of taxa, 

including amphibians, fish, reptiles, birds, and invertebrates. Nevertheless, using this method 

in ponds is not without its challenges. Factors such as eDNA origin, distribution patterns, 

environmental conditions, and practical obstacles pose difficulties that researchers must 

address.  

Research gaps in eDNA metabarcoding of aquatic plants, and whole-community 

characterisation offer opportunities for exciting discoveries in ponds. eDNA metabarcoding 

will allow us to delve into the microbial, algal, fungal, and microfaunal communities of ponds, 

offering new insights into these understudied groups. As we look ahead, the continued 

development and application of eDNA metabarcoding in pond environments have the 

potential to expand our understanding of these intricate and biodiverse ecosystems, 

contributing to advancements in ecological research and conservation efforts. 

The use of bioindicators in freshwater environments, including rivers, lakes, and ponds, has 

played a crucial role in monitoring environmental quality, and assessing human-induced 

pressures over the years. Bioindicators, ranging from simple species presence to complex 
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biotic indices, have provided valuable insights into the health of these ecosystems, and are 

used widely to guide regulatory and conservation efforts. 

Traditionally, these assessments have relied on labour-intensive and time-consuming 

morphological identification methods. However, recent developments in eDNA techniques 

are changing the landscape of freshwater biomonitoring. While eDNA methods show 

promise in terms of rapid data collection and the potential to expand the range of bioindicator 

organisms and deploy “taxonomy-free” methods, there are challenges to overcome, such as 

primer bias, incomplete reference databases, and variations in biotic indices. Nevertheless, 

the field is evolving, and researchers are actively working on refining these techniques. 

In the context of pond monitoring, a significant gap exists in the regulatory frameworks for 

smaller water bodies, including ponds. Nevertheless, organisations and scientists have 

contributed valuable data on pond ecosystems over the years, focusing on macrophytes, 

macroinvertebrates, and amphibians. These data have been critical in understanding pond 

health and changes in biodiversity. Looking ahead, the inclusion of ponds in regulatory 

frameworks and the development of more efficient monitoring methods, such as eDNA 

metabarcoding, are essential. The potential for citizen science involvement in pond 

monitoring is a promising avenue to explore.  

The large reduction in pond numbers and density in the last century and ongoing declines in 

wetland area is predicted to cause species extinctions over and above that caused by 

habitat loss alone, due to loss of connectivity prohibiting successful colonisation events. 

However, the effects of habitat loss and connectivity are difficult to disentangle. When 

studying ponds, accounting only for distances between ponds (structural connectivity) is 

insufficient as many pond species also inhabit the surrounding landscape, and can move 

between different freshwater environments. 

The effects of pond connectivity on pond biodiversity can be studied via elucidating dispersal 

mechanisms and distances of different taxa, by population genetics and by occupancy 

modelling. One drawback of these studies is that they can only focus on certain taxa at a 

time. Top-down approaches, such as comparing the relative contributions of environmental 

and spatial drivers to community assembly, have provided empirical support to models of the 

interaction between body size and dispersal method and community assembly. Some 

evidence is contradictory, and studies are difficult to compare as they have been conducted 

over different spatial extents and grains.  
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Moving forward, eDNA metabarcoding will be a key tool for advancing our understanding of 

dispersal, population genetics, and testing landscape-scale hypotheses. Furthermore, the 

integration of landscape connectivity, dispersal mechanisms, and metacommunities in the 

study of "pondscapes" or "Freshwater Ecosystem Mosaics" offers an exciting avenue for 

future research. 
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Chapter 2: From microbes to 
macrophytes: optimising multi-taxa 
eDNA metabarcoding methods in 
freshwater ponds 
 

Abstract 
 

This chapter reports on a proof-of-concept approach to whole-community environmental 

DNA (eDNA) metabarcoding of freshwater ponds. Twenty ponds (lentic freshwater bodies <5 

ha and <5 m deep) in Pinkhill Meadow, Oxfordshire, UK, were surveyed on a single day in 

June 2020. Sediment and water were sampled from the ponds, from which eDNA was 

subsequently extracted, amplified and sequenced using an Illumina MiSeq. Each sample 

was amplified with five different primer pairs to survey different components of the pond 

community: prokaryotes (16S rRNA gene), eukaryotes (18S rRNA gene), animals (COI 

mtDNA), fungi (ITS2 gene region) and green plants and algae (ITS2 gene region). 

After taxonomic assignment and filtering by confidence, the eDNA survey detected 887 taxa 

identified to genus or species level across the entire site, 4.9 times the number identified at 

the most recent traditional survey conducted in 2016. There was very low overlap between 

the two datasets (10 % of macrophyte species and 3 % of macroinvertebrate species), 

however eDNA methods detected many taxonomic groups for which data on abundance and 

distribution in pond environments is lacking, such as bacteria, meiobenthos, zooplankton, 

phytoplankton and algae.  

There was evidence of migration of eDNA from external environments into the ponds, with 

70 % of macrophyte reads in water samples identified as terrestrial in origin. Bioinformatic 

processing approach had little effect on conclusions drawn from community composition 

analyses. Whether data was unfiltered (taxonomy-free), read abundance weighted or 
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presence-absence, sample type (water or sediment) and pond type both had a significant 

structuring effect. Combining multiple water samples from a single large (0.5ha) pond on one 

filter detected fewer taxa than if samples were filtered separately. Overall, this study provides 

important considerations for the design of future pond eDNA metabarcoding research.   

 

Introduction 
 
Environmental DNA (eDNA) metabarcoding is an emerging method for monitoring 

biodiversity. In brief, it involves taking an environmental sample (for instance water, soil, 

sediment, biofilms, or even filtered air), extracting the DNA contained within, and amplifying 

this eDNA via a polymerase chain reaction (PCR) using primers, which may be highly 

specific or general in the taxa they amplify. The resulting copies of the DNA sequences are 

then sequenced using high throughput sequencing (HTS)), and the millions of DNA ‘reads’ 

that result can be used to infer the biodiversity of the original environmental samples and 

hence, the original habitat (Taberlet et al. 2018).  

Despite its relative novelty, eDNA metabarcoding methods have now been used around the 

globe, in habitats as diverse as the deep ocean, tropical rainforest, urban streets and arctic 

streams (Ruppert et al. 2019, Littlefair et al. 2023), although coverage is still lacking in many 

areas, particularly in the tropics (McGee et al. 2019). However, as an emerging field, eDNA 

metabarcoding methods are still in flux, and the method must be optimised for different 

ecological habitats and applications (Ruppert et al. 2019), particularly if it is to become the 

standard biomonitoring tool many claim it will be (Schenekar 2023).         

eDNA metabarcoding has been widely applied for biodiversity monitoring in freshwater 

ecosystems worldwide (for reviews, see Schenekar 2023, Belle et al. 2019). Freshwater 

ponds have been a relatively common subject of eDNA metabarcoding studies (reviewed in 

Harper et al. 2019a). Most eDNA applications in ponds to date have focussed on monitoring 

a single species using a targeted qPCR assay. These species are often large, protected or 

charismatic amphibians such as the American bullfrog (Rana catesbeiana, Ficetola et al. 

2008) the Great Crested Newt (Triturus cristatus, Biggs et al. 2015) or the Natterjack Toad 

(Epidalea calamita (Reyne et al. 2021), or invasive aquatic plants (Egeria densa, Fujiwara et 

al. 2016) and animals (crayfish Procambarus virginalis, Mauvisseau et al. 2018). When 

eDNA metabarcoding has been deployed to look at whole communities, these have most 
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often used a single primer pair and targeted vertebrates (e.g., mammals: Harper et al. 

2019c, fishes: Di Muri et al. 2020, amphibians: Moss et al. 2022) or macro-invertebrates 

(Harper et al. 2021). Compared to rivers or lakes, fewer pond studies have used universal 

primers or multiple taxonomic markers to detect a wider taxonomic breadth of organisms 

(e.g., 18S rRNA gene to detect Eukaryota, 16S rRNA gene to detect Bacteria and Archaea, 

the Cytochrome Oxidase c subunit 1 gene to detect metazoans).  

More recently assays targeting a wide range of taxa are being used in ponds, not only to 

monitor or assess biodiversity, but also to test ecological hypotheses. Macingo et al. (2019) 

used 18S rRNA gene eDNA metabarcoding to assess the diversity of unicellular eukaryotes 

across mountainous freshwater pools in Greece (but did not distinguish between smaller 

ponds and larger lakes). Ionescu et al. (2022) sampled the eukaryotic and prokaryotic 

diversity of kettle hole ponds in Germany using 18S rRNA and 16S rRNA marker genes, with 

a view to distinguish the effects of different land use types on bacterial, microbial eukaryote 

and invertebrate pond communities. 

Using eDNA metabarcoding for biomonitoring of freshwater ponds has promising prospects, 

for instance, increasing the total number of ponds monitored (Harper et al. 2019), detecting 

rare or cryptic taxa (Goldberg et al. 2018) and determining terrestrial species 

presence/absence in the area surrounding the pond (Ushio et al. 2017). Using universal 

primers and multiple taxonomic markers is an exciting new application for pond eDNA 

metabarcoding, as it will increase the taxonomic coverage of monitoring far beyond the 

macrophytes (large plants and algae such as stoneworts) and macroinvertebrates used in 

traditional visual-based monitoring methods (e.g., PSYM, Pond Action 2002). Groups of 

organisms like Bacteria, Fungi, microbial eukaryotes, algae, phytoplankton and zooplankton 

have rarely been monitored in ponds, and very little is known about their ecology or 

distribution in these environments. 

There are still challenges and unknowns in developing eDNA metabarcoding in ponds 

(reviewed in Harper et al. 2019a). The lack of flow and water mixing in ponds means that 

eDNA is likely to be patchily distributed, and local pond conditions may cause differences in 

rates of eDNA degradation. Other challenges include the seasonal drying experienced by 

many ponds and methodological difficulties caused by turbid water (slow filtration and PCR 

inhibition).      

Established metrics of pond and other freshwater ecosystem health rely on identifying a 

taxonomically narrow group of bioindicator organisms (such as macrophytes, freshwater 

macroinvertebrates or diatoms) to genus or species level, using visual-based identification 
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methods such as sweep-netting and microscopy (Mainstone et al. 2018, Pond Action 2002). 

It has been suggested that eDNA metabarcoding could replace the identification stage of 

these methods, and result in cost and time savings (Baird & Hajababei 2012, Thomsen & 

Willerslev 2015). However, this promise has yet to be realised, as studies comparing 

detection between traditional, visual identification-based freshwater macroinvertebrate 

monitoring and eDNA metabarcoding to date have found incomplete overlap in species 

detection, between 25 % and 80 % (Serrana et al. 2019, Bush et al. 2019). A recent study of 

18 ponds comparing traditional sweep-netting for macroinvertebrates with eDNA 

metabarcoding of the COI gene found 0 % overlap between species detected (Harper et al. 

2021). This mismatch is thought to be due to current COI primer pairs primarily amplifying 

non-target taxa (Leese et al. 2020). Few studies have used metabarcoding to characterise 

the macrophyte community: however, Alsos et al. (2018) found that 31 % of plant species 

found within 2 m of a lake shore were also detected using eDNA from the lake water, 

whereas Drummond et al. (2021) reported only 13.2 % of the species visually detected in a 

lake and catchment were also detected in eDNA from lake water. 

One currently open question in eDNA metabarcoding methods is whether the abundance of 

reads of a particular taxon in a sample can be used as a proxy for the abundance of that 

taxon in the environment (Di Muri et al. 2020). There are some instances of this relationship 

holding, for example, many studies have found a positive relationship between fish 

abundance or biomass and eDNA read abundance (Rourke et al. 2021). However, many 

more have found a mismatch between read abundance and known species abundance, 

particularly in studies of macroinvertebrates (Elbrecht & Leese 2015, Garrido-Sanz et al. 

2021).  

These mismatches could be due to many reasons, such as differences in body size, genome 

size, PCR amplification efficiency or biases in the bioinformatic pipeline towards or against 

certain species (Luo et al. 2023). Corrections have been proposed, for instance, pre-sorting 

organisms by size (Elbrecht et al. 2017) or using spike-in DNA (these corrections are 

reviewed in Luo et al. 2023). Many studies assume that for smaller, more numerically 

abundant organisms such as bacteria and eukaryotic microbes, relative read abundance can 

be used as a proxy for relative taxon abundance in the environment (e.g., Ladin et al. 2021), 

but variable copy numbers of the 16S rRNA and 18S rRNA genes can bias these estimates 

(Gao & Wu 2023, Gong & Marchetti 2019). Some analyses circumvent the problem by using 

presence-absence data in analyses rather than read abundance, but when metrics based on 
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presence-absence and read abundance are compared, often the outcomes are different 

(Ionescu et al. 2022, Machler et al. 2021). 

The overall aim of this study was to optimise eDNA metabarcoding methods in ponds, using 

twenty ponds in a small wetland nature reserve of approximately five hectares, Pinkhill 

Meadow in Oxfordshire, as my study site. These are some of the most well-studied pond 

ecosystems in the UK, with macrophyte and macroinvertebrate species presence/absence 

data spanning 30 years, and amongst the most biodiverse ponds in the UK (Freshwater 

Habitats Trust 2019, Williams 2017).   

On a single day in June 2020, 42 water and 42 sediment samples were collected from 

across these ponds, from which eDNA was extracted, and then amplified with five separate 

primer pairs, targeting different sections of the pond community. These were bacteria and 

archaea (16S rRNA gene), eukaryotes (18S rRNA gene), fungi (fungal ITS2 gene region), 

animals (COI mtDNA) and green plants (plant ITS2 gene region). The resulting amplified 

eDNA was sequenced on an Illumina MiSeq and sequences assigned to genus or species 

level.  

This study had five separate research questions relating to the methodology of eDNA 

metabarcoding in ponds. 

1. Do the five primer pairs listed above amplify eDNA in pond water and sediments? (At 

the time this research was conducted, no prior research could be found using these 

assays in pond environments). 

2. If amplification is successful, which of the primer pairs, along with reference 

databases provide the best balance between broad and deep taxonomic coverage 

and confident taxonomic identification? 

3. In order to accurately sample the ecological community of a larger pond (0.5 ha) 

using eDNA metabarcoding, are multiple water samples from separate locations 

required, or is it sufficient to sequence a single merged water sample? 

4. How do bioinformatic processing decisions (e.g., using presence/absence or read-

abundance weighted data, filtering depending on confidence of taxonomic 

assignment) affect the resultant community composition metrics for the different 

ponds and communities? 

5. Finally, do eDNA metabarcoding methods targeting macroinvertebrates and 

macrophytes have good taxonomic overlap with traditional, visual-based survey 

data?  
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Methods 
 

Study site 

Pinkhill Meadow nature reserve, Oxfordshire, is a wetland complex of over 40 ponds, with 

varying sizes, shapes, depths, permanence and water sources (Figure 2.1). The ponds were 

excavated in 1990 to provide a practical case study for developing ideas on pond and 

wetland creation and management (Freshwater Habitats Trust 2019). The ponds were 

monitored, using traditional, visual identification-based methods, for wetland plants and 

invertebrates annually in the first decade, and then at intervals up until the present day 

(Biggs & Williams 2024).  

The site is around 4 ha in size, and located in a meander on the River Thames, adjacent to 

Farmoor reservoir, to the west of the city of Oxford. Around 1.5 ha of the site is unimproved 

floodplain meadow and is grazed by a small herd of cattle between October and March and 

the hay cut once a year. Other than this, there is no management of the site, and it is not 

accessible to the public. 

The underlying geology of the site is a clay (alluvium) layer overlying a gravel aquifer 

(Williams 2017). The alluvium layer is thicker at the northern end of the site, and so the 

ponds in this region have a clay substrate and tend to be semi-permanent, drying out in 

drought years. The ponds at the southern end of the site are dug into the gravel aquifer, and 

so are groundwater fed. Twenty distinguishable water bodies were chosen in December 

2019 for sampling for water, sediment and abiotic variables at six roughly bi-monthly 

sampling events in 2020 (for results from other sampling events, see Chapter 3). 

Figure 2.1 shows a map of the site with locations of sample points named in red. Some 

larger waterbodies were sampled in multiple locations around the perimeter of the pond. 

Smaller waterbodies were sampled in a single location near the perimeter. For full details of 

water, sediment and blank samples per pond, see supplementary Table S2.4. 

Full sampling of water and sediment over all 20 ponds was carried out over a single day: 2nd 

June 2020. In-field measuring of abiotic variables was performed the subsequent day. In 

total, 42 water and 42 sediment samples were collected from across the site. The 

subsequent day, water samples were collected from 15 ponds (six samples were collected 
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from the Main Pond, and a single sample from 14 other ponds), and analysed in a laboratory 

for additional water chemistry variables.    

Depending on prior knowledge and site observations (Williams 2017, Williams et al. 2010, P. 

Williams personal communication Jan 2020), the 42 sampling sites were divided into one of 

four “pond types” depending on pond substrate, location on site and canopy cover. These 

were “Main Pond” (n=18, clay substrate, part of the large pond and scrape complex, open, 

5000 m2 in area), “Surface-water pond” (n = 5, clay substrate, open, two ponds ca. 150 m2 

each), “Experimental Pond” (n=7, clay substrate, medium canopy cover, seven ponds each 

100 m2) and “Gravel Pond” (n=12, gravel substrate, high canopy cover, nine ponds ranging 

from 20 m2 to 400 m2).   

 

 

Figure 2.1: Pinkhill Meadows pond complex site, with key human and natural features 

labelled. All 42 sample points overlaid in red text. MP = Main Pond, SPP = Semi-permanent 

pond, SWP = Surface water pond, EP = Experimental pond, GWP = Groundwater pond, GP 

= Gravel pond, SRB = Southern reed bed. 

Water and sediment sample collection 

Water samples were collected using 1l plastic bottles which had been sterilised via a 

laboratory acid washer or soaking in 10 % bleach. Nitrile gloves were used to collect water 
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and changed between samples. Bottles were triple washed in pond water before a sample 

was taken. Water samples were taken around 10cm from the surface of the pond in all cases 

(a compromise between the tendency of eDNA to sink (Turner et al. 2015, Harrison et al. 

2019) and avoiding disturbing the sediment). Water was transported in a cool box with ice 

packs to laboratory facilities within four hours of collection, where it was stored at 4°C for a 

maximum of 24h before filtration, as recommended by Curtis et al. (2021).  

A water “field blank” was generated by filling a sterilised 1l plastic bottle with deionised water, 

transporting it to, around and from the field in the same method as the other sample bottles. 

Sediment sample collection and storage 

Sediment samples were collected from the same location as the water samples. This was 

both for the sake of practicality and to reduce the influence of external factors e.g. light levels 

on differences in community composition between sediment and water samples. Sediment 

samples were taken using a custom sediment sampler comprising of a tubular aluminium rod 

with a holder for a 50 ml centrifuge tube, both of which had been sterilised using an acid 

wash or 10 % bleach before use. The scoop was triple washed in pond water between each 

sample. Sediment samples were taken from the surface of the sediment, within the top 

~10cm.  

 

To attempt to prevent cross contamination between sample sites, the sediment scooper was 

wiped with 10 % bleach between uses and left to air dry. Sediment samples were 

transported to the laboratory within 4 hours of collection and stored at -20 °C. 

Measuring abiotic variables 

In the field, an ultrameter II (Myron L Company) was used to measure pH, temperature, Total 

Dissolved Solids (TDS), Conductivity and Oxidative-Reductive Potential (ORP) at each 

sample point. Measurements were taken at the same time as the water and sediment 

samples were collected. The sensor was triple washed in pond water before the 

measurements were taken. For each sample point, three measurements were taken, and the 

mean calculated.  

Water depth at each sample point was measured using a metre rule. Water samples for 

water chemistry analysis were collected using a wide-mouthed bucket which was rinsed with 

sample water before sampling. From this larger sample, a smaller 100 ml sample was taken 

to quantify total suspended solids (TSS) in the laboratory. Two 60 ml samples were 

subsampled from the bucket and filtered using 0.45um filter on site. The bucket was then 
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stirred, and a third 60 ml sample was collected and not filtered. The two filtered samples 

were analysed for 1. total Soluble Reactive Phosphorus (SRP) and 2. chlorophyll, ammonia 

(NH4), Total Dissolved Nitrogen (TDN) and Total Organic Carbon (TOC). The unfiltered 

sample was analysed for Total Phosphorus (TP). The water chemistry analysis was carried 

out using the methods described by Bowes et al. (2018). 

CanopyApp (University of New Hampshire, ver. 1.0.4) was used to estimate tree canopy 

cover at each sample point in July 2020. The site was visually assessed during each 

sampling event and photographs taken to record which waterbodies were hydrologically 

connected or separated due to flooding or drying. 

Filtration and eDNA extraction 

Filtration was chosen over precipitation methods due to the evidence of a greater rate of 

eDNA recovery (Hinlo et al. 2017). An average of 1000 ml of water was collected for eDNA 

filtration at each sample point. For 14 smaller ponds, only one 1000 ml sample was taken. 

For three medium ponds (>100 m2, GWP, SPP and GP1), two 1000 ml water samples were 

taken in the field. In the laboratory, each of these were sub- sampled to 500 ml which were 

combined to make one 1000 ml sample which was subsequently well mixed and filtered. 

 

One medium-size pond (SWP) was sampled in a similar way, except three 1000 ml samples 

were taken in the field, and these were sub-sampled for 330 ml each which were combined 

to make one 990 ml sample. For the large main pond, up to 17 separate 1000 ml samples 

were collected in plastic bottles in the field. In the laboratory, ~60 ml of each of these 

samples were subsampled and combined to make a merged Main Pond sample of ~1000 

ml, which was subsequently filtered. The ~940 ml of the 17 separate samples (MP1 – MP17) 

were also filtered separately.  

 

All samples were filtered in a clean laboratory environment using vacuum pump filters 

sterilised via acid washing or soaking in 10 % bleach. Each 1000 ml sample was initially pre-

filtered with a 12um Cellulose-Nitrate filter (Whatman, AE100) and subsequently filtered with 

a 0.45um Cellulose Nitrate filter (7141 114). The prefiltering was carried out to reduce the 

influence of large organic particles on downstream analysis, and the filter size chosen due to 

best available evidence (Li et al. 2018). The filter papers were removed from the filters using 

sterilised tweezers and placed in 5 ml centrifuge tubes, which were stored at -20°C until 

extraction.  

 



   
 

57 
 

 
 

DNA from water samples was extracted from the stored filter papers after defrosting using 

the standard protocol of the E.Z.N.A. water DNA extraction kit (Omega Biotek). A water 

extraction blank was produced by following the normal extraction protocol but omitting any 

sample. Concentration of DNA was determined using a Qubit Fluorometer (Invitrogen). DNA 

was stored in Elution buffer in 1.5 ml microcentrifuge tubes at –20'C. Total volume ranged 

from 70 µl – 100 µl. 

DNA from sediment samples was extracted by defrosting the full sediment sample and then 

subsampling 0.25g using scales, a sampling boat and disinfected tweezers. DNA was then 

extracted using a DNeasy Powersoil kit (Qiagen). A sediment extraction blank was produced 

by following the usual protocol but omitting any sample. Concentration of DNA was 

determined using a Qubit Fluorometer (Invitrogen) or Nanodrop 8 sample (Thermo Fisher 

Scientific). DNA was stored in Elution buffer in 1.5 ml microcentrifuge tubes at –20'C. Total 

volume ranged from 80 µl – 85 µl.  

All extraction was carried out using sterilised procedures e.g., gloves, and the use of 99 % 

ethanol and bleach to sterilise equipment and laboratory benches between any handling of 

DNA samples. 

Amplification and sequencing 

Initially 20 primer pairs were tested on six randomly chosen samples (three water and three 

sediment), along with an extraction blank and PCR blank, to ensure positive amplification. 

From these, five primer pairs were chosen, which amplify different DNA or RNA targets and 

produce different length fragments, in order to detect different sections of the pond 

ecological community (see Table 2.1 below).  

 

Table 2.1: Information about the five primers used in the eDNA survey of Pinkhill Meadow 

ponds, June 2020. 

Primer pair name and 

reference 

Fragment 

length 

Gene 

amplified 

Community primer 

optimised to target 

BF1/BR2 (Elbrecht & Leese 

2017) 

 

316bp COI mtDNA Freshwater 

macroinvertebrates 

Euk1391f/EukBr (Amaral-

Zettler et al. 2009 and Stoek et 

al. 2010) 

45-260bp 18S rRNA Eukaryotes 
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515F/806R (Caporaso et al. 

2011 and Walters et al. 2015) 

390bp  16s rRNA Bacteria 

ITS2-S2F/ITS4_R (Ihrmark et 

al. 2012) 

300-460bp 

 

ITS2 rDNA Vascular plants 

ITS7_F/ITS4_R (Ihrmark et al. 

2012) 

~250bp ITS2 rDNA Fungi 

 

DNA was amplified using a two-step PCR approach.  Firstly, all samples were amplified with 

a modified primer (amplicon primer with Illumina MiSeq sequencing primer and pre-adaptor 

added). 1-2 PCR blanks were also amplified at this stage (normal PCR reagents, but with 

molecular grade water added rather than any sample). Then Step 2 PCR was carried out to 

add on the barcodes (Illumina MiSeq index) and flow-cell adaptors. Steps 1 and 2 were 

repeated for the four other primer pairs. Therefore, each sample had five two-step PCRs 

carried out on it, one per primer pair. The PCR conditions are detailed in table S2.1.  

Amplicons were normalised using the SequalPrep Normalisation Plate Kit, 96-well 

(Invitrogen, Carlsbad, CA), gel purified using the QIAquick gel extraction kit (Qiagen Group), 

and quantified using Qubit high sensitivity dsDNA Assay kit (Invitrogen, Carlsbad, CA). The 

resultant amplicon library was sequenced at a concentration of 9 pM with a 0.675 pM 

addition of an Illumina generated PhiX control library. Sequencing was performed on an 

Illumina MiSeq platform using MiSeq Reagent Kit v3 (Illumina Inc., San Diego, USA).  

Bioinformatic analysis 

For the 16S rRNA gene, 18S rRNA gene, COI mtDNA and Fungal ITS2 (fITS) sequences, 

raw reads were processed through the DADA2 pipeline ver. 1.8 (Callahan et al., 2016) in R 

(R Core Team, 2018). Briefly, adapters and primers were initially removed from the raw 

reads using cutadapt (Martin 2011), then amplicon reads were trimmed to maintain Q 

score > 30. This occurred at 250 and 200 bases for 16S 18S and COI sequences, and 250 

and 220 bases for fITS sequences, (forward and reverse reads respectively.) The results 

filtered with DADA2 default settings, except for the maximum number of Ns (maxN) = 0 and 

maximum number of expected errors (maxEE) = c(5,5).  

Sequences were dereplicated and the DADA2 core sequence variant inference algorithm 

applied. Processed forward and reverse sequences were merged using the mergePairs 

function, and a sequence table was constructed from the resultant, merged amplicon 
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sequence variants (ASVs). Chimeric sequences were removed from the ASV table using 

remove BimeraDenovo with default settings.     

To assign taxonomy to 16S, 18S and fITS sequences, the online IDTAXA tool from the R 

package DECIPHER ver. 2.14 (Murali et al. 2018) was used. The reference databases used 

were: for 16S sequences, SILVA ver. 138.1 (10th March 2021); for 18S sequences, PR2, 

version 4.13 (17th March 2021), and for fITS sequences, UNITE ITS (ver. 2020, February 

2020), all of which are provided within the DADA2 package. This function gives a taxonomic 

classification to genus level in the case of 16S and 18S, and to species level for fITS, and 

provides confidence scores for each level of classification. The confidence threshold for 

assignment in all three cases was set at 60 %. For the COI sequences, the Python package 

BOLDigger was used (Buchner & Leese, 2020), which matches sequences to both private 

and public sequences stored in the Barcode of Life Data systems (BOLD, Ratnasingham & 

Herbert, 2007). This program gives a taxonomic classification to species level and provides 

an overall confidence score.  

For the plant ITS2 (pITS) sequences, a different process was followed. Raw reads were 

processed and taxonomically assigned using the HONEYPI pipeline implemented in Python 

2.7 (Oliver et al. 2021). The HONEYPI pipeline removes adaptors and quality filters the raw 

reads using TrimGalore v.0.6.4, and then uses the DADA2 pipeline to generate an Amplicon 

Sequence Variant (ASV) abundance table containing chimera-removed, high-quality error-

corrected sequences. For each ASV, conserved regions flanking ITS2 are removed with 

ITSx v.1.1b; and resulting sequences taxonomically classified using the naive Bayesian 

classifier against an in-house ITS2 database of 966,676 sequences (25th March 2020). 

Unless stated otherwise, default parameters were used for the steps listed. Each of the 

ASVs was taxonomically assigned to species level by the RDP classifier within the 

HONEYPI pipeline and given a confidence level of assignment between 0 and 1. 

