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Fig. 1. Given a set of multi-view images of an object (le�), we reconstruct the object with the proposed mesh-based Gaussian Spla�ing representation

(GaussianMesh), involving both 3D Gaussians and an associated mesh. The mesh is adaptively refined along with Gaussian spli�ing, and also served as

an e�ective regularization. As a result, our method achieves higher-quality novel view synthesis than 3D Gaussian spla�ing [Kerbl et al. 2023], evenly for

large-scale deformation. Our 3D Gaussian deformation method produces high-quality deformation results in a real-time manner with large-scale deformations.

Neural implicit representations, including Neural Distance Fields and Neural
Radiance Fields, have demonstrated signi�cant capabilities for reconstructing
surfaces with complicated geometry and topology, and generating novel
views of a scene. Nevertheless, it is challenging for users to directly deform
or manipulate these implicit representations with large deformations in a
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real-time fashion. Gaussian Splatting (GS) has recently become a promising

method with explicit geometry for representing static scenes and facilitating

high-quality and real-time synthesis of novel views. However, it cannot

be easily deformed due to the use of discrete Gaussians and the lack of

explicit topology. To address this, we develop a novel GS-based method

(GaussianMesh) that enables interactive deformation. Our key idea is to

design an innovative mesh-based GS representation, which is integrated

into Gaussian learning and manipulation. 3D Gaussians are de�ned over

an explicit mesh, and they are bound with each other: the rendering of

3D Gaussians guides the mesh face split for adaptive re�nement, and the

mesh face split directs the splitting of 3D Gaussians. Moreover, the explicit

mesh constraints help regularize the Gaussian distribution, suppressing

poor-quality Gaussians (e.g. , misaligned Gaussians, long-narrow shaped

Gaussians), thus enhancing visual quality and reducing artifacts during

deformation. Based on this representation, we further introduce a large-scale

Gaussian deformation technique to enable deformable GS, which alters the

parameters of 3D Gaussians according to the manipulation of the associated

mesh. Our method bene�ts from existing mesh deformation datasets for

more realistic data-driven Gaussian deformation. Extensive experiments

show that our approach achieves high-quality reconstruction and e�ective

deformation, while maintaining the promising rendering results at a high

frame rate (65 FPS on average on a single commodity GPU).

HTTPS://ORCID.ORG/0000-0002-1021-8148
HTTPS://ORCID.ORG/0000-0002-6503-8312
HTTPS://ORCID.ORG/0009-0005-9489-7385
HTTPS://ORCID.ORG/0009-0001-4589-8745
HTTPS://ORCID.ORG/0000-0001-5646-6211
HTTPS://ORCID.ORG/0000-0002-0284-726X
HTTPS://ORCID.ORG/0000-0002-2094-5680


tackling the di�culty of editing high-�delity virtual content in real-

time. In contrast, our method allows the Gaussian kernels to o�set

from the explicit mesh to capture these features.

Motivated by the above observations, our proposed method en-

ables high-quality real-time large-scale deformation on 3D Gaussian

Splatting, as illustrated in Figure 1. Our core idea is to design an

innovative mesh-based GS representation (GaussianMesh), which

is integrated into Gaussian distribution learning and manipulation.

In particular, given a mesh of a scene extracted by previous

works[Schönberger et al. 2016; Wang et al. 2023a], we bind the

mesh and a 3DGS representation with each other. We leverage this

binding to provide guidance for both training and deformation

of 3DGS in a novel manner. During the 3D-GS learning process,

its Gaussian splitting follows two rules: 1. splitting along the

face, which means the four split kernels remain on the surface

according to one triangle is subdivided into four small faces, inspired

by [Hu et al. 2022]; 2. splitting along the normal, which means

the two split kernels are aligned along the surface normal. This

establishes a one-to-one correspondence between triangular faces

and Gaussians, allowing deformation gradients of the mesh to

transfer e�ectively to rotation and scaling of the Gaussians during

deformation. While some existing methods use explicit meshes as

proxies to regularize Gaussians, they have cases where multiple

faces correspond to a single Gaussian, leading to con�icts, especially

during large-scale deformation and thereby limiting their ability

to handle such deformations. This approach is more conducive to

forming manipulations and enhancing the rendering e�ects (e.g. ,

high-frequency details) by eliminating irrational Gaussians (e.g. ,

misaligned Gaussians, long-narrow shaped Gaussians), which could

cause artifacts.

Based on our proposed mesh-based GS, we introduce a large-

scale Gaussian deformation technique to achieve deformable GS,

which alters the parameters of 3D Gaussians according to the mesh

deformation. In particular, we employ existing mesh deformation

techniques [Gao et al. 2019a] on the mesh and apply the deformation

gradients to the parameters of neighboring Gaussians. This process

can be directly rendered by the splatting procedure in real-time. Our

technique also supports intuitive data-driven deformation, which

was only available in mesh-based methods before, thanks to the

mesh-GS binding. Further, we utilize the segmentation to layer the

Gaussians with foreground Gaussians and background Gaussians

for in-the-wild scenes, thus enabling high-quality deformation of

foreground objects in real scenes. Additionally, a regularization loss

is introduced to enforce the spatial continuity and local rationality

of Gaussian shapes, thus avoiding blurry visual artifacts due to

the anisotropy of 3D Gaussian kernels for Gaussian deformation.

Finally, we design an interactive tool, which supports real-time

Gaussian manipulation and high-quality splatting while adhering

to user-friendly constraints.

Extensive experiments and ablations on public datasets and self-

captured scenes demonstrate that ourmesh-based GS achieves better

novel view synthesis compared with existing techniques while

maintaining promising rendering speed (65 FPS on average on a

single NVIDIA RTX 4090 GPU), and our method enables large-scale

deformation of Gaussian splatting, outperforming existing methods.

CCS Concepts: • Computing methodologies → Image-based rendering; 
Mesh models.

Additional Key Words and Phrases: 3D Gaussian Splatting, Deformation, 
Interactive, Data-Driven, Large-Scale

1 INTRODUCTION

Shape representations are fundamental in geometry processing. 
Traditionally, explicit representations like point clouds [Achlioptas 
et al. 2018; Fan et al. 2017; Qi et al. 2017a,b], voxels [Choy et al. 
2016; Maturana and Scherer 2015; Wu et al. 2016], meshes [Groueix 
et al. 2018; Wang et al. 2018b,b] are commonly used in various 
contexts due to their intuitive and deformation-friendly property. 
In recent years, implicit representations (e.g. , Neural Radiance 
Fields (NeRFs) [Barron et al. 2022; Mildenhall et al. 2021], Signed 
Distance Fields (SDFs) [Chen and Zhang 2019; Chibane et al. 
2020a; Mescheder et al. 2019]) have drawn much attention since 
they are able to reconstruct the highly realistic appearance and 
complicated geometry from only a few multi-view images. However, 
implicit representations also bear inherent drawbacks like slow 
rendering speed, limiting their applicability to practical applications. 
3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] is proposed 
to overcome these drawbacks while preserving the advantages. 
3DGS learns the spatial distributions of Gaussian kernels from the 
initialization of SFM (Structure from Motion) [Ullman 1979] points, 
which naturally provide an explicit discrete 3D scene representation 
in contrast to the continuous representation used by NeRF. 3DGS 
has a small training cost and can achieve high-quality real-time 
rendering based on differentiable rasterization.

Since 3DGS is built upon discrete Gaussian kernels, it seems 
natural to directly perform deformation on them. However, simple 
deformation methods might produce suboptimal results. For exam-

ple, SC-GS [Huang et al. 2024] learns sparse control points to model 
the dynamics of 3D scenes and enables deformation by manipulating 
the sparse points. Nevertheless, methods based on sparse control 
points struggle with complicated geometry or deformation due 
to the lack of topology prior. Simply deforming the Gaussians 
without any topology information (explicit mesh) generates strong 
misalignment artifacts when performing large-scale deformation, 
as shown in the ‘Baseline’ method in Figure 4. SuGaR [Guédon and 
Lepetit 2024] extracts an explicit mesh from a 3DGS representation 
by regularizing the Gaussians to distribute over the surface and 
thus enables the 3DGS editing by manipulating the extracted mesh. 
However, SuGaR only uses 3DGS to obtain the mesh and does not 
consider mesh properties like normals during Gaussian optimization. 
This might cause artifacts, especially when performing large-scale 
deformation. More recently, VR-GS [Jiang et al. 2024] learns a two-
level embedding with an extracted tetrahedral mesh for a physical 
dynamic-aware interactive 3DGS system in Virtual Reality (VR),



Please refer to the accompanying video for real-time deformation

results1. Our contributions can be summarized as follows:

• We propose a novel mesh-based GS (GaussianMesh) repre-

sentation, which binds 3D Gaussians with the mesh repre-

sentation and fully utilizes the mesh to guide the splitting of

3DGS, thus improving the quality of the learned GS.

• With the proposed GS representation, we introduce a large-

scale Gaussian deformation method, which uses the vertex

positions and deformation gradients to guide the GS. It takes

advantage of mesh deformation methods while preserving

real-time rendering and high-quality appearance robustly,

even when deformed at a large scale.

• Extensive experiments demonstrate that our method achieves

superior performance in terms of e�ciency and quality of

deformation compared to existing methods.

2 RELATED WORK

2.1 3D Shape Representations

Explicit Representations. Explicit representations dominated the

industries and academic research for a long time. Classic represen-

tations, including point clouds [Fan et al. 2017; Qi et al. 2017a],

voxels [Choy et al. 2016; Maturana and Scherer 2015; Wang et al.

2018a; Wu et al. 2016], and meshes [Gao et al. 2019b; Groueix

et al. 2018; Hanocka et al. 2019; Wang et al. 2018b; Yang et al.

2022b], have been revisited for 3D deep learning. Although 3D

explicit representations have a clear description of the geometry and

appearance, they lack a �exible underlying topology representation

and have limited capabilities of representing realistic appearance.

Implicit Representations. Di�erent from explicit representations,

implicit representations, including signed distance �elds (SDFs) [Chen

and Zhang 2019; Chibane et al. 2020a; Mescheder et al. 2019] and

unsigned distance �elds (UDFs) [Chibane et al. 2020b; Guillard

et al. 2022; Liu et al. 2023a], can accurately model arbitrary

geometry and topology. Thanks to the continuous nature of implicit

representations, they can be combined with neural networks to

support data-driven geometry learning.

In recent years, Neural Radiance Fields (NeRFs) have become

increasingly popular as they allow for 3D optimization with only

2D supervision via volumetric rendering [Kajiya and Von Herzen

1984]. It has become prevalent in numerous tasks, such as 3D

reconstruction [Li et al. 2023; Wang et al. 2021; Zhu et al. 2017],

3D generation [Liu et al. 2023b; Poole et al. 2023; Sun et al.

2024], and editing [Haque et al. 2023; Liu et al. 2021; Wang et al.

2023b]. Nevertheless, implicit approaches su�er from extensive

sampling to �t the implicit functions of 3D scenes. This leads

to signi�cant computational costs, particularly in high-resolution

or interactive rendering scenarios, even with accelerated NeRF

versions [Fridovich-Keil et al. 2022; Müller et al. 2022; Yu et al.

2021]. It is thus di�cult for NeRFs to achieve real-time rendering

and high-quality view synthesis at the same time.

Gaussian Splatting. Recently, 3DGS has emerged as an explicit

3D representation, demonstrating remarkable rendering quality and

high e�ciency [Chen and Wang 2024; Fei et al. 2024; Wu et al.

1The source code is released at the link.

2024b]. It can be used for 3D or 4D reconstruction [Luiten et al.

2024; Yang et al. 2024], avatar modeling [Kocabas et al. 2024; Li

et al. 2024], etc. The GS-based generation has also gained signi�cant

attention [Chen et al. 2024; Tang et al. 2024; Yi et al. 2024]. 3DGS

facilitates numerous applications thanks to its e�cient di�erentiable

rendering and high-�delity rendering. Our proposed method is

built upon 3DGS and inherits the rendering speed and the power

to express the detailed appearance of 3DGS while additionally

providing deformation ability, e.g. , data-driven deformation.

2.2 3D Shape Deformation

Mesh Deformation. Deforming a 3D model involves altering its

explicit shape according to user-de�ned boundary conditions, while

preserving the local geometry features. There are various ways to

deform a 3D model for directly manipulating the mesh represen-

tation or embedded proxy, such as Laplacian coordinates [Lipman

et al. 2005; Sorkine 2005], Poisson equations [Yu et al. 2004], data-

driven mesh deformation [Gao et al. 2019a; Sumner et al. 2005], and

cage-based approaches [Yifan et al. 2020; Zhang et al. 2020]. These

methods can be conducted in real-time while preserving geometry

details. These mesh deformation methods provide the basic ideas

for the following novel shape representations.

NeRF Deformation&Editing. As a pioneering work for NeRF

deformation and editing, EditNeRF [Liu et al. 2021] e�ectively

modi�es the shape and color of neural �elds by including latent

codes as conditioning factors. Several subsequent works [Bao et al.

2023; Gao et al. 2023; Wang et al. 2022, 2024] utilize the CLIP

model [Wang et al. 2022] to facilitate NeRF editing via text prompts

or reference images. Another stream is to use some prede�ned

explicit proxies to support the deformation, such as skeletons

for humans [Jiang et al. 2023b; Peng et al. 2021] and explicit

geometries [Jambon et al. 2023; Xu and Harada 2022; Yang et al.

2022a; Yuan et al. 2022], which all transfer the deformations on

explicit proxies to NeRFs. Besides, some 2D image manipulation

(e.g. , inpainting, strokes) is also adopted into the NeRF editing

via optimization schemes [Kobayashi et al. 2022; Liu et al. 2024b;

Wang et al. 2023b; Zhuang et al. 2023] or applied to dynamic

NeRFs [Pumarola et al. 2021] for 4D- editing [Jiang et al. 2023a].