Using the R package ‘phyloseq’ (version 1.42.0, McMurdie & Holmes 2013), each of the five 

datasets went through the same three steps: removal of low-read samples, removal of ultra-

rare taxa (less than 3 reads and only in 1 samples) and rarefaction to the median sampling 

depth. Removing low-read samples and taxa aids in the removal of false positive detections 

(Shirazi et al. 2021, García-Machado et al. 2023). Rarefaction is a widely used and 

statistically valid way to normalize sample size, and so control for the uneven sequencing 

effort between samples (Weiss et al. 2017, Schloss 2023). For the 16S, 18S, COI and pITS 

datasets, samples below 4,000 reads were removed. However, the fITS dataset had a low 

average read number per sample, so samples below 1,000 reads were removed.   
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For the 16S dataset, ASVs with the same taxonomic assignment at genus level were 

agglomerated using the tax_glom function in the phyloseq package. For the pITS and fITS 

datasets, ASVs with the same taxonomic assignment at species level were agglomerated. 

Taxonomic agglomeration reduces the risk of artificially splitting species into separate ASVs 

and so overestimating alpha diversity (Schloss 2021). Taxonomic agglomeration reduced the 

species number drastically in the 18S and COI datasets, and so was not carried out.  

The confidence of taxonomic assignment in the five datasets was variable. For the 16S and 

fITS dataset, all taxa with a root confidence assignment of <100 were filtered out. For the 

pITS and COI datasets, all taxa with an overall confidence of assignment of <0.97 were 

filtered out. The 18S dataset had a very low proportion of taxa with high confidence of 

assignment, so any taxa with root confidence <0.65 were filtered out. The results for these 

taxa should be interpreted in the light of this.  

Finally, non-target taxa were filtered from the 16S dataset (assigned as “Mitochondria” and 

“Chloroplast”) and the pITS dataset (“Fungi” and “Unassignable”). Any field, extraction or 

PCR blanks that had not been removed from preceding steps were then removed.  

The 16S blank samples contained 47 unique taxa, of which 43 were present in the pond 

water and sediment samples. One taxon accounted for 82 % of all reads in the blank 

samples (unclassified_Enterobacteriaceae), indicating possible laboratory contamination. 

However, this taxon did not appear as one of the most abundant in the environmental 

samples (see Figure S2.3). Two other taxa (unclassified Comamonadaceae) accounted for 5 

%, but again were not abundant in environmental samples. The other taxa were present in 

total <150 reads across the four blanks indicating a low level of cross-contamination 

between environmental samples and blanks. 

The 18S blank samples contained 11 unique taxa, and 10 of these were present in the pond 

water and sediment samples. None bar three were identified to genus level, and these had 

total reads in blanks <50. The most read-abundant taxa were unidentified below Domain 

level.  

The fITS blank samples contained 5 unique taxa, and 3 of these were present in the pond 

water and sediment samples. One taxa, identified as genus Tylospora was present in 

environmental samples at high read abundances, whereas the other 2 taxa accounted for 

<200 reads across all samples. Tylospora reads were removed from environmental samples 

and subsequent analysis.  
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The COI blank samples contained 32 unique taxa, all of which were present in the pond 

water and sediment samples. Only 3 taxa were present in environmental samples above 200 

reads across all samples, indicating cross-contamination in the laboratory stages. These 

were identified as Homo sapiens, Hydropsyche siltalai (a species of caddisfly) and Nais 

elinguis (aquatic annelid). These were not removed from the dataset due to likelihood of 

these species’ eDNA being present in pond environments. Finally, the pITS blank samples 

contained 0 unique taxa. 

       

Statistical analyses 

All statistical analyses were carried out in R, version 4.2.0 (R Core Team 2021). To assess 

differences in abiotic variables between pond types, ANOVAs and Kruskal-Wallis tests were 

carried out using functions in base R. Abiotic variable plots were made by using ggplot2 

(Wickham 2009). 

Almost all other statistical analyses were carried out in the R package microeco, version 

0.11.0 (Liu et al. 2021), for each of the five datasets separately. Relative abundance of 

different taxa was calculated, and bar graphs plotted, using functions within the trans_abund 

class. Taxa abundance between different sample types (sediment vs water) and pond types 

was compared via t.test and Kruskal-Wallis test using functions within the trans_diff class. 

Three measures of alpha diversity (Simpson, Shannon and Chao) were calculated and 

compared via t.test or Wilcoxon test within the trans_alpha class. Functional diversity was 

assigned to prokaryotic taxa in the 16S dataset and fungal taxa in the fITS dataset using the 

inbuilt function datasets in microeco. For 16S, this was FAPROTAX v1.2.4 (Louca et al. 

2016), and for fITS this was FungalTraits ver 1.2 (Polme et al. 2020). Percentages of taxa of 

different functional groups were calculated using functions within the trans_func class.   

To examine beta diversity, functions within the trans_beta class were used. Beta diversity 

was calculated using a Bray-Curtis index and a Principle Co-ordinates Analysis (PCoA) was 

performed using the cal_ordination function. A permutational multivariate analysis of 

variance (PERMANOVA) was performed using the cal_manova function, which uses the 

adonis2 function in the vegan package, version 2.6-4 (Okansen et al. 2022). This was 

performed on all samples to examine the effect of sample type, and pond type on community 

composition, including sample type, pond type and their interaction as factors in the analysis.  

The same analysis of beta diversity and community composition (calculation of Bray-Curtis 

index, PCoA and PERMANOVA) was repeated on all five datasets after they had been 
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transformed from read-abundance to presence-absence data (all reads >0 replaced with 1). 

The five datasets were also remade so there was neither filtering taxa by confidence of 

taxonomic assignment, nor taxonomic agglomeration, and the analysis of beta diversity and 

community composition was repeated again.   

To examine whether, for larger ponds, it is better to collect several water samples and merge 

in the field or sequence each sample separately, the Main Pond water samples were 

separated from the other samples for each of the five taxonomic communities. For the 

sample which was a mixture of water from 17 separate locations (“MPm”), the relative read 

abundance of different taxa was extracted, either at phylum or class level. This was 

compared to the mean read abundance of different taxa from the separate water samples 

(MP1-17).   

To compare eDNA metabarcoding species detection with traditional visual-based monitoring 

methods, the final species list from the COI and pITS datasets were compared with macro-

invertebrate and macrophyte records from the most recent survey of Pinkhill Meadow at the 

time of analysis (Williams 2017). All higher plant (Embryophyta) taxa in the pITS dataset 

(n=46) were assigned a ‘wetland status’ function according to the species list used in the 

National Pond Survey (Biggs et al. 1998). Floating-leaved and submerged species were 

combined into an “aquatic” category, whereas emergent species and trees or shrubs were 

combined into a “wetland” category. Plants which did not appear on the NPS list were 

classified as “terrestrial”.  

To compare how eDNA bioinformatic processing decisions affect the final beta diversity 

metrics, three different datasets were constructed for each ecological community (bacteria, 

eukaryotes, fungi, animals, and green plants) using different approaches to handle sequence 

read filtering. One dataset did not filter out taxa which had a low confidence of taxonomic 

assignment, but each taxa in this dataset was still weighted by read abundance (the 

“unfiltered dataset”). The second dataset was the standard dataset, filtered by confidence of 

taxonomic assignment and read-abundance weighted (the “filtered dataset”). The third 

dataset was filtered, and read abundance weighting was removed (the “presence-absence 

dataset”). The unfiltered 16S dataset contained 791 taxa, the unfiltered 18S dataset 

contained 2,474 taxa, the unfiltered fITS dataset 2,469 taxa, the unfiltered COI dataset 5574 

taxa and the unfiltered pITS dataset 671 taxa. 
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Results 

 

eDNA concentrations, ASV and read numbers 

After filtration and DNA extraction, the concentration of DNA from pond water samples 

ranged from –1.3 µg/ml to 35.1 µg/µl (M = 9.84, SD = 10.35). In sediment samples, the 

concentration after extraction ranged from 1.2 µg/ml to 105.4 µg/µl (M = 22.31, SD = 29.27). 

After processing with the DADA2 pipeline (quality trimming, de-replication, chimera removal), 

the raw datasets were as follows: for 16S sequences, 7,597 ASVs, and the total number of 

reads across 72 samples was 1,492,081. For 18S sequences, 17,831 ASVs and 1,922,651 

reads across 79 samples. For COI, the total number of ASVs was 18,480 and there were 

1,418,542 reads across 80 samples. For fITS, the total number of ASVs was 7,613 and there 

were 1,587,404 reads across 70 samples. Finally, for pITS, this process outputted 1,536,985 

raw reads in 2,876 ASVs across 71 samples. 

Pond abiotic conditions 

Figure 2.2: Kruskal-Wallis one way analysis of variance test results as a boxplot for each 

physiochemical variable by pond type. One, two and three asterisks indicate that the 

analysis was significant at the p<0.05, p<0.01 and p<0.001 levels respectively. 

The water and sediment samples were collected on 2nd June 2020, at the end of a spring 

which had the most sunshine hours since records began, and was one of the driest on 

record (Met Office 2020). The River Thames level was 0.853 m (River Levels UK 2023), 
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typical for the time of year. The site was not flooded, and some sites that had been sampled 

in previous sampling events (see Chapter 3) were dry (MP1, MP2, MP4 and EP4).  

Kruskal-Wallis tests were performed to analyse the differences in physiochemical variables 

between the different pond types. No significant differences were found for pond depth (H (3) 

= 4.32, p = 0.23) or canopy cover (H(3) = 6.97, p = 0.073). Significant differences between 

pond types were found for eight other measured variables (pH, H(3) = 12.75, p = 0.005, 

temperature, H(3) = 15.07, p = 0.002, TDS, H(3) = 8.23, p = 0.042, ORP, H(3) = 10.43, p = 

0.015, TDN, H(3) = 13.18, p = 0.004, NH4, H(3) = 11.75, p = 0.008, SRP, H(3) = 13.40, p = 

0.004, DOC, H(3) = 17.47, p < 0.001,  see Figure 2.2). Results of post-hoc Dunn’s tests with 

a Bonferroni correction are reported in Table S2.2.  

 

 

Taxonomic and functional diversity in Pinkhill Meadow ponds 

Figure 2.3 (below): Taxonomic composition and number of taxa in sediment and water 

samples for a) Bacteria and Archaea (16S dataset), b) Eukaryota (18S dataset), c) Fungi 

(fungal ITS2 dataset), d) Animalia (COI dataset), and e) green plants and algae (plant ITS2 

dataset). In bar graphs, “s“ = sediment samples, “w”= water samples, and the y axis shows 

relative eDNA read abundance as a percentage. In Venn diagrams, the number of taxa is 

above and the  % proportion those taxa contributed to overall read abundance below in 

brackets.  
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a. Bacteria and Archaea (16S rRNA gene) 

After bioinformatic processing, the final 16S dataset consisted of 293 taxa across 62 

samples (sediment n = 33, water n = 29).  Nearly half of all taxa (142) were found in both 

water and sediment samples, however, these 142 taxa made up around 87 % of total read 

abundance (see Figure 2.3a). Proteobacteria was the most abundant phylum, with a mean 

of 54.5 % (SD = 15.4 %) of water samples’ and 57.4 % (SD = 17.2 %) of sediment samples’ 

read abundance. Bacteroidota was also common, comprising a mean 16.0 % (SD = 13.7 %) 

of water samples and mean 5.4 % (SD = 3.8 %) of sediment samples. Actinobacteria was 

prominent in water samples, with a mean of 24.2 % (SD = 10.5 %) of total read abundance, 

but was virtually absent from sediment samples (M = 0.6 %, SD = 0.8 %). Most other phyla 

were more abundant in sediment samples than water samples, including Desulfobacterota, 

Verrucomicrobiota, Methylmirabilota, Chloroflexi, Acidobacteriota and the Archaen phylum 

Halobacterota (see Figure 2.3a).  

The top 25 bacterial and archean genera by read abundance made up around 50 % of the 

total reads in water samples, and 40 % in sediment samples (see Figure S2.3). The most 

abundant genera in sediment samples were Methanoregula, Methanosaeta, Luteolibacter, 

Candidatus accumilibacter, Sva0081 sediment group, Geobacter and Crenothrix. This small 

selection highlights the large functional diversity of freshwater pond sediments: 

Methanoregula and Methanosaeta are both methanogens (Brauer et al. 2006, Patel & Sprott 

1990), whereas Crenothrix is a methane-oxidising genus (Oswald et al. 2017). Candidatus 

accumilibacter is a key organism in phosphate-removing wastewater treatment (Seviour et 

al. 2003), Geobacter species are known to reduce iron and manganese oxides and aromatic 

hydrocarbons (Lovley et al. 2011), and the Sva0081 sediment group are all sulphate-

reducing bacteria (Fonseca et al. 2022). 

In water samples, the most abundant genera were Pseudarcicella, Flavobacterium, 

Polynucleobacter, hgcl clade, Planktoluna, Rickettsiella and Novosphingobium. The 

functions of these genera are not always well described, but they include potential 

endosymbiotic organisms; Polynucleobacter, in ciliates (Heckman & Schmidt 1987), and 

Rickettsiella in arthropods (Jurat-Fuentes & Jackson 2012); and Pseudarcicella was isolated 

from the skin of medicinal leeches (Kampfer 2012). Flavobacterium, Polynucleobacter and 

the hgcl clade have previously been associated with urban-impacted waters and nitrogen-

rich environments (Adyasari et al. 2020), whereas Novosphingobium has been associated 

with the biodegradation of aromatic compounds (Gan et al. 2013).   
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According to the functional assignment using FAPROTAX (see Figure S2.1), the majority of 

taxa in all samples were aerobic chemoheterotrophs. Compared with water samples, 

sediment samples had a greater proportion of taxa which were anaerobic 

chemoheterotrophs, or were responsible for carbon cycling as fermenters, methanogens, 

methanotrophs or methylotrophs. Taxa involved in sulphur cycling were more prevalent in 

sediments than the water column. Taxa with nitrogen, iron and manganese cycling 

capabilities were found in several samples of both type. 

b. Eukaryotes (18S rRNA gene) 

The final 18S dataset consisted of 142 taxa across 65 samples (sediment n = 34, water n = 

31). Around 45 % of taxa were found in both types of sample, and these made up around 70 

% of total read abundance. Sediment samples had more unique taxa and a greater 

proportion of overall read abundance than water samples (see Figure 2.3b). Most taxa 

detected were either Opishtokonta (45) or Archaeplastida (41), with the remainder 

Stramenopiles (17), Excavata (12), Amoeobozoa (6), Rhizaria (3), Hacrobia (3), or Alveolata 

(1). Both types of sample had a similar proportion of Opisthokonta reads (sediment, M = 

43.9 %, SD = 26.5 %, water, M = 43.3 %, SD = 28.7 %). Sediment samples contained 

significantly more Archaeplastida reads than water samples (sediment, M = 40.8 %, SD = 

25.1 %, water, M = 25.6 %, SD = 17.6 %, see Figure 2.3b). Water samples also contained a 

significantly higher proportion of reads from taxa unclassified to Division level (M = 15.7 %, 

SD = 20.6 % compared to M = 2.0 %, SD = 3.1 % in sediment samples).  

Only 32 taxa were identified to genus level in the 18S dataset, and only 84 to class level. 

The most read-abundant classes in sediment samples were Gastrotricha, Annelida, 

Mollusca, Charophyceae (“stoneworts”, large algae which are traditional indicators of clean 

freshwater and surveyed using visual techniques) and Bacillariophyta (diatoms). In water 

samples, the most read-abundant class was Arthropoda, making up between 15 % - 40 % of 

all reads, followed by Gastrotricha, Trebouxiophyceae, and Euglenida (see Figure S2.4).    

c. Fungi (fungal ITS2) 

The final fITS dataset contained 98 taxa across only 56 samples (sediment n = 33, water n = 

23). Around half of all taxa (52) were found uniquely in sediment samples, comprising 16.3 

% of all reads, whereas the 39 taxa found in both sediment samples and water samples 

were more common, making up 80.4 % of all reads (see Figure 2.3c). The most common 

class in both sediment and water samples were Dothideomycetes (water, M = 57.0 %, SD = 

32.1 %, sediment, M = 43.4 %, SD = 32.1 %). Agaricomycetes were significantly more 
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abundant in sediment samples than water samples (sediment, M = 21.9 %, SD = 22.4 %, 

water, M = 1.5 %, SD = 3.4 % Tremellomycetes were significantly more abundant in water 

samples (M = 23.1 %, SD = 22.1 %) than sediment samples (M = 3.7 %, SD = 4.5 %). 

Sodariomycetes and Leotiomycetes both made up around 12 % of sediment sample reads 

(Sodariomycetes: M = 11.9 %, SD = 18.0 %, Leotiomycetes: M = 13.9 %, SD = 21.1 %), and 

less than 3 % of water sample reads (Sodariomycetes: M = 2.9 %, SD 7.0 %, 

Leotiomycetes: M = 1.9 %, SD 3.8 %).  

The top 25 most abundant fungal genera composed around 75 % of total read abundance in 

sediment samples, and slightly less than this, 65 %-75 % in water samples (see Figure 

S2.5). The most abundant genera in sediment samples were, Stagonospora, many species 

of which are major plant pathogens (JGI Mycocosm 2023), Tomentella, Pseudeurotium, and 

Helicodendron, an aero-aquatic hyphomycete (Glen-Bott 1951). The most abundant genera 

in water samples included Vishniacozyma, Alternaria, Cladosporium and Beauvaria 

Alternaria are common and widespread plant pathogens and can cause infections in 

immunocompromised people (Patriarca et al. 2014), Cladosporium are common indoor and 

outdoor moulds (Stewart & Robinson 2013) and many Beauvaria species are insect 

pathogens (Wang et al. 2022). Sediment samples had a significantly higher alpha diversity 

than water samples for all three metrics tested (Shannon, Chao and Simpson diversity, t. 

tests, all p<0.01). 

Initial functional diversity analysis of the 99 taxa (see Figure S2.2) indicated a broad range of 

life forms (e.g., unicellular yeasts, multicellular mychorrizal species) and lifestyles 

(saprotrophs, plant pathogens, animal parasites, symbiotic ectomychorrizal taxa, foliar 

endophytes). In total, only 6 taxa were classed as “aquatic”, 41 taxa “partly aquatic” and 25 

taxa “non-aquatic”. However, the majority of reads in each sample were from those fungal 

taxa classed as aquatic. There appeared to be no clear differences in functional diversity 

between sediment and water samples. 

d. Metazoans (COI mtDNA) 

The COI dataset contained 234 taxa across 70 samples (n = 36 sediment, n = 24 water). 

Again, sediment samples contained more unique taxa (87) than in water samples (35), but 

the taxa shared between the two sample types made up the majority of total read abundance 

(104, 59 %). Water samples had a much higher proportion of Arthropoda reads than 

sediment samples (water, M = 52.9 %, SD = 34.4 % compared to sediment, M = 19.3 %, SD 

= 24.2 %), whereas sediment samples had a higher proportion of Annelida reads (sediment, 

M = 32.8 % SD = 31.8 %, water, M = 12.0 %, SD = 24.3 %). Sediment samples also 
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contained more Bacillariophyta (diatom) and Gastrotricha reads, a mean of 9.1 % (SD = 12.5 

%), and 4.7 % (SD 6.4 %) respectively. Water samples contained more reads assigned to 

Cryptophyta, (M = 10.9 %, SD = 18.6 %). Dinoflagellata (called Pyrrophycophyta in the 

graph) made up a substantial proportion of overall reads: mean 13.0 % (SD 16.3 %) in water 

samples, and 16.7 % (SD 31.5 %) in sediment (see Figure 2.3d).  

The 25 most read abundant species in sediment and water samples made up between 60 

and 95 % of the total read abundance (see Figure S2.6). In sediment samples, oligochaete 

annelid worms in the Naididae , such as Nais communis, Dero obtusa, Dero digitata and 

Chaetogaster, were common, making up 20 – 45 % of total reads. Two oomycete plant 

pathogens were common, Phytopythium and Phytopthora. The pond snail Radix balthica 

was the third most common species encountered. The eDNA of the most abundant species 

was assigned as Alexandrium minutum - likely a misassignment as this is a dinoflagellate 

species usually considered marine, and responsible for “red tides”. 

 

In water samples, eDNA of small crustaceans was common, such as Copepod 

species/genera Mesocyclops leuckarti, Thermocyclops and Eucyclops, and Ostracods 

Cypridopsis vidua, and Limnocythere. Insects included a springtail species often found on 

the surface of ponds and puddles Sminthurides aquaticus. Lingulodinium, a dinoflagellate 

genus, was also present, of which the only extant species is bioluminescant. Additionally, the 

eDNA of two terrestrial species were found in water samples: Lampyris noctiluca, the glow 

worm (which, despite the name, is a beetle), and Agapeta hamana a species of moth whose 

food plant is thistle. 

 

e. Plants and green algae (plant ITS2) 

 

The final pITS dataset contained 119 taxa across 62 samples (n sediment = 35, n water = 

27). Sediment samples again contained a higher number of unique taxa and a larger 

proportion of total read abundance than water samples. At the phylum level, 72 taxa were 

Chlorophyta (green algae) and 47 were Streptophyta (“higher” plants; Embryophytes). 

Sediment and water samples both had a similar mean proportion of reads assigned to the 

green algal class Chlorophyceae (M = 35.4 %, SD = 29.9 % in sediment and M = 26.1 %, 

SD = 25.5 % in water). However, sediment samples contained a far larger proportion of 

Magnoliopsida (dicotyledons or flowering plants) than water samples: a mean of 71.9 % (SD 
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26.6 %) of reads compared to mean 42.1 % (SD 32.3 %) of reads. Water samples contained 

a greater proportion of algal class Trebuxiophyceae and of sequences unclassified at the 

class level (see Figure 2.3e). 

The 25 most abundant plant species made up between 40 % and 75 % of overall read 

abundance in samples (see Figure S2.7).  The most read abundant species in sediment 

samples included Chlamydomonas petasus, a unicellular chlorophyte alga, Phragmites 

australis (southern water-reed), Potamogeton berchtoldii (small pondweed), Alisma 

plantago-aquatica (water plantain), Sparganium stoloniferum (a bur-reed species) and Carex 

acutiformis (lesser pond sedge). In water samples, the most read abundant species were 

primarily chlorophyte algae such as Chlorococcum and Chlamydomonas species, and the 

cultivated species Brassica oleracea and Latuca serriola.  

Of the 47 higher plant (Embryophyta) species, 13 were classed as “wetland”, 30 “terrestrial” 

and only 4 “aquatic”, according to the National Pond Survey species list (see methods). 

Additionally, 12 species were those which are cultivated (e.g., Arachis hypogaea, Peanut) or 

have wild and cultivated varieties (Brassica sp.). In water samples, 70.3 % of the total eDNA 

reads identified as from terrestrial species, with 22.7 % coming from wetland species and 7.0 

% from aquatic species. By contrast, 66.2 % of the eDNA reads in sediment samples came 

from wetland species, 15.8 % from aquatic species and only 18.0 % from terrestrial species 

(see Figure 2.4). In water samples, nearly a third (32.5 %) of eDNA came from cultivated 

species, whereas in sediment samples only 5.83 % of eDNA did. 
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Figure 2.4: Proportion of total eDNA read abundance originating from wetland, terrestrial and 

aquatic higher plant species. “s”= sediment samples (n=35), “w” = water samples (n=27). 

Total number of species = 47. 

 

Community composition: unfiltered, presence-absence and read abundance-weighted 

data. 

For all PERMANOVA analyses of the five different taxonomic communities, sample type 

(sediment or water) and pond type (main pond, surface-water pond, experimental pond or 

groundwater pond) were always significant factors influencing community composition, no 

matter whether unfiltered, filtered, or presence-absence, datasets were used (see Table 2).  

The proportion of overall variance explained by sample type was much higher for bacteria 

than for the other four groups (fungi, eukaryotes, animals and green plants and algae). In 

bacterial communities, sample type accounted for 30 % - 35 % of the overall variance in 

community composition, whereas it accounted for between 6.3 % and 14 % of the variance 

in community composition of the four other communities (see Table 2.2). Furthermore, for 

prokaryotic organisms, the sample type was a much more influential factor than the pond 

type, explaining over five times the overall amount of community variation, whereas for the 

other groups, sample type and pond type appeared to have a roughly equal effect on 

community composition. 

The PERMANOVAs using presence-absence datasets showed more pronounced patterns 

than the read-abundance weighted datasets, with the R2 values of most factors in the 

presence-absence analyses being greater than the R2 values of the same factors in the 

read-abundance weighted analyses (see Table 2.2). The exception to this was the sample 

type - pond type interaction factor, which in some cases was significant in the read 

abundance-weighted datasets and not significant in the presence-absence datasets.  

Compared to the read abundance-weighted datasets, the analyses using unfiltered datasets 

did not show a clear pattern: for instance, for bacteria, sample type had a smaller effect (R2 

= 0.30 unfiltered, R2 = 0.34 filtered) but for animals, it had a greater effect (R2 = 0.072 

unfiltered, R2 = 0.035 filtered). The interaction between sample type and pond type was 

always significant in the unfiltered datasets, whereas this was not true of other datasets. 
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Table 2.2: R2 values of factors in PERMANOVA analyses across five taxonomic groups in 

Pinkhill Meadow ponds, June 2020. The first three columns are results from datasets without 

filtering by confidence of taxonomic assignment. The middle three columns are read 

abundance-weighted datasets, and the latter three results from presence-absence (0 or 1) 

datasets. In all cases, the degrees of freedom were: “Type”, 1, “Pond type”, 3 and 

“Interaction”, 3. One, two and three asterisks indicate whether the analysis was significant at 

the p<0.05, p<0.01 and p<0.001 level respectively.   

 Unfiltered Filtered Presence/absence 

 

Type Pond 

type 

Interacti

on 
Type Pond 

type 

Interacti

on 

Type Pond 

type 

Interacti

on 

16S Bacteria & 

Archaea 

0.30 *** 0.062 ** 0.063 ** 
0.34 *** 0.058 * 0.059 * 0.35 *** 0.053 * 0.042 

18S Eukaryotes 

0.063 

*** 

0.089 

*** 

0.078 

*** 
0.065 

*** 

0.091 

*** 

0.068 

*** 

0.118 

*** 

0.130 

*** 

0.073 

*** 

COI Animalia 

0.072 

*** 

0.083 

*** 

0.061 

*** 
0.035 

*** 

0.059 

*** 

0.046  0.076 

*** 

0.092 

*** 

0.041 

fITS Fungi 

0.072 

*** 

0.099 

*** 

0.047 ** 
0.089 

*** 

0.078 ** 0.035 0.137 

*** 

0.088 

*** 

0.037 

pITS Green 

plants & algae 

0.058 

*** 

0.090 

*** 

0.046 

*** 
0.086 

*** 

0.084 

*** 

0.045 * 0.137 

*** 

0.099 

*** 

0.036 

 

Merged and separate water samples and community representation 

In order to determine whether spatial heterogeneity of eDNA could influence biodiversity 

estimates from larger ponds, 16 separate water samples were collected from around the 

perimeter of the main pond and processed separately, alongside a single merged sample 

combining water from the 16 separate locations. The 17 samples all had the same volume of 

water filtered (see Methods). The samples went through the standard bioinformatic pipeline 

(filtered and read abundance-weighted) as outlined in the Methods. After extracting the Main 

Pond samples from the full datasets, the samples from the 18S dataset and the fITS dataset 

were discarded due to low taxa number (62 for the 18S dataset and 20 for the fITS dataset) 

and low read abundance. This left the 16S Bacteria dataset, the COI Animalia dataset and 

the ITS2 green plants and algae dataset, for which the relative read abundances of different 
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taxa were compared between the separate samples and the merged sample. The results are 

plotted in Figure 2.5. 

For the bacteria dataset, the merged sample and the mean of the read abundance in 

separate samples broadly matched up, especially for the most abundant phyla 

(Gammaproteobacteria: 62.49 % of merged total reads, M = 64.88 %, SD = 14.53 % of 

separate reads; Actinobacteria: 20.85 % merged, M = 23.57 %, SD = 12.09 % separate, see 

Figure 2.5 and table S2.3). However, for both the Animalia dataset and the green plants and 

algae dataset, the mean proportion of classes from the separate samples did not match the 

proportion of different classes found in the merged sample (see Figure 2.5). For instance, 

Ostracoda made up only 2.5 % of reads in the merged sample, but composed a mean of 

15.1 % (SD 23.8 %) of reads in separate samples. Conversely, Apiales reads appeared at a 

high percentage in the merged water sample (41.72 %) but were not found in any of the 

separate samples. 
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Figure 2.5: Taxonomic composition of water samples from the Main Pond of Pinkhill Meadow 

for a) Bacteria b) Animalia and c) Green plants and algae. In each plot, the bar furthest to 

the right (labelled “MPm”) is the water sample merged in the laboratory, the other bars are 

the separate water samples.   

 

Overlap between traditional survey methods and eDNA survey methods 

At the most recent full plant survey of the Pinkhill Meadow wetland complex carried out in 

2016 (Williams 2017) recorded 78 aquatic or emergent higher plant species (Embryophytes) 
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across the entire site, noting that this is “exceptionally rich in plant species, supporting 

approximately 20 % of all Britain’s freshwater taxa”. By comparison, my eDNA survey carried 

out in June 2020 detected 47 Embryophyta species, and only 8 species were detected with 

both the eDNA and the visual survey method (see Figure 2.6). 