Although it is innovative to introduce explicit proxies to enhance

editing, these works have limited applicability due to the high

computational cost and slow rendering speed of NeRFs.

Deformation of Gaussian Splatting. In contrast, 3DGS enables a

relatively low training cost and high-quality real-time rendering

via splatting rendering. The deformation on 3DGS has also been

explored in various �elds, including deformable Gaussians [Duis-

terhof et al. 2023; Kocabas et al. 2024; Yang et al. 2024], Gaussian

avatars [Hu et al. 2024; Li et al. 2024; Zheng et al. 2024], and text-

driven Gaussian editing [Palandra et al. 2024; Wu et al. 2024a;

Zhuang et al. 2024]. PhysGaussian [Xie et al. 2024] employs discrete

particle clouds from 3DGS for physically-based dynamics and photo-

realistic rendering through continuum deformation [Bonet and

Wood 1997] of Gaussian kernels. SC-GS [Huang et al. 2024] learns

sparse control points for 3D scene dynamics but faces challenges

with large-scale and complex deformation. SuGaR [Guédon and

https://github.com/IGLICT/GaussianMesh


Fig. 2. An overview of our pipeline. Our mesh-based GS representation is specifically designed for Gaussian deformation. Given a set of calibrated images,

we first reconstruct an explicit mesh and use this explicit geometry prior to initialize the Gaussians. During the learning phase, the explicit mesh guides the

Gaussian learning through two strategies: a) Face Split; b) Normal Guidance. Additionally, we introduce a regularization loss !A to constrain the scale of

Gaussians, preventing the abnormally shaped Gaussians. During the deformation phase, user-controlled deformations on an explicit mesh (deformation

gradients) drive the Gaussian parameters, producing deformed 3DGS for novel view rendering. Overall, our pipeline not only achieves accurate and realistic

rendering from novel views but also supports e�ortless and real-time deformation of 3DGS.

deformation gradients from the user-controlled deformed mesh are

applied to the Gaussians’ parameters. In addition, a regularization

of the Gaussian shape is designed to eliminate extreme anisotropy

of the Gaussians in the deformation process. The integration of the

above ideas leads to an interactive tool for real-time deformation and

photorealistic rendering of novel views following the user’s control.

Figure 2 illustrates an overview of our pipeline. In the following

subsections, we �rst introduce some preliminaries, including the

3DGS representation and mesh deformation in Sec. 3.1, and then

present our mesh-based GS representation in Sec. 3.2, followed by

the deformation technique in Sec. 3.3.

3.1 Preliminaries

3D Gaussian Splatting. 3DGS representation depicts 3D scene

structures using distribution of 3D Gaussians. Each Gaussian

element is de�ned by a center position ` ∈ R3, a covariance

matrix Σ ∈ R7, color 2 ∈ R: (represented by spherical harmonic

coe�cients for view-dependent color, where : represents the

degrees of freedom), and opacity U ∈ R. The Gaussian function

6(G) can be de�ned by the following formulation:

6(G) = 4−
1

2
(G−` )) Σ−1 (G−` ) , (1)

where the covariance matrix Σ can be factorized into a rotation

matrix R expressed as a quaternion @ ∈ R4 and a scaling matrix S

represented by a 3D-vector B ∈ R3 for the di�erentiable optimization:

Σ = RSS
)
R
) .

The rendering technique of splatting, as initially introduced

in [Zwicker et al. 2001], is to project the Gaussians onto the

camera image planes, which are employed to generate novel view

images. The location and covariance of the projected 2D Gaussians

can be expressed as follows: Σ′ = �, Σ,) �) and `′ = �, `,

Lepetit 2024] extracts explicit meshes from 3DGS representations 
but relies on simple adjustment of Gaussian parameters based on 
deformed meshes and thus struggles with large-scale deformation. 
Concurrent to our work, VR-GS [Jiang et al. 2024] introduces a two-
level embedding with an extracted tetrahedral mesh for a physical 
dynamic-aware interactive 3DGS system in VR, tackling the di�-

culty of editing high-�delity virtual content in real-time. The above 
approaches deform the original 3DGS by adjusting the parameters 
of Gaussian Splatting, and are limited with their e�ectiveness in 
large-scale deformation. Our observation is that 3DGS, which is 
based on discrete and unstructured Gaussian kernels, needs the thin 
shell geometric priors to organize the Gaussian kernels to perform 
large-scale deformation while preserving meaningful appearance.
Our work pioneers the adaptation of mesh-based deformation 

to 3DGS by harnessing the priors of explicit representations: the 
surface properties like normals of the mesh and the gradients 
generated by explicit deformation methods. The full utilization of 
the explicit mesh representation provides adequate geometric prior 
to 3DGS and improves both the reconstruction and deformation.

3 METHODOLOGY

Given a collection of multi-view images of a scene, we express its 
geometry and appearance as a Gaussian distribution bound with an 
explicit mesh extracted by existing approaches (e.g. , NeuS2 [Wang 
et al. 2023a] in our implementation). Our goal is to enable real-time 
and realistic deformation of 3DGS. To achieve this, we introduce 
an explicit mesh as the topological guidance and use mesh-based 
Gaussian distribution learning to constrain the parameters and the 
growth process of Gaussian functions, thus ensuring the correlation 
between the 3D Gaussians and the geometric shape. After Gaussian 
distribution learning, thanks to the binding of GS and the mesh, the



involving a view transformation, and the Jacobian � of the a�ne

approximation of the projective transformation. Speci�cally, the

color of each Gaussian is assigned to every pixel based on the

Gaussian representation described in Equ. 1. The opacity controls

the in�uence of each Gaussian. The per-pixel color � is formulated

as the weighted sum of # ordered Gaussians that are associated

with the pixel:� =

∑

8∈# (� (38 , 28 )f
′
8

∏8−1
9=1 (1 − U 9 ), where (� (·, ·)

is a spherical harmonic function with input direction 38 and SH

coe�cients 28 , and f′8 represents the I-depth ordered e�ective

opacity: f′8 = f84
− 1

2
(?−`′

8
)) Σ′

8
(?−`′

8
) .

Mesh Deformation. Given a triangular meshM, we can deform

the mesh with respect to the user’s control (e.g. , sparse control

points) using mesh deformation methods [Gao et al. 2019a; Sorkine

and Alexa 2007; Sumner et al. 2005]. For example, the approach

by Gao et al. [2019a] can handle large-scale mesh deformations

by optimizing the deformation gradients. They formulate the

deformation by minimizing an energy function to ensure the

sti�ness of the mesh and prevent local distortions:

E
(

M′)
=

#
∑

8=1

∑

9∈N(8 )

F8 9







(

v
′
8 − v

′
9

)

− T8
(

v8 − v 9
)







2

, (2)

where N(8) represents the set of 1-ring neighboring vertices of

vertex 8 , E8 is the spatial coordinates of the 8
th vertex onmeshM, E ′8 is

the spatial coordinates of the corresponding vertex on the deformed

meshM′, andF8 9 is the cotangent weight [Sorkine and Alexa 2007],

The transformation matrix T8 for each vertex 8 can be calculated by

minimizing the above equation, and it can be decomposed into a

rotation matrix R̄8 and a shear matrix S̄8 by polar decomposition.

Both matrices will be applied to the corresponding Gaussians during

the deformation procedure. Note that this deformation formulation

also supports data-driven deformation if prior exemplar deformed

meshes are available. The T8 could be optimized by blending the

existing deformation gradients from the exemplar meshes.

3.2 Mesh-based Gaussian Spla�ing

While the 3DGS can produce realistic rendered images in real-

time, it struggles to accurately represent the details and topological

structure of a 3D scene. This limitation arises from its reliance on

discrete Gaussian kernels, particularlywhen it comes to deformation.

Since the discrete Gaussian kernels do not employ the connections

between the Gaussians, it is hard to achieve feasible deformation for

the vanilla 3DGS. In order to tackle this problem, we introduce

our mesh-based GS (GaussianMesh). Our method focuses on

integrating 3D Gaussian kernels with speci�ed mesh surfaces,

enhancing the Gaussian deformation process.

We use a reconstructed mesh M, obtained using an existing

e�cient method [Wang et al. 2023a] as an explicit prior constraint.

A naïve approach involves deforming this explicit prior and driving

the Gaussians learned by vanilla 3DGS using the projection on the

explicit meshes. However, this method often results in artifacts (e.g. ,

blurry andmisalignment of Gaussians with explicit priors in Figure 4

Baseline), especially for large-scale deformation. To address this

issue, we propose two strategies to regulate the Gaussian parameters

and the growth of Gaussian kernels, as illustrated in Figure 2. These

strategies ensure the correlation between 3D Gaussians and the

explicit prior. They aim to regularize the 3D Gaussian kernels while

maintaining their ability to accurately represent geometric and

textural features. Speci�cally, we initialize a Gaussian by anchoring

it precisely at the centroid of every triangular face on the mesh

surface. During the training of mesh-based GS, di�erent from the

vanilla 3DGS, we allow the division of Gaussians by utilizing the

following strategies:

• Face Split: A single triangle is subdivided into four smaller

triangles over the surface by inserting a new vertex at

the midpoint of each edge. The Gaussian kernels are also

split correspondingly, and the position of each Gaussian is

initialized with barycentric coordinatesF = (F0,F1 ,F2 ) of

new subdivided faces.

• Normal Guidance: Each Gaussian has a perpendicular move-

ment to the surface under normal guidance. The distance of

this movement g is learnable.

The distribution of 3D Gaussians is determined by the two strategies

mentioned above, which incorporate explicit mesh priors. The

�rst strategy aims to guarantee a su�cient number of Gaussian

kernels to accurately represent the visual appearance of the 3D

scene, following the guidance of the mesh surface. The second

strategy helps represent the �ne-grained texture details of a 3D scene

for Novel View Synthesis (NVS). Both mandate the distribution of

Gaussian kernels near the explicit surface beforehand. Note that

the Gaussian removal operation follows the original 3DGS, but we

ensure at least one Gaussian for each mesh face during the training

process (although it can be transparent with zero opacity)

During training,the barycentric coordinatesF = (F0,F1 ,F2 ) and

the o�set distance g are parameterized into additional attributes for

3DGS learning. The barycentric coordinates (F0,F1 ,F2 ) represent

the weights assigned to three vertices (v0, v1 , v2 ) belonging to the

attached triangle,and g ∈ [−0.5, 0.5] is a ratio that is multiplied with

the radius ' of the circumcircle of the nearby triangle to control the

displacement along the surface normal n. To summarize, the spatial

position ` of the Gaussian kernel is formulated as:

` = (F0v0 +F1v1 +F2v2 ) + g'n, (3)

By utilizing the prior of explicit meshes, we employ the aforemen-

tioned strategies to regularize the density of Gaussians according

to the explicit surface and generate new Gaussian kernels that are

initialized to (1/3,1/3,1/3) for barycentric coordinatesF and inherit

o�sets g from the Gaussian before splitting, followed by Equ. 3.

The new Gaussians continue participating in the optimization.

Currently, each new Gaussian is attached to a subdivided face and

split according to its attached face split for the next iteration.

Regularization !A . Under the guidance of the above-proposed

strategies for 3DGS training, there might exist long-narrow-shaped

Gaussians to capture the high-frequency details. However, the long-

narrow-shaped Gaussians will not align to the surface, thus resulting

in the artifacts (refer to Figure 3) when performing the large-scale

deformation. For better visual quality of the deformed 3DGS, we

introduce regularization to ensure the Gaussians’ spatial coherence

and local consistency (see the illustration in Figure 3). Additionally,

to support arbitrary deformation, local meshes inevitably undergo



Fig. 3. Regularization !A . To reduce the artifacts during large-scale

deformation, we propose regularization during 3D Gaussian training. The

regularization aims to limit the scale of each Gaussian kernel within its

a�ached triangle. If we disable the regularization, it leads to some artifact

(first row) when performing the deformation on 3D Gaussian.

drastic changes with large-scale deformation. It will lead to visual

artifacts in Figure 3when the learnedGaussian shape is large enough

to cover multiple triangles on the surface. To ensure plausible

deformation results and capture high-frequency textures, we employ

a regularization term !A into the training process. This term adjusts

the Gaussian shape based on the size of neighboring triangles,

ensuring the appropriate Gaussian is learned and the local continuity

is preserved during deformation. Speci�cally, the regularization !A
is formulated as:

!A =

∑

6∈G

max (max (B8 ) − W'8 , 0) , (4)

S̄

principal deformation bases from external data sources, such

as physical simulations or pre-existing animations. These bases

capture the essential patterns of shape variation and movement.

Next, we apply these deformation bases to the explicit mesh

representation, allowing us to perform data-driven deformations

that are both realistic and complex. This step ensures that our

deformations are grounded in physically plausible or artistically

pleasing motion patterns. Following this, we establish a shape-to-

shape correspondence between the deformed explicit mesh and the

shape reconstructed from multi-view images. This correspondence

mapping is crucial, as it allows us to transfer the vertex-wise

transformations from the deformed mesh to the reconstructed shape.

This transfer process ensures that the deformations learned from

our data priors can be accurately applied to the speci�c geometry

captured in the multi-view images. Finally, we use the deformed

meshes, now informed by both the data priors and the speci�c

geometry of our reconstructed shape, to drive the deformation of

the Gaussians. This approach allows the Gaussian representation to

inherit the complex, data-driven deformationswhilemaintaining the

bene�ts of its implicit nature. Hence, we can easily apply the desired

deformation to the 3DGS via the user’s controls. This pipeline

e�ectively bridges the gap between explicit mesh deformations

derived from rich data priors and the �exible, e�cient Gaussian

representation. It enables us to achieve highly detailed and realistic

deformations of 3DGS via the user’s control, respecting both the

learned patterns and the speci�c geometry and appearance of the

captured object.