Species detected using eDNA but not detected visually were mainly either terrestrial species 

or trees which were not recorded by Williams in 2016. However, some wetland species were 

detected, such as Sparganium stoloniferum (a bur-reed native to East Asia), Stuckenia 

pectinata (ribbon weed) and Alopecurus aequalis (orange foxtail). These may have been 

misidentified (as in the case of Sparganium stoloniferum, which probably originated from one 

of the two other Sparganium species on-site) or perhaps simply missed visually.  

Some taxa, such as a Carex, Salix, Scheonoplectus and Eleocharis species were not 

identified to species level. When looking at genus level, visual methods identified 59 different 

higher plant genera and eDNA methods 29, with an overlap of 13 genera.  

There were only three overlaps at the species level between Animalia taxa detected using 

visual-based survey methods and the eDNA metabarcoding method using the COI primer 

pair: Radix balthica (pond snail), Hydroporus planus, a predaceous diving beetle, and 

Noterus clavicornus, a burrowing water beetle. 

   

Figure 2.6: Overlap between left, aquatic and wetland macrophyte species and right, genera 

detected using traditional, visual-based survey methods and eDNA metabarcoding in Pinkhill 

Meadow ponds, June 2020. 
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Discussion 
 

This study has shown that eDNA metabarcoding using multiple taxonomic markers is a tool 

with great potential to shed new light on the ecology of freshwater ponds and to monitor their 

health, but careful selection of the methods used in the field, the laboratory and in silico is 

required.  

Use of multi-taxa metabarcoding for surveying pond ecosystems 

The sequencing of amplicons from five different primer pairs on a single v3 flow cell using 

the Illumina MiSeq platform had not, to our knowledge, been carried out previously. The 

process was a success, with all five different amplicons producing high total read numbers 

and broadly consistent reads across samples. Our results reveal that an extraordinary level 

of biodiversity was found in these 20 ponds on a single sunny June day: the final 

(confidence-filtered and taxonomically agglomerated) dataset contained 887 taxa, nearly five 

times the number of species detected using traditional survey methods in 2016 (181: 103 

macroinvertebrate species and 78 macrophyte species, Williams 2017). 

All five of the assays predominantly detected taxa which are not monitored traditionally, 

covering a much broader swathe of the tree of life than is usually surveyed in ponds (or in 

many other natural environments). These included meiobenthos such as Nematoda and 

Gastrotricha (COI, 18S), macrobenthos such as Annelida, Mollusca and Platyhelminthes 

(COI, 18S), zooplankton such as Ostracoda, Copepoda and Malacostraca (COI), many 

different algal groups such as Dinoflagellates, Bacillariophyta, Chlorophyta and Cryptophyta 

(18S, COI, pITS), protozoans such as Euglenida (18S), and numerous different fungal (fITS) 

and prokaryote (16S) classes. All these taxonomic groups are difficult and time-consuming, if 

not impossible, to identify using microscopy, and therefore are not systematically monitored 

in pond ecosystems that we know of. In addition, the assays detected ‘higher’ plants 

(Embryophytes), both aquatic and terrestrial (pITS), and some larger insect and Arachnida 

taxa (COI). 

Initial analysis of functional prokaryote diversity revealed taxa involved in the cycling of 

nitrogen, sulphur, metals and carbon, including both methane respiration and 

methanogenesis (see Figure S2.1). This suggests future research into the ecosystem 

functions of freshwater ponds using eDNA of prokaryotes, as has been carried out on larger 

freshwater bodies (e.g., Zhang et al. 2018). For instance, there is current interest into 

whether, and under what conditions, small freshwater bodies become atmospheric carbon 
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sources or sinks (Rosentreter et al. 2021). There is also great potential to use prokaryotic 

eDNA to assess anthropogenic impact on freshwater ponds, as has been carried out in 

wetlands (e.g., Wood et al. 2021) and lakes (e.g., Liu et al. 2022). 

Although these five assays combined detected a broad taxonomic extent, some of the 

assays struggled to identify taxa to lower taxonomic levels, for instance the 18S rRNA assay, 

where taxonomic assignment was low in many cases (66 % of ASVs in sediment samples 

and 88 % of ASVs in water samples unassigned at the Division level). Although subsequent 

assays using a different 18S rRNA primer pair in the same environment have had more 

success (see Chapter 3), this does point to a general feature of universal primers: that it is 

difficult to achieve both taxonomic breadth and specificity (Francioli et al. 2021). Incomplete 

reference databases reduced the amount of information in some cases: for instance, the 

confidence of taxonomic assignment was also low for many fungal ASVs, reducing the 

dataset from 7,613 ASVs to 99. This is to be expected as it is estimated that less than 7 % 

total fungal diversity has been described (Hawksworth & Lucking 2017), and aquatic fungi 

are particularly overlooked (Ittner et al. 2018).  

The taxonomic composition detected by the COI primer pair and the 18S primer pair 

overlapped (both groups detected Arthropoda, Mollusca, Annelida, Bacillariophyta and 

Rotifera eDNA), but each primer pair also detected taxa the other did not (e.g., Nematoda for 

18S, Dinoflagellata (Pyrrophycophyceae) for COI.) Other studies have found differences in 

the taxa detected using 18S and COI assays on the same samples (Giebner et al. 2020, 

Horton et al. 2017). Similarly, the 18S primer pair detected Charophyceae (stoneworts, a 

traditional indicator taxon of clean water ponds), but these were not detected in the pITS 

assay. These results show how primer bias can significantly influence biodiversity 

assessments using eDNA metabarcoding, and the power of using multiple taxonomic 

markers. 

eDNA metabarcoding using the COI marker gene identified only three of the 103 

macroinvertebrate species identified using sweep-netting at Pinkhill Meadow in 2016 

(Williams 2017). This is comparable to other eDNA metabarcoding/traditional comparisons in 

ponds (Harper et al. 2021) and may be due to a variety of reasons: greater volumes of 

meiofaunal eDNA compared to macrofaunal eDNA, less shedding of eDNA by hard-bodied 

organisms, and primer bias (Leese et al. 2021).  

eDNA metabarcoding using the plant ITS2 marker gene identified eight of the 78 macrophyte 

species identified visually at Pinkhill Meadow, often only detecting a single species of each 

genus (e.g., rushes Juncus, sedges Carex and pondweeds Potamogeton).  This is similar to 
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the overlap found by Drummond et al. (2021) of 13 %, using ITS2 in lake water, but lower 

than the 31 % reported by Alsos et al. (2018), using the trnL marker on lake sediment 

samples. I suspect this result is at least partly due to incomplete reference databases for the 

target aquatic and wetland plant taxa: for instance, the taxon identified as Sparganium 

stoloniferum, a bur-reed native to East Asia, was most probably in reality eDNA from one of 

our native Sparganium species. In addition, different plant taxa may shed eDNA at different 

rates. The findings may also be due to the high proportion of eDNA from terrestrial species 

which were found in the samples, which could have swamped the weaker signal from the 

aquatic and wetland species. Most plant species identified were terrestrial species (30 out of 

47) and reads from terrestrial plants made up 70 % of the total read abundance in water 

samples, and 18 % of sediment samples.  

Terrestrial species were not only found in the pITS dataset: terrestrial insects were detected 

in pond water using the COI assay (Figure S2.6), and upwards of 25 % of fungal taxa 

sequenced were assigned as terrestrial or only partly aquatic (Figure S2.2).  This shows the 

ability for eDNA sampled from pond water and pond sediments to originate from the 

surrounding landscape and air, and travel to the pond via wind, water or on animal vectors, 

as has been shown previously in rivers (Reji Chacko et al. 2023, Yang et al. 2021, Matsuoka 

et al. 2019) and lakes (Alsos et al. 2018, Bista et al. 2017).  This land-air-water eDNA 

linkage may be particularly pronounced in ponds due to their small size, and (often) large 

proportion of the water surface overhung by trees and other vegetation, at least compared to 

lakes. This feature of ponds could be a disadvantage for eDNA metabarcoding for 

biomonitoring of the pond environment itself, but conversely, an opportunity to use ponds as 

passive eDNA samplers of the surrounding terrestrial landscape (Ushio et al. 2017, Harper 

et al. 2019c, Sales et al. 2019).   

Finally, for all five assays the community composition in water and sediment samples was 

distinctly different (see Figure 2.3 and Table 2.2), with between 40 % and 60 % of ASVs only 

detected in one of the sample types. This reflects the different ecological communities that 

inhabit the two pond microhabitats, as well as the different transport, retention and 

degradation of eDNA in sediments vs water.    

The effect of taxonomic filtering and read abundance weighting on community 

composition metrics derived from eDNA metabarcoding 

 

Overall, it appears from my data that community composition metrics derived from eDNA 

metabarcoding data are relatively robust to taxonomic filtering by confidence and read-
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abundance weighting. Similar overall patterns of community composition were found for 

microbes, micro eukaryotes, fungi, plants and animals, no matter whether low confidence 

assignments were filtered out, or whether a presence-absence matrix was used instead of 

eDNA read abundance. This is contrary to previous findings (e.g., Machler et al. 2021), and 

points to an increased confidence in filtering methods, and using eDNA read abundance in 

samples as a proxy for taxon abundance in the environment. 

   

In each case, sample type (sediment or water) and pond type (main pond, surface water 

pond, gravel pond, experimental pond) were both significant factors in determining 

community composition, and there was often a significant interaction between the two 

factors (see Table 2.2). Sample type explained a much greater proportion of the variation in 

community composition in prokaryotic communities (over 30 %) than in the other four 

communities sequenced, where the variance explained by sample type was always less than 

10 %. For all five communities, the proportion of total variation in community composition 

explained by pond type and the sample type:pond type interaction was always less than 13 

%. 

 

Transforming the read abundance weighted dataset into a presence-absence dataset did not 

alter the overall patterns substantially.  Some patterns appeared more pronounced, with R2 

values increased compared to the read abundance datasets. Conversely, the interaction 

factor was found to be not significant for some communities, whereas it had been in the read 

abundance-weighted dataset. This may be because the presence-absence method gives 

greater weight to rare taxa than in the read-abundance weighted dataset.  

 

 Does a merged water sample represent the community of a larger pond? 

 

The main pond in Pinkhill Meadow is 0.56 ha in area. My experimental analysis compared 

the taxonomic composition and read abundance of organisms retrieved from a single 

merged water sample (60 ml from 17 locations around the perimeter = 1020 ml) to the 

composition and mean read abundance from 17 separate 940 ml water samples taken at the 

same locations. 
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For prokaryotic taxa (bacteria and archaea), the merged sample not only detected all the 

phyla which were detected in the separate samples, but the relative read abundance in the 

merged sample of the top two phyla (Gammaproteobacteria and Actinobacteria) was very 

similar to the mean read abundance from the separate samples (within 3 % in both cases). 

The percentage read abundance of other phyla was not estimated as accurately.  

However, the same pattern was not found in larger organisms: animals and green plants and 

algae. In these cases, the merged sample returned taxa which weren't detected elsewhere 

in the separate samples, such as Apiales, or were detected in the merged sample in a much 

greater abundance, such as Bacillariophyceae. The merged sample often failed to detect 

taxa which were found in the separate samples, such as Bivalvia or Brassicaceae (see table 

S2.3 for the full comparison). 

 

This finding indicates that subsampling and then combining smaller volumes over a large 

pond provides a good representation of bacterial and archaean taxa, but not of animals, 

green plants or algae. This is probably because there are thousands of individual prokaryote 

organisms per ml of pond water, so a smaller volume is required per location to capture most 

of the genetic diversity, compared to the lower eDNA copy number of larger, patchily 

distributed eukaryotes.   

 

Many studies have found that increasing the volume of water filtered increases the yield of 

eDNA (Hunter et al. 2019, Govindarajan et al. 2022), and pooling subsamples decreases 

species capture (Sato et al. 2017), yet there are still commonly used protocols and field 

equipment which recommend filtering smaller volumes, combining them, and capturing the 

eDNA on a single filter for a single pond (NatureMetrics 2022). When targeting eukaryotic 

organisms with eDNA metabarcoding, we recommend the use of larger water volumes in 

total, spread over several separate water samples covering different pond microhabitats. 

Each sample should be filtered, extracted from and sequenced separately to increase eDNA 

capture.    

 

A few studies have examined the relationship between body size or total biomass and eDNA 

capture, but often within a single taxonomic group or species (Yates et al. 2020, Elbrecht et 

al. 2017), yet few have considered these implications for multi-marker eDNA metabarcoding, 
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where the target taxa may be several orders of magnitude different in abundance and 

biomass. 

 

 

Conclusions 
 

Considerations for study design when using eDNA metabarcoding for ponds  

 

My study highlights some important considerations which should be made when designing 

future eDNA metabarcoding studies of ponds. 

 

Firstly, multi-taxa eDNA metabarcoding has huge potential for use in freshwater pond 

environments, particularly for describing hitherto unknown pond biodiversity from many more 

branches of the tree of life, and for biomonitoring of entire pond ecosystems. However, it is 

no replacement for current, visual-based biomonitoring of pond ecosystem health, with very 

low detection of traditional macrophyte and macroinvertebrate indicator taxa, and restricted 

ability to resolve taxa to species level. Therefore, to make eDNA metabarcoding suitable for 

pond biomonitoring going forward, three approaches could be taken: 

 

1. Increase the overlap with traditional taxa (macroinvertebrates and macrophytes), by 

optimising primers to better amplify the target organisms, expanding reference databases 

with more sequences from the target organisms and improving the taxonomic assignment 

pipelines so they are more efficient; 

 

2. Produce new biomonitoring metrics based upon organisms which are detected well by 

16S, 18S or COI metabarcoding e.g., Chlorophyta, meiofaunal assemblages (Dembowksa et 

al. 2018); 

 

3. Develop taxonomy-free metrics by comparing eDNA communities across known diversity 

or disturbance gradients of ponds (calculated, for instance, by PSYM or the HSI for Great 

Crested Newts). There has been success using this method for other environments e.g., 

seabeds around Salmon aquaculture farms (Fruhe et al. 2020). 
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Secondly, at least for higher plants, and most probably for other organisms as well, eDNA 

sampled from ponds detects a large proportion of terrestrial organisms from the surrounding 

landscape. The pattern is more pronounced in water samples, whereas eDNA sampled from 

pond sediments detects fewer terrestrial organisms. This is probably due to ponds’ small 

size relative to lakes, and low flow conditions, allowing eDNA to accumulate. The terrestrial 

‘contamination’ may be a drawback for some applications, such as monitoring of aquatic 

pond species, but conversely could be an advantage for other research questions, for 

instance, monitoring change in the surrounding habitat or landscape, and examining the 

land-water interface. 

 

Thirdly, eDNA is distributed heterogeneously throughout a pond, both between the pond 

water and the benthic sediments, and in the pond water throughout the area of the pond. For 

all five different communities sequenced by the five different taxonomic markers, water and 

sediment samples had a significantly different community composition (Figure 2.3, Table 

2.2). Therefore, for a more complete picture of pond biodiversity, both pond water and 

surface sediments should be sampled in eDNA studies. If financial or time constraints limit 

sampling to either medium, we recommend sampling pond surface sediments over pond 

water: sediments do not require a filtration step, the extraction process usually is faster, and 

the yields of eDNA were, in our study, greater. Sediment traps could be used to record more 

accurately the timespan the eDNA was laid down. 

 

In our larger pond (>0.5 ha), 12-16 separate one litre water samples detected a greater 

number of taxa than a single 1 litre sample of water merged from the 12-16 locations (Figure 

2.5), other than for prokaryotic organisms. Therefore, we recommend that for ponds larger 

than 300 m2, multiple water subsamples are collected, each of a sufficient volume (1 litre or 

greater) within financial and time constraints. If a pond has different microhabitats (e.g., 

reeds, bare substrate, submerged plants, open water, plant roots), care should be taken to 

sample each, as is also the case in the current sweep-net method (PSYM, Pond Action 

2002).  

 

Thirdly, my analyses suggest that beta diversity metrics based on eDNA are robust to 

different dataset pre-processing procedures. Whether taxa with low confidence of 

assignment were filtered out, and whether the dataset was read abundance-weighted or 
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purely based on the presence and absence of different taxa had very little impact on the 

relative effects of sample type (sediment or water) and pond type (gravel or clay substrate, 

pond location) on community composition. This pattern held true across all five communities 

sampled: prokaryotes, eukaryotes, fungi, animals and plants. The unfiltered analyses found 

a significant interaction between pond type and sample type whereas this was often lost in 

the filtered datasets. For biomonitoring multiple ponds, it may be better to use unfiltered 

datasets with no taxonomic assignment, as these better reflect the true genetic and 

community diversity of the samples (Cordier et al. 2020). Presence-absence data may be 

more appropriate for alpha diversity or gamma diversity metrics, but for beta diversity may 

give undue weight to rarer taxa (Machler et al. 2020). 
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Chapter 3: Understanding seasonal 
turnover in pond ecosystems using 
eDNA metabarcoding 

 

Abstract 

This chapter reports on the findings of whole-community eDNA metabarcoding at a high 

spatial and temporal resolution of ponds in a small wetland complex (~5 ha) in Oxfordshire, 

UK. Water and sediment samples were collected from 22 ponds in January, March, July, 

September and November 2020. The prokaryote, microbial eukaryote, multicellular 

eukaryote and macrophyte communities of the ponds were metabarcoded by amplifying 

eDNA from the samples using three different primer pairs (16S rRNA, 18S rRNA and the 

ITS2 gene region), followed by high-throughput sequencing on an Illumina MiSeq.  

658 prokaryotic genera and 610 eukaryotic species were detected overall, a threefold 

increase in species detected using traditional visual-based identification methods. There 

were marked differences in community composition between water and sediment samples, 

however these were more distinct in prokaryote and microbial eukaryote communities than in 

mullticellular organisms. Sediment and water sample composition altered significantly 

between sampling timepoints for all four types of organism, but sediment community 

composition was more stable across seasons than community composition in water 

samples.    

These findings have significant implications for environmental DNA metabarcoding methods 

in ponds going forward, indicating that sample season and water temperature should be 

considered in future sample design. Furthermore, this study sheds light on the community 

structure and diversity of microbes and microfauna in freshwater ponds, which have hitherto 

been little studied.    
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Introduction 

Freshwater ponds (lentic waterbodies <5 ha in area and <5 m deep (Richardson et al. 2022)) 

are important habitats, both in the UK and globally, for biodiversity, ecosystem function and 

ecosystem services (Biggs et al. 2005, Céréghino et al. 2007, Céréghino et al. 2014). 

However, compared to rivers, lakes, and larger wetlands, they are under-researched (Biggs 

et al. 2017). In the UK and the rest of Europe, ponds are not included in the Water 

Framework Directive and there are only a handful of statutory instruments pertaining to their 

protection and monitoring compared to larger freshwater habitats (Hill et al. 2018, Oertli et al. 

2010). 

Environmental DNA metabarcoding - monitoring environments not through sampling and 

counting whole organisms, but through sampling their DNA - has now been deployed in a 

huge variety of ecosystems on all continents of the globe, from the Antarctic to the Tropics 

and from the deep ocean to the tops of mountains, although currently biased towards the 

Global North and West (Schenekar 2023). eDNA has been successfully extracted and 

sequenced from water, soil, sediment, air, and other media (Ruppert et al. 2019). In 

freshwater environments, eDNA is well on the way to becoming a standard monitoring tool. 

In ponds across England, a single-species eDNA assay is used to monitor Great Crested 

Newts (Triturus cristatus) (Natural England 2020) and garden ponds are monitored using 

eDNA via a citizen science programme (NHM 2022). 

Due to research gaps, many unanswered questions about pond ecosystems remain. 

Traditional pond surveys, when they are been carried out, focus on macroinvertebrates and 

plants (macrophytes) (Biggs et al. 1998). eDNA metabarcoding in ponds has mainly 

focussed on amphibians, fish and macroinvertebrates (Harper et al. 2019a).  Compared to 

rivers and lakes, the microbial, microfaunal and algal communities of ponds have rarely been 

studied, as have the ecological communities inhabiting pond sediments, not only the water 

column. Therefore, it is not known whether these communities are like those in other 

freshwater environments, such as rivers, lakes, and wetlands, or have unique 

characteristics. Additionally, ponds also have tended to be sampled in the summer months, 

and their community dynamics at other times of the year are less known (Hill et al. 2016).  

These knowledge gaps are not only of interest for answering questions of fundamental 

ecology, but also of relevance to developing novel biomonitoring methods and metrics for 

ponds. For instance, if nationwide pond eDNA sampling is spread across several months, 

will the results be comparable? Does eDNA metabarcoding of microbes or microfauna 
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provide an insight into an aspect of overall pond ecosystem health and functioning hitherto 

overlooked? 

eDNA metabarcoding studies of bacteria and archaea communities in sediment and water 

and in both rivers and lakes have found broadly consistent results: in water samples, 

Proteobacteria, Bacteroidetes, Actinobacteria and, to a lesser extent, Verrucomicrobia were 

the most abundant phyla (Cruaud et al. 2020, Li et al. 2020, Gweon et al. 2021, Doherty et 

al. 2017, Read et al. 2015), whereas in sediment samples, Proteobacteria and Bacteroidetes 

were still abundant, but Acidobacteria, Chloroflexi and Firmicutes predominated over 

Actinobacteria (Yuan et al. 2023, Liu et al. 2022, Wu et al. 2019, Liu et al. 2018, see Table 

S3.2).  

eDNA metabarcoding of eukaryote communities in rivers and lakes have produced less 

consistent results, partly due to changes and inconsistencies in taxonomic classification (Adl 

et al. 2019). Phyla frequently reported from sequencing of eDNA in water and sediments 

include Ochrophyta, Arthropoda, Cryptophyta, Ciliophora, Chlorophyta and Dinoflagellata 

(see Table S3.1). However, there have been few studies which directly compare sequenced 

eukaryote communities from water and sediment from the same sample location. In Lake 

Baikal in Siberia, Yi et al. (2017) found similar proportions of the most abundant taxa in 

sediment and water samples (Metazoa, Chrysophyceae, Ciliophora, Cercozoa). Ionescu et 

al. (2022) used eDNA metabarcoding to sample both bacteria and eukaryote communities in 

ponds in north-eastern Germany, and found that 15 % of the variation in communities could 

be explained by sample type (sediment or water). Eukaryotic phytoplankton had similar 

taxonomic composition in water and sediments, with Chlorophyta the most abundant taxa. 

However, sediment samples had a greater proportion of Cryptophyta. 

The ecological communities in freshwater lakes and ponds undergo seasonal changes. In 

higher latitudes, macrophyte abundance and diversity peaks in summer (Tian et al. 2023), 

and macroinvertebrate diversity in autumn (Hill et al. 2016). Phytoplankton may have 

“bloom” in spring, autumn or both (Winder & Cloern 2010), and zooplankton are also subject 

to seasonal variation (Sommer et al. 2012, Liu et al. 2022). Studies have shown that eDNA 

metabarcoding can reflect these seasonal changes in community composition.  

Metabarcoding of eukaryote communities has detected plankton blooms and die-offs in 

rivers (Cruaud et al. 2019) and lakes (Zhang et al. 2019, Banerji et al. 2018, Mikhailov et al. 

2019, 2021). eDNA metabarcoding has also detected seasonal changes in bacteria 

composition in rivers (Liu et al. 2018), and lakes (Jiao et al. 2021) which appears to be more 

pronounced in water than in sediment samples.    
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Metabarcoding studies metazoan communities in freshwater environments have also found 

seasonal variation in community composition. For instance, in chironomid midges (Bista et 

al. 2017) and zooplankton from sequencing lake water (Yang and Zhang 2020), 

invertebrates in water samples from Sicilian streams (Hupalo et al. 2022) and fungal 

communities in stream water (Matsuoka et al. 2021).  

eDNA transport and degradation is influenced by abiotic conditions, such as UV light, 

temperature, and wind-mixing (Barnes & Turner 2016), which also alter seasonally. Seasonal 

eDNA metabarcoding studies must take care to ensure changes in abundance and diversity 

metrics reflect a biological reality, rather than methodological artefacts There have been 

fewer metabarcoding studies targeting aquatic and wetland plants in freshwaters compared 

to those targeting animals. Most plant metabarcoding applications have sequenced ancient 

DNA in sediment cores rather than contemporary communities (Reveret et al. 2023). 

However, some whole community metabarcoding surveys of macrophytes have been carried 

out, for instance in wetland sediments in Australia (Shackleton et al. 2019), lake sediments in 

Norway (Alsos et al. 2018) and lake water in Michigan, USA (Drummond et al. 2021) and 

river water (Ji et al. 2021). Single species eDNA assays of aquatic vegetation, for instance, 

those detecting invasive species, have found temporal variation in the abundance of eDNA 

(Doi et al. 2021). I expect this finding to be repeated for the whole macrophyte community as 

it undergoes dramatic annual changes in abundance (Luo et al. 2016). 

Few studies have directly compared the relative effects of sample medium (water, sediment, 

biofilm etc), sample season, and local abiotic conditions on communities sequenced via 

eDNA metabarcoding. This study is one of the first to do so (although see Ionescu et al. 

2022). It is also the first, to my knowledge, to sequence whole green plant communities over 

the course of a year in any freshwater environment.  

In this chapter, I report the results of a study monitoring four distinct components of the pond 

biological community across all seasons of the year, using eDNA metabarcoding methods. 

Water and sediment samples were taken at high resolution from 20 ponds in a small (5 ha) 

wetland complex (Pinkhill Meadow) in Oxfordshire, UK, along with water chemistry and other 

environmental variables, in January 2020. Sampling was repeated in March, July, 

September, and November 2020. Each of the c.320 samples generated from this sampling 

then underwent eDNA metabarcoding, via DNA extraction, amplification using three different 

primers and high throughput DNA sequencing of marker genes on an Illumina MiSeq. PCR 

primers selected to target different components of the pond community: bacteria and 
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archaea (16S rRNA gene), microbial eukaryotes (18S rRNA gene), multicellular eukaryotes 

(18S rRNA gene) and green algae and macrophytes (plant ITS2 gene region).   

From observation and prior studies (Williams 2017, Williams et al. 2010, P. Williams personal 

communication Jan 2020), the environmental conditions of ponds at the study site varied 

considerably: both spatially, between different ponds, and temporally, throughout the course 

of a year, given varying rainfall, temperature and sunlight, and flood events from the nearby 

River Thames.  

The aim of this study was threefold: to discern whether eDNA metabarcoding in sediment or 

water samples capture different aspects of pond ecological communities; to discern whether 

sample season influences community composition as sampled by eDNA metabarcoding; and 

to provide an insight on the taxonomic composition of microbial communities in ponds, to 

compare them with those in other freshwater habitats.     

      

Hypotheses 

Based on the research literature, the following hypotheses were formulated and tested: 

1. Sediment and water samples will have a distinctly different taxonomic composition, 

reflecting taxa adapted to the different environmental conditions in pond sediments 

vs pond water (e.g., anoxic vs oxic, benthic vs pelagic). 

2. Water samples will have greater seasonal variation in community composition than 

sediment samples. This is because the water environment undergoes more 

significant changes throughout the year in hydrology (water level, connectivity with 

other ponds) and other environmental variables (temperature, nutrient content) than 

the pond sediments, which have a more stable environment. 

3. Pond physiochemical conditions (influenced by substrate, water source and shade 

levels) will also affect community composition. 

4. Due to shorter generation times, higher numbers of individuals and higher taxonomic 

diversity, the patterns in hypotheses 1, 2 and 3 will be more pronounced in 

prokaryotic and eukaryotic microbes compared to multicellular plants, fungi and 

animals. 
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Methods 

 

Study site 

Pinkhill Meadow nature reserve, Oxfordshire, is a wetland complex of over 40 ponds, with 

varying sizes, shapes, depths, permanence and water sources (Figure 3.1). The ponds were 

excavated in 1990 to provide a practical case study for developing ideas on pond and 

wetland creation and management (Freshwater Habitats Trust 2019). The ponds were 

monitored, using traditional, visual identification-based methods, for wetland plants and 

invertebrates annually in the first decade, and then at intervals up until the present day 

(Biggs & Williams 2024).  

The site is around 4 ha in size, and located in a meander on the River Thames, adjacent to 

Farmoor reservoir, to the west of the city of Oxford. Around 1.5 ha of the site is unimproved 

floodplain meadow and is grazed by a small herd of cattle between October and March and 

the hay cut once a year. Other than this, there is no management of the site, and it is not 

accessible to the public. The underlying geology of the site is a clay (alluvium) layer 

overlying a gravel aquifer. The alluvium layer is thicker at the northern end of the site, and so 

the ponds in this region have a clay substrate and tend to be semi-permanent, drying out in 

drought years. The ponds at the southern end of the site are dug into the gravel aquifer, and 

so are groundwater fed.  

20 distinguishable water bodies were chosen in December 2019 for sampling for water, 

sediment and abiotic variables year-round. The 21 ponds on the site were divided into four 

rough "pond types" given similarities in substrate (clay vs gravel), physical habitat (vegetated 

vs open), hydrological regime (groundwater vs surface water-fed), and location on the site 

(see Chapter 2 methods for more details). Figure 3.1 shows a map of the site with locations 

of sample points named in red. Some larger waterbodies were sampled in multiple locations 

around the perimeter of the pond. Smaller waterbodies were sampled in a single location 

near the perimeter. 