Each deformed Gaussian 6′ is bound with a triangle 5 ′ =

(v′0, v
′
1
, v′2 ) with three deformed vertices. The relative displacement

Δ% and deformation gradient )8 for the deformed face can be

expressed using the barycentric coordinates (F0,F1 ,F2 ):

Δ% = F0 (v
′
0 − v0) +F1 (v

′
1
− v1 ) +F2 (v

′
2 + v2 ),

R̄8 = F0;>6(R̄v′0 ) +F1;>6(R̄v′
1
) +F2;>6(R̄v′2 ),

S̄8 = F0 S̄v′0 +F1 S̄v′
1
+F2 S̄v′2 ,)8 = 4G? (R̄8 )S̄8 .

(5)

Following the above equations, we can get the transformed Gaussian

kernels with position `′ = `+Δ% and covariance matrix Σ′ = )8Σ)
⊤
8 .

The deformed Gaussian kernel is

6′ (G) = 4−
1

2
(G−(`+Δ% ) )) ()8Σ)

⊤
8
)−1 (G−(`+Δ% ) ) . (6)

In addition, 3DGS employs spherical harmonics to express color,

wherein a given Gaussian exhibits varying colors when viewed

from di�erent angles, enabling the modeling of view-dependent

appearance. Hence, for a deformedGaussian kernel6′, it is necessary

to adjust the orientation of spherical harmonics [Guédon and

Lepetit 2024] by applying the inverse of the local rotation matrix

4G? (R̄8 ) from the deformed mesh to the view direction 38 , i.e. ,

(� (4G? (R̄8 )
)38 , 28 ). In conclusion, our mesh-based GS represen-

tation allows �exible manipulation of Gaussians through mesh

deformation and high-�delity rendering of the results in novel views.

Real-Time Interactive Tool. We integrate the above techniques

into an interactive deformation tool that allows for the real-time

deformation of 3DGS with respect to the user’s controls. Users can

where 6 is a member of Gaussian kernel set G, B8 is the 3D scaling 
vector of each Gaussian, '8 is the radius of the circumcircle of 
the triangle where the Gaussian is attached and W = 3 is a hyper-
parameter to control the in�uence on t he s ize o f t he Gaussian 
from its attached triangles. All these techniques are applied during 
Gaussian optimization. After training, the Gaussians can be driven 
directly by the mesh deformation without any optimization, and 
rendered from novel views.

3.3 Editable Gaussian with Mesh Deformation

By utilizing existing mesh deformation methods and the e�cient 
di�erentiable rasterization of GS, it is possible to achieve real-time 
deformation of Gaussians based on the GS representation proposed 
in Sec. 3.2. To illustrate this idea, we employ the mesh deformation 
techniques and formulations discussed in Sec. 3.1. The user can 
manipulate 3D Gaussians using various controls, such as non-rigid 
deformation, translation, rotation, etc. Equ. 2 states that each vertex 
E8 in the deformed mesh M is linked to a transformation matrix 
)8 , which represents local changes around vertex E8 between the 
deformed mesh M′ and the original mesh M. The matrix )8 can 
be decomposed into a rotation matrix R̄8 and a shear matrix S̄8 
using the polar decomposition. It is easy to prove that the Gaussian 
distribution remains unchanged following an a�ne transformation. 

Thus, we can easily apply the rotation matrix R̄8 and shear matrix

8 from the deformed mesh to its associated Gaussian kernels, as 
well as the displacement of the deformed mesh faces.

Thanks to the explicit meshes, our mesh-based GS deformation 
can achieve complex and reasonable deformation with data priors, 
such as the deformation of cloth and articulated shapes. To achieve 
the complex data-driven deformations, we begin by extracting



utilize the triangle mesh as a proxy to accomplish real-time large-

scale deformation of 3DGS and produce high-�delity rendering

results.

4 EXPERIMENTS & EVALUATIONS

In this section, we conduct a series of qualitative and quantitative

experiments to evaluate the e�ectiveness of our approach, including

comparison with existing techniques, deformation results (with or

without data priors) on both synthetic and real-captured datasets,

and ablation studies to analyze the impact of our main design

choices.

4.1 Datasets and Metrics

To validate the e�ectiveness of our method, we performed compre-

hensive experiments on the widely used NeRF-Synthetic [Pumarola

et al. 2021] dataset, synthetic data from SketchFab [Pinson 2011]

(butter�y, Dress, Jeans, Sofa, Digital Human, Banana, Gira�e), in-

the-wild scenes from BlendedMVS [Yao et al. 2020] and Tanks and

Temples [Knapitsch et al. 2017], as well as the real-world scenes

captured by ourselves.

The NeRF-Synthetic dataset contains eight static scenes with

360
◦ random viewpoint settings with the known camera poses.

For synthetic data from SketchFab, we use Blender to generate

training data with the identical con�guration as NeRF-Synthetic.

The BlendedMVS dataset contains a lot of in-the-wild scenes with

camera poses. Tanks and Temples contain both training data and

testing data for indoor scenes and large outdoor scenes with complex

geometric layouts and camera trajectories. The self-captured data

is captured by a mobile phone (an iPhone 11) with its camera poses

calibrated by COLMAP [Schonberger and Frahm 2016; Schönberger

et al. 2016]. All datasets involve a diverse range of visual appearances

and geometric properties of various deformable objects. For the

public datasets, we use the default training and testing sets splits

in all our experiments. In order to evaluate the e�ectiveness of our

approach, we use three metrics to measure the quality of novel view

synthesis, including Peak Signal-to-Noise Ratio (PSNR), Structural

Similarity (SSIM) [Wang et al. 2004], and Learned Perceptual Image

Patch Similarity (LPIPS) [Zhang et al. 2018].

Implementation Details. The pipeline comprises two main com-

ponents: Gaussian distribution learning and real-time 3DGS de-

formation via an intuitive and friendly ‘drag’ way. Our code is

implemented based on the 3D-GS [Kerbl et al. 2023] and Drag

Your GAN [Pan et al. 2023], incorporating e�ective training and

rendering capabilities. The explicit mesh can be easily extracted

by NeuS2 [Wang et al. 2023a] or created by artists (i.e. , synthetic

data). It takes around 20 minutes to train the Gaussian distribution

under our proposed mesh-based GS (please see more details in the

supplemental materials). Similarly to the explicit mesh, the mesh

sequences for the data-driven deformation of 3DGS are obtained

from physical simulation or designed by artists. All experiments

are performed on a PC equipped with an i9-12900K CPU and an

RTX 4090 graphics card. It is important to mention that our pipeline

solely focuses on optimizing the Gaussian parameters without any

involvement of network parameters.

Table 1. Comparisons of novel view synthesis on NeRF-Synthetic

dataset.We performed the quantitative comparison with four alternative

methods on the novel view synthesis task. Four baselines (NeRF-Editing,

3D-GS, SuGaR, and GaMeS) are evaluated in three metrics, i.e. , PSNR, SSIM,

and LPIPS. Our method achieves the best in PSNR and SSIM, and reaches

comparable performance on the LPIPS with SuGaR. It demonstrates that

our method can synthesize high-fidelity renderings on 3DGS and supports

arbitrary deformation edits on 3DGS.

Methods NeRF-Editing 3D-GS SuGaR GaMeS Ours

PSNR↑ 30.58 33.31 32.39 33.01 33.84

SSIM↑ 0.960 0.967 0.958 0.966 0.974

LPIPS↓ 0.058 0.023 0.037 0.030 0.030

4.2 Comparisons & Evaluations

We evaluate the performance of our approach and the comparison

methods on the datasets discussed in Sec. 4.1, both qualitatively

and quantitatively. We focus on two tasks: novel view synthesis

and 3DGS deformation. We consider six state-of-the-art (SoTA)

approaches: NeRF-Editing [Yuan et al. 2022], SuGaR [Guédon and

Lepetit 2024], 3D-GS [Kerbl et al. 2023], GaMeS [Waczyńska et al.

2024], VR-GS [Jiang et al. 2024], and SC-GS [Huang et al. 2024].

3D-GS is a baseline for novel view synthesis ,and NeRF-Editing is a

classical method for NeRF-based editing. Other comparison works

are 3DGS-based methods that support deformation or editing.

First, we evaluate their performance of the novel view synthesis

task on the NeRF-Synthetic dataset. We follow the same evaluation

setting in Sec. 4.1 to measure the performance on the test dataset.

Table 1 reports the results on the novel view synthesis task and

clearly shows that our technique outperforms the four baselines in

PSNR and SSIM with similar Gaussian kernels (please refer to the

supplementary materials for details), while reaching comparable

performance in LPIPS. The results reveal that our approach has the

ability to generate realistic results from novel views.

Additionally, we evaluate the performance of 3DGS deformation.

Since there is no ground-truth deformation for real objects, we

show the visual results of novel view qualitatively. We perform

the experiments on a total of four cases, comprising both synthetic

data and real-captured data. In the supplementary materials, we

additionally evaluate the deformation quality on synthetic data quan-

titatively under the aforementioned three metrics. Four alternative

methods are evaluated, including NeRF-Editing, SuGaR, GaMeS, and

a baseline based on 3D-GS. The baseline is an extension of the 3D-

GS without incorporating our essential designs (Face Split, Normal

Guidance, and regularization !A ), only constraining the Gaussians

to align with the reconstructed surface (extracted by NeuS2) since

there is an explicit surface as guidance.

Figure 4 presents four deformation results by our method through

the modi�cation of the explicit mesh. NeRF-Editing deforms NeRF

by utilizing a derived tetrahedron mesh, which is time-consuming

and cannot handle large deformations. This often results in blurry

rendering outcomes, particularly for high-frequency details. The

baseline is only to attach the Gaussians to the NeRF-based surface

without incorporating any special designs. Consequently, this

approach leads to certain irregularly shaped Gaussian elements, re-

sulting in artifacts when signi�cant deformation and high-frequency
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NE Baseline SuGaR GaMeS Ours

#Gaussians - 60613 60820 60820 59836

#Gaussians - 290169 314152 314152 261783

#Gaussians - 408806 399616 399616 422482

#Gaussians - 286530 361674 361674 271434

Input & Edit SC-GS Ours

Fig. 5. Comparison with SC-GS [Huang et al. 2024]. For two real

examples from the Tanks and Temples [Knapitsch et al. 2017], we perform

similar deformations to SC-GS (displayed in the 1st column) and render

them from the same view. From the results, it is clear that our method can

be�er preserve the high-frequency details (highlighted with colored box)

under the same deformation.

Input & Edit VR-GS Ours

Fig. 6. Comparison with VR-GS [Jiang et al. 2024]. There are three real

examples (Fox, Bear, and Horse) from the Instant-NGP dataset [Müller

et al. 2022], the Instruct-NeRF2NeRF dataset [Haque et al. 2023], the Tanks

and Temples [Knapitsch et al. 2017]. We only perform similar deformations

to VR-GS in the first column and render them according to the presented

figures in their ArXiv paper since their code is not available yet. The results

show that our method can render the higher quality of the high-frequency

details, especially for large-scale deformations.

Fig. 4. Deformation comparison between our method and the 
alternative methods. There are Mic from NeRF-Synthetic dataset, and 
Cubiod, Dress, and Deer captured by ourselves. We have highlighted 
the di�erence with di�erent color boxes for di�erent views and listed the 
numbers of Gaussians for all 3D-GS-based methods. The results show that 
our method successfully preserves the high-frequency details a�er large-
scale deformation under similar numbers of Gaussians.

features appear. Although SuGaR successfully reconstructs the mesh 
from the 3D GS and realizes the deformation by adjusting the 
parameters of Gaussians, it fails to capture �ne features at high 
frequencies under signi�cant deformations (e.g. , �rst row in Fig. 4). 
GaMeS also utilizes the explicit mesh and binds some Gaussians to 
each triangle, not taking the face slice and split operations during 
training, still resulting in some artifacts with large-scale deformation. 
In contrast, our approach e�ectively models a  b etter Gaussian 
distribution using explicit mesh guidance, achieving enhanced



rendering quality and real-time deforming performance at a frame

rate of 65 FPS. Please refer to the accompanying video for more

deformation results.

Further, we evaluate the performance on the large-scale in-the-

wild scenes and compare our method with VR-GS [Jiang et al. 2024]

and SC-GS [Huang et al. 2024]. For such scenes, we segment the

foreground and background via the tool [Cheng et al. 2024] and learn

separate Gaussians for them: foreground Gaussian learning via our

mesh-based GS representation and background Gaussian learning

via vanilla 3DGS. Hence, we can deform only the foreground object

and keep the background unchanged, with high visual quality. To

compare with VR-GS, we perform a similar deformation and render

using similar views according to the presented �gures in their ArXiv

paper since their code is not available yet. Figure 5 and Figure 6

show visual comparison results on four real examples (Family,

Fox, Bear, and Horse) from Instant-NGP dataset [Müller et al.

2022], the Instruct-NeRF2NeRF dataset [Haque et al. 2023] the Tanks

and Temples [Knapitsch et al. 2017]. From the results, we can see

that our method can capture high-frequency details, such as the

eye on the fox. Further, our method can easily achieve complex

deformation thanks to explicit mesh when we introduce the mesh-

based sequences as the data priors.

4.3 More Deformation Results

Our technique enables an interactive tool that allows for real-time

deformation by interactively manipulating the sparse control points.

The control points are speci�ed by users via the click operation in

our GUI interface. The learned Gaussian distribution is e�ectively

guided by ourmesh-basedGS and allows for excellent generalization,

even in the face of challenging deformations. In order to verify

the generalizability of our proposed deformation pipeline, we

present more deformation examples in Figure 7, involving various

deformations of synthetic and real-captured examples. Please refer

to the supplementary video for real-time deformation results.

Thanks to the explicit meshes, our technique can use data priors

to achieve complex deformations of objects, such as cloth and

articulated shapes. Figure 8 demonstrates that our method can

easily deform the Gaussians that satisfy the data distributions.

We introduce the data prior from the physical simulation for the

deforming dress and animated shapes for the running deer to drive

the reconstructed shapes from multi-view images according to the

manually speci�ed shape-to-shape correspondence. Finally, the

desired deformation can be easily applied to the 3DGS via user’s

controls.