Full sampling of water and sediment and in-field testing of abiotic variables over all 21 

waterbodies was first carried out over a single day in January 2020. The full sampling was 

then repeated bi-monthly over a single day in March, June (sampling was delayed from May 
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due to restrictions caused by the Covid-19 pandemic), July, September and November 2020. 

For full details of water and sediment samples taken from each pond per sampling event, 

along with blanks, see supplementary Table S3.5.  

Water samples were collected from 15 waterbodies (6 samples were collected from the Main 

Pond, and a single sample from 14 other ponds) and analysed in a laboratory for additional 

water chemistry variables. These samples were taken in June, September and November 

2020, as close as possible to the main sampling event (either the prior or subsequent day). 

Not all sampling points were sampled at every sampling event due to changing water levels 

– in some months, ponds did not have any water in them. In other events, separate ponds 

were joined due to floodwater. A maximum of 42 water and sediment samples were collected 

from the 21 waterbodies on site. The samples from June were used for methods 

development and testing, and the results are reported in Chapter 2.  

 

Figure 3.1: Pinkhill Meadows pond complex site, with key human and natural features 

labelled. All 42 sample points overlaid in red text. MP = Main Pond, SPP = Semi-permanent 

pond, SWP = Surface water pond, EP = Experimental pond, GWP = Groundwater pond, GP 

= Gravel pond, SRB = Southern reed bed. 
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Water and sediment sample collection 

Water samples were collected using 1L plastic bottles which had been sterilised via a 

laboratory acid washer or soaking in 10 % bleach. Nitrile gloves were used to collect water 

and changed between samples. Bottles were triple washed in pond water before a sample 

was taken. Water samples were taken around 10cm from the surface of the pond in all cases 

(a compromise between the tendency of DNA to sink and avoiding disturbing the sediment). 

Water was stored in coolboxes and transported to laboratory facilities within four hours of 

collection, where it was stored at 4°C for a maximum of 24h before filtration. Water samples 

were taken from the same point in all sampling events. 

Sediment sample collection and storage 

Sediment samples were collected from the same location as the water samples, using a 

custom sediment sampler comprising of a tubular aluminium rod with a holder for a 50 ml 

centrifuge tube, both of which had been sterilised using an acid wash or 10 % bleach before 

use. The scoop was triple washed in pond water before each sample. Sediment samples 

were taken from the surface of the sediment, within the top ~10cm.  

 

To attempt to prevent cross contamination between sample sites, the sediment scooper was 

wiped with 10 % bleach between uses and left to air dry. Sediment samples were stored in 

coolboxes and transported to the laboratory within 4 hours of collection and stored at -20’C. 

Measuring abiotic variables 

In the field, an ultrameter II was used to measure pH, temperature, Total Dissolved Solids 

(TDS), Conductivity and Oxidative-Reductive Potential (ORP) at each sample point. 

Measurements were taken at the same time as the water and sediment samples were 

collected. The sensor was triple washed in pond water before the measurements were 

taken. For each sample point, three measurements were taken, and the mean calculated.  

 

Water depth at each sample point was measured using a metre rule. 

Water samples for water chemistry analysis were collected using a wide-mouthed bucket 

which was single washed before sampling. From this larger sample, a smaller 100 ml 

sample was taken to quantify total suspended solids (TSS) in the laboratory. Two 60 ml 

samples were subsampled from the bucket and filtered using 0.45um filter on site. The 

bucket was then stirred, and a third 60 ml sample was collected and not filtered. The two 
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filtered samples were analysed for 1. total Soluble Reactive Phosphorus (SRP) and 2. 

chlorophyll, ammonia (NH4), Total Dissolved Nitrogen (TDN) and Total Organic Carbon 

(TOC). The unfiltered sample was analysed for Total Phosphorus (TP). For details of the full 

method, see Bowes et al., (2018). 

CanopyApp (University of New Hampshire, ver. 1.0.4) was used to estimate tree canopy 

cover at each sample point in July 2020. The site was visually assessed during each 

sampling event and photographs taken to record which waterbodies were hydrologically 

connected or separated due to flooding or drying up. 

Filtration 

An average of 1000 ml of water was collected for eDNA filtration at each sample point. For 

14 smaller ponds, only one 1000 ml sample was taken. For three medium ponds (>100 m2, 

GWP, SPP and GP1), two 1000 ml water samples were taken in the field. In the laboratory, 

each of these were sub- sampled to 500 ml which were combined to make one 1000 ml 

sample which was subsequently well mixed and filtered. 

 

 One medium-size pond (SWP) was sampled in a similar way, except three 1000 ml samples 

were taken in the field, and these were sub-sampled for 330 ml each which were combined 

to make one 990 ml sample. For the large main pond, up to 17 separate 1000 ml samples 

were collected in plastic bottles in the field. In the laboratory, ~60 ml of each of these 

samples were subsampled and combined to make a merged Main Pond sample of ~1000 

ml, which was subsequently filtered. The ~940 ml of the 17 separate samples (MP1 – MP17) 

were also filtered separately.  

 

All samples were filtered in a sterile environment using vacuum pump filters sterilised via 

acid washing or soaking in 10 % bleach. Each 1000 ml sample was initially pre-filtered with a 

12um Cellulose-Nitrate filter (Whatman, AE100) and subsequently filtered with a 0.45um 

Cellulose Nitrate filter (7141 114). The filter papers were removed from the filters using 

sterilised tweezers and placed in 5 ml centrifuge tubes, which were stored at 4°C until 

extraction.  

DNA extraction 

DNA from water samples was extracted from the stored filter papers after defrosting using 

the standard protocol of the DNeasy PowerWater DNA extraction kit (Qiagen Group). An 

extraction blank was produced by following the normal extraction protocol but omitting any 
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sample. Concentration of DNA was determined using a Nanodrop spectrophotometer. DNA 

was stored in Elution buffer in 1.5 ml microcentrifuge tubes at 20°C. The total volume of 

extracted DNA ranged from 70 µl – 100 µl. 

DNA from sediment samples was extracted by defrosting the full sediment sample and then 

subsampling 0.25g, using a clean weighing boat and disinfected tweezers. DNA was then 

extracted using a DNeasy Powersoil kit (Qiagen Group) following manufacturers’ 

instructions. An extraction blank was produced by following the usual protocol but omitting 

any sample. Concentration of DNA was determined using a Nanodrop spectrophotometer. 

DNA was stored in Elution buffer in 1.5 ml microcentrifuge tubes at –20'C. The total volume 

of extracted DNA ranged from 80 µl – 85 µl. All DNA extraction protocols were carried out 

using sterile procedures i.e. with gloves, and the use of 99 % ethanol and bleach to sterilise 

equipment and laboratory benches between any handling of DNA samples. 

Amplification and sequencing 

Three primer pairs were chosen, which amplify different DNA or RNA targets and produce 

different length fragments, in order to detect different segments of the pond community (see 

Table 3.1 below).  

Table 3.1: Primer pairs used in the Pinkhill Meadow seasonal study. For full primer 

sequences, see Table S2.1 

Primer pair name and 

reference 

Fragment 

length 

Gene 

amplified 

Community primer 

optimised to target 

NSF573/EKNSR951 (Mangot et 

al. 2013) 

425bp 18S rRNA Eukaryotes 

515F/806R (Caporaso et al. 

2011 and Walters et al. 2015) 

390bp  16s rRNA Bacteria 

ITS2-S2F/ITS4_R (Chen et al. 

2010) 

300-460bp 

 

ITS2 rDNA Viridiplantae (vascular 

plants and green algae) 

 

DNA was amplified using a two-step PCR approach. Each primer pair was first tested on six 

randomly chosen samples (three water and three sediment), along with an extraction blank 

and PCR blank, to assure positive amplification. Then, all samples were amplified with a 

modified primer (an amplicon primer with Illumina MiSeq sequencing primer and pre-adaptor 

added). 1-2 PCR blanks were also amplified at this stage (normal PCR reagents, but with 

molecular grade water added rather than any sample). Then Step 2 PCR was carried out to 
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add on the barcodes (Illumina MiSeq index) and flow-cell adaptors. Steps 1 and 2 were 

repeated for the two other primer pairs. Therefore, each sample had three two-step PCRs 

carried out on it, one per primer pair. For PCR conditions, see Table S3.5. 

Amplicons were normalised using SequalPrep Normalisation Plate Kit, 96-well (Invitrogen, 

Carlsbad, CA), gel purified using the QIAquick gel extraction kit (Qiagen Group) and 

quantified using Qubit high sensitivity dsDNA Assay kit (Invitrogen, Carlsbad, CA). The 

resultant amplicon library was sequenced at a concentration of 9 pM with a 0.675 pM 

addition of an Illumina generated PhiX control library. Sequencing was performed on an 

Illumina MiSeq platform using MiSeq Reagent Kit v3 (Illumina Inc., San Diego, USA). 

Bioinformatic pipeline 

For the 16S and 18S DNA sequences, raw reads were processed through the DADA2 

pipeline ver. 1.8 (Callahan et al., 2016) in R (R Core Team, 2018). Briefly, adapters and 

primers were initially removed from the raw reads using cutadapt (Martin 2011). Then 

amplicon reads were trimmed to maintain Q score > 30, at 230 and 200 bases, forward and 

reverse respectively for 16S reads and at 250 and 200 bases respectively for 18S. The 

results filtered with DADA2 default settings, except for the maximum number of Ns 

(maxN) = 0 and maximum number of expected errors (maxEE) = c(5,5).  

Sequences were dereplicated and the DADA2 core sequence variant inference algorithm 

applied. Processed forward and reverse sequences were merged using the mergePairs 

function, and a sequence table was constructed from the resultant, merged amplicon 

sequence variants (ASVs). Chimeric sequences were removed from the ASV table using 

remove BimeraDenovo with default settings. To assign taxonomy, the online IDTAXA tool 

from the R package DECIPHER ver. 2.14 (Murali et al. 2018) was used, using the SILVA 

database, ver. 138.1 (10th March 2021) for 16S and the PR2 database, version 4.13 (17th 

March 2021), both provided by the DADA2 package. This function gives a taxonomic 

classification to genus level and provides confidence scores for each level of classification. 

The confidence threshold for both types of sequence was set at 60 %. 

For 16S ASVs, using the R package ‘phyloseq’ (version 1.42.0, McMurdie & Homes 2013) 

samples of less than 4,000 reads were pruned, leaving 288 samples. Ultra-rare taxa (less 

than three reads and only in one sample) were removed. Samples were rarefied to the 

median sampling depth (21,605 reads). Removing low-read samples and taxa aids in the 

removal of false positive detections (Shirazi et al. 2021, García-Machado et al. 2023). 

Rarefaction is a widely used and statistically valid way to normalize sample size, and so 
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control for the uneven sequencing effort between samples (Weiss et al. 2017, Schloss 

2023).  

 

ASVs with the same taxonomic assignment were agglomerated, and those with a root 

confidence of <100 were excluded from the dataset. ASVs assigned to ‘Mitochondria’ and 

‘Chloroplast’ were also removed. Any field, extraction or PCR blanks that had not been 

removed from preceding steps were then removed.   

16S blanks contained 123 taxa, of which all but two were shared with pond water and 

sediment samples. However, only five taxa had total read abundance across all blanks 

>1000. These five taxa were removed from further analysis. 

For 18S ASVs, a similar procedure was followed, although samples of less than 1,000 reads 

were pruned, leaving 285 samples. As before, ultra-rare taxa were removed, the samples 

were rarefied to the median sampling depth (8,908 reads), ASVs were taxonomically 

agglomerated and those of root confidence <100 were excluded. To separate the datasets 

for microeukaryotes and multicellular eukaryotes, taxa assigned as “Metazoa”, 

“Streptophyta” and “Fungi” were filtered out from the dataset for the former and kept for the 

latter (with all other taxa filtered out). Any field, extraction and PCR blanks that had not been 

removed from preceding steps were then removed. Blanks contained 32 taxa, all of which 

were also present in environmental samples. Only one taxon was present at over 1000 

reads across all blanks, which was identified as a Vermamoebidae Amoebezoan, and was 

removed from subsequent analyses.  

For the ITS2 sequences, a different process was followed. Raw reads were processed and 

taxonomically assigned using the HONEYPI pipeline implemented in Python 2.7 (Oliver et al. 

2021). The HONEYPI pipeline removes adaptors and quality filters the raw reads using 

TrimGalore v.0.6.4, and then uses the DADA2 pipeline to generate an Amplicon Sequence 

Variant (ASV) abundance table containing chimera-removed, high-quality error-corrected 

sequences. For each ASV, conserved regions flanking ITS2 are removed with ITSx v.1.1b; 

and resulting sequences taxonomically classified using the naive Bayesian classifier against 

an in-house ITS2 database of 966,676 (25th March 2020). Unless stated otherwise, default 

parameters were used for the steps listed.  

Each of the ASVs was taxonomically assigned to species level by the RDP classifier within 

the HONEYPI pipeline and given a confidence level of assignment between 0 and 1.  
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Using the R package ‘phyloseq’ samples of less than 4,000 reads were pruned and ultra-

rare taxa were removed as before. Samples were rarefied to the median sampling depth 

(19,766 reads). ASVs with the same taxonomic assignment at species level were 

agglomerated. Taxa assigned as “NA”, “Fungi”, “SAR”, “Amoebozoa”, “Straminipila” and 

“Metazoa” were filtered from the dataset. Any field and PCR blanks that had not been 

removed from preceding steps were then removed. 

The pITS blanks contained 48 taxa, all of which were also found in pond water and sediment 

samples. Six of these taxa, Alium cepa, Raphanus sativus, Juglans regia, Fraxinus excelsior, 

Lythrum salicaria and Phagrmites australis were present at high read numbers in blank 

samples (>1000 reads over all blanks). However, the latter four were present at 

superabundant levels in environmental samples (>73,000 reads for each taxon), indicating 

contamination from pond samples to field blanks. The former three could be due to 

contamination in the laboratory stages, but could also have originated environmentally, so 

were not removed.     

Statistical analyses 

All statistical analyses were carried out in R, version 4.2.0 (R Core Team 2021). To assess 

differences in abiotic variables between months and pond types, ANOVAs and Kruskal-

Wallis tests were carried out using functions in base R. Abiotic variable plots were made by 

using the trans_diff, cal_diff and plot_diff functions in the R package microeco, version 0.11.0 

(Liu et al. 2021). 

Almost all other statistical analyses were carried out in the R package microeco, version 

0.11.0 (Liu et al. 2021). Venn diagrams were drawn using the function plot_venn in the 

trans_venn class. Relative abundance of different taxa was calculated, and bar graphs 

plotted, using functions within the trans_abund class. Taxa abundance between different 

sample types, pond types and months was compared via t.test and Kruskal-Wallis test using 

functions within the trans_diff class. Three measures of alpha diversity (Simpson, Shannon 

and Chao) were calculated and compared via t.test or Wilcoxon test within the trans_alpha 

class.  

To examine beta diversity, functions within the trans_beta class were used. Beta diversity 

was calculated using a Bray-Curtis index and a Principle Co-ordinates Analysis was 

performed using the cal_ordination function. A permutational multivariate analysis of 

variance (PERMANOVA) was performed using the cal_manova function, which uses the 

adonis2 function in the vegan package, version 2.6-4 (Okansen et al. 2022). Initially, this was 
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performed on all samples using only sample type (sediment vs water) as a factor to examine 

the effect of sample type on community composition. Then, to examine the effect of season 

and pond type on community composition, sediment and water samples were separated and 

PERMANOVA performed, using sample month, pond type and their interaction as factors.   

All higher plant (Embryophyta) taxa in the pITS dataset (n = 46) were assigned a ‘wetland 

status’ function according to the species list used in the National Pond Survey (Biggs et al. 

1998). Floating-leaved and submerged species were combined into an “aquatic” category, 

whereas emergent species and trees or shrubs were combined into a “wetland” category. 

Plants which did not appear on the NPS list were classified as “terrestrial”.   

 

Results 
 

eDNA concentrations, reads and ASVs 

After filtration and extraction, the concentrations of eDNA from pond water samples ranged 

from 0.76 µg/µl to 114.1 µg/µl (M = 25.62 µg/µl, SD = 24.12 µg/µl). In sediment samples, 

post-extraction the concentration ranged from 2.32 µg/µl to 168.2 µg/µl (M = 60.03 µg/µl, SD 

= 2.5 µg/µl). 

After processing with the DADA2 pipeline (quality trimming, de-replication, chimera removal), 

the raw datasets were as follows: for 16S sequences, this process produced 102,391 ASVs, 

and the total number of reads across 316 samples was 7,548,590; for 18S, 3,483,675 

merged sequences were recorded in 14,531 ASVs and 308 samples; and for ITS2 

sequences, 11,351,976 raw reads across 8,642 ASVs and 326 samples.    

After rarefaction, removal of low-read samples and ultra-rare taxa, removal of taxa with low 

confidence of taxonomic assignment and taxonomic agglomeration (pooling ASVs with the 

same taxonomic assignment together), the final datasets contained the following number of 

samples and ASVs: the 16S dataset contained 658 taxa across 280 samples (120 water and 

160 sediment); the 18S microeukaryote dataset contained 268 taxa across 281 samples 

(125 water and 156 sediment); the 18S multicellular dataset consisted of 120 taxa across 

280 samples (124 water and 156 sediment. Finally, the plant ITS2 (pITS) dataset contained 

222 taxa across 323 samples (143 water and 180 sediment.) 
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Physiochemical conditions of the Pinkhill Meadow ponds 

The River Thames water level, the average rainfall and the temperature varied widely 

throughout the sampling period January – November 2020 (see Fig 2). Therefore, the 

hydrological connectivity of different ponds in the complex also varied greatly (see table S6 

and images S1-5). As anticipated, pond depth differed significantly between different 

sampling events (ANOVA, F(4) = 23.47, p < 0.001), with the mean depth in July and 

September significantly lower than the mean depth in January and November (Tukey HSD 

test, all comparisons p adj < 0.001). 

 

Figure 3.2: Data for climate variables at Oxford weather station throughout the sampling 

period. Data provided by the Met Office and extracted from 

https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data on 9th 

February 2022   

Percentage canopy cover results from June and September were combined and compared 

between pond types to give an indication of differing shade levels across the study site. 

Canopy cover did not differ significantly between pond types (Kruskal-Wallis test, H(3) = 

3.67, p = 0.299). However, from observation the gravel-substrate ponds in the south of the 

site and the experimental ponds tended to be more wooded and have a higher canopy 

cover. 

Water chemistry conditions varied markedly between different sampling events (see Fig 3). 

Analyses of variance for each variable by month were carried out, and all were found to be 

https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data


   
 

99 
 

 
 

significant (all p < 0.001, see Table S3.7). For most variables, all months were found to be 

significantly different from each other. 

Figure 3.3: One-way ANOVA results as a boxplot for each physiochemical variable by 

month. p value for all ANOVAs was <0.001. Sample size n = 185. Lower case letters indicate 

if individual months’ means are significantly different, post-hoc Tukey HSD tests at the p adj 

= 0.05 level. 

Due to funding constraints, water samples for laboratory chemical analysis were only 

collected during the September and November sampling events. Mean values from 

September and November were compared using multiple Wilcoxon tests with a Bonferonni-

Holm correction, and no significant differences in mean values between these months were 

found for any of the chemical variables analysed.  

To compare conditions between pond types, Kruskal-Wallis analyses were performed on the 

ultrameter and laboratory datasets collected. Eight variables varied significantly (p < 0.05) 

between pond type: soluble reactive phosphorus, ammonia, total dissolved nitrogen, 

dissolved organic carbon, chlorophyll-a, pH, total dissolved solids and conductivity (see 

Figure 3.4 and table S3.8 for full statistical reporting). 
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Figure 3.4: Kruskal-Wallis one way analysis of variance test results as a boxplot for each 

physiochemical variable by month. p value for SRP and NH4 <0.01. p value for other 

measurements <0.001. Sample size n=185. ”SRP” = soluble reactive phosphorus, ”TDN” = 

total dissolved nitrogen, ”DOC” = dissolved organic carbon 

 

 

Taxonomic composition of the Pinkhill Meadow ponds 

 

Figure 3.5 (below): Taxonomic composition of a) bacteria and archaea b) microbial 

eukaryotes c) multicellular eukaryotes and d) green plants and green algae of Pinkhill 

Meadow ponds, across all 5 sampling events using metabarcoding. ‘Relative abundance ( 

%)’ = relative read abundance, ‘S’= Sediment samples, ‘W’=Water samples.   
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Across all ponds and all timepoints, the most common Bacteria phyla by read abundance 

were Proteobacteria (sediment: M = 57.6 %, SD = 10.4 %, water: M = 53.4 %, SD = 18.2 %) 

and Bacteroidota (sediment: M = 17.9 %, SD = 8.7 %, water: M = 14.1 %, SD = 10.9 %). In 

water samples, Actinobacteria made up most of the remainder (M = 28.2 %, SD = 18.3 %), 

whereas in sediment samples Actinobacteria composed on average only 1.82 % of the total 

(SD = 3.4 %). Desulfobacterota and Desulfobacterota_E were also relatively common in 

sediment samples, on average 4.0 % (SD = 3.5 %) and 2.0 % (SD = 0.5 %) of the total reads 

respectively. Acidobacteria and Firmicutes were present in sediment samples at low read 

abundances (M = 2.7 %, SD = 2.0 % and M = 2.2 %, SD = 2.6 % respectively), whereas 

these phyla were virtually absent from water samples (see Figure 3.5a). All the 30 

prokaryote phyla present exhibited significant differences in read abundance between 

sediment and water samples (multiple t-tests with fdr p value adjustment, all p adj < 0.05).  

The top 20 most abundant genera in both water and sediment samples made up over 50 % 

of total read abundance by month (see Figure S3.1, a and b). Often, these genera have 

been described only recently and there is only one type species. The level of confidence of 

taxonomic assignment was variable. In water samples, the top 5 most abundant genera 

were assigned to Rhodoluna, Sphingorhabdus_B, Planktophila, Aquirickettsiella and 

UBA952. In sediment samples, the top 5 most abundant genera were assigned to LD21, 

SCTMO1, Azonexus, Halioglobus and UBA4417. 

At the phylum level, the microbial eukaryote community was composed mainly of 

Chlorophyta (sediment: M = 56.0 % of reads, SD = 30.2 %, water: M = 19.8 %, SD = 22.8 

%), Ochrophyta (sediment: M = 23.5 %, SD = 22.6 % and water: M = 31.7 %, SD = 26.2 %) 

and Ciliophora (sediment: M = 14.6 %, SD = 19.6 %, water: M = 26.3 %, SD = 24.6 %). 

Water samples also had notable levels of Cercozoa (M = 4.8 %, SD = 9.7 %), Cryptophyta 

(M = 4.9 %, SD = 8.7 %), Katablepharidophyta (M = 3.9 %, SD = 9.8 %) and Dinoflagellata 

(M = 3.6 %, SD = 10 %) reads (see Figure 3.5b). When comparing read abundances of 

phyla in sediment and water samples, Chlorophyta were significantly more abundant in 

sediment samples, whereas Ochrophyta, Ciliophora, Cercozoa, Cryptophyta, 

Katablepharidophyta and Perkinsea were higher in water samples (multiple t-tests with fdr p 

value adjustment, all p adj <0.05). 

In water samples, the top 25 genera made up around 75 % of the total read abundance (see 

Figure S3.2a). The 5 most abundant genera were Limnostrombidium, Navicula, an 

unidentified member of the Crustomastigaceae family, and unidentified members of 

Synurales and Katablepharidales orders. In sediment samples, the top 25 genera by read 
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abundance made up only around 50 % of the total. The 5 most abundant genera were 

assigned to Scotinosphaera, Navicula, Desmodesmus, Loxodes and Stentor (Figure S3.2b). 

In the multicellular eukaryote community, Arthropoda (sediment: M = 14.7 %, SD = 25.8 %, 

water: M = 31.6 %, SD = 37.5 %) and Gastrotricha (sediment: M = 19.1 %, SD = 25.4 %, 

water: M = 22.0 %, SD = 30.2 %) were dominant classes. Charophyceae (Stoneworts, 

traditional indicators of a clean water habitat) made up on average 11.2 % (SD = 23.8 %) of 

reads in sediment and 4.6 % (SD = 16.7 %) of reads in water. Embryophyceae and Annelida 

were common in sediment samples, comprising a mean of 19.1 % (SD = 27.9 %) and 12.1 

% (SD = 22.2 %) of reads respectively. In water samples, Rotifera were common, making up 

an average of 13.6 % (SD = 26.0 %) of reads, as were Basidiomycota, making up 8.8 % (SD 

= 19.7 %). Nine classes had significantly different read abundance between sediment and 

water samples (multiple t-tests with fdr p value adjustment, all p adj <0.05). Embryophyceae, 

Charophyceae, Annelida, Mollusca and Nematoda were all more abundant in sediment 

samples, whereas Arthropoda, Rotifera, Basidiomycota and Chytridiomycota were more read 

abundant in water samples. 

Again, the 25 most abundant genera composed around 50 % of the overall read abundance 

in both sediment and water samples (see Fig S3 a and b). In water samples, the top 5 

genera by read abundance were Chaetonotus, Cyclops, Chara, Eucyclops and 

Macrocyclops. In sediment samples, Chara and Chaetonotus were also highly abundant, 

joined by Pisidium, Sparganium and Sminthurides.    

In the Viridiplantae community (green plants and algae) at the phylum level, both water and 

sediment samples had a similar taxonomic composition, with Streptophyta (macrophytes - 

‘higher’ plants and charophytes) comprising around of 65 % of the reads (sediment: M = 

64.1 %, SD = 35.5 %, water: M = 69.7 %, SD = 31.6 %) and Chlorophyta (green algae) 

comprising 35 % of the reads (sediment: M = 35.9 %, SD = 35.5 %, water: M = 30.3 %, SD = 

31.6 %, figure 3.5d). 

The top 25 species made up between 50 % and 75 % of the total read abundance in both 

sediment and water samples (Figure S3.4 a and b). The most abundant species in sediment 

samples were Phragmites australis, Lythrum salicaria, Berula erecta, Filipendula ulmaria and 

Sparganium stoloniferum. In water samples, Berula erecta was also amongst the most 

abundant species, in addition to Fraxinus excelsior, Urtica dioica, Cucumis sativus and 

Planophila bipyrenoidosa.  
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Of the 96 ‘higher plant’ (Embryophyta) species identified, 61 taxa were terrestrial species, 33 

were wetland species and only two were aquatic species. When examining read abundance 

of these different categories, water samples were composed of around 70 % reads from 

terrestrial species, much higher than the 30 % found in sediment samples (t test, p adj < 

0.001). By contrast, sediment samples had a much higher proportion of wetland species’ 

reads (68 %) than water samples’ 23 % (t test, p adj < 0.001). Water samples had a 

marginally higher percentage of reads from aquatic species (t test, p adj = 0.023). 

27 of the 96 Embryophyte species were cultivated plants, such as Allium cepa (onion), 

Brassica oleracea (cabbage) and Tricitum turgidum (durum wheat). These cultivated species 

made up 11.7 % of total read abundance in sediment samples, and 24.4 % of total read 

abundance in water samples. 

    

Community dissimilarity between sediment and water samples is more pronounced in 

microbes than in multicellular organisms. 
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Figure 3.6: Principal co-ordinate analysis (PCoA) plots of Bray-Curtis distances between 

samples of different sample type (red = sediment samples, blue = water samples) in a) 

bacteria and archaea, b) microbial eukaryotes c) multicellular eukaryotes and d) green plants 

and green algae. Ellipses show statistical confidence at the 95 % level. 

The final bacteria and archaea dataset contained 658 taxa across 280 samples (120 of 

these were water samples, and 160 sediment samples.) The majority of taxa (n = 347) were 

found in both types of sample, and these taxa accounted for 90.7 % of total read abundance. 

Sediment samples had 251 unique taxa and water samples had 60 unique taxa. In addition, 

sediment samples had a significantly higher mean alpha diversity than water samples on 

three measurements when compared by a t test: Simpson, Shannon and Chao alpha 

diversity (all p adj < 0.001, see Figure S3.5a). 

Principle co-ordinate analysis (PCoA) using a Bray-Curtis distance matrix at the genus level 

revealed that bacterial and archaeal communities in sediment samples were different from 

those in the corresponding water sample, with the two groups clustering separately along the 

first principal co-ordinate axis (Figure 3.6a). PERMANOVA analysis revealed that sample 

type alone (sediment or water) explained nearly 30 % of the variance in community 

composition between samples (see Table 3.2).  

Table 3.2: Effect of sample type (sediment vs water) on bacteria and archaea communities 

across all samples by PERMANOVA. Columns are: sources of variation, degrees of 

freedom, sums of squares, partial R2 and p values. One, two or three asterisks are visual 

representations of p values below 0.05, 0.01 and 0.001 respectively. 

 Df Sum of Sqs R2
 F Model P(> F) 

Type 1 29.355 0.29964 118.94 0.001 *** 

Residual 278 68.614  0.70036   

Total 279 97.969   1.00000     

The final microbial eukaryote dataset contained 274 taxa across 295 samples (145 sediment 

samples and 149 water samples). Like the 16S dataset, the majority of taxa and reads (161, 

76.4 %) were found in both water and sediment samples. However, unlike the 16S dataset, 

water samples contained more taxa overall and more unique taxa than sediment samples 

(75 unique taxa compared to 38 unique sediment taxa). These unique water taxa made up 

20.3 % of the total reads. Water samples had a higher alpha diversity than sediment 

samples for two out of the three compared measurements (Chao, t test, p adj < 0.001, 

Shannon, t test, p = 0.034, see Figure S3.5 b). 
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Principle co-ordinate analysis (PCoA) using a Bray-Curtis distance matrix at the genus level 

revealed that, like the prokaryotic communities, microbial eukaryote communities in 

sediment samples and water samples clustered largely separately (Figure 3.6b). However, 

PERMANOVA analysis revealed that sample type (sediment or water) explained around 9.5 

% of the variance in community composition between samples (see Table 3.3).  

 

Table 3.3: Effect of sample type (sediment vs water) on microbial eukaryote communities 

across all samples by PERMANOVA. Columns are: sources of variation, degrees of 

freedom, sums of squares, partial R2 and p values. One, two or three asterisks are visual 

representations of p values below 0.05, 0.01 and 0.001 respectively. 

 Df Sum of Sqs R2
 F Model P(> F) 

Type 1 11.70     0.09465 30.528 0.001 *** 

Residual 292    111.91  0.90535   

Total 293    123.60   1.00000     

The multicellular eukaryote dataset was composed of 125 taxa across 292 samples (147 

water samples and 145 sediment samples). As with the microbial datasets, the majority of 

taxa and reads were shared between both types of samples (73, 89.9 %). Sediment samples 

contained a higher proportion of unique taxa and total reads (35, 8.2 %) than water samples 

(17, 1.9 %). There were no significant differences in alpha diversity between the two sample 

types, for all three measures (Chao1, Shannon and Simpson alpha diversity, multiple t tests 

with fdr adjustment). 

Principle co-ordinate analysis (PCoA) using a Bray-Curtis distance matrix at the genus and 

species level revealed that multicellular eukaryote communities and green plant and green 

algae (Viridiplantae) communities in sediment samples and water samples largely 

overlapped (Figure 3.6c and 6d). PERMANOVA analyses show that for these larger 

organisms, sample type is not a dominant factor in community composition, explaining only 3 

% of total variance for multicellular eukaryotes (Table 3.4) and 2 % of total variance for green 

plants and green algae (Table 3.5), although this difference is significant in both cases.  

 

Table 3.4: Effect of sample type (sediment vs water) on multicellular eukaryote communities 

across all samples by PERMANOVA. Columns are: sources of variation, degrees of 

freedom, sums of squares, partial R2 and p values. One, two or three asterisks are visual 

representations of p values below 0.05, 0.01 and 0.001 respectively. 
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 Df Sum of Sqs R2
 F Model P(> F) 

Type 1 4.164      0.03235 9.796 0.001 *** 

Residual 293    124.536  0.96765   

Total 294    128.700   1.00000     

Table 3.5: Effect of sample type (sediment vs water) on green plant and green algae 

communities across all samples by PERMANOVA. Columns are: sources of variation, 

degrees of freedom, sums of squares, partial R2 and p values. One, two or three asterisks 

are visual representations of p values below 0.05, 0.01 and 0.001 respectively. 

 Df Sum of Sqs R2
 F Model P(> F) 

Type 1 2.93     0.01925 6.3015 0.001 *** 

Residual 321    149.25 0.98075   

Total 322   152.18   1.00000     

The Viridiplantae dataset was composed of 222 taxa spread across 323 samples (180 

sediment samples and 143 water samples). Again, most taxa and reads (141, 90.7 %) were 

found in both types of samples. Water and sediment samples had roughly equal numbers of 

unique taxa and proportions of overall reads (water: 44, 4 %, sediment: 37, 5.8 %). There 

were no significant differences in alpha diversity between sediment and water samples 

(Shannon, Chao1 or Simpson alpha diversity, multiple t tests with fdr adjustment).  

 

Season of sampling influences the community composition of water samples more 

than sediment samples 

Figure 3.7 (below): Principal co-ordinate analysis (PCoA) plots of community dissimilarity 

using a Bray-Curtis distance matrix. Plots in the left column are from water samples, and the 

right column sediment samples. From top to bottom, the rows contain plots of (i) bacteria 

and archaea (ii) microbial eukaryotes (iii) multicellular eukaryotes (iv) green plants and green 

algae. Colours indicate sample month and shapes indicate pond type. Ellipses are shown at 

the 95 % confidence level. 
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For all four different communities, beta diversity was calculated for water and sediment 

samples separately using a Bray-Curtis index of dissimilarity at the genus level (apart from 

the Viridiplantae dataset, which was calculated at the species level). A principal co-ordinates 

analysis was then run and plotted for each (see Figure 3.7). PERMANOVA was run on water 

and sediment samples for each of the four different communities to determine the impact of 

sample month and pond type on community composition. 

In both sediment and water samples, and across all four different communities, sample 

month and pond type both had a significant effect on community composition (multiple 

PERMANOVAs, p < 0.001 in all cases, see Tables 6-9). However, in water samples, sample 

month was a greater influencing factor on community composition, explaining between 10.2 

% and 20.2 % of total variation, whereas pond type explained only between 3.3 % and 9.6 

%, depending on the community sampled. By contrast, in sediment samples, sample month 

and pond type had roughly equal effects on community composition, with sample month 

explaining between 3.4 % and 7.1 % of total variation, and pond type explaining between 4.6 

% and 7.1 % of the total variation.  

This implies that water communities, as sampled by metabarcoding, experience greater 

seasonal turnover than sediment communities. Secondly, it implies that, at this scale and for 

eDNA in water, the influence of the season of sampling on community composition can 

override the influence of the abiotic conditions on community composition.  

Table 3.6: Temporal and spatial effects by PERMANOVA for bacteria and archaea 

communities across sediment and water samples. Columns are: sources of variation, 

degrees of freedom, sums of squares, partial R2 and p values. One, two or three asterisks 

are visual representations of p values below 0.05, 0.01 and 0.001 respectively. 

Water Df Sum of Sqs R2
 F Model P(> F) 

Month 4 6.1137      0.20199 8.9376 0.001 *** 

Pond type 3 2.9049  0.09598 5.6623 0.001 *** 

Month:Pond 

type 

9 3.6345 0.12008 2.3615 0.001 *** 

Residual 103 17.6141  0.58195   

Total 119 30.2672   1.00000   

Sediment Df Sum of Sqs R2
 F Model P(> F) 

Month 4 2.730  0.07120  3.1617   0.001 *** 

Pond type 3 2.729  0.07117  4.2135   0.001 *** 
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Month:Pond 

type 

9 2.661  0.06940  1.0272   0.385   

Residual 140 30.226  0.78823   

Total 159 38.347   1.00000     

 

Table 3.7: Temporal and spatial effects by PERMANOVA for microbial eukaryote 

communities across water and sediment samples. Columns are: sources of variation, 

degrees of freedom, sums of squares, partial R2 and p values. One, two or three asterisks 

are visual representations of p values below 0.05, 0.01 and 0.001 respectively. 

Water Df Sum of Sqs R2
 F Model P(> F) 

Month 4 9.796          0.17095 8.2243 0.001*** 

Pond type 3 2.936           0.05123 3.2862 0.001*** 

Month:Pond 

type 

12         6.157   0.10745 1.7230 0.001 *** 

Residual 129     38.413   0.67037   

Total 148     57.302  1.00000   

Sediment Df Sum of Sqs R2
 F Model P(> F) 

Month 4 3.690   0.06758  2.6420   0.001 *** 

Pond type 3 2.906  0.05322     2.7739   0.001 *** 

Month:Pond 

type 

12 4.360      0.07984  1.0404   0.309   

Residual 125     43.647  0.79936   

Total 144    54.603   1.00000     

Table 3.8: Temporal and spatial effects by PERMANOVA on the multicellular eukaryote 

community across water and sediment samples. Columns are: sources of variation, degrees 

of freedom, sums of squares, partial R2 and p values. One, two or three asterisks are visual 

representations of p values below 0.05, 0.01 and 0.001 respectively. 

Water Df Sum of Sqs R2
 F Model P(> F) 

Month 4 6.506            0.10187 4.1676 0.001*** 

Pond type 3 2.432             0.03808 2.0770 0.001*** 

Month:Pond 

type 

12         5.361       0.08394 1.1447 0.051 

Residual 127       49.567    0.77611   

Total 146     63.867  1.00000   
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Sediment Df Sum of Sqs R2
 F Model P(> F) 

Month 4 3.091   0.05246  2.0193  0.001 *** 

Pond type 3 3.585  0.06084     3.1227   0.001 *** 

Month:Pond 

type 

12 4.799      0.08143 1.0450   0.284   

Residual 124     47.453  0.80527   

Total 143    58.928   1.00000     

 

Table 3.9: Temporal and spatial effects by PERMANOVA for the green plant and algae 

community across water and sediment samples. Columns are: sources of variation, degrees 

of freedom, sums of squares, partial R2 and p values. One, two or three asterisks are visual 

representations of p values below 0.05, 0.01 and 0.001 respectively. 

Water Df Sum of Sqs R2
 F Model P(> F) 

Month 4 7.385     0.11211  4.5334 0.001*** 

Pond type 3 2.144     0.03254 1.7547  0.001*** 

Month:Pond 

type 

11       5.846            0.08874 1.3049 0.001 *** 

Residual 124        50.503 0.76661   

Total 142        65.878 1.00000   

Sediment Df Sum of Sqs R2
 F Model P(> F) 

Month 4 2.856      0.03425  1.6145   0.001 *** 

Pond type 3 3.806      0.04565  2.8694   0.001 *** 

Month:Pond 

type 

12 5.967          0.07157  1.1246   0.019 *   

Residual 160    70.746    0.84853   

Total 179 83.374   1.00000     

 

Seasonal changes in alpha diversity and taxonomic composition  

Microbial communities also exhibited greater differences in alpha diversity between seasons 

(see Figures S3.6 and S3.7).  

For prokaryote communities in sediment, samples from September and November had 

higher alpha diversity for all three measures (Chao1, Simpson and Shannon) than samples 

from other months (multiple Wilcoxon tests with fdr p value adjustment, all p adj < 0.05). 
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However, for prokaryote communities in water, samples from January consistently had 

higher alpha diversity than other months (for Chao1, Simpson and Shannon diversity 

measures, multiple Wilcoxon tests with fdr p value adjustment, all p adj < 0.05).   

In microbial eukaryote communities in sediment, January or March had higher alpha 

diversity than other months (multiple Wilcoxon tests with fdr p value adjustment, all p adj < 

0.05), whereas for microbial communities in water, January samples were consistently 

higher in alpha diversity (multiple Wilcoxon tests with fdr p value adjustment, all p adj < 

0.001). 

Conversely, multicellular communities did not appear to display differences in alpha diversity 

across the year (see Figures S3.8 and S3.9). For multicellular eukaryotes in sediment, and 

green plants and algae in sediment and water, none of the three compared alpha diversity 

measures showed any significant seasonal differences. However, for multicellular 

eukaryotes in water samples, September had the highest diversity, and March the lowest (for 

Chao1 only, multiple Wilcoxon tests with fdr p value adjustment, p adj < 0.05).   

In sediment samples over the year (Figure S3.10), January showed relative peaks of phyla 

Ciliophora, Bacteroidota, Gastrotricha and Rosales and Poales classes. In March, Annelida, 

Ochrophyta, Ulotrichales and Asterales were more abundant than in other months, and 

Ciliophora, Gastrotricha and Poales remained abundant. In July Chlorophyta, and 

Arthropoda increased in abundance, and Annelida remained abundant. In September and 

November, Chlorophyta, Arthropoda and Annelida remained abundant. Poales showed a 

second peak in abundance in September (multiple Kruskal-Wallis tests with fdr p value 

adjustment, all p adj <0.05). 

In water samples over the year, more prokaryote and eukaryote phyla and green plant 

orders showed differential read abundance according to sample month (Figure S3.11). In 

January, Proteobacteria, Cercozoa, Ochrophyta, Basidiomycota, Rotifera, Chlorodendrales 

and Apiales all showed relative peaks. In March, Ciliophora and Lamiales increased in 

relative abundance, and Proteobacteria, Rotifera and Cercozoa remained abundant. In July, 

Proteobacteria was still abundant, and Chlorophyta, Ochrophyta and Charophyceae all 

increased in abundance. Basidiomycota, Rosales and Sphaeropleales reads were also 

found in higher numbers. September water samples were characterised by peaks in 

Actinobacteria, Arthropoda, Cryptophyta and Oedogoniales. Chlorophyta remained high. In 

November, Chlorophyta, Cryptophyta and Actinobacteria still remained relatively high, 

whereas Cercozoa and Alismatales increased in read abundance.    
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Discussion 
 
These four datasets provide wide and deep taxonomic coverage of the communities of these 

ponds, ranging from bacteria of 0.5 µm in length to trees 50 m tall, and in between, revealing 

many taxa which are missed by traditional pond surveys, such as rotifers, gastrotrichs and 

chlorophytes. The high-resolution spatial and temporal sampling of these ponds highlights 

the fluxes in biodiversity and community composition which can be observed between two 

ponds barely metres apart, or in the same pond but within a period of 60 days. 

eDNA metabarcoding reveals subtle differences in pond taxonomic communities 

compared to rivers and lakes 

The bacteria and archaea community composition conformed taxonomically to what was 

expected, given previous findings in rivers and lakes (see Introduction), apart from the 

presence of Desulfobacterota in sediment samples, which has not been previously observed 

in rivers and lakes. This may be due to recent classification changes creating the phylum 

Desulfobacterota (Waite et al. 2020). It may also indicate ponds’ similarity to freshwater 

wetlands: Desulfobacterota, which are predominantly sulphate-reducing bacteria, have been 

found in freshwater wetlands (Prasitwuttisak et al. 2022), and are thought to be responsible 

for these environments’ high rates of sulphate-dependent anaerobic methane oxidation (Cui 

et al. 2014, Segarra et al. 2015). Ponds and lakes and wetlands are all significant sources of 

methane, but methane emissions increase on a gradient from natural to artificial or impacted 

ponds (Rosentreter et al. 2021).  

The high abundance of Chlorophyta in the microbial eukaryote community, and the relatively 

low abundance of Dinoflagellata is different from previous findings from lakes and rivers (see 

Introduction and Tables S3.1 and S3.2). Interestingly, a recent citizen science programme 

sequencing eDNA from water from ponds in Bristol, London and Newcastle found that 

Chlorophyceae was the most abundant microbial eukaryote class by number of species 

(Natural England 2022). It may be that Chlorophytes are particularly suited to freshwater 

ponds, due to their shallow depth and high penetration of light, and they have been 

previously suggested as an indicator of pond quality (Celewicz et al. 2022).      

The multicellular eukaryote dataset composition was as broadly as expected from previous 

surveys of lakes, rivers and ponds (Pearman et al. 2023, Zhang et al. 2021, Wilden et al. 



   
 

114 
 

 
 

2021). Only one of the invertebrate genera recorded in Pinkhill Meadow ponds using 

traditional visual identification methods were found using 18S primers (Musculium). This is 

probably due to the low eDNA shedding rates of freshwater macroinvertebrates – low levels 

of overlap with traditionally identified taxa are found even with specialised primers (see 

Chapter 2, Leese et al. 2021). However, these 18S primers could pick up organisms difficult 

or impossible to sample visually, such as microcrustaceans, Rotifera, Gastrotricha, and 

Nematoda. Interestingly, these primers detected stoneworts (genus Chara) in high read 

abundance. These large algae are traditional clean water pond indicator species (Lambert 

2009), suggesting the usefulness of this primer pair for indicating ecological quality.  

ITS2 promising for metabarcoding freshwater macrophytes, but with drawbacks  

Like the results from the June sampling event, the plant and green alga taxa detected using 

the ITS2 primers had relatively low overlap with those detected using traditional visual pond 

monitoring methods (35 species). Whether due to incomplete reference databases, due to 

low eDNA production and transport from some species, or due to the primers themselves, 

my method was unable to distinguish between multiple members of the same genus found at 

the site (e.g., Juncus, Carex) and did not detect some abundant species (e.g., Veronica 

beccabunga).  

Over a quarter of higher plant taxa were cultivated plants. Some of these may be 

misidentifications due to incomplete reference databases (e.g., eDNA identified as Mentha x 

piperita (peppermint) may have come from Mentha aquatica (water mint)). Others like 

Secale cereale (rye) and Helianthus annus (sunflower) belong to species which are grown in 

nearby arable fields and whose pollen may have been carried in on the wind. The third set, 

eDNA from species such as Sesamum indicum (sesame) or Prunus armeniensis (apricot), 

must either be present due to contamination during the sampling, filtering or extraction 

stages, or possibly could have made its way through the wastewater treatment system and 

into the River Thames, and subsequently into the ponds at Pinkhill Meadow.      

The large proportion of taxa and reads from terrestrial species shows the potential for eDNA 

from some distance away to be found in pond water and sediments: Populus nigra trees are 

found at the site, but at 110 m from the nearest sampled pond, yet this species eDNA was 

present in the samples. 17 of the identified species were non-native, which reflects a mixture 

of genuine identifications (e.g., Hesperocyparis arizonica, Arizona cypress, visually identified 

at the site) and incomplete reference databases (Sparganium stoloniferum, a type of bur-

reed native to East Asia, most likely Sparganium erectum.) 
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My research also accentuates the benefits of eDNA metabarcoding with multiple primers on 

identical samples, allowing more taxa to be detected overall. For instance, the 18S primer 

pair detected Charophyceae, (the stoneworts), large algae and traditional indicator taxa of 

clean water ponds, whereas this taxon was absent from the ITS2 datasets, even though it 

sits within the Streptophyta. However, the ITS2 datasets always identified a higher number 

of Embryophyceae taxa to genus or species level. However, there was also evidence of 

primer bias obscuring ecological patterns: with the 18S dataset, a greater proportion of 

Chlorophyta reads were found in sediment samples, whereas with the ITS2 dataset, more 

Chlorophyta reads were present in water samples.      

Despite these drawbacks, the ITS2 primer pair shows promise for metabarcoding 

macrophytes in freshwater environments, a currently little-explored area of research. 

Although not distinguishing as many species as visual identification methods, these primers 

could be used at the genus or family level to contribute to an overall pond quality indicator. 

The contamination from terrestrial pollen could be avoided by sampling pond sediments, not 

water. Alternatively, terrestrial eDNA from pond water may be useful in studying overall 

landscape diversity or health. 

Sample season and sample media should be considered carefully when designing 

eDNA sampling strategies 

As expected, communities sampled from pond water and pond sediment were significantly 

different from each other, and this difference was of a greater magnitude for microbes 

(around 20 % in prokaryotic microbes and 9 % in eukaryotic microbes) than for multicellular 

organisms (around 3 % for all multicellular organisms and 2 % for the green plant and algae 

fraction specifically). These findings are in accordance with Ionescu et al. (2022), who 

conducted a multi-taxa, seasonal study of 67 ponds using eDNA metabarcoding (16S and 

18S primers in sediment and water). The authors found that sample medium (sediment vs 

water) explained 15 % of the difference in community composition (but didn’t report the 

separate proportion for bacteria or eukaryotes). 

It could be argued that these differences are due to primer bias, rather than reflecting an 

ecological reality. However, I think this is unlikely. Although the 18S primers were developed 

specifically to target aquatic organisms (Mangot et al. 2013), the 16S primers were 

developed to amplify both aquatic and non-aquatic taxa equally (Caporaso et al. 2012). 

Furthermore, if primer bias were the case, we would expect to see a similar proportion of 

variation explained in both the microeukaryote and multicellular eukaryote dataset.  
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It is possible that eDNA may be transported and mixed differently in sediment and water, or 

have different degradation rates in the two media, and this may go some way to explaining 

the different communities found in these two sample types (Barnes & Turner 2016). 

However, the differential abundance of some taxa (e.g., greater Rotifera abundance in water 

samples and Annelida in sediment samples, more Actinobacteria and Cryptophyta in water 

samples) suggests that eDNA is picking up different community composition due to niche 

separation. 

For microbes, multicellular eukaryotes and plants, and in sediment and water, the month the 

sample was collected was found to have a significant effect on the resulting community 

composition. This is in line with previous findings that eDNA detects temporal variation in 

microbial, metazoan, invertebrate and fungal communities (see Introduction). To my 

knowledge, this is the first study to find eDNA reflecting seasonal changes in the community 

composition of macrophytes in a freshwater ecosystem.  

The higher alpha diversity found in sampling points earlier in the year (January and March) 

for microbial organisms, especially in water samples, may be an artefact of greater eDNA 

preservation at lower temperatures (Barnes & Turner 2016).  Ionescu et al. (2022) also 

report the highest alpha diversity in December and March. Alternatively, the flooding event in 

January may have increased the overall site richness, as reported in other studies (Chopyk 

et al. 2020). 

Why then did the alpha diversity of multicellular organisms not change significantly month-to-

month? Traditional morphological studies have shown that richness of macrophytes and 

macroinvertebrates is highest in the summer and autumn months (Akasaka & Takamura 

2012, Hill et al. 2016). In this study, high rates of eDNA degradation in warmer water may be 

counteracting the signal of increased alpha diversity in the summer and autumn. However, 

not all taxa followed the same pattern. Alpha diversity of prokaryote communities in sediment 

samples peaked in September and November. This could be due to increased temperature: 

in freshwater lakes, prokaryotic richness decreases with increasing elevation, thought to be 

related to temperature (Zeng et al. 2016). On the other hand, the increase in alpha diversity 

at this time may be related to disturbance from nutrient inputs (Beattie et al 2020). 

Multicellular eukaryotes were richest in water samples in September, as would be expected 

from traditional macroinvertebrate sampling.  

The “pond type” (the 20 ponds on site were divided into one of four pond types depending 

on location, substrate, water source and vegetation cover) also had a significant effect in all 

cases. However, whereas in water samples season was the dominant factor, in sediment 
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samples, season and pond type explained a roughly equal proportion of the variation in 

community composition. This pattern was found in all four sections of the pond community 

sampled: prokaryotic microbes, eukaryotic microbes, multicellular eukaryotes and plants and 

green algae. Therefore, at this small scale and in water samples, the season of sampling 

obscures finer differences in community composition caused by pond location or abiotic 

factors. Sediment communities, by contrast, appear to be more stable year-round and 

experience less turnover. These findings are also in accordance with Ionescu et al. (2022), 

who found roughly equal effects of land use and seasonality in sediment samples, but a 

greater impact of seasonality in water samples. 

This finding is highly significant for designing eDNA sampling schemes for ponds and other 

freshwater habitats. Current eDNA pond sampling at scale has involved sampling pond 

water, not sediments (Natural England 2020, 2022, Harper et al. 2019). To obtain a more 

complete picture of the pond ecological community and ecological health, I recommend 

taking both water and sediment samples, and sampling over multiple time points. However, if 

constraints prohibit this, I recommend taking only sediment samples, especially if sampling 

several ponds is spread over several months, as this research has shown sediment 

communities to be more stable throughout the year. Furthermore, only sampling sediments 

eliminates the costly and time-consuming filtration step.   

 

Conclusion 

 

This study has shown that eDNA metabarcoding is spatially and temporally sensitive on a 

fine scale, reflecting changes in community composition between the different ponds in this 

small 5 ha site, and between different times of the year. The clear differences in community 

composition between sediment and water samples, and in different seasons point to a need 

for careful design of eDNA sampling strategies to ensure studies into the ecological health of 

ponds or other freshwaters are comparing like for like.   

I found that eDNA metabarcoding of pond water and sediments gives a broader picture of 

the ecological communities of ponds than traditional methods, detecting organisms rarely 

sampled in ponds before such as bacteria, algae and zooplankton, and characterising the 

ecological communities present in pond sediments which were hitherto unknown. These new 

detections raise the possibility of new pond quality indicator species, such as Chlorophyta 
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and microcrustaceans. Further research is needed into microbial, microfaunal and algal 

communities of freshwater ponds to discern whether my findings are site-specific or more 

universal. Macrophyte communities were successfully detected in ponds using eDNA 

metabarcoding with a universal ITS2 primer, and displayed distinct community differences by 

season and pond abiotic conditions. However, the influence of the surrounding terrestrial 

landscape, particularly in pond water samples, was evident. 
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Chapter 4: Evaluating environmental 

and spatial drivers of community 

composition in lowland ponds: 

insights from eDNA metabarcoding. 
 

Abstract 

 

This chapter reports results from an investigation into using whole-community, multiple-

primer eDNA metabarcoding as bioindicators of freshwater pond ecological quality. Water 

and sediment samples were collected from 31 lowland ponds of similar geology but situated 

in varying landscapes (suburban, arable, grassland and woodland) in Southern England in 

June 2022. eDNA was extracted from these samples and amplified with three different 

primers to characterise the prokayotic (16S rRNA), eukaryotic (18S rRNA) and green plant 

and algal (ITS2 gene region) communities of these ponds. Pond physio-chemical and 

physical variables were measured, and a Habitat Suitability Index (HSI) for Great Crested 

Newts was calculated for each pond. Spatial autocorrelation was calculated for biological 

communities of prokaryotes, eukaryotes and green plants, and for environmental variables. 

Prokaryotic communities emerged as the most promising bioindicators of pond quality, with 

community composition in both pond water and sediment differing significantly between 

ponds of different HSI Levels, with pond water physio-chemistry and with changes in 

predominant land cover within a 1 km radius. By contrast, eukaryotic communities only 

showed differences in structure according to surrounding land cover. Green plant and algal 

communities as characterised by eDNA metabarcoding did not respond to HSI Level, physio-

chemistry or land cover. Alpha diversity of green plants and algae was higher in ponds 

outside of nature reserves, which I posit is due to the interaction of shade, water temperature 
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and eDNA degradation rates. Green plant and algal communities were spatially 

autocorrelated, indicating dispersal limitation.    

These results have implications for molecular biomonitoring of ponds and other freshwater 

environments, pointing towards more widespread use of prokaryotes as indicators of 

ecosystem health and highlighting the effects of pond physio-chemistry on eDNA 

degradation and alpha diversity estimates.   

Introduction 

 

Ponds (lentic freshwater habitats <5 ha in area and <5 m deep, Richardson et al. 2022) are 

vitally important for freshwater biodiversity and provide many diverse ecosystem services 

(Biggs et al. 2005, Céréghino et al. 2007, Céréghino et al. 2014). Whilst small individually, 

collectively ponds are biodiverse, and several studies have found that at a landscape level, 

ponds contain greater gamma diversity than an equivalent area of rivers or lakes (Oertli et al. 

2002, Williams et al. 2004, Davies et al. 2008, Bolgovics et al. 2019). Recent evidence 

suggests that ponds in agricultural landscapes have positive “spillover” effects for terrestrial 

species (farmland birds: Lewis-Phillips et al. 2019 and 2020; pollinators: Walton et al. 2020) 

and adding clean water ponds to an agricultural landscape increases plant richness across a 

catchment, reversing background declines (Williams et al. 2019).  

In the UK ponds have undergone a historic decline in the last century, approximately halving 

in numbers and density (Biggs et al. 2005, Smith et al. 2022). Aquatic plants, agricultural 

birds and other wildlife are currently undergoing catastrophic population declines across the 

UK, linked to changes in land use and management (State of Nature 2023, Williams 2018, 

2010). The creation of ponds in agricultural landscapes has been part of agri-environment 

schemes across Europe and other western countries for the past 35 years as an attempt to 

reverse these biodiversity declines (DeClerck et al. 2006, Reyne et al. 2021).  

Currently, there is no systematic monitoring of pond habitats across the UK by environmental 

regulators, save the Habitat Suitability Index (“HSI”) for Great Crested Newts (“GCNs,” 

Triturus cristatus): a protected species and a traditional indicator of a high quality, biodiverse 

pond (Sewell & Griffiths 2009, Harper et al. 2019). Furthermore, there is limited 

understanding of what forces structure the biological communities of lowland freshwater 

ponds: are they structured by environmental factors (either of the pond itself and/or the 

surrounding landscape), or by dispersal limitation, or both, or neither?  This is question 
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demands further investigation to discern whether freshwater ponds are acting as they are 

intended in agri-environment schemes: as refugia for biodiversity in highly altered 

landscapes (Biggs et al. 2017). Reducing nutrient inputs, increasing buffer zones and 

improving management strategies may all be beneficial for pond biodiversity, but if natural 

colonisation is limited, for example, due to lack of landscape connectivity, species declines 

may still be the result (Fahrig 2013, Horváth et al. 2019). 

The drivers of macrophyte community composition in lowland ponds have been relatively 

well studied (Joye et al. 2006, Akasaka et al. 2012, Alahuhta et al. 2014, García-Giron et al. 

2019), but by using visual-based identification methods, not eDNA metabarcoding. 

Conversely, the community assembly of prokaryotic and eukaryotic microbes, zooplankton 

and phytoplankton has been studied in many different environments using eDNA 

metabarcoding (e.g. Pearman et al. 2023, Cruaurd et al. 2019 & 2020, Gweon et al. 2019, 

and see Chapters 1, 2 and 3), but rarely in lowland freshwater ponds and other small 

wetland habitats. 