4.4 Ablation Studies

In this subsection, we evaluate the crucial designs in our rep-

resentation and deforming pipeline by conducting the ablations.

The crucial designs in�uence the performance of Gaussian op-

timization. Speci�cally, we will evaluate the in�uence on 3D

Gaussian deformation with di�erent qualities of the explicit mesh,

the Face Split operation, the utilization of Normal Guidance for

Gaussian distribution learning, and the regularization !A for 3D

GS deformation. Further, we also validate the e�ectiveness of

Table 2. �antitative evaluation of our key designs on the NeRF-

Synthetic dataset. Three commonly used metrics (i.e. , PSNR, SSIM, and

LPIPS) are reported. The results clearly demonstrate that our full method

reaches the best performance, indicating that our key designs significantly

contribute to our overall pipeline. Note that F.S. means Face Split, and N.G.

means Normal Guidance.

Methods
PSNR↑ SSIM↑ LPIPS↓

w/o F.S. w/o N.G. Ours w/o F.S. w/o N.G. Ours w/o F.S. w/o N.G. Ours

Lego 35.61 33.48 36.20 0.977 0.978 0.985 0.020 0.020 0.013

Ficus 34.98 33.74 36.05 0.991 0.990 0.993 0.014 0.016 0.014

Drums 27.27 27.32 27.85 0.962 0.959 0.963 0.046 0.048 0.044

Chair 34.76 33.53 35.76 0.981 0.975 0.986 0.017 0.020 0.014

Hotdog 38.41 36.42 38.45 0.963 0.962 0.988 0.018 0.021 0.017

Mic 33.59 33.02 34.76 0.990 0.988 0.991 0.008 0.009 0.008

Material 30.95 30.50 31.21 0.965 0.963 0.978 0.027 0.029 0.023

Ship 29.47 29.36 30.47 0.894 0.894 0.910 0.118 0.123 0.110

Average 33.13 32.17 33.84 0.965 0.964 0.974 0.033 0.036 0.030

our representation, compared to the vanilla Mesh+TextureMap

representation.

Explicit Mesh with Di�erent Qualities. The explicit mesh plays an

important role in our deformable mesh-based GS representation. To

verify the robustness and reliance of di�erent qualities of the mesh,

we have conducted two kinds of experiments, including the di�erent

mesh extraction approaches and di�erent mesh qualities (i.e. , adding

noise, remeshing, smoothing, simpli�cation). Two examples are

validated for each evaluation. We reconstruct the explicit meshes

under the same setting for di�erent ablated versions. Then, we train

our network on the di�erent meshes and deform them with the

same control handles. Finally, we compare the visual quality of

deformation results from novel views.

For the di�erent mesh extraction approaches, we have evaluated

commonly used approaches for mesh extraction from multi-view

images, including the traditional multi-view stereo reconstruction

(COLMAP [Schonberger and Frahm 2016; Schönberger et al. 2016]),

NeRF-based reconstruction method (NeuS2 [Wang et al. 2023a]),

and 3DGS-based reconstruction method (SuGaR [Guédon and

Lepetit 2024]). For a fair evaluation, we ensure that the number

of vertices is the same and enough for all extracted meshes via mesh

simpli�cation [Garland and Heckbert 1997]. Two outdoor scenes

from the BlendedMVS are evaluated to demonstrate the robustness

on the di�erent mesh extractions. The results in Figure 9 show our

method can successfully achieve high-�delity deformation results

in large-scale deformation and keep similar visual rendering quality

for di�erent mesh extraction approaches.

Due to COLMAP’s longer running time compared to NeuS2 and

SuGaR’s di�culty in reconstructing too thin geometries, we use

NeuS2 for mesh extraction by default. We utilized mesh operations

to change the mesh quality, including remeshing, smoothing,

simpli�cation, and adding noise. For adding noise, we respectively

add di�erent scales of Gaussian noise in the reconstructed meshes,

ranging from 0.01, 0.02, 0.05, and 0.1 times along the vertex normal.

For smoothing, we apply mesh smoothing operations (Laplacian

mesh smoothing [Sorkine 2005]) at di�erent scales separately and

maintain the number of vertices the same. For the remeshing, we

perform remeshing operations [Alliez et al. 2003]on the meshes

separately to ensure that the topology of the meshes is changed

but the numbers of vertices are approximately the same. For the

di�erent numbers of faces, we have simpli�ed the reconstructed



Input & Edit Deformation Results (3 views) Input & Edit Deformation Results (3 views)

(a) Chair (b) ButterFly

(c) Giraffe (d) Sofa

(e) Cuboid (f) Lego

(g) Ficus (h) Real-Captured Human

Fig. 7. Various 3D GS deformation results by ourmethod. The examples include ButterFly, Sofa, Cuboid from SketchFab [Pinson 2011],Giraffe captured

by ourselves, Lego, Ficus, Chair from the NeRF-Synthetic dataset [Pumarola et al. 2021], and Real-Captured Human from the THuman3.0 Dataset [Su et al.

2023]. Each example consists of 2 edits. It is clearly shown that our results are realistic and high-fidelity from novel view rendering.
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Fig. 8. Data-driven deformation results.We perform the data-driven

deformation of 3DGS on two examples, including a synthetic dataDress and

a real-captured data Deer. Here, it presents two data-driven deformations

and renders the deformation results from two views. The results show

that our method can achieve the complex deformation of 3DGS under

the guidance of data priors from physical simulation or other animated

sequences.

mesh by NeuS2 with di�erent resolutions (#Faces 100K, 50K, 20K,

10K). The meshes with di�erent qualities are fed into our proposed

representation to guide the Gaussian learning. Then, we deform the

explicit mesh with the same control handles to drive the Gaussians

and render them in desired views.

Figure 10 and Figure 11 demonstrate that our 3D Gaussian defor-

mation pipeline is robust to di�erent mesh extraction approaches

and di�erent mesh qualities and thus achieves similar performance

on Gaussian deformation from novel views.

As a commonly used 3D geometry representation, the mesh is

favored in many tasks of rendering and CAD design, especially

when combined with texture maps as the appearance descriptor.

However, in most cases, this representation is hard to represent

detailed geometry and geometric textures, such as the fur and

hair on the surface (e.g. , �ower/grass-shaped geometry, stu�ed

toys) [Lengyel et al. 2001]. Given multi-view images as input, we

use the NeRF-based reconstructed mesh and texture map as the

baseline (denoted as ‘Mesh + TextureMap’) to compare with our

proposed representation. The explicit geometry and texture map

are respectively recovered by the NeRF-based method (NeuS2) and

di�erential rendering (nvdi�rast [Laine et al. 2020]). In detail, the

approach jointly optimizes geometry and texture map with its

resolution set to 4096×4096. Then, we render it via PyTorch3D [Ravi

et al. 2020]with the same camera pose for comparison. For our

method, we only use the same geometry mesh with ‘Mesh +

TextureMap’ as the explicit proxy to optimize the Gaussian kernels.