The relative influence of environment and spatial factors is likely to vary for different 

organisms (for example, prokaryotes vs eukaryotes, algae vs macrophytes, and 

communities in pond sediments vs pond water), due to differences in generation times, body 

sizes, dispersal abilities and life histories (Heino et al. 2015). The relative influences will also 

differ in different landscapes and at different spatial scales (Heino et al. 2015). One common 

hypothesis which has support is that smaller organisms such as microbes will be more 

influenced by local environmental conditions than spatial factors (“everything is everywhere 

but the environment selects”, O’Mally 2008) whereas larger organisms such as macrophytes 

will be more spatially structured (Padial et al. 2014). Similarly, it is thought that mobile 

species respond to the environment more than non-mobile species which are dispersal 

limited and so spatially structured (De Bie et al. 2012).  

In reality, empirical results often do not follow these theoretical patterns. For macrophyte and 

green alga communities, there is conflicting evidence on the importance of environmental 

factors and spatial structuring. For example, Garcia-Giron et al. (2019) concluded that spatial 

and environmental factors together determined the community assembly of macrophytes in 

51 lowland ponds in a 94,000 km 2 region of northwestern Spain, with dispersal limitation 

interfering with species’ tracking of local environmental conditions, such as total phosphorus. 

However, Gallego et al. (2013) found that in 87 lowland ponds in a 90,000 km 2 region of 

Andalusia, pond water chemistry and pond structure and management were more influential 

in controlling community structure than spatial factors. Contrary to expectations, 
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phytoplankton communities displayed more spatial structuring than filamentous green algae 

or macrophyte communities. Sun et al. (2019), studying macrophytes in 1000 lakes in the 

UK, found that species were strongly spatially structured. However, environmental variables 

had more influence in upland lakes than lowland lakes, which the authors suggested was 

due to increased hydrological connectivity. 

Other studies have compared the relative importance of different environmental variables on 

macrophyte community assembly. In a recent study of 88 lowland agricultural ponds in 

Northern Italy, Bolpagni et al. (2020) found that total macrophyte richness and the richness 

of priority species increased with pond area, increasing freshwater connectivity, and urban 

land cover, but found no effect of other landscape variables. Declerck et al. (2006) measured 

vegetation complexity as a proxy for macrophyte community richness in 126 farmland ponds 

in Belgium, and found that it was negatively associated with arable cover in the surrounding 

200 m, and trampling of the pond margin by livestock.  

Communities of bacteria and archaea in small wetlands seem to conform to the expectation 

of being environmentally sorted at large scales: in subarctic thaw ponds, bacteria 

communities were structured by pH, dissolved oxygen, suspended sediments and dissolved 

organic carbon (Crevecouer et al. 2015), and were not dispersal limited, being either 

stochastically assembled or environmentally filtered (Comte et al. 2015). Other studies have 

found assemblages of bacteria communities changed along an elevation gradient, which is 

in turn related to dissolved nutrient concentrations (Li et al. 2017, Hayden & Beman 2016). 

However, a study examining the bacterial community composition within a freshwater 

montane pond found spatial structuring explained most of the variation, and communities did 

not track environmental variables (Lear et al. 2014). There were differences in community 

composition observed at >20 m, yet the functional composition did not alter significantly. 

Very few studies exist looking at bacteria communities in lowland ponds. A recent study by 

Ionescu et al. (2022) sequenced bacteria and eukaryote communities in 67 kettle hole ponds 

in lowland Germany using 16S rRNA gene and 18S rRNA gene eDNA metabarcoding. They 

found that 5 % of the variation in bacteria community structure in water was related to land 

use (grassland, arable or forest), but land use was not significant for communities in 

sediment. Physical and chemical water properties explained 23 % of the variation in 

communities overall in a constrained ordination, but unfortunately this was not separated for 

bacteria vs eukaryotes, nor sediment vs water samples.   

The same study found that 14 % of the variation in eukaryote communities in sediment could 

be explained by land use type. No spatial autocorrelation was found for either bacteria or 
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eukaryote taxa. Looking at unicellular eukaryotes (protists) only, environmental processes 

were dominant in structuring communities across various scales, from lowland ponds in a 

small (9.5 km span) regional park (Simon et al. 2015), to montane pools across a 1800 km 2 

area (Macingo et al. 2019). Zooplankton communities in a lowland pond network over only 

200 ha were found to be environmentally structured (Cottenie et al. 2003), whereas 

zooplankton community structure in Arctic ponds over 11,475 km 2 was found to be more 

explained by spatial than environmental factors (Symons et al. 2014). Finally, phytoplankton 

communities in montane lakes across a 150,000 km 2 area in China were predominantly 

spatially structured, although environmental factors also played a part (Chang et al. 2021). 

 

eDNA metabarcoding is moving away from research and development and towards 

becoming a standardised biomonitoring tool with the ability to measure biodiversity more 

rapidly, for more taxonomic groups, and at greater scales than conventional methods (Deiner 

et al. 2017, Schenekar 2023). However, many studies have shown low overlap between the 

species detected by conventional biomonitoring methods and eDNA in aquatic habitats (e.g., 

Elbrecht et al. 2017, Rivera et al. 2018, and see Chapter 3). Several new promising studies 

abandon identifying specific bioindicator taxa entirely, instead adopting a “taxonomy-free” 

approach: linking whole communities sampled via eDNA metabarcoding to known 

disturbance gradients or biotic indices (reviewed in Corder et al. 2020 and Pawlowski et al. 

2018). This method has been effective for bacteria in benthic sediments and the disturbance 

caused by salmon aquaculture (Stoeck et al. 2018), and diatom 18S rRNA sequences from 

biofilms in rivers and the benthic diatom index (Apotheloz-Perret-Gentil et al. 2017). The next 

steps to apply this approach more widely and for different habitats will involve taking 

widespread biotic indices, benchmarking them against community data and metrics 

generated by eDNA metabarcoding, and then testing these over larger spatial and temporal 

scales.   

Natural England’s Habitat Suitability Index (HSI) is an obvious choice for applying this novel 

biomonitoring approach to ponds. In this survey, ten indices are calculated for each pond 

(including physical measurements like area and depth, measurements of water quality, and 

biotic features such as vegetation cover), and combined to make a composite index which is 

then categorised as one of five levels, ranging from “poor” to “excellent” habitat for Great 

Crested Newts (ARG UK 2010). To date, it has been used for over 20 years in thousands of 

ponds across the UK countryside (Buxton et al. 2021), and records for over 5,800 ponds 

surveyed between 2017 and 2019 are publicly available (Natural England 2020). Currently, 
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the HSI records are linked with the collection of pond water, and a qPCR assay applied to 

determine great crested newt (GCN) presence/absence (Rees et al. 2023).  

Recently, HSI levels were correlated with vertebrate species richness and presence/absence 

determined via eDNA metabarcoding of pond water (Harper et al. 2019). However, the 

relationship between HSI and the wider components of freshwater pond ecosystems is not 

understood. This is the first study which examines the relationship between HSI and other 

taxonomic groups: bacteria, micro-eukaryotes, meiofauna and macrophytes in ponds.  

In this study, I sampled water and sediment from 31 lowland ponds across an area of 

southern lowland Britain of 3,600 km 2 in June and July 2022: 17 located within nature 

reserves, and 14 located outside of nature reserves, within agricultural landscapes. Each 

sample had the environmental DNA extracted from it, which was then amplified using three 

separate primer pairs to target three different sections of the pond’s biological community: 

16S rRNA gene (bacteria and archaea), 18S rRNA gene (eukaryotes) and ITS2 gene region 

(Viridiplantae - green plants and algae). Water chemistry and physical and structural 

variables were measured for each pond, and the surrounding land cover at a 100 m and 1 

km radius from the pond was extracted from land cover maps. The number of macrophyte 

species and the percentage coverage of different vegetation types was also estimated in the 

field.  

These environmental variables were used to calculate the Habitat Suitability Index (HSI) for 

Great Crested Newts (Triturus cristatus), and PERMANOVAs and random forest indicator 

taxa analyses were used to identify whether bacteria, eukaryote and green plant community 

assemblages and taxa were indicative of different HSI levels. Environmental variables were 

used separately in variation partitioning analyses to investigate the relative effects of pond 

water chemistry, pond physical variables and surrounding land cover on the assemblages of 

bacteria, eukaryotes and green plants. Spatial autocorrelation for environmental variables 

and bacteria, eukaryote and green plant communities was also calculated, to observe 

whether there were distance-decay relationships.    

 

The following hypotheses were formulated: 

1. Bacteria communities in the ponds will be predominantly environmentally filtered, 

structured by pond water chemistry variables. Plant and green algae communities will 

be mainly spatially structured due to dispersal limitation. Eukaryote communities will 

be structured by a mix of environmental and spatial effects.  
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2. Pond taxonomic diversity will reflect the quality of the surrounding habitat. 

3. There will be differences in community composition of bacteria, eukaryotes and 

green plants between ponds of different HSI levels. 

 

Methods 

 

Sample ponds 

Thirty-one ponds were sampled across Oxfordshire, Buckinghamshire and 

Northamptonshire in the southern midlands of the UK between 8 th June and 27th July 2022. 

The ponds were chosen to provide a range of landscape types within an area of broadly 

similar lowland geology and geography. Fourteen ponds outside of nature reserves were 

selected based on prior PSYM surveys (Predictive System for Multimetrics: an assessment 

of the ecological quality of a pond based on invertebrate families and plant species present 

in a pond, Freshwater Habitats Trust 2002) and expert advice (Biggs, J., personal 

communication, 25th Feb 2022). These ponds are found within areas of predominantly arable 

or improved grassland land cover and are not managed for biodiversity (see Table 4.1). The 

other sixteen ponds were located within nature reserves, and managed for biodiversity by 

wildlife charities. Some of these ponds were in nature reserves in the countryside and 

surrounded by woodland and neutral grassland, but a large number were found within urban 

or suburban landscapes (see Table 4.1).  

Figures 4.1 and 4.2 below show the locations of the high-impact and low impact ponds. The 

ponds outside nature reserves were located in two clusters: across a 65.6 km 2 area of 

Buckinghamshire (b) and a smaller cluster in Northamptonshire (7.4 km 2, a). The ponds 

inside nature reserves were spread over a larger 418.7 km 2 area of Oxfordshire (c).   
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Figure 4.1: The location of the 31 sample ponds within the United Kingdom (left) and within 

mid-southern England (right). Baselayer: OpenStreetMap, scale 1:1,000,000 
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Figure 4.2: Locations and Great Crested Newt Habitat Suitability Index level of 31 sample 

ponds in a) Northamptonshire, b) Buckinghamshire and c) Oxfordshire. Baselayer: 

OpenStreetMap, scale 1:500,000 (c), 1:250,000 (b), 1:100,000 (a). 
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Table 4.1: List of sample ponds. “Nature reserve” column indicates if the pond was located 

inside a nature (1) or outside (0) of a nature reserve. “Top land cover” columns are the most 

abundant land cover class within a 100 m or 1 km radius of the centre of the pond by 

percentage according to the UK Land Cover Map 2021 (Marston et al. 2022). “HSI level” is 

the Great Crested Newt Habitat Suitability Index level for the pond. 

Pond name Code Nature 
Reserv
e 

Top land cover in 
100 m radius 

Top land cover 
in 1 km radius 

HSI level 

ASHAM MEADS AM 1 Neutral Grassland Arable Good 

BOAR'S HILL 
POND 

EDMG 1 Suburban Improved 
Grassland 

Excellent 

BOUNDARY 
BROOK 

BB 1 Suburban Suburban Good 

BRILL COMMON BC 1 Suburban Improved 
Grassland 

Good 

CS LEWIS 
NATURE 
RESERVE 

CSL 1 Suburban Suburban Excellent 

DRY SANDFORD 
PIT 

DSP 1 Neutral Grassland Improved 
Grassland 

Excellent 

FOWL'S PILL OF 1 Neutral Grassland Neutral 
Grassland 

Excellent 

HEYFORD 
MEADOWS 

HM 1 Grassland Suburban Average 

LETCOMBE 
VALLEY 

LV 1 Improved 
Grassland 

Suburban Good 

LITTLE 
WITTEHAM 
UPPER 

LWU 1 Freshwater Improved 
Grassland 

Excellent 

PIDDINGTON 
WOOD 

PW 1 Improved 
Grassland 

Improved 
Grassland 

Good 

PINKHILL 
MEADOW 

PM 1 Freshwater Freshwater Excellent 

RADBROOK 
COMMON 

WW 1 Woodland Improved 
Grassland 

Excellent 

RIVERMEAD RM 1 Suburban Suburban Excellent 

RUSHBEDS 
WOOD 

RW 1 Improved 
Grassland 

Improved 
Grassland 

Good 

WHITECROSS 
GREEN WOOD 

WCGW 1 Woodland Improved 
Grassland 

Excellent 

WOLVERCOTE 
GREEN 

WG 1 Suburban Suburban Excellent 

BLACKLAND 
FARM 

BF 0 Improved 
Grassland 

Arable Average 

COWLEYS 
POND 

CP 0 Arable Improved 
Grassland 

Excellent 

GRANBOROUGH 
POND 

GP 0 Arable Improved 
Grassland 

Below 
average 
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LITTLE 
HORWOOD 

LH 0 Improved 
Grassland 

Arable/Improved 
Grassland 

Excellent 

PITCHCOTT HILL 
2 

PCH2 0 Improved 
Grassland 

Improved 
Grassland 

Good 

PITCHCOTT HILL 
FARM 1 

PCH1 0 Improved 
Grassland 

Improved 
Grassland 

Poor 

SHREW POND WS 0 Arable Arable Average 

STEWKLEY 
POND 

SP 0 Improved 
Grassland 

Improved 
Grassland 

Excellent 

SWAN'S WAY SW 0 Arable Improved 
Grassland 

Good 

WADDESDON 
BLACKGROVE 
LANE 

WBGL 0 Arable Arable Good 

WOOTTON 
ICEHOUSE 

WI 0 Arable Improved 
Grassland 

Excellent 

WOOTTON M1 WM1 0 Urban Arable Good 

WOOTTON 
PONDWEED 

WP 0 Improved 
Grassland 

Arable Good 

WOOTTON 
ROUGH 

WR 0 Improved 
Grassland 

Improved 
Grassland 

Good 

 

Pond sediment and water sample collection 

One water and one sediment sample were collected per pond in most cases, except for 

when the area of water exceeded 1500 m2, when two or three samples were collected (CSL, 

WI and LWU). This produced 37 water samples and 37 sediment samples. Multiple samples 

were collected for larger ponds as previous research has shown spatial heterogeneity in 

communities as detected by eDNA metabarcoding in larger ponds (see Chapters 2 and 3). 

Water samples were collected using 1L plastic bottles which had been sterilised via a 

laboratory acid washer or soaking in 10 % bleach. Nitrile gloves were used to collect water 

and changed between samples. Bottles were triple-washed in pond water before a sample 

was taken. Water samples were taken around 10cm from the surface of the pond in all cases 

(a compromise between the tendency of DNA to sink and avoiding disturbing the sediment). 

Water was transported in a cool box with ice packs to laboratory facilities within four hours of 

collection, where it was stored at 4°C for a maximum of 24h before filtration. To detect 

contamination, two water field blanks were created, where a 1L plastic bottle was filled with 

1L of DI water in the laboratory and this was transported to the field and then back to the 

laboratory.   

Sediment samples were collected from the same location as the water samples using a 

custom sediment sampler comprising of a tubular aluminium rod with a holder for a 50 ml 
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centrifuge tube, both of which had been sterilised using an acid wash or 10 % bleach before 

use. The scoop was triple-washed in pond water between each sample. Sediment samples 

were taken from the surface of the sediment, within the top ~10cm.  

To reduce cross contamination between sample sites, the sediment scooper was wiped with 

10 % bleach between uses and left to air dry. Sediment samples were transported to the 

laboratory within 4 hours of collection and stored at -20’C. 

Water chemistry measurements 

In the field, an ultrameter II (Myron L Company) was used to measure pH, temperature, Total 

Dissolved Solids (TDS), Conductivity and Oxidative-Reductive Potential (ORP) at each 

sample point. Measurements were taken at the same time as the water and sediment 

samples were collected. The sensor was triple-washed in pond water before the 

measurements were taken. For each sample point, three consecutive measurements were 

taken, and the mean calculated.  

Water depth at each sample point was measured using a metre rule. Water samples for 

water chemistry analysis were collected using a wide-mouthed bucket which was washed 

with pond water before sampling. From this larger sample, a smaller 100 ml sample was 

taken to quantify total suspended solids (TSS) in the laboratory. Two 60 ml samples were 

subsampled from the bucket and filtered using a syringe and a 0.45um filter in a SwinnexTM 

(Fisher Scientific, UK) filter holder, on site. The bucket was then stirred, and a third 60 ml 

sample was collected and not filtered. The two filtered samples were analysed for 1. total 

Soluble Reactive Phosphorus (SRP) and 2. chlorophyll, ammonia (NH4), Total Dissolved 

Nitrogen (TDN) and Total Organic Carbon (TOC). The unfiltered sample was analysed for 

Total Phosphorus (TP). The water chemistry analysis was carried out using the methods 

described in Bowes et al. (2018). 

Pond habitat  

Other pond characteristics were measured using the pond habitat survey method developed 

by the Freshwater Habitats Trust. This predominantly visual-based standardised survey 

method is used across the UK to measure the overall habitat condition of ponds (Freshwater 

Habitats Trust 2015).  

Pond outline and permanence were estimated using visual clues such as the winter water 

line and vegetation changes. Using this as a basis, the percentage of water remaining, and 

the percentage of the pond overhung with trees and shrubs was estimated. The percentage 
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coverage of four classes of vegetation (submerged, floating-leaved, emergent and 

duckweed) was estimated and recorded. The impacts from fish, waterfowl, grazing and other 

management were visually judged and given a standardised score, and the water clarity was 

scored similarly. For full details of the method, are found in the survey booklet Freshwater 

Habitats Trust 2015. 

The macrophyte species within the pond area were identified to species level where possible 

using Greenhalgh & Ovenden (2007). The number of visible macrophyte species was 

counted and recorded.    

Pond area and surrounding landscape 

The altitude and area of each pond along with the distance from the pond to the nearest 

waterbody, and the number of ponds in the surrounding 1 km radius were all measured 

using tools in Google Earth (version 9.191.0.) The percentage of each type of land cover 

surrounding each pond was measured using the following method: the locations of each 

pond were plotted in QGIS (3.26.2-Buenos Aires), buffered to 100 m and 1 km, and 

shapefiles generated. Using the R packages sf (ver. 1.0-9, Pebesma, 2018) and terra (ver. 

1.6-17, Hijmans 2023), the buffers were overlaid on the UK Land Cover Map 2021 (10 m 

classified pixels, Marston et. al 2022), and the land cover at 100 m and 1 km radius 

surrounding the pond was extracted. The different land cover classes encountered were 

arable, coniferous woodland, deciduous woodland, improved grassland, neutral grassland, 

calcareous grassland, heather, heather grassland, freshwater, suburban and urban. 

 Great Crested Newt Habitat Suitability Index (HSI) 

The Great Crested Newt Habitat Suitability Index (GCN HSI) is a composite index made up 

of ten different suitability indices, for which a mean is calculated. Scores close to 0 indicate 

unsuitable habitat, and a score of 1 is optimal habitat. For full details, see ARG UK (2010). 

An overall HSI score was calculated for each of the 31 study ponds, and then the pond 

classed as “Excellent” (>0.8), “Good” (0.7-0.79), “Average” (0.6-0.69), “Below average” (0.5-

0.59) or Poor (<0.5). The separate suitability indices are: 

• SI1: Geographic location 

• SI2: Pond area 

• SI3: Pond permanence 

• SI4: Water quality 

• SI5: Shade 
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• SI6: Waterfowl 

• SI7: Fish 

• SI8: Pond count within a 1 km 2 radius of the pond 

• SI9: Terrestrial habitat quality 

• SI10: Macrophyte cover  

Filtration and eDNA extraction 

1000 ml of water was collected for eDNA filtration at each sample point. All samples were 

filtered in a clean environment using vacuum pump filters sterilised via acid washing or 

soaking in 10 % bleach. Each 1000 ml sample was initially pre-filtered with a 12 µm 

Cellulose-Nitrate filter (Whatman, AE100) and subsequently filtered with a 0.45 µm Cellulose 

Nitrate filter to reduce the influence of large particles of organic matter and plant material on 

the analysis. The filter papers were removed from the filters using sterilised tweezers and 

placed in 5 ml centrifuge tubes, which were stored at -20°C until extraction.   

DNA from water samples was extracted from the stored filter papers after defrosting using 

the standard protocol of the DNeasy PowerWater DNA extraction kit (Qiagen Group). An 

extraction blank was produced by following the normal extraction protocol but omitting any 

sample. Concentration of DNA was determined using a Nanodrop spectrophotometer (ref). 

 DNA from sediment samples was extracted by defrosting the full sediment sample and then 

subsampling 0.25g, using a clean weighing boat and disinfected tweezers. DNA was then 

extracted using a DNeasy Powersoil kit (Qiagen Group) following manufacturers’ 

instructions. A DNA extraction blank was produced by following the usual protocol but 

omitting any sample. Concentration of DNA was determined using a Qubit Fluorometer 

(Invitrogen).  All DNA extraction protocols were carried out using sterile procedures i.e. with 

gloves, and the use of 99 % ethanol and bleach to sterilise equipment and laboratory 

benches between any handling of DNA samples. 

Amplification and sequencing 

All DNA amplification and sequencing steps were performed in a laboratory dedicated to 

environmental DNA analysis, including the use of a room dedicated to PCR preparation, 

PCR hoods and UV sterilisation, to reduce the risk of contamination. 

Three primer pairs were chosen following comparison with results from other primer pairs in 

a pond environment (see Chapter 2 and 3 for rationale). These primers amplify different DNA 

or RNA in order to detect different segments of the pond community (Table 4.2 below).  
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Table 4.2: Primer pairs used in the Pinkhill Meadow seasonal study 

Primer pair name and 

reference 

Amplified 

fragment 

length 

Gene 

amplified 

Community primer 

optimised to target 

NSF573/EKNSR951 (Mangot et 

al. 2012) 

425bp 18S rRNA 

gene 

Eukaryotes 

515F/806R (Caporaso et al. 

2011 and Walters et al. 2015) 

390bp  16S rRNA 

gene 

Bacteria 

ITS2-S2F/ITS4_R (Chen et al. 

2010) 

300-460bp 

 

ITS2 DNA 

region 

Viridiplantae (vascular 

plants and green algae) 

 

DNA was amplified using a two-step PCR approach. Each primer pair was first tested on 6 

randomly chosen samples (three water and three sediment), along with an extraction blank 

and PCR blank, to assure positive amplification. Then, all 74 samples, including two field 

and two extraction blanks were amplified with a modified primer (amplicon primers with 

Illumina MiSeq sequencing primer and pre-adaptor added). Four PCR blanks were also 

amplified at this stage (normal PCR reagents, but with molecular grade water added rather 

than any sample). Then step two PCR was carried out to add on the barcodes (Illumina 

MiSeq index) and flow-cell adaptors. Steps 1 and 2 were repeated for the two other primer 

pairs. Therefore, each sample had three two-step PCRs carried out on it, one per primer 

pair. For PCR conditions, see Table S4.1. 

Amplicons were normalised using SequalPrep Normalisation Plate Kit, 96-well (Invitrogen, 

Carlsbad, CA), gel purified using QIAquick gel extraction kit (Qiagen Group) and quantified 

using Qubit high sensitivity dsDNA Assay kit (Invitrogen, Carlsbad, CA). The resultant 

amplicon library was sequenced at a concentration of 9 pM with a 0.675 pM addition of an 

Illumina generated PhiX control library. Sequencing was performed on an Illumina MiSeq 

platform using MiSeq Reagent Kit v3 (Illumina Inc., San Diego, USA). 

Bioinformatic processing 

For the 16S rRNA gene and 18S rRNA gene sequences, raw reads were processed through 

the DADA2 pipeline ver. 1.8 (Callahan et al., 2016) in R (R Core Team, 2018). Briefly, 

adapters and primers were initially removed from the raw reads using cutadapt (Martin 2011) 

Then amplicon reads were trimmed to maintain Q score > 30, at 250 and 200 bases, forward 

and reverse respectively for 16S reads and at 230 and 200 bases respectively for 18S. The 



   
 

134 
 

 
 

results filtered with DADA2 default settings, except for the maximum number of Ns 

(maxN) = 0 and maximum number of expected errors (maxEE) = c(5,5).  

Sequences were dereplicated and the DADA2 core sequence variant inference algorithm 

applied. Processed forward and reverse sequences were merged using the mergePairs 

function, and a sequence table was constructed from the resultant, merged amplicon 

sequence variants (ASVs). Chimeric sequences were removed from the ASV table using 

remove BimeraDenovo with default settings.      

To assign taxonomy, the online IDTAXA tool from the R package DECIPHER ver. 2.14 

(Murali et al. 2018) was used, using the SILVA database, ver. 138.1 (10th March 2021) for 

16S and the PR2 database, version 4.13 (17th March 2021), both provided by the DADA2 

package. This function gives a taxonomic classification to genus level and provides 

confidence scores for each level of classification. The confidence threshold for both types of 

sequence was set at 60 %. 

For 16S rRNA gene ASVs, using the R package ‘phyloseq’ (version 1.42.0, McMurdie & 

Holmes 2013) samples of less than 4,000 reads were pruned (n = 4), leaving 70 samples. 

Ultra-rare taxa (less than 3 reads and only in 1 sample) were removed. Samples were 

rarefied to the median sampling depth (61,159 reads). Removing low-read samples and taxa 

aids in the removal of false positive detections (Shirazi et al. 2021, García-Machado et al. 

2023). Rarefaction is a widely used and statistically valid way to normalize sample size, and 

so control for the uneven sequencing effort between samples (Weiss et al. 2017, Schloss 

2023).  

ASVs with the same taxonomic assignment at genus level were agglomerated, and those 

with a domain confidence of <100 were excluded from the dataset. ASVs assigned to 

‘Mitochondria’ and ‘Chloroplast’ were also removed. Only two blank samples remained in the 

dataset after this process (one extraction blank and one field blank), containing 67 taxa. Five 

taxa within these blanks were present >1000 reads and were also present in environmental 

samples (unclassified Comamonadaceae, Sphingohabdus, Polynucleobacter, 

Xanthobacteraceae, and Acinectobacter), and so were removed from the final dataset. The 

two blanks were then removed from the final dataset. 

For 18S rRNA gene ASVs, no sample pruning was required as all samples had >4,000 

reads. Ultra-rare taxa were removed as before, the samples were rarefied to the median 

sampling depth (24,127 reads), ASVs were taxonomically agglomerated and those of 

domain confidence <100 were excluded. Eight blank samples in remained in the dataset 
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after this process, containing 35 taxa (two field blanks, two extraction blanks, four PCR 

blanks). Five taxa in these samples were present >1,000 reads and were also present within 

environmental samples (unclassified Mammalia, Limnostrombidium, unclassified Annelida, 

Synura, Stentor) and were removed from the final dataset. The eight blanks were then 

removed from the final dataset. 

 

For the ITS2 region sequences, a different process was followed. Raw reads were 

processed and taxonomically assigned using the HONEYPI pipeline implemented in Python 

2.7 (Oliver et al. 2021). The HONEYPI pipeline removes adaptors and quality filters the raw 

reads using TrimGalore v.0.6.4, and then uses the DADA2 pipeline to generate an Amplicon 

Sequence Variant (ASV) abundance table containing chimera-removed, high-quality error-

corrected sequences. For each ASV, conserved regions flanking ITS2 are removed with 

ITSx v.1.1b; and resulting sequences taxonomically classified using the naive Bayesian 

classifier against an in-house ITS2 database of 966,676 (25th March 2020). Unless stated 

otherwise, default parameters were used for the steps listed.  

Each of the 5,107 ASVs was taxonomically assigned to species level by the RDP classifier 

within the HONEYPI pipeline and given a confidence level of assignment between 0 and 1.  

Using the R package ‘phyloseq’ samples of less than 4,000 reads were pruned (n=5) and 

ultra-rare taxa (less than 3 reads and only in 1 sample) were removed. Samples were 

rarefied to the median sampling depth (23,578 reads). Taxa assigned as “NA”, “Fungi” and 

“Metazoa” at Kingdom level were filtered from the dataset, as were any taxa assigned with 

confidence <0.97. Taxa were not agglomerated. Three blank samples remained after this 

process, with 17 taxa (two field blanks and one PCR blank). Of these taxa, only Salix was 

present >1000 reads in blank samples and also present in environmental samples, so this 

was removed from the final dataset.  

All higher plant (Embryophyta) taxa in the pITS dataset (n = 46) were assigned a ‘wetland 

status’ function according to the species list used in the National Pond Survey (Biggs et al. 

1998). Floating-leaved and submerged species were combined into an “aquatic” category, 

whereas emergent species and trees or shrubs were combined into a “wetland” category. 

Plants which did not appear on the NPS list were classified as “terrestrial”.   

Statistical methods 

All statistical analyses were carried out in R, version 4.2.0 (R Core Team 2021). To assess 

differences in abiotic variables between high-impact and low impact ponds, HSI Levels and 
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surrounding landscape types, t tests, PCAs and Kruskal-Wallis tests were carried out using 

functions in base R. Abiotic variable plots were made by using the trans_diff, cal_diff and 

plot_diff functions in the R package microeco, version 0.11.0 (Liu et al. 2021).  

To calculate spatial autocorrelation of pond abiotic characteristics and biotic communities, 

firstly a distance matrix of Haversine geographic distances between ponds was created 

using functions in the R package geosphere (ver 1.5-18, Hijmans et al. 2022). Bray-Curtis 

distance matrices for chemistry variables (12), physical variables (10) land cover at 1 km 

(10) and 100 m (11) radii were created using the vegdist() function in vegan (ver 2.6-4, 

Okansen et al. 2022). The same function was used to calculate distance matrices based on 

read numbers of different ASVs for the separate communities studied: bacteria and archaea 

(16S dataset), micro-eukaryotes (18S dataset) and green plants and algae (ITS2 dataset).  

Mantel tests using Spearman’s rho statistic and 9,999 permutations were performed to 

compare the distance and dissimilarity between pond geographic distances and pond 

chemistry, physical features, landscape features and prokaryotic, eukaryotic and green plant 

communities. 

Almost all other statistical analyses were carried out in the R package microeco, version 

0.11.0 (Liu et al. 2021). Venn diagrams were drawn using the function plot_venn in the 

trans_venn class. Relative abundance of different taxa was calculated, and bar graphs 

plotted, using functions within the trans_abund class. Taxa abundance between nature 

reserve/non-nature reserve ponds, HSI Levels and landscape types were compared via 

t.test and Kruskal-Wallis test using functions within the trans_diff class. Indicator taxa for 

nature reserve/non-nature reserve ponds, different HSI levels and dominant land cover at 

100 m and 1 km radius were calculated via Random Forests analyses with 1,000 trees and 

all default settings, applied within the trans_diff class (An et al. 2019). Three measures of 

alpha diversity (Simpson, Shannon and Chao) were calculated and compared via t.test or 

Wilcoxon test within the trans_alpha class.  

To examine beta diversity, functions within the trans_beta class were used. Beta diversity 

was calculated using a Bray-Curtis index at the lowest available taxonomic level (genus for 

bacteria/archaea and eukaryotes, species for green plants and algae), and a Principal Co-

ordinates Analysis (PCoA) was performed using the cal_ordination function. A permutational 

multivariate analysis of variance (PERMANOVA) was performed using the cal_manova 

function, which uses the adonis2 function in the vegan package, version 2.6-4 (Okansen et 

al. 2022). Initially, this was performed on all samples using only sample type (sediment vs 

water) as a factor to examine the effect of sample type on community composition. Then, to 
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examine the effect of protected status, HSI level, and the dominant land cover at 100 m and 

1 km on community composition, sediment and water samples were separated and 

PERMANOVAs performed. These analyses were marginal: they tested the marginal effect of 

each term only after accounting for all other effects in the model. This method was chosen 

as the number of ponds in each class was unbalanced. 

To examine environmental drivers of community assembly, firstly a Pearson’s correlation 

matrix of all environmental variables was generated and all strongly colinear variables 

(r>0.6) were removed, leaving 26 variables (nine water chemistry variables, five pond 

physical variables and twelve landscape variables). Variation partitioning of the Bray-Curtis 

dissimilarity matrix using the varpart() function in vegan was used to determine the unique 

and combined fractions of variation in the community explained by the water chemistry, the 

surrounding landscape and the physical features of the pond habitat. The significance of the 

six testable partitions were calculated with partial dbRDAs using the capscale() and 

anova.cca() functions in vegan. The variation partitioning analysis was carried out six times 

separately: on bacteria + archaea, eukaryotes and green plants + green algae in water and 

sediment samples respectively.    

 The variables which were significant in the variation partitioning analyses were then used as 

constrained variables analyses of community composition. Distance-based redundancy 

analysis (dbRDA) on the Bray-Curtis matrix of community similarity were performed using 

functions within the trans_env class of microeco. Environmental vectors were fitted to the 

ordination using the vegan function envfit(), all default parameters.  The ordinations were 

plotted using the ggord package, version 1.17 (Beck 2022). Other plots were made using 

functions within microeco which are passed to ggplot2, version 3.4.0 (Wickham 2016). 

 

Results 
 

eDNA concentrations, ASV and read numbers 

The concentrations of eDNA in water samples ranged from 2.00 µg/µl to 183.3 µg/µl (M = 

35.60 µg/µl, SD = 35.88 µg/µl). DNA was stored in Elution buffer in 1.5 ml microcentrifuge 

tubes at 20°C. The total volume of extracted DNA ranged from 70 µl – 100 µl. In sediment 

samples, the range was 13.07 µg/µl to 232.4 µg/µl (M = 56.95 µg/µl, SD = 43.19 µg/µl). DNA 
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was stored in Elution buffer in 1.5 ml microcentrifuge tubes at –20'C. The total volume of 

extracted DNA ranged from 80 µl – 85 µl. 

The processing with the DADA2 pipeline (quality trimming, de-replication, chimera removal) 

produced the following raw datasets: for 16S rRNA sequences, 34,737 ASVs, and the total 

number of reads was 4,524,825; for 18S rRNA sequences, 2,359,412 merged sequences 

were recorded in 20,587 ASVs; and for plant ITS2 (pITS) sequences 1,975,561 raw reads 

and 5,107 ASVs. 

After rarefaction, removal of low-read samples and ultra-rare taxa, removal of taxa with low 

confidence of taxonomic assignment and taxonomic agglomeration (pooling ASVs with the 

same taxonomic assignment at the genus level), the final 16S dataset contained 979 taxa 

across 68 samples (34 water samples, and 34 sediment samples), and the final 18S dataset 

contained 352 taxa across 70 samples (35 water and 35 sediment samples.) The final pITS 

dataset was not taxonomically agglomerated, and contained 361 taxa across 70 samples (35 

sediment and 35 water). 

 

Chemical, physical and landscape characteristics of the ponds 

Figure 4.3 (below): Principal component analysis (PCA) plots showing the multivariate 

variation among 31 ponds in terms of water chemistry variables. Vectors indicate the 

direction and strength of each chemistry variable to the overall distribution. Coloured 

symbols correspond to L; the Habitat Suitability Index for Great Crested Newts category 

(HSI) and R; whether the pond was in a nature reserve (1) or not (0). The first two principal 

axes explained 45 % of the variance. Avg_pH= mean pH, avg_temp =mean temperature 

(°C), avg_cond = mean conductivity (µS/cm), ORP = mean oxidative –reductive potential 

(mV), TDN = total dissolved nitrogen (mgN/l), NH4 = total ammonia (mg/l), SRP = soluble 

reactive phosphorus (ug/l), TP = total phosphorus (µg/l), DOC (mg/l) = dissolved organic 

carbon, SS = suspended solids (mg/l), avg_DO = mean dissolved oxygen ( % saturation), 

Chloro = chlorophyll-a (ug/l) 
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Figure 4.4: Box-and-whisker plots of (top two rows) water physio-chemistry variables and 

(bottom two rows) landscape and physical variables in sample ponds (n=31). 

 

According to PERMANOVA analysis, pond physio-chemistry was different depending on 

whether the pond was within a nature reserve or not (df = 1, R2 = 0.091, p = 0.019) and 

depending on the HSI category of the pond (df = 4, R2 = 0.286, p = 0.026, see Figure 4.3).  

Pond physical variables were significantly different depending on the HSI category (df = 4, 

R2 = 0.334, p = 0.007) but not depending on whether the pond was in a nature reserve or 

not (df = 4, R2 = 0.040, p = 0.17). Finally, the landscape in the 1 km surrounding the pond 

differed between nature reserves and non-nature reserves (df = 1, R2 = 0.089, p = 0.029), 

but not depending on HSI category (df = 4, R2 = 0.134, p = 0.37).  

No significant differences in individual water chemistry variables were observed between 

ponds in nature reserves and non-nature reserves when carrying out multiple t tests on 

individual variables with fdr p value adjustment (see Figure 4.4). Ponds outside of nature 

reserves did have a higher percentage of the margin grazed (p adj = 0.032) and were found 

at a higher altitude (p adj = 0.040), whereas ponds in nature reserves were deeper on 

average (p adj = 0.049).  

Several landscape variables showed a significant difference between nature reserve and 

non-nature reserve ponds. Freshwater, suburban and neutral grassland land cover at both 

scales (100 m and 1 km), heather at 1 km and deciduous wood at 100 m were all higher 

surrounding nature reserve ponds (all p adj < 0.01), whereas arable and improved grassland 

land cover were more abundant around non-nature reserve ponds (all p adj < 0.001). This is 

unsurprising given landscape features were important factors in choosing the sample ponds. 

Perhaps more surprising is that non-nature reserve ponds had a significantly higher number 

of ponds within a 1 km radius (p adj = 0.011). 

To test the differences in individual variables between different HSI levels, multiple Kruskal-

Wallis tests were carried out with fdr p value adjustment. Nine water chemistry variables 

were found to be different between different HSI levels; however, seven of these were for 

“poor” or “below average” categories of which there was only one pond of each, and so can 

be discounted. Total dissolved ammonium (NH4 mg/l) and total dissolved nitrogen (TDN 

mg/l) were both found to be significantly higher in ponds classed as “good” (p adj = 0.04 for 

NH4, and p adj = 0.03 for TDN). “Excellent” ponds were found to have a higher area and 
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average depth (p adj < 0.001 for both), and a higher average percentage cover of 

submerged plants (p adj = 0.005). “Excellent” ponds had a higher average distance to the 

nearest manmade feature (p adj = 0.049), coniferous woodland within 100 m (p adj = 0.032) 

and freshwater within 100 m and 1 km (both p adj < 0.001). These results are to be expected 

as different components of the HSI index are based upon the pond area, macrophyte cover 

and quality of terrestrial habitat. 

 

Taxonomic composition 

 

Figure 4.5 (below): Taxonomic composition of top; bacteria and archaea, middle; eukaryotes 

and bottom; green plants and green algae communities of 31 lowland freshwater ponds in 

Oxfordshire, Buckinghamshire and Northants, UK, in June/July 2022.  ‘Relative abundance ( 

%)’ = relative read abundance, ‘S’= Sediment samples, ‘W’=Water samples, ‘0‘= pond 

located outside a nature reserve, ‘1‘= pond located inside a nature reserve. x axis shows 

sample codes e.g., ‘WCGWS‘ = “Whitecross Green Wood Pond, sediment sample“. For full 

list of codes, see Table 4.1.     
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The taxonomic composition of the bacteria and archaea communities of the 31 ponds 

showed similar patterns to those in previous 16S rRNA gene eDNA metabarcoding studies  

(see Chapters 2 and 3): other than Bacteroidota, all phyla had a significantly different 
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percentage read abundance between sediment and water samples (multiple t tests with fdr p 

value adjustment, all p adj < 0.05). Water samples were characterised by a higher average 

proportion of Proteobacteria reads than sediment samples (water: M = 59.3 %, SD = 20.6 %, 

sediment: M = 48.1 %, SD = 12.4 %) and Actinobacteria reads were also higher in water 

(water: M = 24.3 %, SD = 17.5 %, sediment: M = 2.1 %, SD = 2.4 %).  Sediment samples 

had a higher number of average reads from Desulfobacterota (M = 10.4 %, SD = 3.2 %), 

Campilobacterota (M = 4.9 %, SD = 9.0 %), Verrucomicrobiota (M = 5.0 %, SD = 2.2 %) and 

others (see Figure 4.5).  

The taxonomic composition of eukaryote communities as detected by 18S rRNA gene eDNA 

metabarcoding showed significant diversity between different individual ponds and between 

sediment and water samples within each pond (see Figure 4.5). Sequence reads from 

Metazoa were significantly higher in sediment samples than water samples (sediment: M = 

36.5 %, SD = 24.8 %, water: M = 16.1 %, SD = 20.1 %, t test, p adj = 0.008), whereas 

Perkinsea reads were higher in water samples (water: M = 12.5 %, SD = 23.6 %, sediment: 

M = 0.3 %, SD = 0.05 %, t test, p adj = 0.04). Specifically, the invertebrate classes Annelida 

and Gastrotricha, the green algal class Chlorophyta and Xanthophyaceae (yellow-green 

algae) all had higher average reads in sediment samples compared to water samples, 

whereas the classes Spirotrichea and Perkinsida had higher average reads in water samples 

(multiple t tests with fdr p value adjustment, p adj = 0.045 in all cases). 

Looking across sediment and water samples combined, sequence reads assigned to 

Ochrophyta, and specifically the class Bacillariophyta (diatoms) were more abundant in 

ponds outside of nature reserves (Ochrophyta, non-nature reserve: M = 18.8 %, SD = 20.7 

%, nature reserve: M = 9.0 %, SD = 14.1 % Wilcoxon rank sum test, p adj = 0.024. 

Bacillariophyta, non-nature reserve: M = 6.0 %, SD = 7.2 %, nature reserve: M = 2.5 %, SD 

= 6.1 %, Wilcoxon rank sum test, p adj = 0.011). However, when looking at sediment and 

water samples separately, no taxa were found to have significantly different abundance at 

any taxonomic level between ponds inside and outside of nature reserves.  

The taxonomic composition of green plant and algae communities across the 31 ponds 

showed some similarities to eDNA metabarcoding using the ITS2 marker gene in complex 

ponds in a smaller area (five hectares, see Chapters 2 and 3). Streptophyta sequence reads 

were more abundant on average in sediment samples (M = 92.4 %, SD = 14.5 %) compared 

to water samples (M = 79.1 %, SD = 24.2 %) whereas Chlorophyta reads were more 

abundant in water samples (M = 20.9 %, SD = 24.2 %) than in sediment samples (M = 7.6 

%, SD = 14.5 %, multiple t tests with fdr adjustment, p adj for both = 0.007).  
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Overall, in the green plant and algae ITS2 dataset, there were 74 unique Streptophyte 

species recorded. 42 of these were terrestrial species, 21 were wetland species and 10 were 

wholly aquatic species. In addition, of the 42 terrestrial species, 10 were trees, and 8 were 

cultivated. 8 species were non-native. For the full species list including functional 

annotations, see Table S4.2.    

In water samples, eDNA from terrestrial species dominated, making up a mean of 66.5 % 

(SD = 34.9 %) of overall reads, whereas in sediment samples this proportion was 33.9 % 

(SD = 33.8 %) - still a sizeable amount. Wetland species’ eDNA made up, a mean of 20.3 % 

(SD = 27.0 %) of total reads in water samples and 54.5 % (SD = 35.8 %) of total reads in 

sediment samples. Finally, reads from aquatic species made up a similar proportion of both 

types of sample: M = 13.2 %, SD = 26.5 % in water and M = 11.7 %, SD = 22.2 % in 

sediment (see Figure 4.5). eDNA from tree species was found in very high proportions in 

both types of sample: over a quarter (M = 25.7 %, SD = 27.8 %) of reads in water samples, 

and over half (M = 57.2 %, SD = 36.3 %) of reads in sediment samples. However, eDNA 

from cultivated species did not make up a significant proportion of reads (M = 3.9 %, SD = 

8.6 % in water samples and M = 0.1 %, SD = 0.23 % in sediment samples).  

 

Indicator taxa of nature reserves, HSI levels and landscape types 

Indicator taxa for nature reserve/non-nature reserve ponds, different HSI levels and most 

abundant landscape class within 100 m and 1 km radius were identified using a combination 

of Kruskal-Wallis rank sum tests and the random forest algorithm. No indicator taxa at any 

taxonomic level from any of the three datasets were found to distinguish between pond 

communities from nature reserve ponds and non-nature reserve ponds.  

135 indicator taxa were found to distinguish between ponds of different HSI Levels: however, 

these were mostly for poor, below average or average ponds, for which there were only one 

or three ponds of that classification, and so these taxa were disregarded. Two eukaryote 

taxa from the 18S dataset were significant indicators of “Excellent” ponds: the Chlorophyte 

order Sphaeropleales (p adj = 0.03) and the Dinoflagellate order Peridiniales (p adj = 0.04). 

Sphaeropleales are vegetatively non-motile colonial or unicellular taxa (Krienitz 2009) and 

include some of the most common green alga taxa worldwide (Baudelet et al. 2017).  

Peridiniales (sensu stricto) are a clade of photosynthetic freshwater dinoflagellates (Goméz 

2020). 
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Similarly, most of the 296 indicator taxa found at 100 m or 1 km levels were for rare land 

classes represented by one or two ponds (e.g., woodland, urban and heathland at 100 m, 

neutral grassland at 1 km), and were removed from the results. The Gammaproteobacterian 

genera Methylobacter and Methylovulum were both found to be indicative of arable land in a 

100 m radius (both p adj = 0.030). These genera are both methanotrophic (Tveit. al. 2023, 

Oshkin et al. 2016). Another indicator taxon of 100 m arable cover was an unclassified 

member of the genus Nostoc (p adj = 0.030), a Cyanobacteria genus visible to the naked 

eye and colloquially known as “witches' butter”. Some species of the Nostoc genus are 

endosymbiotic with hornworts and liverworts (Adams 2002) and some are nitrogen-fixing 

(e.g., Lindberg 2004). 

The species Ceratophyllum demersum (Hornwort) was positively associated with ponds with 

suburban land cover within 100 m (p adj < 0.001) and 1 km (p adj < 0.001), reflecting the 

common introduction of this species into managed ponds. Hedera helix (common ivy) and 

Persicaria amphibia (amphibious bistort) with ponds with arable land cover within 100 m (p 

adj = 0.012 for both). The colonial green alga Desmodesmus communis was weakly 

associated with arable land cover at 100 m (p adj = 0.04).  

Alpha diversity 

When separating out bacteria and archaea species (16S rRNA gene dataset), sediment 

samples had significantly higher alpha diversity than water samples for all three measures 

(Chao, Shannon and Simpson, t tests with fdr p value adjustment, all p adj < 0.001). Within 

sediment samples, ponds in nature reserves had significantly higher Chao alpha diversity 

than ponds outside of nature reserves (t test, all p adj = 0.016), however this pattern was not 

found in water samples. No significant differences in alpha diversity between ponds of 

different HSI Level or in different landscape types were observed, for either water or 

sediment samples. 

A similar pattern was found in the eukaryote dataset (18S rRNA gene eDNA metabarcoding). 

Sediment samples had significantly higher alpha diversity than water samples for all three 

measurements ((Chao, Shannon and Simpson, t tests with fdr p value adjustment, all p adj < 

0.05). This is the opposite of what was found in the seasonal eDNA metabarcoding study in 

Chapter 3. No significant differences were found, for either water or sediment samples, 

between ponds inside and outside of nature reserves, of different HSI levels, nor in different 

landscape types. 



   
 

146 
 

 
 

For green plant and algae species, no significant differences in alpha diversity were 

observed between different sample types, but overall samples in ponds outside of nature 

reserves had higher alpha diversity than ponds inside nature reserves, for all three 

measures (Chao, Shannon and Simpson, t tests with fdr p value adjustment, all p adj < 

0.05). When separating out sample types, this pattern held true within sediment samples (for 

Chao1 and Shannon measures only, t tests, both p adj < 0.05) but not within water samples. 

The pattern also held for higher plants (Streptophytes, Shannon and Simpson diversity only, 

t tests, p adj both < 0.05) but not for chlorophytes. There were no differences in alpha 

diversity found between different landscape types, at either scale, or HSI Levels. 

Another interesting pattern found was ponds with a low number of visible macrophyte 

species recorded (less than 5) had significantly higher Chao alpha diversity of Streptophytes 

when sampled using eDNA metabarcoding (Kruskal-Wallis test, p adj = 0.016).  
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Figure 4.6: Chao1 alpha diversity of L; bacteria and archaea, centre; eukaryotes, and R; 

green plants and algae in 31 lowland freshwater ponds based on eDNA metabarcoding 

assays. Top row: comparison between sediment (S) and water (W) samples. Bottom row: 

comparison between ponds inside (1) and outside (0) nature reserves. One and three 

asterisks indicate whether the difference was significant at the p<0.05 and p<0.001 level 

respectively, according to Student’s t test. ‘ns’ = no significant difference.  

Spatial autocorrelation of ponds abiotic characteristics and biological communities. 

There was a significant spatial autocorrelation of water chemistry variables: ponds closer 

together had more similar water chemistry than ponds further apart (Mantel’s r statistic = 
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0.267, p = 0.002). Ponds closer together also had more similar land cover composition within 

a 100 m radius (Mantel’s r = 0.312, p < 0.001), but not within a 1 km radius (Mantel’s r = 

0.089, p = 0.092). However, there was no significant spatial autocorrelation in ponds’ 

physical variables (Mantel’s r = 0.084, p = 0.052).  

 

There was no significant spatial autocorrelation in the bacteria and archaea community 

amongst ponds (16S dataset, Mantel’s r = 0.037, p = 0.30), nor in the eukaryote community 

(18S dataset, Mantel’s r = 0.030, p = 0.27). However, there was significant spatial 

autocorrelation of the plant and green algae communities (ITS2 dataset, Mantel’s r = 0.018, 

p = 0.005): ponds closer together geographically had more similar ecological communities. 

This pattern was not observed when separating the samples into sediment and water 

samples, nor in Streptophyta and Chlorophyta taxa. 

Community composition 

PERMANOVA analyses on a Bray-Curtis matrix of community dissimilarity were carried out 

testing for the marginal effect of each term after accounting for all other terms in the model. 

This method was chosen because some of the categories examined (HSI Level, Landscape 

type 100 m and 1 km, Macrophyte species number) had a low and uneven number of ponds 

in each category. 

Ponds within nature reserves and outside of nature reserves did not have significantly 

different community compositions of bacteria and archaea, eukaryotes or green algae and 

plants, in neither sediment nor water samples. 

In bacteria and archaea communities (16S dataset), sample type (sediment vs water) had a 

large influence on community composition (R2 = 0.338, p < 0.001), a similar proportion to 

that found in previous studies using the same marker in a smaller area (see Chapters 2 and 

3). Sediment and water samples were then separated, and PCoAs and PERMANOVAs 

carried out separately. In sediment samples, HSI Level (R2 = 0.142, p = 0.008) and the 

predominant land cover type in a 100 m radius (R2 = 0.226, p = 0.02) had a significant 

marginal influence on bacteria and archean community composition (see Table 4.3). In water 

samples, only HSI Level was found to be significant (R2 = 0.155, p = 0.03). 

In eukaryote communities (18S dataset) sample type had a much smaller, but still significant, 

effect on community composition (R2 = 0.060, p < 0.001), but no significant effects of HSI 

Level or surrounding land cover type were observed in sediment or water samples 

separately. In plant and green algae communities, sample type again had a small but 
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significant influence (R2 = 0.057, p < 0.001). No significant factors were found to explain 

differences in community composition in sediment samples. However, in water samples land 

cover at 1 km explained 18.4 % of variation in communities (p = 0.005), whereas the number 

of visible macrophyte species explained 10.3 % of total variation (p = 0.034). 

 

Table 4.3: R2 values of factors in PERMANOVA analyses for three taxonomic groups in 

lowland ponds, June 2022. One, two and three asterisks indicate whether the analysis was 

significant at the p<0.05, p<0.01 and p<0.001 level respectively, and orange shading 

indicates the factor was significant. “Nature Reserve” = binary factor, if the pond was located 

in a nature reserve or not. “HSI Level” = habitat suitability index for Great Crested Newts of 

pond. “Land cover at 1 km or 100 m” = the most dominant land cover in a 100 m or 1 km 

radius of the pond, using the UK Land Cover Map 2021 (Marston, 2022). “Macrophyte no. 

class" = estimated number of macrophyte species per pond (0-5, 6-10, 11-15 or 16-20). 

 Nature 
Reserve
(df = 1) 

HSI Level 
(df = 4) 

Land 
cover 100 
m radius 
(df = 7) 
 

Land 
cover 1 km 
radius (df 
= 5) 

Macrophyt
e no class 
(df = 3) 

Bacteria and archaea 
(16S) 

 

Sediment R2=0.03, 
p=0.17 

R2=0.14, 
p<0.01** 

R2=0.23, 
p<0.05* 

R2=0.14, 
p=0.32 

NA 

Water R2=0.02, 
p=0.37 

R2=0.16, 
p<0.05* 

R2=0.20, 
p=0.25 

R2=0.14, 
p=0.37 

NA 

Eukaryotes (18S)  

Sediment R2=0.02, 
p=0.85 

R2=0.12, 
p=0.22 

R2=0.22, 
p=0.07 

R2=0.14, 
p=0.39 

NA 

Water R2=0.04, 
p=0.07 

R2=0.13, 
p=0.11 

R2=0.19, 
p=0.62  

R2=0.16, 
p=0.08 

NA 

Plants and green 
algae (pITS)  

 

Sediment R2=0.02, 
p=0.67 

R2=0.10, 
p=0.55 

R2=0.21, 
p=0.22 

R2=0.16, 
p=0.11 

R2=0.09, 
p=0.25 

Water R2=0.03, 
p=0.37 

R2=0.11, 
p=0.30 

R2=0.19, 
p=0.23 

R2=0.18, 
p<0.01** 

R2=0.10, 
p<0.05* 
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Environmental determinants of community composition 

  

 

Figure 4.7: The results of variation partitioning analyses for top: bacteria communities, and 

bottom: eukaryote communities in sediment (L) and water (R) samples. Variation in a Bray-

Curtis dissimilarity matrix is partitioned between that explained by chemical (9 measures), 

landscape (12 measures) and physical (5 measures) variables, and a residual component. 

Numbers indicate the adjusted R2 value of the variation partitioning analysis. One and two 

asterisks indicate that the variation explained by the portion was significant when tested by 

partial dbRDA, at p<0.05 and p<0.01 levels respectively. “ns” indicates that the dbRDA was 

not significant for that portion. Results for green plant communities are not plotted as all 

testable portions were not significant.    

 

Variation partitioning was carried out on each of the three communities (bacteria and 

archaea, eukaryotes, green plants and algae) and for sediment and water samples 

separately. This was done to investigate the effect of water chemistry, surrounding 

landscape, or the pond’s physical characteristics on the pond’s community composition, 

whilst accounting for the effects of other environmental variables (see Figure 4.7). 
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In bacteria and archaea communities in pond sediments, water chemistry alone accounted 

for 27 % of the variation in community structure (F = 3.86, p = 0.004) and surrounding 

landscape alone accounted for 30 % (F = 1.77, p = 0.02), but the proportion accounted for 

by physical pond variables was not significant. In bacteria and archaea communities in pond 

water, water chemistry alone accounted for 26 % of the variation in community structure (F = 

2.06, p = 0.018), but landscape and pond physical properties were not significant by 

themselves.  

In eukaryote communities in sediment, only surrounding landscape was found to have a 

significant influence on community structure, accounting for 20 % of variation in community 

structure whilst controlling for the other variables (F = 2.66, p = 0.004). In eukaryote 

communities in water, none of the three components were found to significantly account for 

the variation in community structure. Similarly, in plant and green algae communities in both 

water and sediments, the proportions of variation explained by water chemistry, surrounding 

landscape and pond physical characteristics were not significant.     

To investigate the effect of individual variables on community composition, dbRDAs were 

carried out using the variables (e.g., pond chemistry variables) and communities (e.g., 

eukaryote taxa in pond sediments) identified as significant in the variation partitioning 

analysis /partial dbRDAs. 

The results of these analyses found that water chemistry variables explained around 9.5 % 

of the variation in bacteria and archaea communities in water (R2 adj = 0.095, see Figure 

4.8, top left), the first two axes accounted for 45.6 % of the total variation, and the overall 

model was significant (F = 1.38, p = 0.02). Conductivity and total phosphorus were 

significantly correlated with dbRDA2 and dbRDA1 respectively (conductivity p = 0.049, total 

phosphorus p = 0.017).  

Water chemistry variables also explained around 12 % of the variation in bacteria and 

archaea communities in sediment (R2 adj = 0.119, Figure 4.8, top right), the first two axes 

accounting for, again, 45.6 % of the total variation, and the overall model was significant (F = 

1.49, p < 0.001). In this case, conductivity (p = 0.002), mean temperature (p = 0.013), 

dissolved organic carbon (p = 0.012) and total phosphorus (p < 0.001) were all positively 

correlated with dbRDA1, whereas dissolved oxygen was negatively correlated with dbRDA1 

(p = 0.002). 

Landscape variables explained 17 % of the variation in bacteria communities in sediment 

(R2 adj = 0.173, Figure 4.8, bottom left). The first two axes accounted for only 37.6 % of the 
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total variation, but the overall model was highly significant (F = 1.58, p < 0.001). The 

percentage of arable and improved grassland land cover within a 1 km radius were positively 

correlated with dbRDA1 (arable, p = 0.042, improved grassland, p = 0.023), whereas the 

percentage of heather cover in 1 km was negatively correlated with dbRDA1 (p = 0.016), as 

was the percentage of suburban land cover (p = 0.002).  