Input & Edit Mesh (Colmap) Mesh (NeuS2) Mesh (SuGaR)

Fig. 9. Robustness validation on di�erent mesh extraction ap-

proaches.We evalute the commonly used mesh extractions from multiview

images on two outdoor scenes form BlendedMVS, including traditional

Multiview steoro reconstruction (Colmap [Schonberger and Frahm 2016;

Schönberger et al. 2016]), NeRF-based reconstructionmethod (NeuS2 [Wang

et al. 2023a]), and 3DGS-based reconstruction method (SuGaR [Guédon

and Lepetit 2024]). For the di�erent extracted meshes, we ensure the same

number of vertex via the mesh simplications [Garland and Heckbert 1997].

From the results, it demonstrated that our method is very robust to di�erent

mesh extraction approaches.

Here, we show three examples, two synthetic ones and one in-the-

wild example in Figure 12. It is obvious from the results that our

method can successfully represent high-quality details (e.g. , leaves

of �owers and hair from stu�ed toys) when using the same explicit

geometry compared to the ‘Mesh + TextureMap’ representation. The

texture map in the ‘Mesh + TextureMap’ method is blurry due to

the instability of the geometric optimization process. It fails to fully

eliminate the in�uence of misregistration, resulting in blurriness.

Face Split Operation (F.S.). To facilitate the 3DGS deformation, we

introduce the explicit mesh as a constraint to bind the Gaussians

onto the surface as much as possible and design the face split

strategy to divide the Gaussian. To validate the e�ectiveness of the

Face Split operation, we remove the operation and instead employ

a straightforward division strategy: In order to ensure that the

�nal number of Gaussians is as consistent as possible, we copy

one Gaussian into four copies that are connected to the current

face and then let the network optimize the attributes of these

Gaussians. For the ablated version, the Gaussian distribution cannot

be regularized evenly due to lack of the Face Split operation (the Face
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Input & Edit Mesh Remesh
Remesh #1 Remesh #2 Remesh #3 Remesh #4

Input & Edit Mesh Simpli�cation
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Fig. 11. Robustness validation onmesheswith di�erent face numbers.

For robustness on di�erent face numbers, we evaluate the impact of varying

mesh resolutions on the deformation results for novel views. Hence, we

perform the evaluations on two synthetic examples, Lego and Giraffe. The

extracted mesh by NeuS2 are simplified by [Garland and Heckbert 1997]

with di�erent face numbers, ranging from 100K to 10K. The results indicate

that our methods is not sensitive to the mesh resolution when generating

novel views of deformed 3D Gaussians.

Split operation can regularize the Gaussian positions evenly near the

surface), and only over�ts the input images with the known views.

Although the �nal rendering results (before edit) are visually good,

the Gaussian distribution (w.o. Face Split) is not well suitable for

deformation, especially for large-scale deformation. We perform the

quantitative and qualitative evaluations. Table 2 reports the scores

on the novel view synthesis under three commonly usedmetrics (i.e. ,

PSNR, SSIM, LPIPS). Figure 13 presents the qualitative results of the

3DGS deformation. The results of the quantitative and qualitative

evaluations together demonstrate that the Face Split operation can

improve the rendering results from novel views and prevent blurry

rendering artifacts after deformation for high-frequency textures.

(e.g. , the 2nd and 3rd columns in Figure 13).

Normal Guidance (N.G.). To accurately capture high-frequency

details (such as the hair on the surface and stu�ed toys), we propose

normal guidance, ensuring that the Gaussian function is positioned

close to the surface rather than just on the surface. To validate the

e�ectiveness of normal guidance, we perform the evaluations on

novel view synthesis task. Table 2 and Figure 14 together illustrate

that normal guidance can successfully improve the rendering quality

of novel views both quantitatively and qualitatively (e.g. , the

highlighted detailed structures of the Horse and Hat examples).

Note that the normal guidance improves the rendering quality

signi�cantly; if removing it, it also a�ects the deformation results,

so we only validate it on the novel view synthesis task.

Fig. 10. Robustness validation on di�erent mesh qualities. We perform 
the evaluations on two synthetic examples, Chair and Banana. Three 
modifications (i.e. , add noise, remeshing, and smoothing) are employed 
to alter the quality of the mesh obtained from NeuS2 at four di�erent 
scales. These meshes are utilized to train the 3D GS and deformation, then 
render the deformation results visually. Based on the results, our method 
demonstrates a high level of resilience to various mesh modifications.
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Fig. 12. Comparison with the Texture +Mesh representation.Our mesh-base GS representation utilized the mesh representation to boost the performance

of vanilla 3DGS, but mesh representation still plays significant role in most pipeline of graphics. To validate the e�ectiveness of our proposed representation,

we perform the comparison with classical Mesh+TextureMap representation on three examples (Teddy, Horse, Flowers) with detailed hair or grass-shaped

geometry, since it is very expensive modeling for classical mesh representation. For the texture map and geometry, we use the NeuS2 [Wang et al. 2023a] to

reconstruct the geometry and nvdi�rast [Laine et al. 2020] to recover the texture. Then we render it via Pytorch3D [Ravi et al. 2020] with the same camera.

From the visual results, it is obviously clear that our representation achieve the be�er results on detailed appearance, even with the large-scale deformation.

Input & Edit w.o. Face Split w.o. !A Ours

Fig. 13. Ablations on Face Split operation and regularization !A .We perform a qualitative comparison on our two ablated versions: w/o Face Split and

w/o !A . The two cases illustrate that our full method can achieve the best results under large-scale deformation. It becomes more evident that there are a

greater number of Gaussians with irrational shapes when !A is not present. Disabling Face Split may result in blurry artifacts.

Regularization !A . During Gaussian distribution training, many

long-narrow shapes are used to represent high-frequency appear-

ances but are poorly suited for large-scale deformations. To address

this, we introduce the regularization term !A , which enforces

Gaussian sizes to be smaller than the attached faces, improving

the results of large-scale deformation. In Figure 13, it is obvious that

the ablated version (w/o !A ) leads to more artifacts when large-scale

deformations appear. Sincewe apply the additional constraints to the

vanilla 3DGS to make the Gaussians more suitable for deformation,

this could a�ect the performance of vanilla 3D-GS for the novel

view rendering. So, an appropriate balancing weight should be

set to e�ectively enhance the deformation quality for large-scale

deformations while ensuring the novel view synthesis quality. Users

can further manually select the di�erent weights for novel view

synthesis and 3DGS deformation as needed.
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Fig. 14. Ablation of Normal Guidance on novel view synthesis. It is clear that Normal Guidance can enhance the high-frequency details and complex

structures significantly from novel view renderings. The di�erences are highlighted with di�erent colored boxes for di�erent views (e.g. , the highlighted

detailed structures of the Horse and Hat examples).

pooling and unpooling operations in SubdivNet [Hu et al. 2022],

how to optimize the Gaussian deletion operation is also a future

research area. Face merging or mesh simpli�cation [Garland and

Heckbert 1997] are potential approach to substitute the inherited

deletion operation in vanilla 3DGS.
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