Landscape variables explained 10 % of the variation in eukaryote communities in pond 

sediments (R2 adj = 0.097, Figure 4.8, bottom right). The full model was significant (F = 

1.31, p < 0.001) although the first two axes only accounted for 31.6 % of the total variation. 

Number of ponds in a 1 km radius of the study pond was positively correlated with dbRDA1 

(p = 0.003), whereas the percentage of arable and urban land cover in the surrounding 1 km 

were positively correlated with dbRDA2 (arable p = 0.007, urban p = 0.001).  
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Figure 4.8: Distance-based redundancy analyses (dbRDA) of Bray-Curtis distances between 

samples from ponds of different HSI Level (colours). Top left: bacteria in pond water and 

water chemistry variables; top right: bacteria in pond sediments and water chemistry 

variables; bottom left: bacteria in pond sediments and % land cover within a 1 km radius; 

bottom right: eukaryotes in pond sediments and land cover within a 1 km radius. The full 

models of the ordinations were all significant (p < 0.05). 
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Discussion 
 

The findings of this study shed light on the potential of bacteria and archaea communities 

and taxa as reliable indicators of freshwater pond quality. My investigation revealed 

discernible variations in bacterial community composition within both sediments and water 

across different HSI levels, explaining 14-16 % of the variation in communities. Interestingly, 

ponds located within nature reserves exhibited notably higher prokaryote richness in 

sediments than those located outside nature reserves. 

Unconstrained and constrained ordinations of bacterial community structure yielded 

consistent results: sediment bacteria communities were structured by pond water chemistry 

variables and land cover variables, whereas communities in water only responded to water 

chemistry variables.  Specifically, total phosphorus and conductivity (for both water and 

sediment), and the amount of arable, improved grassland and suburban land cover in the 

surrounding area (for sediment only) appeared to be important determinants of community 

structure. Bacteria and archaea communities were not spatially structured. 

These findings exhibit support for bacteria and archaea communities in ponds, particularly in 

sediments, responding to anthropogenic impact, possibly mediated through land cover 

change and associated changes in water chemistry. Prior research has found evidence of 

bacteria in freshwater sediments showing signals of wastewater discharge into rivers 

(Martinez-Santos et al. 2018), dam building (Zhang et al. 2017) and wetland drainage (Wood 

et al. 2021). In this landscape, Methanogens were indicator species of arable land cover in 

the immediate vicinity of ponds. Previous studies have demonstrated Methanogens’ 

sensitivity to eutrophication and temperature (Nijman et al. 2021, Yang et al. 2019), 

underscoring their potential role as biomarkers for environmental changes.  

Like previous findings, the alpha diversity of prokaryotes was higher in pond sediments than 

pond water, and the community composition differed in the two environments, emphasising 

the importance of sampling encompassing both pond sediments and water to 

comprehensively capture microbial responses to environmental factors. 

Our investigation also explored eukaryotic communities, identifying certain taxa as indicators 

for both HSI levels (Peridiniales, Sphaeropleales) and nature reserve status (Ochrophyta, 

Bacillariophyta). The cause of this is difficult to discern as taxa lower than order were not 

identified. Diatoms may be responding to the higher nutrient levels in ponds outside of 

nature reserves (Smucker et al. 2020, Kiran et al. 2016), or an increased number of ponds in 
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the surrounding landscape aiding dispersal, perhaps via waterfowl (Manning et al. 2021, 

Soininen 2007). However, despite these indicator species, no discernible differences were 

observed in community compositions according to HSI level or nature reserve status.  

The interplay of landscape variables within a 1 km radius was identified as a potential 

influence on eukaryote community composition in sediments, particularly arable and urban 

land cover and the number of nearby ponds. However, none of the measured variables 

(chemical, physical or landscape) were found to have significant structuring effects on 

eukaryote communities in pond water. Notably, spatial autocorrelation was absent in the 

studied communities. 

My findings agree with Ionescu et al. (2022) in finding a similar proportion of variation in 

eukaryotic communities in pond sediments explained by land cover. However, no 

environmental filtering was indicated in eukaryote communities in water samples, contrary to 

previous findings for protists, phytoplankton and zooplankton (Macingo et al. 2019, Simon et 

al. 2015), and no spatial structuring was observed in either water or sediment samples, 

contrary to previous findings (Chang et al. 2021).  

It may be that different functional eukaryote communities (e.g., protists, phytoplankton and 

zooplankton) are structured differently, and it is necessary to analyse these groups 

separately to tease out the differential patterns. However, other explanations are possible, 

for instance, homogenising dispersal or homogenising selection (Pearman et al. 2023). 

Additionally, eukaryote communities in freshwater lakes exhibit a high temporal turnover, and 

sampling a single timepoint may obscure spatial and environmental effects (Li et al. 2020, 

Chapter 3). This finding is supported by the fact that in this study, alpha diversity was higher 

in pond sediments than water, yet in a previous study using the same primer pair over the 

course of a year (Chapter 3), alpha diversity was higher in pond water.      

In contrast, green plants and algae did not produce indicator species for either nature 

reserves or HSI levels and community composition within this group did not show any 

significant response to these factors.  

Surprisingly, plant richness in sediment was higher outside nature reserves, and in ponds 

with fewer visible macrophyte species. This counterintuitive finding may be explained by the 

interaction between shade, macrophyte abundance and rates of eDNA preservation. On 

closer examination, ponds with <5 macrophyte species were significantly more overhung by 

trees than ponds with a higher number of visible macrophyte species (Kruskal-Wallis test, 

H(3) = 33.68, p < 0.001, post-hoc Dunn tests all p < 0.001). It may be that higher levels of 
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shade suppress the growth of macrophytes in the pond, but also result in higher rates of 

eDNA deposition or preservation due to lower temperatures and levels of UV light. However, 

the pattern was not found in water samples: perhaps the rate of turnover of eDNA in water is 

higher than in sediment samples, obscuring the effect of shade.  

No environmental variables were found to be significant drivers of green plant and algae 

community structure, either in pond water or pond sediment. However, there was significant 

spatial autocorrelation in green plant and algae communities. This suggests that the limited 

dispersal ability of both higher plants and green algae is causing this spatial structuring 

(Garcia-Giron et al. 2019, Gallego et al. 2013), particularly as the pattern only held true when 

combining higher plant and green algae communities, and sediment and water samples. 

However, it may also reflect the high influence of the surrounding terrestrial environment, as 

land cover within 100 m displayed spatial autocorrelation, and 30 % of the total eDNA reads 

in sediment samples and 65 % of the total eDNA reads in water samples originated from 

terrestrial plant species.  

It's crucial to acknowledge the potential confounding effects of spatial autocorrelation in 

water chemistry on the interpretation of responses to HSI levels and nature reserve status. 

While this spatial autocorrelation was not observed in bacterial or eukaryote community 

similarity, it poses a significant consideration for future research design. 

Taken together, the results of this study show that pond communities detected by eDNA 

metabarcoding, particularly microbes, can respond to differences in pond quality. Future 

research should focus on bacterial communities as biomarkers for assessing the ecological 

health of freshwater lowland ponds. An obvious next step would be to repeat the study over 

a wider geographical extent, with a greater number of ponds and more replicates in each 

Habitat Suitability Index (HSI) category. Another potential research direction is developing 

novel pond health indices by comparing community data derived from eDNA metabarcoding 

with PSYM scores. Moreover, to gain deeper insights into the spatial and environmental 

structuring of pond communities, a multifactorial experimental design is recommended: for 

instance, sampling clean water ponds in areas of low-quality terrestrial habitat and vice 

versa.  
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Conclusions 
 

eDNA metabarcoding is a powerful tool for investigating ecological hypotheses in freshwater 

ponds at large spatial scales, and provides opportunities for future biomarkers in these 

environments.  

In this study, community assemblages of bacteria and archaea emerged as the best 

indicators of different HSI levels, but not green plant or eukaryote communities.  

This suggests that prokaryotes possess the potential to serve as robust biomarkers for 

delineating ecological quality levels between pond ecosystems. Future research endeavours 

should aim to test the applicability of this methodology by sampling a greater number of 

ponds across a broader geographical expanse, incorporating multiple replicates within 

various Habitat Suitability Index (HSI) categories, to benchmark prokaryote assemblages in 

excellent, good, average, below average and poor HSI quality ponds. Given the thousands 

of ponds across the UK with documented HSI levels, this research presents an enticing 

opportunity.  

The bacterial communities observed in both water and sediment exhibited  clear structuring 

according to water chemistry parameters. Moreover, sediment bacterial communities 

demonstrated sensitivity to land cover within a 1 km radius of the pond. Similarly, eukaryotic 

communities present in pond sediments displayed structuring influenced by variations in land 

cover, although no spatial structuring was evident. 

This investigation also highlights the limitations of eDNA metabarcoding in accurately 

portraying ecological patterns concerning macrophyte and green algae communities within 

freshwater ponds when compared to traditional survey methodologies. Metabarcoding 

outcomes for plant communities are notably biased by the presence of eDNA from the 

surrounding terrestrial landscape, and the interplay of shade on eDNA preservation and 

degradation may lead to conclusions that diverge from those obtained through traditional 

approaches.  

Notably, environmental variables were not identified as significant determinants of structure 

within green plant communities. However, spatial structuring was evident, suggesting 

potential constraints due to dispersal limitation or the influence of the surrounding landscape 

within a 100 m proximity to the ponds, a factor that also displayed spatial autocorrelation. 
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Consistent with prior research, this study reaffirms the pivotal role of suburban ponds as 

significant reservoirs of freshwater biodiversity (Hill et al., 2017), while also highlighting the 

impact of agricultural practices on pond water chemistry and, by extension, biological 

communities (Sawatzky et al. 2019, Fuentes-Rodrigues et al. 2013, Leibold 1999). 

Furthermore, there exists preliminary evidence suggesting a positive relationship between 

freshwater connectivity and heightened eukaryotic diversity. 
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Chapter 5: Conclusions 
This collection of studies represents one of the most thorough applications of eDNA 

metabarcoding in freshwater ponds to date. These are some of the first studies to use eDNA 

metabarcoding of the 16S rRNA gene and 18S rRNA gene to characterise microbial, algal 

and microfaunal communities in ponds. These are the first studies, to my knowledge, to use 

eDNA metabarcoding of the ITS2 gene region to sequence communities of green plants, 

green algae, and fungi in ponds.  

The difference in spatial scale and grain - from high resolution sampling in a pond of 0.5ha, 

to sampling multiple ponds across a 3,600 km 2 landscape - the direct comparison of water 

and sediment samples, and year-round sampling is unique, and has elucidated various 

enlightening findings. These not only relate to the methodology of applying eDNA 

metabarcoding to ponds, but also the taxonomic composition and the ecological drivers of 

these communities. Furthermore, the comparison of eDNA metabarcoding with traditional 

pond monitoring techniques suggests new and exciting approaches for pond biomonitoring 

in the molecular age, as well as potential drawbacks. 

This body of work is relevant and timely. Freshwater ponds are increasingly recognised as 

critical reservoirs of biodiversity and important for ecosystem functioning nationwide, as 

evidenced by the inclusion of freshwater ponds in the National Capital and Ecosystem 

Assessment programme (NCEA, Natural England 2022). However rapid, scalable molecular 

tools, and tools which assess health of all components of the pond ecosystem are currently 

absent. 

Limitations 
 

There were limitations to datasets generated in these studies. Time between sampling 

events was irregular for the seasonal study (Chapter 3) due to Government restrictions 

imposed by the Covid-19 pandemic, resulting in no peak spring sampling event (May) as 

planned. The Covid-19 pandemic also delayed progress with laboratory analysis, which had 

a knock-on effect on the timescale for the landscape study (Chapter 4). This landscape 

study was also limited by a relatively small sample size and number of ponds of each HSI 

category, due to constrictions on access, number of samplers (two) and time constraints.   
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Not all relevant environmental variables could be measured for all ponds due to funding 

constraints, for example, sediment physio-chemical properties. This would have been useful 

for a variety of reasons: to more clearly link taxa found in sediments to functions (e.g. 

methanotrophic bacteria and carbon content of sediments) and to discover other factors 

structuring communities in sediment. Additionally, I was unable to look in more detail at the 

prokaryotic functional assignment and composition of the study ponds due to time and cost 

constraints. 

Longer reads of the ITS2 gene region would have aided in species-level identification of 

these sequences, but was not possible as the sequencing flow cells used (Illumina MiSeq 

v3) had an upper limit of 550bp, chosen to accommodate multiple barcodes of varying length 

(see Chapter 2, Table 1; Chapter 3, Table 1 and Chapter 4, Table 2).  

Nevertheless, the large volume of eDNA and environmental data generated from this study, 

conducted over a relatively short timeframe, still permits impactful conclusions to be drawn. 

 

Methodological findings 
 

These studies have emphasised promising new directions for eDNA metabarcoding methods 

in ponds, as well as underlining complexities and drawbacks. My work has shown that 

applying eDNA metabarcoding in these environments is not always simple and there are a 

variety of technical challenges associated with sampling, molecular analysis and in silico 

analysis that need to be addressed to allow this method to be used reliably for biomonitoring. 

My studies identified that the following issues are important when considering the 

methodology of pond eDNA metabarcoding studies: 

1. Sample medium (sediment or water) 

2. Season of sampling 

3. Number of samples / total volume sampled per waterbody 

4. Temperature and light levels and interaction with eDNA persistence 

5. Marker gene 

6. Taxonomic vs taxonomy-free approaches 

Firstly, these studies have highlighted the differences in taxonomic composition, diversity 

and turnover between biological communities sequenced from pond sediments and from 
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pond water. No matter which taxa were studied, communities sequenced by eDNA 

metabarcoding were significantly different in water and sediment samples (Chapter 2: Figure 

2.3 and Table 2.2; Chapter 3: Figure 3.5 and Figure 3.6; Chapter 4: Figure 4.5), although the 

differences were of greater magnitude in microbial communities (both prokaryotic and 

eukaryotic) than in multicellular organisms (Chapter 3: Tables 3.2 to 3.5).  

Entire phyla, such as Desulfobacterota, Acidobacterota, Annelida and Nematoda were 

almost only found in sediment samples, whereas Actinobacteria, Cryptophyta and Rotifera 

were several times more abundant in water samples. This suggests that eDNA 

metabarcoding studies in ponds to date, which have almost exclusively sampled pond water, 

are failing to detect entire taxonomic and functional components of pond communities.  

Secondly, the annual time-series study (Chapter 3) showcased that eDNA metabarcoding is 

sensitive to seasonal turnover in biological community composition in ponds. However, this 

fluctuation is much more pronounced in water samples than in sediment samples (Chapter 

3: Figure 3.7). No matter which group was sampled, be it microbes, or multicellular animals, 

plants and fungi, the season of sampling was the strongest driver of changes in community 

composition in water samples, overriding the effects of abiotic pond conditions and 

explaining between 10 and 20 % of the variation in communities (Chapter 3: Tables 3.6-3.9). 

However, in sediment samples, the structuring effects of sample season and abiotic pond 

conditions were roughly equal, between 3 and 7 % (Chapter 3: Tables 3.6-3.9). No one 

season emerged as the optimal time to sample, as alpha diversity of different taxonomic 

groups peaked in different months, although cooler months tended to have higher alpha 

diversity (see below). 

Furthermore, there was evidence that communities in sediment samples are more 

responsive to the effects of the surrounding landscape than in water samples: variation 

partitioning and dbRDAs indicated landscape variables were responsible for 10-20 % of 

variation in eukaryotic communities in sediment, with significant effects of arable and urban 

land cover and a greater number of ponds in the surrounding landscape (Chapter 4: Figure 

4.7 and Figure 4.8). For prokaryotic communities in sediments, landscape variables were 

responsible for 17-30 % of variation, with significant effects of improved grassland, arable, 

and suburban land cover. 

These three discoveries imply that it would be more advisable to sample pond sediments 

than pond water when conducting studies aimed at elucidating the enduring impacts of 

environmental factors on pond ecosystems, such as eutrophication or surrounding land use 

change. Sediment samples should be prioritised particularly if sampling is spread over a long 
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period (2 months and upwards). Conversely, for research investigating immediate responses 

and fluctuations, collecting pond water samples is a more suitable choice. My research 

shows that standard collection, eDNA extraction, amplification and sequencing protocols 

work well for pond sediments, and could be scaled to larger study areas. However, one 

drawback of my sediment sampling method (sample scoop) is the sample is less readily 

standardised. Sediment traps could be used to ensure only recent sediment is sampled, 

although this would entail two visits.   

As predicted by Harper et al (2019), and as found in previous studies (Eichmiller et al 2014), 

communities revealed by eDNA metabarcoding water were highly heterogeneous within a 

single pond, with differences in composition at the class and order level between samples 

collected <20 m apart. Multiple and higher volume water samples are recommended for 

larger ponds, although this must be balanced with cost and practicality. More efficient 

methods of sampling water for eDNA metabarcoding, such as in-field filtration and filter 

preservation, are emerging constantly, which will aid this process (Spens et al 2016).  

Rarefaction curves could be used to determine the minimum number of samples required 

per pond. However, Chapter 4 demonstrated similarities in communities between ponds from 

different geographic areas, but similar conditions and quality (Chapter 4, Table 4.3, Figure 

4.8). This suggests that eDNA metabarcoding a small volume of pond water or a few grams 

of sediment can be generalised to a whole pond, rather than being only a reflection of 

hyperlocal conditions. 

Several of my findings suggest that variation in eDNA persistence rates, caused by 

differences in temperature and UV light levels between ponds or times of year may be 

obscuring ecological patterns. For instance, my findings of higher alpha diversity of microbes 

in the winter months (Chapter 3, Figures S3.6 and S3.7) and higher green plant and algae 

richness in shaded ponds (Chapter 4, Figure 4.6) are contrary to noted ecological patterns, 

but make sense if low light levels and temperatures were enabling greater eDNA 

persistence, which was in turn reflected in higher alpha diversity. It is well known that UV and 

temperature levels influence eDNA degradation rates (Barnes & Turner 2016), yet I have not 

seen this impact on eDNA persistence and diversity metrics acknowledged in other seasonal 

studies (e.g. Bista et al. 2017, Mikhailov et al. 2022).  

This is a significant factor to consider when using eDNA metabarcoding for testing ecological 

hypotheses in ponds, and other freshwater environments as well. Previous eDNA studies 

should be re-examined to determine whether differences in abundance or diversity are due 

to an ecological reality or could be explained by eDNA preservation artefacts. In current and 
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future studies, I recommend that water temperature and shading are always measured and 

taken into consideration, particularly when comparing alpha diversities or studying 

phototrophic organisms. 

These studies have shown that the ITS2 gene region is an effective marker for eDNA 

metabarcoding of green plant communities. Over 85 higher plant (Embryophyta) and over 

280 green algal (Chlorophyta) taxa were identified to at least genus level, with a mean of 

24.3 taxa identified per sample. However, the overlap with traditional in-pond macrophyte 

surveys was low, approximately 10 % at species level (Chapter 2 and Chapter 3). It 

appeared that if there were multiple species of the same genus present, eDNA 

metabarcoding struggled to resolve these, and many species, both common and rare, were 

not detected. Future efforts should focus on expanding reference databases for 

macrophytes, and making them more region-specific, as has recently been attempted in 

Quaresma et al. (2024), although coverage at species level is still short of 100 %. Longer 

length DNA barcodes could be used to aid in the resolution of identification (Fahner et al. 

2016).   

A consistent pattern emerged from all three studies: eDNA from terrestrial plants made up 30 

% of total ITS2 reads in sediment samples, and 70 % of total reads in water samples. This 

highlights the strong terrestrial influence on small freshwater environments such as ponds, 

and the ability for eDNA to travel over long distances and between different environments. 

Future metabarcoding studies, whether using the ITS2 marker or others, should carefully 

consider the influence of allochthonous eDNA on their conclusions. Future research could 

investigate using eDNA metabarcoding of pond water to passively sample plants in the 

surrounding landscape, or further investigate the use of Chlorophyta taxa as an indicators of 

pond quality. These findings further emphasise the benefits of sampling sediments 

alongside, or instead of, water for eDNA surveys of pond environments.            

Finally, my results bolster confidence in current standard bioinformatic processing 

procedures. Contrary to previous findings (Ionescu et al 2022, Machler et al 2020), using 

eDNA read abundances as a proxy for species abundance did not greatly alter conclusions 

drawn about community composition compared to only using presence-absence data 

(Chapter 2, Table 2.2). Similarly, filtering by confidence of taxonomic assignment or using an 

unfiltered dataset had little effect on overall patterns of community structure (Chapter 2, 

Table 2.2). This endorses the use of taxonomy-free approaches to using eDNA 

metabarcoding data for biological monitoring in ponds (Cordier et al. 2020, Pawlowski et al. 

2018). Future efforts could compare taxonomically assigned and taxonomy-free datasets 
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across a metric of known environmental gradients (e.g. Great Crested Newt HSI levels) for a 

larger dataset. 

 

Taxonomic and bioindicator findings 
 

Sequencing the prokaryotic communities across the 50+ ponds in these combined studies 

has revealed a similar pattern of taxonomic composition at the phylum level, and much in 

common with other freshwater environments, with the most abundant phyla belonging to 

Proteobacteria and Bacertoidota and, in water samples, Actinobacteria. There was a 

consistently low abundance (< 5 % of all reads) of Cyanobacteria.  

eDNA metabarcoding across the three studies found taxa involved in nutrient cycling and 

biotic interactions, from Desulfobacterota (sulphate-reducing bacteria phylum, also 

commonly present in wetland soils), to methanogenic and methane oxidising genera, to 

polyphosphate accumulating organisms and potentially pathogenic organisms (Chapters 2, 3 

and 4). This highlights the crucial importance of bacteria and archaea to the ecosystem 

functioning of ponds, such as nutrient retention, and generation or mitigation of carbon 

emissions.  

A compelling future avenue of research would be to use metagenomics or 

metatranscriptomics to describe the functional profiles of pond environments (Cordier et al 

2020). This could help elucidate current, societally relevant research questions such as 

whether, and under what conditions, ponds are methane sources or sinks (Rosentrater et al 

2021), their role in nitrogen cycling (Cai et al. 2022), pollutant remediation (Tai et al. 2020) 

and the development of antimicrobial resistance (Nnadozie & Odume 2019). 

The landscape-scale study draws attention to the immense potential for bacteria and 

archaea to be bioindicator organisms in pond environments. Whilst consistently similar 

across ponds at the phylum level, at the genus level, bacteria community composition 

altered according to water physio-chemistry and surrounding land use (constrained 

ordinations and variation partitioning, Chapter 4, Figures 4.7 and 4.8) and pond overall 

quality as calculated by the Habitat Suitability Index for Great Crested Newts (unconstrained 

ordination, Chapter 4, Table 4.3). Whether alpha diversity (Chapter 4, Figure 4.6), indicator 

taxa or beta diversity was used as a metric, prokaryotes showed evidence of anthropogenic 

impact on ponds. 
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This reinforces previous findings of prokaryotes indicating human-induced pressures in other 

environments, and provides support for calls to shift the research focus from macro-

organisms to micro-organisms as bioindicators (Sagova-Mareckova et al 2021). That these 

patterns emerged from a relatively low total sample size (due to the constraints mentioned 

above) provides strong justification for future efforts to develop a prokaryotic pond health 

indicator at a wider scale (e.g., nationwide). 

By contrast, the sequencing of eukaryotic communities using the 18S rRNA marker gene 

revealed a lack of consistency in taxonomic composition, even at the phylum level, between 

different ponds. Similar phyla were sequenced compared to other studies using the 18S 

rRNA marker gene in lakes, such as Ochrophyta, Ciliopora, Cercozoa, Arthropoda, 

Nematoda and Annelida. However, Chlorophyta reads appeared to be more abundant in my 

research than in eDNA metabarcoding studies of lake communities, suggesting that ponds, 

due to their shallow depth and high light penetration, are important habitats for this taxon. 

Cryptophyta was also present in water samples and absent from sediment samples from the 

same location, similar to prior research in ponds conducted by Ionescu et al (2022).  

Community composition and diversity detected by 18S rRNA metabarcoding did not reflect 

overall pond ecological quality, save for communities in pond sediments being structured by 

surrounding land use, and the presence of some phototrophic indicator taxa of “Excellent” 

HSI ponds (Sphaeropleales and Peridiniales). Unlike the prokaryote community, using the 

whole eukaryote community as a bioindicator of anthropogenic impact on ponds is not 

indicated in my data. It may be that biotic interactions such as competition and predation are 

more important in structuring eukaryote communities. Alternatively, it may be that responses 

are evident in lower taxonomic levels (e.g. Bacillariophyta, Cryptophyta, Rotifera) or different 

functional groups (e.g. phytoplankton, zooplankton, meiobenthos) which are obscured in 

combination with other groups. Subsequent research initiatives could focus on responses to 

gradients of disturbance of some of these taxa, although prior research has not found strong 

responses in these groups (e.g. Ionescu et al 2022). There is also a potential role for 

different statistical methods to identify indicator taxa at the species level, such as machine 

learning. 

Ecological findings 
 

My research has demonstrated the success of using eDNA metabarcoding to investigate 

ecological hypotheses for pond ecosystems at the landscape level.  Prokaryote communities 



   
 

166 
 

 
 

in the water and sediments of ponds were structured by pond water physio-chemistry 

(particularly total conductivity and total phosphorus), and prokaryote communities in 

sediment additionally responded to the surrounding land use, particularly agricultural (arable 

and improved grassland) cover, and suburban land use. Prokaryote communities showed no 

evidence of spatial structuring at this scale, suggesting an absence of dispersal limitation. 

 

 

Figure 5.1: Schematic diagrams to demonstrate the structuring influence of environmental 

factors on (top) prokaryotic communities in pond water and sediments and (bottom) 
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eukaryotic communities in pond sediments (n=31). Arrows indicate that the factor was found 

to have a significant structuring effect in a constrained ordination (dbRDA). Green plant and 

algae communities did not display environmental structuring but were spatially structured. 

For full results, see Chapter 4. “TP” = total phosphorus (µg/l), “DOC” = dissolved organic 

carbon (mg/l), “Temp” = Temperature (°C).  

This study found evidence of eukaryote communities in pond sediments being 

environmentally filtered according to the land use in the 1 km surrounding the pond, 

particularly the presence of arable and urban land cover. There was some evidence that 

freshwater connectivity also influences these communities, as the number of ponds within a 

1 km radius was significantly correlated with gradients of community dissimilarity. There was 

no evidence of spatial structuring or dispersal limitation. In eukaryote communities in pond 

water, there was no evidence of either environmental filtering or dispersal limitation.      

Finally, green plants and algal communities were not structured according to environmental 

variables, either at the individual pond (chemical, physical) or landscape level. However, 

these communities were spatially structured, suggesting that dispersal limitation is impacting 

both macrophytes and green algal distribution in these ponds.  

Future research efforts could apply similar techniques across different landscape types (e.g., 

upland versus lowland, semi-natural vs highly altered), greater spatial extents and with a 

greater number of waterbodies. 

Conclusions 
 

In summary, the collection of studies presented here represents a significant advancement in 

the application of environmental DNA (eDNA) metabarcoding techniques to the study of 

freshwater ponds. These studies have illuminated various hitherto unseen aspects of pond 

ecosystems, shedding light on both methodological considerations and ecological insights. 

Methodologically, the research has revealed the complexities of applying eDNA 

metabarcoding in pond environments. It underscores the importance of considering the 

choice of sample medium (water, sediment, or both), and the influence of seasonal 

fluctuations on community composition. The findings also suggest that the influence of local 

abiotic conditions on eDNA persistence, such as temperature and shading, should always be 

considered when applying eDNA metabarcoding to ponds. 
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The studies have demonstrated the potential of the ITS2 gene region as an effective marker 

for characterizing green plant communities in ponds, though challenges remain in resolving 

certain taxonomic distinctions. Moreover, they emphasize the strong influence of the 

surrounding terrestrial landscape on the detection of plant communities in small waterbodies. 

Taxonomically and ecologically, these studies have uncovered valuable insights into the 

composition and dynamics of prokaryotic and eukaryotic communities in ponds. Prokaryotes 

have emerged as potential bioindicator organisms sensitive to environmental changes, 

indicating the anthropogenic impacts on pond health. In contrast, eukaryote communities 

appear to be less clearly influenced by the pond and surrounding environment, making them 

less suitable as bioindicators of anthropogenic effects. 

My research demonstrates the influence of environmental factors, water physio-chemistry, 

and land use on prokaryote and eukaryote communities, along with the impact of spatial 

structuring and dispersal limitation on green plant and algal communities. Together, these 

findings emphasise that conservation of these unique and ecologically important habitats 

requires a variety of approaches: overcoming dispersal limitation by creation of new ponds 

and human mediated colonisation of macrophyte and algae species, landscape-scale 

measures such as protecting large areas of natural or semi-natural habitat, and measures to 

improve water quality of individual ponds, such as water-friendly farming practises. 

In sum, this body of work not only advances our understanding of pond ecosystems but also 

highlights the challenges and potential of eDNA metabarcoding in small freshwater 

environments. It serves as a foundation for future research, monitoring and conservation 

efforts aimed at safeguarding these beautiful and precious ecosystems. 
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